Problem Set 3

September 26, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

- 1. Exercise 7.1.
- **2.** Recall that for any a < b and any integrable function $f : [a, b] \to \mathbb{R}$, one defines $\int_{b}^{a} f$ as $-\int_{a}^{b} f$. Prove that, if $f : [\alpha, \beta] \to \mathbb{R}$ is integrable, then for any $a, b, c \in [\alpha, \beta]$ (i.e., regardless of their order on the real line) we have

$$\int_a^c f = \int_a^b f + \int_b^c f.$$

- **3.** Exercise 7.2.
- **4.** Exercise 7.4.
- 5. Exercise 7.5.
- **6.** Exercise 7.6.
- **7.** Suppose that f and g are integrable on [a, b], and let $h : [a, b] \to \mathbb{R}$ be defined as

 $h(x) := \max\{f(x), g(x)\}, \text{ for all } x \in [a, b].$

Prove that h is integrable.

[Hint: Show first that, for any $s, t \in \mathbb{R}$, one has $\max\{s, t\} = \frac{1}{2}(s + t + |s - t|)$.]

- 8. For a function $f:[a,b] \to \mathbb{R}$, define $f^+(x) := \max\{f(x),0\}$ and $f^-(x) := \max\{-f(x),0\}$, for all $x \in A$.
 - (a) Prove that f is integrable on [a, b] iff f^+ and f^- are both integrable on [a, b].
 - (b) Prove that, if f in integrable on [a, b], then

$$\int_a^b f = \int_a^b f^+ - \int_a^b f^- \, .$$

9. Exercise 7.7.

10. Exercise 7.8.