Practice Term Test 2

1. True or False:
(i) If $\mathbf{T}(t)$ is the unit tangent vector of a smooth curve, then the curvature is $\kappa=\|d \mathbf{T} / d t\|$.
A: YES
B: NO
(ii) Suppose $f(x)$ is twice continuously differentiable. At an inflection point of the curve $y=$ $f(x)$, the curvature is 0 .
A: YES
B: NO
(iii) If $\|\mathbf{r}(t)\|=1$ for all t, then $\left\|\mathbf{r}^{\prime}(t)\right\|$ is a constant.
A: YES
B: NO
(iv) The osculating circle of a curve C at a point has the same unit tangent vector, normal vector, and curvature as C at that point.
A: YES
B: NO
(v) If $f(x, y)$ is a function and (a, b) is in the domain of f, then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)$.
A: YES
B: NO
(vi) The linearization of $f(x, y)=e^{x} \cos (x y)$ at the point $(0,0)$ is $L(x, y)=x+1$.
A: YES
B: NO
(vii) The linearization of $f(x, y)=\frac{y-1}{x+1}$ at the point $(0,0)$ is $L(x, y)=x+y-1$.
A: YES
B: NO
(viii) If $f(x, y)$ has continuous second-order partial derivatives, then $\frac{\partial^{2} f}{\partial x \partial y}(x, y)-\frac{\partial^{2} f}{\partial y \partial x}(x, y)=0$ for all (x, y).
A: YES
B: NO
(ix) There exists a function $f(x, y)$ with continuous second-order partial derivatives, such that $\frac{\partial f}{\partial x}(x, y)=x+y^{2}$ and $\frac{\partial f}{\partial y}(x, y)=x-y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$.
A: YES
B: NO
2. The minimum curvature of the curve $\mathbf{r}(t)=\frac{\cos \left(3 t^{2}\right)}{4} \mathbf{j}-\frac{\sin \left(3 t^{2}\right)}{4} \mathbf{k}$ is equal to

A: 12	B: 4	C: 3	D: 2	E: 0

3. If the position function of a particle is $\mathbf{r}(t)=t^{2} \mathbf{j}+\frac{1}{t^{2}} \mathbf{k}$, then its acceleration at time $t=1$ is

A: $\langle 0,1,2\rangle$	B: $\langle 1,2,6\rangle$	$\mathrm{C}:\langle 2,0,6\rangle$	$\mathrm{D}:\langle 6,2,0\rangle$	$\mathrm{E}:\langle 0,2,6\rangle$

4. At what point of the curve $\mathbf{r}(t)=t^{3} \mathbf{i}+3 t \mathbf{j}+t^{4} \mathbf{k}$ is the normal plane parallel to the plane $6 x+6 y-8 z=2023 ?$
A: $P(1,3,1) ~$ B: $P(-1,-3,1) ~ \mathrm{C}: P(-1,3,1) ~ \mathrm{D}: P(3,3,-4) ~ \mathrm{E}: P(8,6,16)$
5. If $f(x, y)=\frac{5 y^{4} \cos ^{2}(2 x)}{x^{4}+y^{4}}$, then $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ is equal to

A: 5	B: $\frac{5}{2}$	C: $\frac{5}{4}$	D: 0	E: the limit does not exist

6. If $f(x, y)=y \sin (x-y)$, then $\lim _{(x, y) \rightarrow(\pi / 2, \pi)} f(x, y)$ is equal to

A: $-\pi$	B: $-\pi / 2$	C: 0	D: $\pi / 2$	E: the limit does not exist

7. Find the unit tangent and unit normal vectors of the curve $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$ at the point $t=0$.
8. Prove that the osculating plane at every point on the curve $\mathbf{r}(t)=\left\langle t+2,1-t, \frac{t^{2}}{2}\right\rangle$ is the same plane.
9. Suppose that a projectile is fired with an initial speed v_{0} and angle of elevation α from the initial position at the origin, and its acceleration function is $\mathbf{a}(t)=-g \mathbf{j}$. Show that the projectile reaches three-quarters of its maximum height in half the time needed to reach its maximum height.
10. Given that $f(x, y)=2 y+e^{-x}, x(s, t)=s-\ln (\sin t)$, and $\frac{\partial^{2} y}{\partial s^{2}}(0, \pi / 2)=1$, find $\frac{\partial^{2} f}{\partial s^{2}}(0, \pi / 2)$. Justify your answer.
11. Find the linearization $L(x, y)$ of the function $f(x, y)=y+\sin \left(\frac{x}{y}\right)$ at the point $(0,3)$.
