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Abstract

In this paper, we are concerned with n-dimensional generalized competitive or

cooperative systems of ordinary differential equations. A result is established to

show that the flow generated by a generalized cooperative and irreducible system

is strongly monotone. Also, it is shown that an analogue of the Poincarè-Bendixon

theorem holds for three dimensional generalized competitive and dissipative systems.

Finally, we provide a generalized Smale’s construction.

1 Introduction

Since the early works of Kamke [6] and Müller [7], monotone dynamical system theory

has been showing its power in more and more models described by various differential

equations, including ordinary, delay and parabolic differential equations. When consider-

ing models of ordinary differential equations, most frequently used ordering in the phase

space is the one induced by the first orthant in R
n. This cone is a natural choice and

is especially plausible and convenient in studying population growth models, due to the

practical demand on positive invariance of the population density. Systems that are mono-

tone with respect to the ordering induced by this cone have been referred as (classical)
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cooperative-competitive systems; see Hirsch’s series of works [1-5]. Such systems can

demonstrate simple dynamics (e.g., generic convergence) under some extra conditions. In

the meantime, they can also allow very complicated behaviour. Indeed, Smale’s construc-

tion (see Smale [11]) shows that any vector field on the standard (n − 1)-simplex in R
n

can be embedded into a smooth competitive vector field on R
n for which the simplex is an

attractor, which implies that the limiting behaviour of classical competitive systems can

be arbitrarily complicated. On the other hand, from Hirsch [1], one knows that a classical

competitive or cooperative system in R
n behaves essentially like a system in R

n−1.

As stated in the book by Smith [14], sometimes it is advantageous to consider other

orthants (other than R
n
+ ) as order cones. For example, in analyzing a population model

of n interacting species where k of which interact with each other in cooperative manner,

the remaining n − k species interact with each other in a cooperative manner, but the

interaction between any two species in different groups is competitive, Smith [12, 13]

used the ordering induced by the corresponding orthant in which the k coordinates are

nonnegative and the remaining n − k coordinates are non-positive. This shows that by

properly choosing an orthant as the order cone, one may be able to enlarge the class

of cooperative and competitive systems. For a detailed discussion on the other orthant

cones, the reader is referred to the book by Smith [14, pp. 48–50].

The success of Smith [12, 13, 14] encourages people to further enlarge the class of

cooperative and competitive systems by considering other cones that are not orthants

of R
n. Recently, Ortega and Sánchez [8] examined the monotonicity of solution flows

of ordinary differential systems with respect to the ordering induced by the so-called

“quadratic cones”. In the special case of n = 3, the resulting monotonicity was then

employed to generalize the Poincarè-Bendixon theorem and then to obtain the existence

of an orbitally stable closed orbit. The results in Ortega and Sánchez [8] have found an

successful application to the Rauch’s circuit system in Sánchez [9].

While attempts can be kept making to identifying other cones, one can also simultane-

ously work in the other direction, that is, studying cooperative and competitive systems

with respect to an arbitrary ordering (referred throughout this paper as generalized coop-

erative and competitive systems). The former requires much knowledge and experience

on the models and is much more involved than the standard ordering in R
n. For the lat-

ter, Walcher [16] recently explored such generalized cooperative systems. After clarifying

some necessary notions on and establishing the criteria for verification of such generalized

cooperative systems, Watcher [16] extended Müller’s classical monotonicity theorem and

Kamke’s comparison theorem to such generalized cooperative systems.

Walcher [16] has only developed conditions for the systems to generate a monotone flow

with respect to an arbitrary ordering. However, it is well-known that monotonicity only
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is not enough to guarantee some nice properties, and in order for the system to have such

nice properties, stronger conditions are required among which is the strong monotonicity.

For example, while monotonicity does not lead to the “generic convergence”, strong

monotonicity does; see, e.g., Smith and Thieme [15]. It is known that in the standard

ordering case, cooperative property and irreducibility guarantee the strong monotonicity of

the flow of the system. One naturally asks what about in a case with an arbitrary ordering?

