
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{H}. © 2024 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 84, \mathrm{N}\mathrm{o}. 4, \mathrm{p}\mathrm{p}. 1557--1579

JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT ON
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Abstract. In this paper, taking into account the maturation period of prey, we propose a
predator-prey model with time delay and fear effect. We confirm the well-posedness of the model
system, explore the stability of the equilibria and uniform persistence of the model, and investigate
Hopf bifurcations. Moreover, we also numerically explore the global continuation of the Hopf bifur-
cation. Interestingly, our results show that as the delay increases, the stable and unstable periodic
solutions may both disappear and the unstable positive equilibrium may regain its stability. These
results reveal how the maturation delay and the fear effect jointly impact the population dynamics
of the predator-prey system.
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bistability
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1. Introduction. The study of interactions between prey and predators has
always been a hot topic in ecology and evolutionary biology. Since Lotka [23] and
Volterra [36] developed the well-known predator-prey model, a large body of literature
has been devoted to the study of the mechanisms that drive the predator-prey system.
A generalized ODE predator-prey model can be described as follows:\left\{     

du

dt
= p1(u) - g(u, v)v,

dv

dt
= p2(v) + cg(u, v)v,

where u(t) and v(t) represent, respectively, the populations of prey and predator at
time t, p1(u) is the growth rate of prey in the absence of a predator, p2(u) is the
growth rate of predator in the absence of prey, g(u, v) is the functional response re-
flecting the predation rate and biomass transfer, and c is the conversion efficiency
of biomass from prey to predator. Following the classic Lotka--Volterra model, more
and more functional response functions have been proposed, and the resulting ODE
models have been widely studied. These include Holling types of responses [18], non-
monotone functional response [29], Beddington--DeAngelis functional response [4, 10],
ratio-dependent functional response [33], and so on.

However, most of existing studies focus on understanding the direct influence of
predators on prey. In other words, predators only affect the prey by directly killing
and consuming them. In reality, most of the prey show a variety of antipredation
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1558 XIAOKE MA, YING SU, AND XINGFU ZOU

behaviors when they perceive predation risk, including changes in foraging behaviors
[1] and vigilance and physiological changes [7, 6]. Such antipredation behaviors will
bring a cost to the prey population [14]. In 2011, Zanette et al. [41] found, in a field
experiment on song sparrow population, that the fear of the predator on the birds
could lead to as large as a 40\% reduction in song sparrow offspring.

The above biological studies suggest that it is unreasonable to ignore the indirect
effect due to fear in the classical predator-prey model. To explain the fear effect
mathematically, in 2016, Wang, Zanette, and Zou [37] first proposed the following
predator-prey model: \left\{     

du

dt
= f(k, v)r0u - du - au2  - g(u)v,

dv

dt
= cg(u)v - mv,

(1.1)

where r0 is the natural birth rate of prey in the absence of predators, k reflects the
fear level of the prey due to perceiving the risk of predation, f(k, v) is the cost of the
antipredation defense of the prey due to fear and it is monotonically decreasing in k
and v, d is the natural death rate of prey, a is the density-dependent death rate of the
prey due to intraspecies competition, g(u) is the functional response function which
is independent of v, and m is the predator death rate. Through mathematical analy-
sis and numerical simulations, the authors of [37] obtained some interesting results
on how the fear effect affects the dynamical behaviors of the predator-prey model.
Since [37], there have occurred a large number of publications on modeling various
aspects of the fear effect in predator-prey interactions by a variety of types of differen-
tial equations models, including ordinary differential equations [15, 24, 20, 42, 3, 25],
reaction-diffusion equations [35, 39, 22], stochastic dynamical models [9, 27], func-
tional differential equations [38, 19, 26, 40, 12], and partial functional differential
equations [11, 8]. In addition, other types of models, including the discrete time
model [2] and discrete space model [21], have also been proposed.

