# The Effect of Anoxia on Mitochondrial Performance in a Hibernator (Ictidomys tridecemlineatus) Leah Hayward<sup>1</sup>, Kate Mathers<sup>1,2</sup>, and James Staples<sup>1</sup> <sup>1</sup>Department of Biology; <sup>2</sup>Department of Physiology and Pharmacology, Western University, London, ON, Canada

## THE THIRTEEN-LINED GROUND SQUIRREL





Small hibernators fluctuate between 2 metabolic extremes during winter: torpor and interbout

### **RESEARCH QUESTIONS**

(1) Does mitochondrial anoxia tolerance differ between hibernators and nonhibernators, and/or seasonally in hibernators? (2) What biochemical mechanisms underlie any differential tolerance?





Figure 1. Body temperature (T<sub>b</sub>) fluctuations of a thirteen-lined ground squirrel during the hibernation season. Ground squirrels spend most of the hibernation season in torpor—a state of reduced T<sub>b</sub> (and metabolic rate). Between these torpor bouts, spontaneous arousals increase T<sub>b</sub> and metabolic rate rapidly to euthermic levels. These periods of interbout euthermia (IBE) are maintained for several hours.

euthermia (IBE; Fig.1)

- The rapid transition from torpor to IBE may cause transient hypoxia in certain tissues.
- Some hibernator tissues are hypoxia tolerant<sup>1,2,3</sup> and this tolerance improves during the hibernation season<sup>1</sup>. The mechanisms that confer this tolerance are unknown.

1. Isolate liver mitochondria from summer, torpid & IBE ground squirrels and rats 2. Quantify mitochondrial performance before and after 5 minutes of anoxia: - state 3, state 4, membrane potential

3. Recover mitochondrial samples and measure activities of key enzymes









Figure 8. Anoxia reduces Complex I enzyme activity in summer squirrel and rat liver mitochondria. The effect of anoxia on maximal enzyme activity (mmol/min\*mg protein) of Complex I (A), Complex II (B), and Complex V (C). Complex I activity is significantly reduced following anoxia in summer ground squirrel and rat liver mitochondria (\*P<0.05). Anoxia does not affect Complex II or Complex V activity in any group. Data are presented as mean ± SE of both the original mitochondrial sample, and the sample recovered following respiration measurements. Among experimental groups, differential lettering represents statistical differences (P≤0.05), and is expressed for the original mitochondrial sample and the recovered samples separately. N=5 for summer, IBE, and rat original mitochondrial samples, N=6 for torpor, and N=4 for rat recovered mitochondria.

#### SUMMARY AND CONCLUSIONS



Figure 9. Differential effect of anoxia on liver mitochondria of squirrels and rats. Anoxia halts electron flux through the electron transport

Anoxia does not affect ETS Complex I activity in winter (torpor and IBE) ground squirrel liver mitochondria, but decreases it in summer ground squirrels and rats. Anoxia does not affect Complex II or Complex V activity in any group.

In summer ground squirrel and rat liver mitochondria: Increased leak respiration and decreased enzyme activity suggests anoxia-associated damage (vs. regulatory changes). ROS-mediated damage could mechanistically explain these findings.







system (ETS). This leads to an overall reduction of complex enzymes, which can promote reactive oxygen species (ROS) production (shown as superoxide O<sub>2<sup>--</sup></sub>). ROS can damage mitochondrial components, such as ETS complex enzymes<sup>4</sup>, which may explain reduced enzyme activity of Complex I in summer squirrels and rats following anoxia. The increase in leak respiration after anoxia in summer squirrels and rats may also be explained by higher ROS-related damage compared to IBE and torpor (perhaps through increased lipid peroxidation).

- Enhanced anoxia tolerance in liver mitochondria of torpid and IBE ground squirrels
  - minimal (IBE) or no (torpor) anoxia effect on leak respiration
  - no anoxia effect on Complex I activity
- Lower ROS production or improved capacity for ROS detoxification may mitigate anoxia-associated decreases in performance

#### Reference

[1] Lindell, S.L., Klahn, S.L., Piazza, T.M., Mangino, M.J., Torrealba, J.R., Southard, J.H. and Carey, H.V., 2005. Natural resistance to liver cold ischemia-reperfusion injury associated with the hibernation phenotype. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288(3), pp.G473-G480.

[2] Dave, K.R., Prado, R., Raval, A.P., Drew, K.L. and Perez-Pinzon, M.A., 2006. The arctic ground squirrel brain is resistant to injury from cardiac arrest during euthermia. Stroke, 37(5), pp.1261-1265. [3] Kurtz, C.C., Lindell, S.L., Mangino, M.J. and Carey, H.V., 2006. Hibernation confers resistance to intestinal ischemia-reperfusion injury. American Journal of Physiology- Gastrointestinal and Liver Physiology, 291(5), pp.G895-G901. [4] Cadenas, E. and Davies, K.J., 2000. Mitochondrial free radical generation, oxidative stress, and aging. *Free Radical Biology and Medicine*, 29(3), pp.222-230.