The primary objective of this paper is to introduce the corresponding irreducibility for a

system with respect to an arbitrary ordering, by which we will establish the corresponding

strong monotonicity for the solution flow.

The second objective of this paper is to discuss Smale’s construction, which implies

that classical cooperative and irreducible systems in R
n can admit any type of dynamic

behaviour of systems in R
n−1, and thus, can demonstrate very complicated dynamics,

such as chaos and strange attractors. Smale’s classical construction is done under the

standard ordering and it heavily depends on the structure of the positive cone R
n
+. Now

that one can generalize the classical cooperative and irreducible systems to the ones with

respect to arbitrary orderings, and now that one has infinitely many choices for order

cones, one may wonder if there is any cone in R
n that will induce an ordering with

respect to which the corresponding cooperative and irreducible systems can only allow

certain types (say, simpler ones) of dynamics. In other words, are the implications of

Smale’s construction ordering dependent? We will give a negative answer to this question

by extending Smale’s construction to a generalized one.

The rest of this paper is organized as follows. In Section 2, we give some key defi-

nitions for generalized competitive, cooperative and irreducible systems, and establish a

result (Theorem 2.1) to show that the flow generated by a generalized cooperative and

irreducible system is strongly monotone. An example and some discussions are also given

to illustrate that our result is different from those in [3, 13] and is a generalization of

some results in [8]. Section 3 is devoted to demonstrating that the results for the clas-

sical competitive-cooperative and irreducible systems given by Smale [11] also hold for

generalized competitive or cooperative systems studied in Section 2.

2 Generalized Competitive and Cooperative Systems

In this section, we introduce several concepts and notation which will be used throughout

this paper.

Let K ⊂ R
n be a closed cone with nonempty interior and denote by IntK the interior

of K in R
n. In what follows, K∗ will be used to denote the dual cone of K, i.e., K∗ =

{λ ∈ R
n; 〈λ, x〉 ≥ 0 for all x ∈ K}, in which 〈·, ·〉 is the standard inner product in R

n.
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For x, y ∈ R
n, we denote (i) x ≤K y if and only if y − x ∈ K; (ii) x <K y if and only if

x ≤K y and x 6= y; and (iii) x �K y if and only if y − x ∈ IntK. We say that U ⊂ R
n is

p-convex if tx + (1 − t)y ∈ U for all t ∈ [0, 1] whenever x, y ∈ U and x ≤K y.

We need the following key definitions.

Definition 2.1. Let A be an n × n matrix.

(i) A is said to be cooperative with respect to K if for any x ∈ K and any λ ∈ K∗ with

〈λ, x〉 = 0, we have 〈λ, Ax〉 ≥ 0.

(ii) A is said to be irreducible with respect to K if for any x ∈ K\IntK\{0}, there exists

λ ∈ K∗ such that 〈λ, x〉 = 0 and 〈λ, Ax〉 6= 0 (necessarily λ ∈ K∗\IntK\{0}.

(iii) A is said to be totally cooperative with respect to K if Ax ∈ IntK for all x ∈ K\{0}.

Remark 2.1. If −A satisfies the hypotheses of (i) and (iii) respectively, then A is said to

be competitive with respect to K and totally competitive with respect to K, respectively.

We need the following elementary results whose proofs are contained in [10, 16, 17].

Lemma 2.1. Let x ∈ K. Then x ∈ IntK if and only if 〈λ, x〉 > 0 for all λ ∈ K∗\{0}.

Lemma 2.2. Let x ∈ K\{0}. Then there exists λ ∈ K∗ such that 〈λ, x〉 > 0.

Consider an n-dimensional autonomous system of ordinary differential equations

(2.1) ẋ(t) = f(x(t)),

where f : U −→ R
n is a continuously differentiable function and U is an open subset of

R
n. We denote by ϕt(x)(ϕ) or ϕ(t, x)) the solution of the initial value problem. It will

always be assumed that the initial value problem (2.1) with ϕ0(x) = ϕ(0, x) = x which is

always assumed to exist globally and uniquely.

Definition 2.2. Let f be defined as above. We say that f is cooperative (irreducible,

totally cooperative) with respect to K if for every x ∈ U , Df(x) is cooperative (irreducible,

totally cooperative) with respect to K.

