

Water-Fat MRI Suggests an Endogenous Rhythm of Brown Adipose Tissue Proliferation in a Hibernator A. MacCannell¹, K. Sinclair², L. Friesen-Waldner², C. McKenzie², J. Staples¹

acCannell¹, K. Sinclair², L. Friesen-Waldner², C. McKenzie², J. Stap Biology¹ and Medical Biophysics², University of Western Ontario, London, Canada

Introduction:

- Brown adipose tissue is the main thermogenic tissue in small eutherian mammals
- BAT is the main source of heat and increased metabolic rate during arousal from torpor in the 13-lined ground squirrel
- In non-hibernators BAT proliferation requires weeks of cold-acclimation

Research Questions:

- Question 1: Does BAT proliferation occur seasonally in a hibernator without cold acclimation? Do both quantity and quality of BAT change?
 - Hibernator WAT varies with an endogenous circannual rhythm
- Question 2: Where does this BAT proliferation occur?

Imaging of BAT:

Distinguishes water from Segmenting Fat and Volume:

Experimental Timeline and conditions:

 3 adults, 15 scans each over 11 months:
 June 6th – Nov. 11th animals held at 25°C, 1°C/day decrease to 5°C until April 6th
 seasonal photoperiod

Anaesthetized ground squirrels scanned at 3 Tesla with a 32 channel receiver

array

- Fat Fraction IDEAL [Water-Fat Image] (TR/ΔTE/flip angle = 8.0ms/0.97ms/1°, voxel dimensions = 0.9x0.9x0.9 mm³)
- T₁-weighted (TR/TE/flip angle = 4.3ms/2.0ms/15°, voxel dimensions = 0.9x0.9x0.9mm³)

 Total squirrel volume manually segmented using T₁-weighted images (A). WAT volumes (red in B) segmented using Osirix 5.6 with parameters set to a lower Fat fraction threshold of 70%. BAT Fat fraction between 25 - 70% (red in C).

White Adipose Tissue Volume

Brown Adipose Tissue Volume

Fig 2. A) Ratio of BAT volume

to whole animal volume.

B) Histology of BAT.

Conclusions:

- Total BAT proliferates as hibernation approaches
 increased proliferation when ambient temperature decreases
- proliferation patterns differ within body:
- A. BAT volume around the eyes is maintained during hibernation
 B. thorax BAT decreases

 The visceral and subcutaneous WAT increase substantially in anticipation for hibernation, and decrease during hibernation

- Fig 3. BAT highlighted in red in head (A) and thorax (B). Note diffuse bat distribution in thorax.
- Fig 4. BAT /whole animal volume (blue) and fat fraction (red) for head (A) and thorax (B).
 - throughout hibernation
 - As hibernation approaches, total BAT fat fraction decreases
 - Increase in water? Decrease in lipid?
 - Changes in fat fraction differ within body:
 Thorax BAT fat fraction decreases when temperature drops, but head BAT continues to increase

Contact: amaccann@uwo.ca

1. BAT proliferation occur seasonally without cold acclimation.

- Cold exposure increases proliferation and decreases fat fraction, at least in thorax
 - Lipid oxidized? More mitochondria? Increased vasculature?
- What is the role of photoperiod? Summer cold-acclimation?
- 2. Most BAT proliferation in thorax, but also greatest decline in hibernation
 - Significant apparent BAT pad adjacent to eyes that is maintained throughout hibernation
 - Does "eye BAT" express UCP1? Western blot analysis will confirm
 Could "eye BAT" explain reports of brain heating in hibernators?

Future Directions: BAT dynamics in young-ofthe-year.