Among the aforementioned functional (or delay) differential equation models with
fear effect, Wang and Zou [38] proposed and analyzed the following model incorpo-
rated with age structure and level of antipredator defense of adult prey:\left\{         

du1

dt
= b(k,u2)u2  - (d0 + d1k)u1  - (s0 + s1k)u1v

 - b(k,u2(t - \tau ))u2(t - \tau )e - (d0+s0v+(d1+s1v)k)\tau ,
du2

dt
= b(k,u2(t - \tau ))u2(t - \tau )e - (d0+s0v+(d1+s1v)k)\tau  - d2u2  - s(k)u2v,

(1.2)

where u1 and u2, respectively, represent the population density of juvenile prey and
adult prey, \tau is maturation delay, and the population density of predators v is assumed
to be a constant. The assumption of a constant predator population reduces the
number of equations and greatly simplifies the analysis of (1.2). For example, when
the antipredation response level k is also a constant, then the second equation in
(1.2) actually decouples from the first equation, and thus, as pointed out in (1.2), the
population dynamics of the prey are determined by a scalar delay differential equation
(DDE) of the form

u\prime (t) = e - \delta \tau f(u(t - \tau )) - du(t),

which has been widely studied for various nonlinearities of f(u). However, in many
predator-prey interactions, it is not realistic to assume a constant predator population,
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JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT 1559

and dropping such an assumption may lead to different population dynamics in the
predator-prey system. Even if assuming a constant predator population, when the
response level k also evolves according to some rules, the analysis of (1.2) is still very
challenging, and hence only some preliminary results are obtained and the dynamics
of (1.2) remain largely open.

For other delay models mentioned above, in Panday et al. [26], a delay repre-
senting the time lag between the perception of predation risk and the occurrence of
antipredation behaviors---fear response delay, for short---was considered, and the au-
thors show that the large value of delay has a destabilizing effect and can cause chaos.
In Kumar and Dubey [19] and Wang and Zou [40], a gestation delay was incorporated
in the respective models to account for the time needed for the biomass to be trans-
ferred from the prey to the predator after predation, where the gestation delay is also
found to play a destabilizing role. In Dubey, Sanjan, and Kumar [12], in addition
to the gestation delay, fear response delay was also introduced, just as in Panday
et al. [26]. The authors investigated how the fear effect and the two delays impact
the dynamics of the predator-prey system, and they also found that large delay will
cause the coexistence equilibrium to lose its stability.

Dropping the assumption of constant predator population as in (1.1) and con-
sidering the maturation delay as in (1.2) lead to the following new predator-prey
system: \left\{     

du(t)

dt
= e - d0\tau f(k, v(t - \tau ))r0u(t - \tau ) - du(t) - au2(t) - g(u(t))v(t),

dv(t)

dt
= cg(u(t))v(t) - mv(t).

(1.3)

Here u(t) is the population of adult prey and v(t) is the population of the predator, g(u)
is the functional response, and c reflects the efficiency of biomass transfer from prey
to predator. The constants d and a represent the density-independent and density-
dependent death rates of adult prey, respectively; \tau is the maturation duration of the
prey and d0 is the death rate of immature prey and, accordingly, e - d0\tau represents
the survival rate of prey from juvenile to adult. The constant r0 is the birth rate of
the prey, and the function f(k, v), with k being the antipredation response level as in
(1.1), accounts for the cost of the response in production. By the biological meanings
of k and f(k, v), the following conditions on f(k, v) are imposed:

f(k,0) = f(0, v) = 1,
\partial f

\partial k
\leq 0,

\partial f

\partial v
\leq 0, lim

k\rightarrow +\infty 
f(k, v) = lim

v\rightarrow +\infty 
f(k, v) = 0.

To be more specific, we adopt f(k, v) = 1/(1 + kv) and choose g(u) be a Holling
Type II functional response function, leading to the following DDE model system:\left\{       

du(t)

dt
= e - d0\tau 

r0u(t - \tau )

1 + kv(t - \tau )
 - du(t) - au2(t) - 

pu(t)v(t)

1 + qu(t)
,

dv(t)

dt
= c

pu(t)v(t)

1 + qu(t)
 - mv(t),

(1.4)

where p is the consuming rate of the predator per unit time, and q is the fixed handling
time for a predator to capture each prey. Note that this is a nonmonotone DDE
system, and the nonmonotonicity comes from two sources: (i) the nature of predator-
prey interaction, and (ii) the negative delayed feedback reflected by the term v(t - \tau ).

The goal of this paper is to analyze the new DDE model system (1.4). The rest
of this paper is organized as follows. In section 2, the well-posedness of the system
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1560 XIAOKE MA, YING SU, AND XINGFU ZOU

(1.4) with the biological initial conditions is established, including the existence and
uniqueness, the positivity, and the eventually uniform boundedness. In section 3, we
investigate the existence and stability of equilibria, the uniform persistence of the
solution, and the existence of Hopf bifurcation. In section 4, we obtain the properties
of Hopf bifurcation and the bifurcated periodic solutions which demonstrate different
bifurcation paths with respect to the delay parameter from those in [12, 19, 26, 40].
In section 5, we provide some numerical simulations to investigate the influence of
delay and demonstrate our mathematical results. In section 6, we briefly summarize
our work and explain its biological implications.