Theorem 2.1. Let U be p-convex and f be cooperative with respect to K. Then ϕ is

monotone. If, in addition, f is irreducible with respect to K, then ϕ is strongly monotone.

Proof. The first assertion follows from Proposition 1.5 in [16]. We next prove the second

assertion. Suppose that x, y ∈ U with x >K y and set It = {λ ∈ K∗; 〈λ, ϕt(x) − ϕt(y)〉 >

0}. Then by Lemma 2.2, we have It 6= φ for all t ∈ R+. We will show that It = K∗ for
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all t > 0. Otherwise, there exists δ > 0 such that K∗\Iδ 6= {0}. Since U is p-convex, it

follows that

f(ϕ(δ, x)) − f(ϕ(δ, y)) =

∫ 1

0

Df(sϕ(δ, x) + (1 − s)ϕ(δ, y))(ϕ(δ, x) − ϕ(δ, y))ds.

Since f is irreducible with respect to K, there exists λ ∈ K∗\Iδ\{0} such that

〈λ, (ϕ(δ, x) − ϕ(δ, y))〉 = 0 and 〈λ, Df(ϕ(δ, x))(ϕ(δ, x) − ϕ(δ, y))〉 > 0.

Again, since f is cooperative with respect to K, for the above λ ∈ K∗\Iδ\{0}, we have

〈λ, Df(sϕ(δ, x) + (1 − s)ϕ(δ, y))(ϕ(δ, x) − ϕ(δ, y))〉 ≥ 0, s ∈ [0, 1].

It follows that

〈λ, ϕ′(δ, x) − ϕ′(δ, y)〉 = 〈λ, f(ϕ(δ, x)) − f(ϕ(δ, y))〉 > 0.

Hence, from 〈λ, ϕ(δ, x) − ϕ(δ, y)〉 = 0, there exists sufficiently small ε > 0 such that

〈λ, ϕ(δ − ε, x) − ϕ(δ − ε, y)〉 < 0,

from which one can conclude that (ϕ(δ − ε, x) − ϕ(δ − ε, y)) /∈ K, a contradiction to the

first assertion. From Lemma 2.1, we can deduce that the conclusion of the theorem holds

true.

Remark 2.2. A similar result as Theorem 2.1 holds for a nonautonomous system.

Remark 2.3. If −f satisfies the hypotheses of Theorem 2.1, then f is said to be com-

petitive (irreducible, totally competitive) with respect to K. Consider the negative flows

generated by system (2.1), then it is easy to obtain its related results.

Remark 2.4. We should mention that many results of Hirsch [1-5] are also true for

generalized cooperative or competitive systems. In particular, note that the flow on a

compact limit set of a generalized cooperative or competitive system in R
n is topologi-

cally equivalent to a flow on a compact invariant set of a Lipschitz system of differential

equations in R
n−1, which implies that generalized competitive or cooperative systems

can behave no worse than general systems of one less dimension. The arguments in the

classical competitive or cooperative systems [1] can be literally exploited to prove this.

Remark 2.5. In the case where f is totally cooperative with respect to K, it is easy to

check that the flow generated by the system (2.1) is strongly monotone. A similar result

holds for the case where f is totally competitive with respect to K.
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To compare our results with those obtained in [3] and [13], we give the following

illustrative example.

Example 2.1. Consider the following system of 5-dimensional differential equations

(2.2) ẋ(t) = g(x(t)),

where x(t) = (x1(t), x2(t), x3(t), x4(t), x5(t))
T ∈ R

5 and

g(x1, x2, . . . , x5) =




x1 + x2 + sin ax3 + 3x5

x1 + 2x2 + x5

x5 + cos bx4

0

2x1 + x2 + 2x5




,

where a ∈ (−3, 3) and b ∈ (−1, 1). Set K1 = {(x1, x2, . . . , x5)
T ∈ R

5; x1 ≥ 0, x2 ≥ 0, x5 ≥√
x2

3 + x2
4}, and let Φ be the flow generated by the system (2.2).

