Practice Term Test 1

October 17, 2021

All numbered exercises are from the textbook Lectures on Real Analysis, by F. Larusson.
0. Exercises from Problem Sets $1-5$.

1. Suppose that P is a polynomial of degree $2 n+1$, such that $P(x)+c$ has precisely one real root for every $c \in \mathbb{R}$. Prove that the function P is strictly increasing.
2. State and prove Rolle's Theorem.
3. State and prove the Mean Value Theorem.
4. Prove that a bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable if and only if for every $\epsilon>0$ there exists a partition P of $[a, b]$ such that $U(f, P)-L(f, P)<\epsilon$.
5. (a) Give an example of a bounded non-integrable function $f:[0,1] \rightarrow \mathbb{R}$. Justify.
(b) Give an example of a pointwise convergent sequence $\left(f_{n}\right)$ of integrable functions on $[0,1]$, such that $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}$ exists, but $\left(f_{n}\right)$ does not converge uniformly to any function $f:[0,1] \rightarrow \mathbb{R}$. Justify.
6. (a) Prove that if $f_{n} \rightrightarrows f$ on A and each f_{n} is bounded on A, then f is bounded on A.
(b) Give an example of a pointwise convergent sequence $\left(f_{n}\right)$ of bounded functions such that $\lim _{n \rightarrow \infty} f_{n}$ is unbounded. Justify.
(c) Give an example of a pointwise convergent sequence $\left(f_{n}\right)$ of bounded differentiable functions on $[0,1]$ such that the sequence $\left(f_{n}^{\prime}\right)$ is unbounded. Justify.
7. Exercise 8.1.
8. Exercise 8.12.
9. (a) State definitions of equiboundedness and equicontinuity of sequences of functions.
(b) Give an example of a sequence $\left(f_{n}\right)$ of equibounded continuous functions on $[0,1]$, which does not contain a uniformly convergent subsequence. Justify.
(c) Let $\left(f_{n}\right)$ be a sequence of differentiable functions on $[0,1]$, such that $f_{n}(0)=0$ for all n and the sequence $\left(f_{n}^{\prime}\right)$ is uniformly convergent on $[0,1]$. Prove that the sequence $\left(f_{n}\right)$ is equibounded and equicontinuous.
10. State the Cauchy Criterion for convergence of functional series.
11. (a) Give an example of an absolutely convergent series $\sum_{n} f_{n}$, which is not uniformly convergent. Justify.
(b) Give an example of an absolutely convergent series $\sum_{n} f_{n}$ of integrable functions on $[0,1]$, such that $\int_{0}^{1} \sum_{n} f_{n} \neq \sum_{n} \int_{0}^{1} f_{n}$. Justify.
