Practice Final Exam

December 4, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

- 0. Exercises from Problem Sets 1–9 and Practice Tests 1 and 2.
- 1. Exercise 9.13.
- 2. Exercise 9.19.
- 3. Exercise 10.2.
- 4. Exercise 10.10.
- 5. Exercise 10.11.
- 6. Exercise 10.14.
- 7. Give an example of a metric space (X, d) such that the function ρ defined as

 $\varrho(x,y) = (d(x,y))^2$ for all $x, y \in X$

is not a metric on X. Justify your answer.

- 8. For each of the following, give an explicit example (with justification) or prove one does not exist:
 - (a) A bounded complete metric space which is not compact.
 - (b) A continuous injection $f: (X, d) \to (Y, \varrho)$, where (X, d) is totally disconnected and (Y, ϱ) has precisely three connected components.
 - (c) A continuous bijection $f : (X, d) \to (Y, \varrho)$, where (X, d) is totally disconnected and (Y, ϱ) has precisely 2021 connected components.
 - (d) A continuous injection $f: (X, d) \to (Y, \varrho)$, where (X, d) is infinite totally disconnected and (Y, ϱ) has precisely 2021²⁰²¹ connected components.
 - (e) A totally disconnected compact metric subspace of $(\mathbb{R}, |\cdot|)$.
 - (f) A totally disconnected complete metric subspace of $(\mathbb{R}, |\cdot|)$.
 - (g) A homeomorphism between the Cantor set C and the irrationals $\mathbb{R} \setminus \mathbb{Q}$ (as metric subspaces of $(\mathbb{R}, |\cdot|)$).
 - (h) An uncountable metric space with countably many connected components.
 - (i) A non-differentiable contraction $f : (\mathbb{R}, |\cdot|) \to (\mathbb{R}, |\cdot|)$.
 - (j) A sequence (f_n) of bounded continuous functions $f_n : \mathbb{R} \to \mathbb{R}$ which contains no convergent subsequence.
 - (k) A uniformly convergent sequence (f_n) of non-integrable functions $f_n : [0,1] \to \mathbb{R}$ whose limit is differentiable.
 - (1) A Cauchy sequence (f_n) of integrable functions $f_n : [0,1] \to \mathbb{R}$ such that its limit with respect to the supremum metric is non-integrable.
 - (m) A pair of open sets $U, V \subset \mathbb{R}$ such that $U \cap \overline{V}, \overline{U} \cap V, \overline{U} \cap \overline{V}$, and $\overline{U \cap V}$ are all different.
 - (n) A family $\{K_i\}_{i \in I}$ of compact subsets of a metric space (X, d) such that $\bigcap_{i \in I} K_i$ is non-empty and non-compact.
 - (o) A connected metric space (X, d) such that the cardinality of X satisfies $2 \le |X| < \infty$.
 - (p) A continuous function $f:[0,1] \to \mathbb{R}$ satisfying $x \in \mathbb{Q} \iff f(x) \notin \mathbb{Q}$.