First, we will show that g is cooperative and irreducible with respect to K1. Indeed,

a direct calculation shows that

Dg(x) =




1 1 a cos ax3 0 3

1 2 0 0 1

0 0 0 −b sin bx4 1

0 0 0 0 0

2 1 0 0 2




.

Then for any y = (y1, y2, . . . , y5) ∈ K1\{0}, we have

Dg(x)y =




y1 + y2 + ay3 cos ax3 + 3y5

y1 + 2y2 + y5

y5 − by4 sin bx4

0

2y1 + y2 + 2y5




.

It follows that Dg(x)y ∈ IntK1, that is, g is totally cooperative with respect to K1.

Hence g is cooperative and irreducible with respect to K1. Therefore, by Theorem 2.1, Φ

is strongly monotone in (R5, K1). However,

(i) if a = b = 0, then from the above discussion, we obtain

Dg(x) =




1 1 0 0 3

1 2 0 0 1

0 0 0 0 1

0 0 0 0 0

2 1 0 0 2




.
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Hence for any x ∈ R
5, Dg(x) is cooperative with respect to R

5
+ but not irreducible, that

is, g satisfies the Kamke condition, but g is not irreducible in the sense of Hirsch [3].

Hence we can only conclude that Φ is monotone (but not necessarily strongly monotone)

in the ordered space (R5, R5
+).

(ii) if a ∈ (−3, 3), b ∈ (−1, 1) and ab 6= 0, then from the above discussion, a cos ax3 as one

of the entries of Dg(x) is not sign-stable in R
5, that is, the Jacobian matrix of g is not

sign-stable in R
5. Hence g does not satisfy the type K condition (see [13, Lemma 2.1]).

Therefore, we can not apply the corresponding results of [3] and [13].

In the remaining part of this section, we illustrate that our Theorem 2.1 includes some

of the results obtained in Ortega and Sánchez [8] as a special case. To this end, we first

recall that (2.1) is said to be dissipative if there exists a compact set D ⊂ R
n such that

for every x ∈ R
n, ϕt(x) = ϕ(t, x) is in D for t sufficiently large. Now, combining Theorem

2.1 and Remark 2.3 with Theorem 1 in [8], a generalization of Theorem 3 in [8] can be

easily obtained as follows.

Corollary 2.1. Let K3 be an order cone with nonempty interior. Suppose that f is

competitive and irreducible with respect to K3, and there exists a unique equilibrium x = 0

such that the eigenvalues of DF (0) satisfy

λ1 < 0, Reλ2 > 0, Reλ3 > 0.

If (2.1) is dissipative, then there exists at least one orbitally stable closed orbit. Moreover,

every orbit tends to the equilibrium or to a closed orbit as t −→ +∞.

Remark 2.6. For some applications of Corollary 2.1, we refer the reader to [8, 9].

Let S be an n×n symmetric matrix having one positive eigenvalue and n−1 negative

eigenvalues. Let λ+ denote the positive eigenvalue and e+ be an eigenvector satisfying

Se+ = λ+e+, ‖e+‖ = 1.

Define the set

KS = {ξ ∈ R
n ; 〈Sξ, ξ〉 ≥ 0, 〈ξ, e+〉 ≥ 0}.

Set K = KS, which we call a quadratic cone. As stated in [8], K is an order cone with

nonempty interior. Hence, K induces a strongly ordered space (Rn, K). Let A be an n×n

matrix. Then we shall say that A is (strictly) S-competitive if there exists λ ∈ R such

that SA+AT S +λS is negative (definite) semidefinite, where AT denotes the transposed

matrix of A. We shall say that f is (strictly) S-competitive if Df(ξ) (ξ ∈ U) is (strictly)

S-competitive. The flow Φ generated by system (2.1) is said to be strongly L-monotone

(in the past) if for each ξ ∈ R
n and δ ∈ K\{0} one has DΦt(ξ)δ � 0 for all t < 0.
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We now establish two crucial lemmas.

Lemma 2.3. Let K∗
S be the dual cone of KS. Then K∗

S = SKS.

