Practice Term Test 1

- 1. True or False:
 - (i) For any two vectors $\mathbf{u}, \mathbf{v} \in V_3$, we have $\|\mathbf{u} \cdot \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\|$. A: YES B: NO
 - (ii) For any two vectors $\mathbf{u}, \mathbf{v} \in V_3$, we have $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$. A: YES B: NO
 - (iii) For any two vectors $\mathbf{u}, \mathbf{v} \in V_3$, we have $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{v} \times \mathbf{u}\|$. A: YES B: NO
 - (iv) For any two vectors $\mathbf{u}, \mathbf{v} \in V_3$, we have $(\mathbf{u} + \mathbf{v}) \times \mathbf{v} = \mathbf{u} \times \mathbf{v}$. A: YES B: NO
 - (v) Given $\mathbf{u}, \mathbf{v} \in V_3$, if $\mathbf{u} \cdot \mathbf{v} = 0$ and $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, then $\mathbf{u} = \mathbf{0}$ or $\mathbf{v} = \mathbf{0}$. A: YES B: NO
 - (vi) The vector $\langle 6, -2, 14 \rangle$ is parallel to the plane 3x y + 7z = 1. A: YES B: NO
 - (vii) The curve with vector equation $\mathbf{r}(t) = t^5 \mathbf{i} 3t^5 \mathbf{j} + 4t^5 \mathbf{k}$ is a straight line. A: YES B: NO

(viii) If $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are differentiable vector functions, then $\frac{d}{dt}[\mathbf{u}(t) \times \mathbf{v}(t)] = \mathbf{u}'(t) \times \mathbf{v}'(t)$. A: YES B: NO

(ix) If $\mathbf{r}(t)$ is a differentiable vector function, then $\frac{d}{dt} \|\mathbf{r}(t)\| = \|\mathbf{r}'(t)\|$. A: YES B: NO

- (x) If $\|\mathbf{r}(t)\| = 1$ for all t, then $\mathbf{r}'(t)$ is orthogonal to $\mathbf{r}(t)$ for all t. A: YES B: NO
- (xi) If **u** and **v** are vector functions that possess limits as $t \to a$, then

$$\lim_{t \to a} [\mathbf{u}(t) \times \mathbf{v}(t)] = [\lim_{t \to a} \mathbf{u}(t)] \mathbf{v}(a) + \mathbf{u}(a) [\lim_{t \to a} \mathbf{v}(t)].$$

B: NO

(xii) If $\mathbf{r}(t)$ is a two times differentiable vector function, then

$$\frac{d}{dt}[\mathbf{r}(t) \times \mathbf{r}'(t)] = \mathbf{r}(t) \times \mathbf{r}''(t) \,.$$

A: YES B: NO

A: YES

2. If $\mathbf{i}, \mathbf{j}, \mathbf{k}$ denote the standard basis vectors in V_3 , then the vector $2\mathbf{i} \times (3\mathbf{j} - 4\mathbf{k})$ is equal to

A: $24\mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k}$ B: $-2\mathbf{k}$	$\mathbf{c} \qquad \mathbf{C}: 8\mathbf{j} + 6\mathbf{k}$	D: 6 k – 8 j	E: 0
---	--	----------------------------	-------------

3. Given points A(0, -2, 0), B(1, 0, 0), and C(0, 0, 1), the area of the triangle ABC is equal to

A: 4 B: $\frac{3\sqrt{2}}{2}$ C: 3 D: $\frac{3}{2}$ E: 0
--

4. If $\mathbf{u} = \langle 3, 0, 4 \rangle$, \mathbf{v} lies in the *xy*-plane, $|\mathbf{v}| = 5$, and $\operatorname{comp}_{\mathbf{u}} \mathbf{v} = 3$, then \mathbf{v} is

A: $\langle 5, 0, 0 \rangle$ B: $\langle 9, 0, 12 \rangle$ C: $\langle \frac{5\sqrt{2}}{2}, \frac{5\sqrt{2}}{2}, 0 \rangle$	D: $\langle 3, 4, 0 \rangle$	E: there is no such vector
---	------------------------------	----------------------------

5. The distance between the planes 2x + y - 2z = 0 and 4z - 2y - 4x = 6 is

A: 1	B: 2	C: 3	D: 6	E: 0 (the planes intersect)
------	------	------	------	-----------------------------

6. The curve $\mathbf{r}(t) = t\mathbf{i} + (2t - t^2)\mathbf{k}$ intersects the surface $z = x^2 + y^2$ at the points

A: $P_1(0,0,0), P_2(1,0,1), \text{ and } P_3(-1,0,1)$		B: $P_1(1,0,1)$ and $P_2(-1,0,1)$		
C: $P_1(0,0,0)$ and $P_2(1,0,1)$	D: at infinit	ely many points	E: at no point	

- 7. Find an equation of the plane that contains the line $x 1 = 2 y = \frac{4 z}{3}$ and is parallel to the plane 5x + 2y + z = 2023.
- 8. Find an equation of the plane that passes through the line of intersection of the planes x z = 1and y + 2z = 3, and is perpendicular to the plane x + y - 2z = 1.
- 9. If $\mathbf{w} = \|\mathbf{u}\| \mathbf{v} + \|\mathbf{v}\| \mathbf{u}$, where \mathbf{u}, \mathbf{v} , and \mathbf{w} are all non-zero vectors, show that \mathbf{w} bisects the angle between \mathbf{u} and \mathbf{v} .
- 10. Find the unit tangent vector of the curve $\mathbf{r}(t) = \langle t, \frac{t^2}{2}, t^2 \rangle$ at the point t = 0.
- 11. Find the arc length of the curve given by $\mathbf{r}(t) = \langle 2\sin t, 5t, 2\cos t \rangle, t \in [0, \pi].$