2. Well-posedness of model (1.4). Considering the population background,
the following nonnegative initial functions should be associated with (1.4):

(u(\theta ), v(\theta )) = (u0(\theta ), v0(\theta ))\in \scrC 
\bigl( 
[ - \tau ,0],\BbbR 2

+

\bigr) 
=: \scrC +.(2.1)

We first confirm the well-posedness of (1.4)--(2.1), as stated in the following theorem.

Theorem 2.1. For any (u0, v0)
T \in \scrC +, system (1.4) has a unique solution sat-

isfying (2.1), which exists globally in (0,+\infty ), is nonnegative, and remains bounded.
Moreover, the region

\Omega :=
\bigl\{ 
(u, v)\in \scrC + : 0\leqslant u\leqslant (r0e

 - d0\tau  - d)/a, 0\leqslant v/c+ u<L0

\bigr\} 
is both positively invariant and attractive for (1.4), where

L0 :=
r0e

 - d0\tau (r0e
 - d0\tau  - d)

\delta a
.

Proof. For any (u0, v0)
T \in \scrC +, by the fundamental theory of functional differential

equations, system (1.4) has a unique solution (u(t, u0, v0), v(t, u0, v0))
T on a maximal

interval [0, \sigma ). From [32, Theorem 5.2.1], it is easy to see that the solution remains
nonnegative for all t\in [0, \sigma ). To show the solution is bounded, we first note that

u\prime (t)\leqslant r0e
 - d0\tau u(t - \tau ) - du(t) - au2(t) \leqslant r0e

 - d0\tau u(t - \tau ) - du(t).(2.2)

This means that the first equation in (1.4) has an upper comparing equation

w\prime (t) = r0e
 - d0\tau w(t - \tau ) - dw(t)(2.3)

which is a linear DDE that satisfies the quasi-monotone condition (hence monotone).
If r0e

 - d0\tau  - d< 0, then every solution of (2.3) converges to zero, while when r0e
 - d0\tau  - 

d> 0, every solution of (2.3) converges to (r0e
 - d0\tau  - d)/a. By the comparison theorem

for functional differential equations [32], we have

limsup
t\rightarrow +\infty 

u(t)\leqslant 
r0e

 - d0\tau  - d

a
.(2.4)

Thus, for any \varepsilon > 0, there exists t0 > 0 such that u(t)\leqslant (r0e
 - d0\tau  - d)/a+ \varepsilon for t > t0.

Let L(t) = u(t) + v(t)/c. By direct calculations, we have

dL(t)

dt
=
r0e

 - d0\tau u(t - \tau )

1 + kv(t - \tau )
 - du(t) - au2(t) - m

c
v(t)

\leqslant r0e
 - d0\tau u(t - \tau ) - \delta L(t),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT 1561

where \delta =min\{ d, m/c\} . When t > t0 + \tau , u(t - \tau )\leqslant (r0e
 - d0\tau  - d)/a+ \varepsilon , which leads

to

dL(t)

dt
\leqslant r0e

 - d0\tau 

\biggl[ 
r0e

 - d0\tau  - d

a
+ \varepsilon 

\biggr] 
 - \delta L(t), t\geq t0 + \tau .

This implies

limsup
t\rightarrow +\infty 

L(t)\leqslant 
r0e

 - d0\tau 

\delta 

\biggl[ 
r0e

 - d0\tau  - d

a
+ \varepsilon 

\biggr] 
.

Since \varepsilon > 0 is arbitrary, letting \varepsilon \rightarrow 0 leads to

limsup
t\rightarrow +\infty 

L(t)\leqslant 
r0e

 - d0\tau (r0e
 - d0\tau  - d)

\delta a
=L0.(2.5)

The estimates of (2.4) and (2.5) confirm the boundedness of the solution, implying
that \sigma =\infty . The two estimates, together with the nonnegativity of the solution, also
show that \Omega is indeed positively invariant and attractive, completing the proof.

3. Equilibria and their stability analysis. In this section, we study the long-
time dynamical behaviors of solutions of system (1.4)--(2.1) by analyzing existence and
stability of equilibria and the existence of Hopf bifurcation.