Proof. Since S is symmetric, there exists an orthogonal matrix T such that T−1ST =

diag(λ1, λ2, . . . , λn) ≡ S1, where λ1 = λ+ > 0 and λi < 0, i = 2, . . . , n. By the definition

of KS, we obtain

KS = {ξ ∈ R
n; 〈S1T

−1ξ, T−1ξ〉 ≥ 0, 〈T−1ξ, T−1e+〉 ≥ 0}.

Hence KS = TKS1
. From K∗

S1
= S1KS1

, where K∗
S1

denotes the dual cone of KS1
, it

follows that K∗
S = TK∗

S1
= TS1KS1

, that is, K∗
S = TS1T

−1KS = SKS. The proof is

complete.

Lemma 2.4. Let A be an n × n matrix. Then

(i) A is competitive with respect to K if and only if A is S-competitive;

(ii) A is competitive and irreducible with respect to K if and only if A is strictly S-

competitive.

Proof. We only prove (ii). The proof of (i) is similar, and thus is omitted. Sufficiency is

straightforward. To prove necessity, let us assume that A is competitive and irreducible

with respect to K. Let K∗ be the dual cone of K. Then by Lemma 2.3, we obtain

K∗ = SK = {Sξ; ξ ∈ K}. Define the set Kξ = {η ∈ K∗; 〈η, ξ〉 = 0}. Then

Kξ =





φ for ξ ∈ IntK,

{Sξ} for ξ ∈ ∂K\{0},
K∗ for ξ = 0,

where ∂K denotes the boundary of K. Since A is competitive and irreducible with

respect to K, for any ξ ∈ K\{0} with 〈Sξ, ξ〉 = 0 (which implies ξ ∈ K ∪ (−K), we

have 〈Sξ, Aξ〉 < 0. Hence, for any ξ ∈ R
n\{0} with 〈Sξ, ξ〉 = 0, we can obtain that

〈(SA + AT S)ξ, ξ〉 < 0. It follows from Lemma 1 and its related illustrations in [8] that

there exists λ ∈ R such that SA + AT S + λS is negative definite, namely, A is strictly

S-competitive. This completes the proof of the lemma.

An application of Lemma 2.4, together with Theorem 2.1 and Remark 2.3, yields an

immediate consequence below, which is in fact one of the main results of [8], that is,

Theorem 2 in [8].

Corollary 2.2. Let f and S be defined as above. Then f is S-competitive if and only if

the flow generated by (2.1) is monotone in the past (with respect to K). Moreover, if f is

strictly S-competitive, then the flow is strongly L-monotone.
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3 Generalized Smale’s Construction

As noted in Section 1, Smale [11] has pointed out that a smooth system can be embedded

in a classical competitive and smooth system. On the other hand, as mentioned in Remark

2.4, generalized competitive or cooperative systems in R
n can not behave worse than

general systems in R
n−1. In consequence, any thoughts that we can provide a complete

description of the dynamics generated by the classical competitive and smooth systems

have to be scrapped. It is natural to ask whether similar conditions are to be found for

generalized competitive and cooperative systems. To be more precise, when an order cone

K is given, is there any hope for cooresponding competitive or cooperative systems to have

simple dynamics? In this section we provide a negative answer to this question. Indeed, we

present a generalized Smale’s construction and hence show that generalized competitive

or cooperative systems in R
n can also not behave simpler than general systems in R

n−1.

Before continuing, some definitions and preliminary results are necessary.

Definition 3.1. Let K ⊂ R
n be an order cone with nonempty interior and suppose that

λ ∈ K∗. We say that λ is an admitting element of K if λ ∈ IntK ∩ IntK∗.

Remark 3.1. It is obvious from the separation theorem that an admitting element of K

must exist. See the proof of Lemma 3.2 below.

Definition 3.2. Let K ⊂ R
n be an order cone with nonempty interior. K is called an

admitting cone if λ = (0, 0, . . . , 0, 1)T ∈ R
n is an admitting element of K.

Definition 3.3. Let K1, K2 ⊂ R
n be order cones with nonempty interior. Then K1 and

K2 are said to be isomorphic if there exists an orthogonal transfomation T : R
n −→ R

n

such that TK1 = K2. We say that such T is an isomorphic map from the cones K1 to K2.

