Practice Final Exam

December 4, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.
0. Exercises from Problem Sets 1-9 and Practice Tests 1 and 2.

1. Exercise 9.13.
2. Exercise 9.19.
3. Exercise 10.2.
4. Exercise 10.10.
5. Exercise 10.11.
6. Exercise 10.14.
7. Give an example of a metric space (X, d) such that the function ϱ defined as

$$
\varrho(x, y)=(d(x, y))^{2} \quad \text { for all } x, y \in X
$$

is not a metric on X. Justify your answer.
8. For each of the following, give an explicit example (with justification) or prove one does not exist:
(a) A bounded complete metric space which is not compact.
(b) A continuous injection $f:(X, d) \rightarrow(Y, \varrho)$, where (X, d) is totally disconnected and (Y, ϱ) has precisely three connected components.
(c) A continuous bijection $f:(X, d) \rightarrow(Y, \varrho)$, where (X, d) is totally disconnected and (Y, ϱ) has precisely 2021 connected components.
(d) A continuous injection $f:(X, d) \rightarrow(Y, \varrho)$, where (X, d) is infinite totally disconnected and (Y, ϱ) has precisely 2021^{2021} connected components.
(e) A totally disconnected compact metric subspace of $(\mathbb{R},|\cdot|)$.
(f) A totally disconnected complete metric subspace of $(\mathbb{R},|\cdot|)$.
(g) A homeomorphism between the Cantor set C and the irrationals $\mathbb{R} \backslash \mathbb{Q}$ (as metric subspaces of $(\mathbb{R},|\cdot|))$.
(h) An uncountable metric space with countably many connected components.
(i) A non-differentiable contraction $f:(\mathbb{R},|\cdot|) \rightarrow(\mathbb{R},|\cdot|)$.
(j) A sequence $\left(f_{n}\right)$ of bounded continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ which contains no convergent subsequence.
(k) A uniformly convergent sequence $\left(f_{n}\right)$ of non-integrable functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ whose limit is differentiable.
(l) A Cauchy sequence $\left(f_{n}\right)$ of integrable functions $f_{n}:[0,1] \rightarrow \mathbb{R}$ such that its limit with respect to the supremum metric is non-integrable.
(m) A pair of open sets $U, V \subset \mathbb{R}$ such that $U \cap \bar{V}, \bar{U} \cap V, \bar{U} \cap \bar{V}$, and $\overline{U \cap V}$ are all different.
(n) A family $\left\{K_{i}\right\}_{i \in I}$ of compact subsets of a metric space (X, d) such that $\bigcap_{i \in I} K_{i}$ is non-empty and non-compact.
(o) A connected metric space (X, d) such that the cardinality of X satisfies $2 \leq|X|<\infty$.
(p) A continuous function $f:[0,1] \rightarrow \mathbb{R}$ satisfying $x \in \mathbb{Q} \Longleftrightarrow f(x) \notin \mathbb{Q}$.