3.1. Existence and stability of boundary equilibria. Obviously, system
(1.4) always has the trivial equilibrium E0 = (0, 0). In addition, the semitrivial
equilibrium E1 =

\bigl( 
(r0e

 - d0\tau  - d)/a,0
\bigr) 
=: (\^u,0) exists if r0e

 - d0\tau > d. The local stabil-
ity/instability of E0 and E1 are given in the following theorem.

Theorem 3.1. The following statements hold:
(i) The trivial equilibrium E0 is locally asymptotically stable if r0e

 - d0\tau < d and
is unstable if r0e

 - d0\tau >d.
(ii) The boundary equilibrium E1 exists if r0e

 - d0\tau > d. When E1 exists, it is
locally asymptotically stable if

(r0e
 - d0\tau  - d)(cp - mq)<am(3.1)

and is unstable if

(r0e
 - d0\tau  - d)(cp - mq)>am.(3.2)

Proof. (i) The characteristic equation of (1.4) at E0 is\bigl( 
\lambda + d - r0e

 - d0\tau e - \lambda \tau 
\bigr) 
(\lambda +m) = 0.

Observe that \lambda =  - m < 0 is a negative root and other roots are determined by the
equation \lambda + d  - r0e

 - d0\tau e - \lambda \tau = 0. By [30, Theorem 4.7], if r0e
 - d0\tau  - d < 0, E0 is

locally asymptotically stable; if r0e
 - d0\tau  - d> 0, E0 is unstable.

(ii) Assume r0e
 - d0\tau >d so that E1 exists. The characteristic equation of (1.4) at

E1 is \bigl( 
\lambda  - d+ 2r0e

 - d0\tau  - r0e
 - d0\tau e - \lambda \tau 

\bigr) \biggl( 
\lambda  - cp\^u

1 + q\^u
+m

\biggr) 
= 0.

Since  - d+ 2r0e
 - d0\tau > 0> - r0e - d0\tau and r0e

 - d0\tau >d, all roots of the equation

\lambda  - d+ 2r0e
 - d0\tau  - r0e

 - d0\tau e - \lambda \tau = 0

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1562 XIAOKE MA, YING SU, AND XINGFU ZOU

have strictly negative real parts (see, e.g., [30, Theorem 4.7]). Thus, if condition (3.1)
holds, \lambda = cp\^u/(1+q\^u) - m< 0, which means that E1 is locally asymptotically stable,
and if condition (3.2) holds, E1 is unstable.

Indeed, by a properly chosen Lyapunov function for E0 and by a comparison
argument for E1, we can address the global asymptotic stability of E0 and E1, as is
done in the next two theorems.

Theorem 3.2. If r0e
 - d0\tau \leqslant d holds, E0 is globally asymptotically stable.

Proof. If r0e
 - d0\tau <d, let V (t) be defined by

V (t) = u(t) +
v(t)

c
+ r0e

 - d0\tau 

\int t

t - \tau 

u(s)

1 + kv(s)
ds.

Taking the derivative of V (t) along the trajectory of (1.4) yields

V \prime (t) = - 
\biggl[ 
d - r0e

 - d0\tau 

1 + kv(t)

\biggr] 
u(t) - au2(t) - m

c
v(t)\leq 0,

and V \prime (t) = 0 if and only if u(t) = v(t) = 0. By the LaSalle Invariance Principle (see,
e.g., [16]), u(t) \rightarrow 0, v(t) \rightarrow 0 as t\rightarrow \infty , implying the global asymptotic stability of
E0.

Theorem 3.3. Assume r0e
 - d0\tau > d so that E1 exists. If condition (3.1) holds,

then E1 is globally asymptotically stable.

Proof. Note that u\prime (t)\leqslant r0e
 - d0\tau u(t - \tau ) - du(t) - au2(t). The right-hand side of

the above inequality defines a monotone linear delay differential equation

x\prime (t) = r0e
 - d0\tau x(t - \tau ) - dx(t) - ax2(t),(3.3)

which has the positive equilibrium (r0e
 - d0\tau ) - d)/a as a globally asymptotically stable

equilibrium. By the comparison theorem for DDEs (see, e.g., [32]), we have

limsup
t\rightarrow \infty 

u(t)\leqslant 
r0e

 - d0\tau  - d

a
.