Lemma 3.1. Let A be an n × n matrix. Suppose that K1 ⊂ R
n and K2 ⊂ R

n are

isomorphic order cones and define T as in Definition 3.3. If A are cooperative (irreducible,

totally cooperative) with respect to K1, then TAT−1 are also cooperative (irreducible, totally

cooperative) with respect to K2.

Proof. We only consider the case when A is cooperative with respect to K1, the other

cases being similar. Let K∗
1 and K∗

2 denote the dual cones of K1 and K2, respectively.

Since K2 = TK1 and T is orthogonal, it follows that K∗
2 = TK∗

1 . Suppose that A is

cooperative with respect to K1, and λ2 ∈ K∗
2 and x2 ∈ K2 with 〈λ2, x2〉 = 0. Then there

exist λ1 ∈ K∗
1 and x1 ∈ K1 such that

x2 = Tx1, λ2 = Tλ1.
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Thus,

〈λ1, x1〉 = 〈λ2, x2〉 = 0.

It follows that 〈λ1, Ax1〉 ≥ 0, and hence, 〈Tλ1, TAT−1Tx1〉 ≥ 0. Therefore, 〈Tλ1, TAT−1x2〉 ≥
0, which implies that TAT−1 is cooperative with respect to K2. The proof of the lemma

is complete.

Remark 3.2. It should be noted that “cooperative” in Lemma 3.1 can be replaced by

“competitive”.

Lemma 3.2. Let K1 ⊂ R
n be an order cone with nonempty interior. Then there exists

an admitting cone K2 in R
n such that K1 and K2 are isomorphic.

Proof. We assume that K∗
1 is the dual cone of K1, and hence IntK∗

1 6= φ. We will

show that IntK1 ∩ IntK∗
1 6= φ. Otherwise, by the convex separation theorem, there

exists µ ∈ R
n\{0} such that 〈µ, IntK1〉 ≥ 0 and 〈µ, IntK∗

1〉 ≤ 0. Thus, µ ∈ K∗
1 and

〈µ, K∗
1〉 ≤ 0. It follows that 〈µ, µ〉 ≤ 0, that is, µ = 0, a contradiction. So we can choose

λ ∈ IntK1∩ IntK∗
1 , which implies that λ is an admitting element of K1. Let an orthogonal

transformation T : R
n −→ R

n be defined by

Tλ = (0, 0, . . . , 0, 1)T ∈ R
n,

and

T ({x ∈ R
n ; 〈λ, x〉 = 0}) = {x ∈ R

n ; xn = 0}.

Let K2 = TK1. Then K2 is an admitting cone in R
n, and K1 and K2 are isomorphic.

This completes the proof.

Lemma 3.3. Let K be an admitting cone in R
n. Then the set {x ∈ K; xn = 1} is a

closed and bounded set of R
n.

Proof. Set G = {x ∈ K; xn = 1}. Clearly, G is a closed set. We next show that

G is bounded. Otherwise, there exists x(i) ∈ G such that ‖x(i)‖ −→ +∞. Let y(i) =

x(i)/‖x(i)‖ ∈ K. Then we have y(i) −→ y for some y = (y1, . . . , yn) as i −→ ∞ (if

necessary, we may choose a subsequence of y(i)). Thus, y ∈ K and yn = 0. Since

λ = (0, 0, . . . , 0, 1)T ∈ R
n is an admitting element of K, it follows that 0 = 〈y, λ〉 > 0, a

contradiction. This completes the proof.

Lemma 3.4. Let f : V −→ R
n be continuously differentiable, where V is a subset in R

n,

and let M = supx∈V,1≤i,j≤n |(Df(x))ij|. Suppose that M < +∞ and K is an admitting

cone in R
n+1. Then there exists a continuously differentiable function g : V ×R1 −→ R

n+1

such that g is totally cooperative (totally competitive) with respect to K, and g|V ×{0} = f .
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Proof. Let gα : V × R1 −→ R
n+1 be defined by

gα = (x1, x2, . . . , xn, xn+1) = (f(x1, x2, . . . , xn), αxn+1).

