Problem Set 3

September 26, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

1. Exercise 7.1.
2. Recall that for any $a<b$ and any integrable function $f:[a, b] \rightarrow \mathbb{R}$, one defines $\int_{b}^{a} f$ as $-\int_{a}^{b} f$. Prove that, if $f:[\alpha, \beta] \rightarrow \mathbb{R}$ is integrable, then for any $a, b, c \in[\alpha, \beta]$ (i.e., regardless of their order on the real line) we have

$$
\int_{a}^{c} f=\int_{a}^{b} f+\int_{b}^{c} f
$$

3. Exercise 7.2.
4. Exercise 7.4.
5. Exercise 7.5.
6. Exercise 7.6.
7. Suppose that f and g are integrable on $[a, b]$, and let $h:[a, b] \rightarrow \mathbb{R}$ be defined as

$$
h(x):=\max \{f(x), g(x)\}, \quad \text { for all } x \in[a, b] .
$$

Prove that h is integrable.
[Hint: Show first that, for any $s, t \in \mathbb{R}$, one has $\max \{s, t\}=\frac{1}{2}(s+t+|s-t|)$.]
8. For a function $f:[a, b] \rightarrow \mathbb{R}$, define $f^{+}(x):=\max \{f(x), 0\}$ and $f^{-}(x):=\max \{-f(x), 0\}$, for all $x \in A$.
(a) Prove that f is integrable on $[a, b]$ iff f^{+}and f^{-}are both integrable on $[a, b]$.
(b) Prove that, if f in integrable on $[a, b]$, then

$$
\int_{a}^{b} f=\int_{a}^{b} f^{+}-\int_{a}^{b} f^{-}
$$

9. Exercise 7.7.
10. Exercise 7.8.