Thus, for any \varepsilon > 0 there is a T (\varepsilon )> 0 such that u(t)< \^u+ \varepsilon for any t > T (\varepsilon ). Then,
for t > T (\varepsilon ), the ODE for v(t) satisfies

v\prime (t)\leqslant 
cp (\^u+ \varepsilon )v(t)

(1 + k2v(t)) [1 + q (\^u+ \varepsilon )]
 - mv\leqslant 

\biggl[ 
cp (\^u+ \varepsilon )

1 + q (\^u+ \varepsilon )
 - m

\biggr] 
v(t),

Since condition (3.1) holds, we can choose \varepsilon small enough such that cp(\^u+\varepsilon )
1+q(\^u+\varepsilon ) < m,

which implies, again by the comparison principle of ODE (see, e.g., [32]), that v(t)\rightarrow 0
as t\rightarrow \infty . This means that the first equation in (1.4) has (3.3) as its limit equation.
By the theory of asymptotically autonomous systems [34], we conclude that u(t) \rightarrow 
r0e

 - d0\tau  - d
a as t\rightarrow \infty . The proof is complete.

Next, we discuss what happens when E1 exists but is not stable, that is, when
r0e

 - d0\tau >d but (3.1) is reversed (i.e., (3.2) holds).

Theorem 3.4. System (1.4) is uniformly persistent when r0e
 - d0\tau > d and con-

dition (3.2) holds, in the sense that there exists \eta > 0 such that for every positive
solution (u(t), v(t)), there hold

lim inf
t\rightarrow \infty 

u(t)\geq \eta and lim inf
t\rightarrow \infty 

v(t)\geq \eta .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

2/
24

 to
 1

29
.1

00
.1

44
.1

18
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT 1563

Proof. For any \phi \in \scrC +, let X(t, \phi ) = (u(t, \phi ), v(t, \phi ))
T

be the solution satisfying
this initial condition. Denote \Phi (t)\phi =Xt(\phi ) as the solution semiflow defined on \scrC +.
For our purpose of persistence, we consider the following distance function in \scrC +:

p(\phi ) =min\{ \phi 1(0), \phi 2(0)\} \forall \phi = (\phi 1, \phi 2)\in \scrC +.

Denote the interior of the positive cone \scrC + by

X0 := int\scrC + = \{ \phi \in \scrC + : \phi (\theta )> 0, \theta \in [ - \tau ,0]\} ,

which has the boundary \partial X0 = \scrC +\setminus X0 satisfying X0 \cap \partial X0 = \emptyset . We know that X0

and \partial X0 are positive invariant, meaning that \Phi (t) :X0 \rightarrow X0 and \Phi (t) : \partial X0 \rightarrow \partial X0.
By the proof of the eventually uniform boundedness of the solution of system (1.4) in
section 2, the bounded set \Omega is a global attractor of \Phi .

Note that system (1.4) has only two equilibria on \partial X0, E0 and E1, which are
both unstable. For any \phi \in \partial X0, \Phi (t)\phi \rightarrow E0 or E1 as t\rightarrow \infty . Thus, the hypotheses
(C1) and (C2) of [31, Theorem 3] are satisfied and the conclusion of that theorem
holds, completing the proof.

Comparing the above results with those for model (1.1), we have seen that the
incorporation of the maturation delay \tau can affect the stability of the trivial equilib-
rium E0 as well as the existence and stability of the boundary equilibrium E1. Indeed,
expressing those conditions involved in Theorems 3.1--3.4, in terms of the delay \tau , we
can have the following theorem.

Theorem 3.5. The following statements hold:
(i) If r0 \leqslant d, E0 is globally asymptotically stable for any \tau \geqslant 0.
(ii) If r0 >d, there exists a critical value

\tau \ast :=
1

d0
ln
r0
d

(3.4)

such that E0 is globally asymptotically stable if \tau \geqslant \tau \ast but is unstable if \tau < \tau \ast .
(iii) If r0 >d and \tau < \tau \ast , then E1 comes into existence; moreover,

(iii-a) when (r0  - d)(cp  - mq) \leq am (implying (3.1) holds), E1 is globally
asymptotically stable for all \tau \in (0, \tau \ast );

(iii-b) when (r0  - d)(cp - mq)>am, there exists a critical value

\tau \ast \ast :=
1

d0
ln

r0(cp - mq)

am+ d(cp - mq)
(3.5)

such that E1 is globally asymptotically stable if \tau \ast \ast \leqslant \tau < \tau \ast (implying
(3.1) holds); E1 becomes unstable and (1.4) is persistent if \tau < \tau \ast \ast 
(implying (3.2) holds).

