Practice Term Test 1

1. True or False:
(i) For any two vectors $\mathbf{u}, \mathbf{v} \in V_{3}$, we have $\|\mathbf{u} \cdot \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\|$.
A: YES
B: NO
(ii) For any two vectors $\mathbf{u}, \mathbf{v} \in V_{3}$, we have $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$.
A: YES
B: NO
(iii) For any two vectors $\mathbf{u}, \mathbf{v} \in V_{3}$, we have $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{v} \times \mathbf{u}\|$.
A: YES
B: NO
(iv) For any two vectors $\mathbf{u}, \mathbf{v} \in V_{3}$, we have $(\mathbf{u}+\mathbf{v}) \times \mathbf{v}=\mathbf{u} \times \mathbf{v}$.
A: YES
B: NO
(v) Given $\mathbf{u}, \mathbf{v} \in V_{3}$, if $\mathbf{u} \cdot \mathbf{v}=0$ and $\mathbf{u} \times \mathbf{v}=\mathbf{0}$, then $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$.
A: YES
B: NO
(vi) The vector $\langle 6,-2,14\rangle$ is parallel to the plane $3 x-y+7 z=1$.
A: YES
B: NO
(vii) The curve with vector equation $\mathbf{r}(t)=t^{5} \mathbf{i}-3 t^{5} \mathbf{j}+4 t^{5} \mathbf{k}$ is a straight line.
A: YES
B: NO
(viii) If $\mathbf{u}(t)$ and $\mathbf{v}(t)$ are differentiable vector functions, then $\frac{d}{d t}[\mathbf{u}(t) \times \mathbf{v}(t)]=\mathbf{u}^{\prime}(t) \times \mathbf{v}^{\prime}(t)$.
A: YES
B: NO
(ix) If $\mathbf{r}(t)$ is a differentiable vector function, then $\frac{d}{d t}\|\mathbf{r}(t)\|=\left\|\mathbf{r}^{\prime}(t)\right\|$.
A: YES
B: NO
(x) If $\|\mathbf{r}(t)\|=1$ for all t, then $\mathbf{r}^{\prime}(t)$ is orthogonal to $\mathbf{r}(t)$ for all t.
A: YES
B: NO
(xi) If \mathbf{u} and \mathbf{v} are vector functions that possess limits as $t \rightarrow a$, then

$$
\lim _{t \rightarrow a}[\mathbf{u}(t) \times \mathbf{v}(t)]=\left[\lim _{t \rightarrow a} \mathbf{u}(t)\right] \mathbf{v}(a)+\mathbf{u}(a)\left[\lim _{t \rightarrow a} \mathbf{v}(t)\right]
$$

A: YES
B: NO
(xii) If $\mathbf{r}(t)$ is a two times differentiable vector function, then

$$
\frac{d}{d t}\left[\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right]=\mathbf{r}(t) \times \mathbf{r}^{\prime \prime}(t)
$$

A: YES
B: NO
2. If $\mathbf{i}, \mathbf{j}, \mathbf{k}$ denote the standard basis vectors in V_{3}, then the vector $2 \mathbf{i} \times(3 \mathbf{j}-4 \mathbf{k})$ is equal to

A: $24 \mathbf{i} \cdot \mathbf{j} \cdot \mathbf{k}$	B: $-2 \mathbf{k}$	C: $8 \mathbf{j}+6 \mathbf{k}$	D: $6 \mathbf{k}-8 \mathbf{j}$	$\mathrm{E}: \mathbf{0}$

3. Given points $A(0,-2,0), B(1,0,0)$, and $C(0,0,1)$, the area of the triangle $A B C$ is equal to

A: 4	B: $\frac{3 \sqrt{2}}{2}$	C: 3	D: $\frac{3}{2}$	E: 0

4. If $\mathbf{u}=\langle 3,0,4\rangle$, \mathbf{v} lies in the $x y$-plane, $|\mathbf{v}|=5$, and $\operatorname{comp}_{\mathbf{u}} \mathbf{v}=3$, then \mathbf{v} is

$\mathrm{A}:\langle 5,0,0\rangle$	$\mathrm{B}:\langle 9,0,12\rangle$	$\mathrm{C}:\left\langle\frac{5 \sqrt{2}}{2}, \frac{5 \sqrt{2}}{2}, 0\right\rangle$	$\mathrm{D}:\langle 3,4,0\rangle$	$\mathrm{E}:$ there is no such vector

5. The distance between the planes $2 x+y-2 z=0$ and $4 z-2 y-4 x=6$ is

A: 1	B: 2	C: 3	D: 6	E: 0 (the planes intersect)

6. The curve $\mathbf{r}(t)=t \mathbf{i}+\left(2 t-t^{2}\right) \mathbf{k}$ intersects the surface $z=x^{2}+y^{2}$ at the points

$$
\begin{aligned}
& \text { A: } P_{1}(0,0,0), P_{2}(1,0,1) \text {, and } P_{3}(-1,0,1) \\
& \text { C: } P_{1}(0,0,0) \text { and } P_{2}(1,0,1) \text { and } P_{2}(-1,0,1) \\
& \hline \text { D: at infinitely many points }
\end{aligned} \text { E: at no point } \begin{gathered}
\text { E } \\
\hline
\end{gathered}
$$

7. Find an equation of the plane that contains the line $x-1=2-y=\frac{4-z}{3}$ and is parallel to the plane $5 x+2 y+z=2023$.
8. Find an equation of the plane that passes through the line of intersection of the planes $x-z=1$ and $y+2 z=3$, and is perpendicular to the plane $x+y-2 z=1$.
9. If $\mathbf{w}=\|\mathbf{u}\| \mathbf{v}+\|\mathbf{v}\| \mathbf{u}$, where \mathbf{u}, \mathbf{v}, and \mathbf{w} are all non-zero vectors, show that \mathbf{w} bisects the angle between \mathbf{u} and \mathbf{v}.
10. Find the unit tangent vector of the curve $\mathbf{r}(t)=\left\langle t, \frac{t^{2}}{2}, t^{2}\right\rangle$ at the point $t=0$.
11. Find the arc length of the curve given by $\mathbf{r}(t)=\langle 2 \sin t, 5 t, 2 \cos t\rangle, t \in[0, \pi]$.
