Problem Set 2

September 19, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

1. Exercise 6.6. Further, for those $a \in \mathbb{R}$ for which there exists $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g^{\prime}=f$, give an explicit formula for g.
2. Let $f:(0,1) \rightarrow \mathbb{R}$ be defined by the formula

$$
f(x)=\sum_{k \in \mathbb{N}, k>\frac{1}{x}} \frac{1}{2^{k}} .
$$

(a) Find the limits $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 1^{-}} f(x)$.
(b) Prove that f is (weakly) increasing.
(c) Prove that f is not a derivative; that is, there is no function $g:(0,1) \rightarrow \mathbb{R}$ such that $g^{\prime}=f$.
3. Exercise 6.8.
4. Exercise 6.9.
5. Exercise 6.3.
6. Exercise 6.10.
7. Exercise 6.12.
8. Exercise 6.13.
9. Exercise 6.15 .
10. Exercise 6.16(a).

