Practice Term Test 2

November 14, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.

- 0. Exercises from Problem Sets 6 and 7.
- 1. Find the radi of convergence of the power series $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$ and $\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$. Conclude that the functions $\sin(x)$ and $\cos(x)$ defined as the sums of the above two power series (respectively) are infinitely differentiable on \mathbb{R} .
- **2.** Let $c \neq 0$ be arbitrary. Use the result of Exercise 8.2 and the Maclaurin series from Problem 1 above to find the Taylor series of $\sin(x)$ and $\cos(x)$ centered at c.
- **3.** Let $c \neq 0$ be arbitrary. Use the formula $\exp(x+y) = \exp(x) \cdot \exp(y)$ to find the Taylor series of $\exp(x)$ centered at c.
- 4. Let $f(x) = x + 2x^2 + 3x^3 + \dots + 2021x^{2021}$. Find the Maclaurin series of f, find its radius of convergence, and determine if the function equals the sum of its series in some neighbourhood of zero. Justify.
- 5. (a) Prove that a closed ball is a closed set in any metric space.
 - (b) Give an example of a metric space (X, d) and an infinite collection of closed sets in X whose union is not closed.
 - (c) Give an example of a metric space (X, d), in which the intersection of any family of open sets is open and the union of any family of closed sets in closed.
- **6.** Given a metric space (X, d) and a set $A \subset X$, prove that
 - (a) $A = \overline{A}$ iff A is closed;
 - (b) A = Int(A) iff A is open.
- 7. Recall that a sequence in a metric space is said to converge to a point a, when every open neighbourhood of a contains all but finitely many terms of that sequence. Let (X, d) be a metric space, let (x_n) be a sequence in X, and let $a, b \in X$ be such that (x_n) is convergent to a and convergent to b. Prove that a = b.
- 8. Recall that a point a in a metric space (X, d) is said to be a limit point of a set $A \subset X$, when for every open neighbourhood U of a one has $A \cap U \setminus \{a\} \neq \emptyset$. We shall denote the set of limit points of A by A'. Given a metric space (X, d) and a set $A \subset X$, prove that
 - (a) $\overline{A} = A \cup A';$
 - (b) A is closed iff $A \supset A'$.
- **9.** Let $(x_n)_{n=1}^{\infty}$ be a sequence in a metric space (X, d), and let $a \in X$. Prove that $\lim_{n\to\infty} x_n = a$ iff a is the only limit point of the set $\{x_n : n \in \mathbb{Z}_+\}$.
- **10.** Exercise 9.9(a)-(f).

11. Two metrics d, ρ on a set X are called *(metric) equivalent*, when there exist constants m, M > 0 such that

$$m \cdot d(x, y) \le \rho(x, y) \le M \cdot d(x, y),$$

for all $x, y \in X$. Let $X = \mathbb{R}^2$, let d_H denote the "hub" metric from Problem 8, PS. 7, let d_R denote the "river" metric from Problem 9, PS. 7, and let d_2 be the Euclidean metric on X. Are any two of these metrics equivalent? Prove or give counterexamples.

- 12. Prove that, if d, ρ are metric equivalent on X, then they are topologically equivalent (i.e., a set $U \subset X$ is open with respect to d iff it is open with respect to ρ).
- **13.** Let X be the set of all real-valued sequences, and let

$$\begin{aligned} X_1 &:= \{ (x_n) \in X : (x_n) \text{ is bounded} \} \,, \\ X_2 &:= \{ (x_n) \in X : (x_n) \text{ is convergent} \} \,, \\ X_3 &:= \{ (x_n) \in X : \lim_{n \to \infty} x_n = 0 \} \,. \end{aligned}$$

For $(x_n), (y_n) \in X$, define

$$d_{\infty}((x_n), (y_n)) := \sup\{|x_n - y_n| : n \in \mathbb{N}\}$$

Show that (X_j, d_∞) is a metric space for j = 1, 2, 3, but (X, d_∞) is not.

- 14. Let X_1, X_2, X_3 and d_{∞} be as in Problem 13.
 - (a) Prove that X_2 is a closed set in the metric space (X_1, d_∞) . [Hint: A sequence $(x_n) \subset \mathbb{R}$ is divergent iff $\liminf x_n < \limsup x_n$.]
 - (b) Prove that X_3 is a closed set in the metric space (X_2, d_∞) .
- **15.** Let X be the set of continuous real-valued functions on the interval [0, 1] and let d be the supremum metric on X. Suppose that $f, g \in X$ satisfy f(x) < g(x) for all $x \in [0, 1]$. Is the set

 $\{h \in X : f(x) < h(x) < g(x) \text{ for all } x \in [0, 1]\}$

an open set in X? Is it an open ball? Justify your answers.

16. Let (X, d) be a metric space and let $Y \subset X$. Recall that a function d_Y defined as

$$d_Y := d|_{Y \times Y} : Y \times Y \ni (x, y) \mapsto d(x, y) \in \mathbb{R}$$

is called the induced metric on Y and the pair (Y, d_Y) is called a metric subspace of (X, d).

- (a) Let (Y, d_Y) be a subspace of a metric space (X, d). Prove that $V \subset Y$ is open in (Y, d_Y) if and only if there exists $U \subset X$ open in (X, d) such that $V = U \cap Y$. Prove that $G \subset Y$ is closed in (Y, d_Y) if and only if there exists $F \subset X$ closed in (X, d) such that $G = F \cap Y$.
- (b) Let (X, d) be a metric space, let $Y \subset X$ and $Z \subset Y$. Prove that, if Z is open (resp. closed) in (Y, d_Y) and Y is open (resp. closed) in (X, d), then Z is open (resp. closed) in (X, d).
- 17. Prove that the following is a necessary and sufficient condition for a metric space (X, d) to be compact: If $\{F_i\}_{i \in I}$ is any family of closed subsets of X such that $\bigcap_{i \in K} F_i \neq \emptyset$ for any finite subset $K \subset I$, then $\bigcap_{i \in K} F_i \neq \emptyset$
 - $\bigcap_{i\in I} F_i \neq \varnothing.$
- **18.** Give an example of a family $\{F_i\}_{i \in \mathbb{Z}_+}$ of closed sets in $(\mathbb{R}, |\cdot|)$, such that $\bigcap_{i \in K} F_i \neq \emptyset$ for any finite

 $\mathbf{2}$

subset $K \subset \mathbb{Z}_+$ but $\bigcap_{i \in \mathbb{Z}_+} F_i = \emptyset$.

- (a) Prove that, for every $n \in \mathbb{Z}_+$, C contains all the endpoints of the maximal closed intervals in C_n .
- (b) Prove that $a \in C$ iff a admits a ternary expansion (possibly infinite) of the form $a = 0.a_1a_2a_3...$ with $a_i \in \{0, 2\}$, for all $i \ge 1$.
- (c) Prove that C contains no open intervals.
- **20.** Let $X = \mathbb{R}^2$, $A = \mathbb{Q} \times (-\infty, -1]$, and $B = C \times \mathbb{R}$, where C denotes the Cantor set in \mathbb{R} . Find metrics ρ_1, ρ_2, ρ_3 , and ρ_4 in X such that:
 - (a) A is closed and B is open w.r.t. ρ_1
 - (b) A is closed and B is not open w.r.t. ρ_2
 - (c) A is not closed and B is closed w.r.t. ρ_3
 - (d) A is open and B is closed w.r.t. ρ_4 .

Justify.

21. Let (X, d) be a metric space, and let $\{F_i\}_{i \in I}$ be any family of compact sets in X. Prove that $\bigcap_{i \in I} F_i$ is compact.