Then for any α ∈ R, one sees that gα is a smooth function and gα|V ×{0} = f . Since

Dgα(x) =

(
Df(x1, x2, . . . , xn) 0

0 α

)

and K is an admitting cone in R
n+1, it follows that λ = (0, 0, . . . , 0, 1) ∈ R

n+1 is an

admitting element of K. By M < +∞ and Lemma 3.3, one can obtain that there exists

α1 > 0 such that for any x ∈ V × R, Dgα1
(x) is totally cooperative with respect to K.

Similarly, there exists α2 < 0 such that for any x ∈ V ×R, Dgα2
(x) is totally competitive

with respect to K. Therefore, gα1
is totally cooperative with respect to K and gα2

is

totally competitive with respect to K. This completes the proof.

In what follows, we will always assume that K is an order cone with nonempty interior

in R
n+1 and λ ∈ R

n+1. Let 〈λ, λ〉 = 1 and let λ be an admitting element of K. Set

L = {x ∈ R
n+1 ; 〈λ, x〉 = 0}. In addition, assume that f : U −→ L is a continuously

differentiable function, where U is a subset of the hyperplane L. We now make the key

definition: HU = {x ∈ R
n+1 ; (x − 〈λ, x〉 · λ) ∈ U} = {x + aλ ; x ∈ U, a ∈ R}.

Theorem 3.1. Let K and f be defined as above. Suppose that M = supx∈U,1≤i,j≤n |(Df(x))ij| <

+∞. Then there exists a continuously differentiable function g : HU −→ R
n+1 such that

g|U = f , and g is totally cooperative (totally competitive) with respect to K.

Proof. By Lemma 3.2 and its argument, there exists an admitting cone K1 and an or-

thogonal transformation T : R
n+1 −→ R

n+1 such that T (L) = {x ∈ R
n+1 ; xn+1 = 0},

T (λ) = (0, 0, . . . , 0, 1)T , and TK = K1. It follows that TU ⊂ {x ∈ R
n+1 ; xn+1 = 0}. De-

fine
∏

: R
n+1 −→ R

n and
∐

: R
n −→ R

n+1 by
∏

(x1, x2, . . . , xn+1)
T = (x1, x2, . . . , xn)T

and
∐

(x1, x2, . . . , xn)T = (x1, x2, . . . , xn, 0)T , respectively. Let V =
∏

(TU) and let

f1 : V −→ R
n be defined by f1(x) =

∏
◦T ◦ f ◦ T−1 ◦

∐
(x). Then, applying Lemma 3.4

to f1 and K1, we obtain that there exists g1 : V × R1 −→ R
n+1 such that g1 is defined

as Lemma 3.4. Define g : HU −→ R
n+1 by g(x) = T ◦ g1 ◦ T−1(x). Then by Lemma 3.1,

g satisfies the conditions of Theorem 3.1, and hence the conclusion of Theorem 3.1 holds

true.

Remark 3.3. It is worth noting that in Theorem 3.1, if U is compact in R
n+1, then the

condition M < +∞ automatically holds.

Theorem 3.2. Let f and g be as in Theorem 3.1. Suppose that the set U is positively
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invariant for the system

(3.1) ẋ(t) = f(x(t)).

Then the set HU = {x ∈ R
n+1; (x − 〈λ, x〉 · λ) ∈ U} is invariant for the system

(3.2) ẋ(t) = g(x(t)).

If, in addition, g is totally cooperative (totally competitive) with respect to K, then U is

a repeller (attractor) for the flows generated by the systems (3.2), and the system (3.2)

defined in U is equivalent to the system (3.1).

Proof. By the preceding arguments in the proof of Theorem 3.1, we only need to verify

the theorem under the condition that f and g are defined as in Lemma 3.4. In this case,

we also assume that U ⊂ R
n is invariant for the system (3.1). From the choice of g

(see Lemma 3.4), it follows that HU = {x ∈ R
n+1; (x1, x2, . . . , xn+1)} is invariant for the

system (3.2). If g is totally cooperative with respect to K, then from the choice of g

(see Lemma 3.4), we can obtain α > 0, and hence U × {0} is a repeller for the flows

generated by the system (3.2). If g is totally competitive with respect to K, then we can

similarly obtain that U × {0} is an attractor for the flows generated by the system (3.2).

