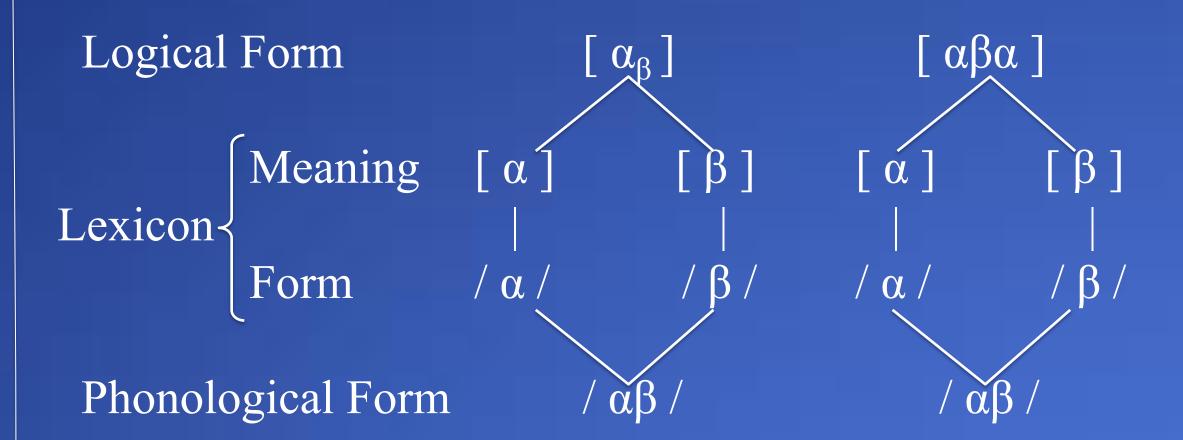
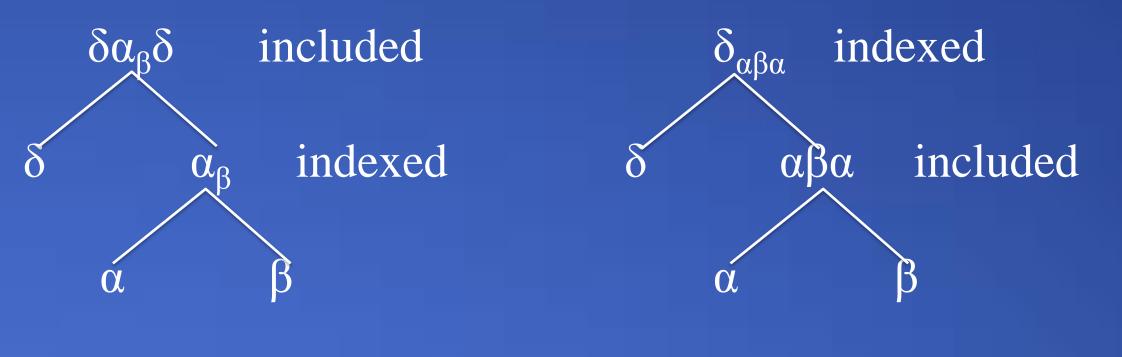
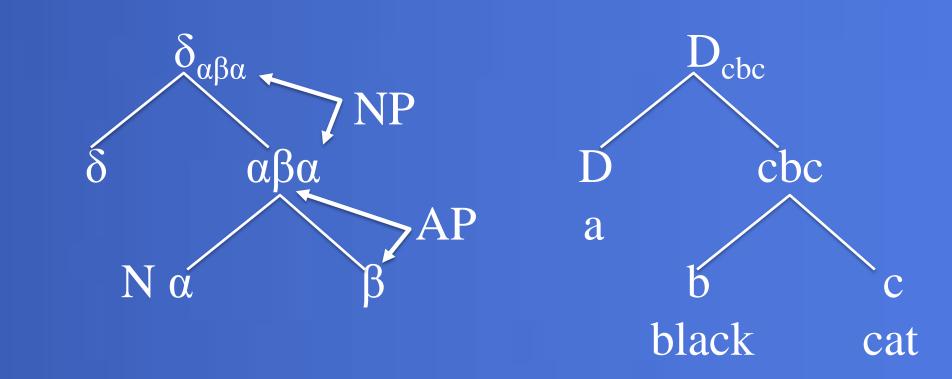
Grammatical Logic