Finally, again from the choice of g (see Lemma 3.4), the system (3.2) defined in U × {0}
is equivalent to the system (3.1). The proof of the theorem is complete.

Remark 3.4. It is obvious from Theorem 3.2 that the dynamical properties of an

n−dimensional dynamical system can be possessed by an (n+1)-dimensional generalized

competitive or cooperative system. In other words, an (n + 1)-dimensional generalized

competitive or cooperative system at least shares common dynamical properties of a sys-

tem of differential equations in one less dimension. Again, according to Remark 2.4 and

the discussion in Section 2, the dynamics of an n-dimensional generalized competitive or

cooperative system is essentially equivalent to the dynamics of a general system of one

less dimension. Therefore, we can rule out the possibility of generalized competitive or

cooperative systems having simple dynamics without any additional hypotheses, which

implies that the results of Smale [11] also hold for generalized competitive or cooperative

systems.

Theorem 3.3. Let K and λ be as in Theorem 3.1. Suppose, for r > 0, that Lr = {x ∈
R

n+1; 〈λ, x〉 = r}. Let f : Lr ∩ K −→ L be continuously differentiable. Then there exists

a continuously differentiable function g : K −→ R
n such that g|Lr∩K = f , and g is totally

cooperative (totally competitive) with respect to K.

Proof. We may assume that K is an admitting cone in R
n+1. Otherwise, using a

similar argument to that for the proof of Theorem 3.1, we can show the conclusion is

12



true. In this case where K is an admitting cone, Lr = {x ∈ R
n+1; xn+1 = r}. We

can choose η : R −→ [0, 1] such that η is continuously differentiable, η((−∞, r/3]) ≡ 0,

η([5r/3,∞)) ≡ 0 and η([2r/3, 4r/3]) ≡ 1. Define gβ : K −→ R
n+1 by

gβ((x1, . . . , xn, xn+1)) =

(
η(xn+1)f(

rx1

xn+1
, . . . ,

rxn

xn+1
), β(xn+1 − r)

)T

.

Set

f̃(x1, . . . , xn, xn+1) = η(xn+1)f

(
rx1

xn+1
, . . . ,

rxn

xn+1

)
,

and let

M = sup
x∈Lr∩K,1≤i,j≤n

|(Df̃(x))ij|.

Clearly, M < +∞. A similar argument as in Lemma 3.4 implies that there exists β > 0

such that gβ is totally cooperative with respect to K, and gβ|Lr∩K = f . Similarly, there

exists β < 0 such that gβ is totally competitive with respect to K, and gβ|Lr∩K = f . This

completes the proof.

The following corollary is in fact the main result of Smale [11].

Corollary 3.1. Let K = R
n+1
+ , λ = (1/

√
n, . . . , 1/

√
n)T ∈ R

n+1
+ , and r = 1/

√
n. Suppose

that f in Theorem 3.3 can be represented by f = (f1, . . . , fn+1) and fi(x1, . . . , xn+1) =

xif̃i(x1, . . . , xn+1), where f̃i is continuously differentiable. Then there exists Mi : R
n+1
+ −→

R
n+1 such that Mi|Lr∩K = f̃i and either ∂Mi/∂xj > 0 for all i, j ∈ {1, 2, . . . , n} and

x ∈ K, or ∂Mi/∂xj < 0 for all i, j ∈ {1, 2, . . . , n} and x ∈ K. Moreover, the following

system

(3.3) ẋi(t) = xi(t)Mi(x(t)), i = 1, 2, . . . , n + 1,

is totally cooperative (totally competitive) with respect to K, and 4n is a repeller (attrac-

tor) for the system, where 4n = {x ∈ R
n+1
+ ;

∑
xi = 1}.

Proof. This corollary is a simple consequence of Theorem 3.3.
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