Jacques Lamarche, Department of French Studies, Western University


PROPOSAL

- Grammatical Logic is based on *output arrangements of input (primitive) content* (words)
- <u>One</u> input: $\alpha \beta$ <u>Two</u> outputs: α_{β} "indexed" output (with copy) $\alpha \beta$ indexed


included

αβα

Distinctions only exist on constituents (combinations)

ECONOMY

- Distribution and interpretation without specific primitive (labels A and N, logical type)
- Preliminary definition Noun: α is an NP in β_{α} Adjective: α is an AP in $\beta\alpha\beta$
- NP-internal adjectival modification

- Inclusion: interpretation of dependent property
- Output validity: if denotation of term compatible

CENTRAL CLAIM

Only operations needed to account for distribution and interpretation of Nouns and Adjectives in sentential contexts.

ADEQUACY

- Dependencies between grammatical categories: attributive Adjective (NP-internal Adjective that can be paraphrased with predicative adjective)
 - a. the black cat \rightarrow the cat is black
 - b. the future president $\rightarrow *$ the president is future
- Definition: α is an Attributive Adjective in $\beta\alpha\beta$ if $\beta\alpha\beta$ is an NP
- Grammatical distinctions: specific combinational of symbols; dependency between symbols means dependency between categories
- Traditional X-bar theory: symbols and structure are separate
 - Structures uniform: independent statement for dependency between categories must be given by UG

BASIC PATTERNS with COPULA

with value imposed by output configuration

GRAMMAR IS LOGIC

Empirical evidence

- With unique denotation in model (*red* = 650nm), logical values predictable by grammatical context
- a. The red car is fantastic. (attributive adjective)
 b. Jill's favourite car is red. (predicative adjective)
 c. Jill's favourite colour is red. (specificational)
 d. Red is Jill's favourite colour. (inversion previous)
 e. In the fall, red is widespread. (mass reading)
 f. In the fall, reds are spectacular. (plural generic)
 g. Reds were splattered on the wall. (plural specific)
 h. These are nice reds. (predicative plural)
 i. This is a glossy red. (predicative singular)
 j. The red I saw was glossy. (definite NP)
- Identity of denotation: evidence from anaphoric reference across categories/types

 Grammatical logic is based on temporal alignment of information presented linearly; differential alignments based on different expansion (EXP| α | = expansion of α); grammatical values = temporal signatures

• Indexed output EXP| α | = EXP| β |; Included output EXP| α | > EXP| β |

- Input expansion: Substantive index EXP| x | = 0; Verb *be* EXP |() = 1; Determiner *a* EXP |{ }| > 1.
- Conditions: *is* -()- is saturated by α iff $\text{Exp} |\alpha| \ge \text{Exp} |()|$ $a - \{ \}$ - is identified by α iif $\text{Exp} |\alpha| = \text{Exp} |\{ \}|$
- Temporal signatures of grammatical values
 - x is a predicative Adjective iff EXP|x| < 1
 - x is a proper Noun iff EXP|x| = 1
 - x is a mass Noun iff EXP| x...x| > 1
 - x is a count Noun iff EXP|x| > 1

			a y			
x is	x()	<i>x</i> (<i>y</i>)	x()y	yx()y	$\{ x() \} y$	A
	x()x	x(y)x	*x()xy	yx()xy	$\{x()x\}y$	B

a. The skin is <u>red</u> around the bruise. (adjective)b. The <u>red</u> is brownish. (nominal argument)

- Compositional semantics not driven by denotational model: rather, value imposed on denotation by combinational output
- Denotation only relevant at level of discourse analysis, for validity, truth and full interpretation

an x	z is $\left \left\{ \left(\right) \right\} \right $	$) x \left\{ (y) \right\}$	X	$*{()}xy$	<i>y</i> {()}xy	$\{\{()\}x\}$	y C		
	0	1		2		3	4			
	0	1		2		3		4		
A	Jill is	Jill is tall	Cl	Clark is Superman		Venus is rock		Felix is a cat		
B	Time is	Water is clear	*	Rock is Ven	us	Beer is alcohol		Food is a pleasure		
С	A God is	A cat is fun	:	* A cat is Fel	İX	A pizz	za is food	A ca	t is a feline	