We point out that \tau \ast and \tau \ast \ast are independent of k, and \tau \ast \ast < \tau \ast . These obvious
facts are useful in our further analysis in what follows, when we will use \tau as the
bifurcation parameter. In the next subsection, we will focus on the existence and the
stability/instability of a positive equilibrium, as well as switches between the stability
and instability through bifurcation analysis.

3.2. Existence and stability of the positive equilibrium and Hopf bi-
furcation. In this subsection, we will focus on the scenario that E1 exists but is
unstable, that is, r0e

 - d0\tau > d and (3.2) holds. The uniform persistence confirmed in
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1564 XIAOKE MA, YING SU, AND XINGFU ZOU

Theorem 3.4 together with abstract persistence theory implies the existence of a pos-
itive equilibrium for (1.4). However, in what follows, we will directly prove not only
the existence but also uniqueness of a positive equilibrium under the above conditions.

Note that a positive equilibrium E\ast = (u\ast , v\ast ) of (1.4) is a positive solution to
the equations \left\{       

r0e
 - d0\tau 

1 + kv
 - d - au - pv

1 + qu
= 0,

cpu

1 + qu
=m.

It is easy to see that u\ast = m
cp - mq , which is positive by (3.2), and v\ast solves the following

quadratic equation:

pkv2 + [(d+ au\ast )(1 + qu\ast )k+ p]v - (1 + qu\ast )(r0e
 - d0\tau  - d - au\ast ) = 0.

Condition (3.2) guarantees that the constant term of the above quadratic equation is
negative, which implies that the above quadratic equation has a unique positive root.
This means that system (1.4) has a unique positive equilibrium E\ast . Furthermore, u\ast 

is independent of \tau while v\ast = v\ast (\tau ) is decreasing in \tau .
Note that model (1.4) with \tau = 0 becomes\left\{       

du

dt
=

r0u

1 + kv
 - du - au2  - 

puv

1 + qu
,

dv

dt
=

cpuv

1 + qu
 - mv.

(3.6)

For this ODE system, summarizing the results in [37], we have the following lemma
on the stability of the positive equilibrium in terms of r0 and k.

Lemma 3.6. Assume r0 >d and condition (3.2) holds. Let

r\ast =
am

cp - mq
+ d, r\ast \ast =

a(cp+mq)

q(cp - mq)
+ d,

k\ast =
q(cp - mq)2((r0  - d)q(cp - mq) - a(cp+mq))

c2pa(qd(cp - mq) + a(cp+mq))
.

(i) The positive equilibrium E\ast of (3.6) is locally asymptotically stable, provided
that

r\ast < r0 \leqslant r\ast \ast ,(3.7)

or

r0 > r
\ast \ast and k > k\ast .(3.8)

(ii) Further assume that k\ast > 0. If

r0 > r
\ast \ast and k < k\ast ,(3.9)

then E\ast is unstable.
(iii) If r0 > r\ast \ast and k\ast > 0, Hopf bifurcation occurs at k = k\ast . Moreover, the

bifurcations may be subcritical or supercritical.
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JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT 1565

In order to investigate how the local stability of E\ast changes with delay \tau > 0, we
linearize system (1.4) at E\ast to obtain\biggl( 

u\prime (t)
v\prime (t)

\biggr) 
=

\biggl( 
J11 J12
J21 0

\biggr) \biggl( 
u(t)
v(t)

\biggr) 
+

\biggl( 
K11 K12

0 0

\biggr) \biggl( 
u(t - \tau )
v(t - \tau )

\biggr) 
,(3.10)

where

J11 = - d - 2au\ast  - pv\ast 

(1+qu\ast )2 < 0, J12 = - m
c < 0,

J21 =
cpv\ast 

(1+qu\ast )2 > 0, K11 =
r0e

 - d0\tau 

1+kv\ast > 0, K12 = - kr0e
 - d0\tau u\ast 

(1+kv\ast )2 < 0.
(3.11)

Denote P (\lambda , \tau ) = \lambda 2  - J11\lambda  - J12J21 and Q(\lambda , \tau ) =  - K11\lambda  - J21K12. Then the
characteristic equation of the above linearized system is given by

P (\lambda , \tau ) + e - \lambda \tau Q(\lambda , \tau ) = 0,(3.12)

which is a quadratic exponential polynomial equation of \lambda with the coefficients de-
pending on \tau . We can use the geometric stability criterion for DDE with delay-
dependent parameters developed in Beretta and Kuang [5]. To this end, we first give
the following lemma.

Lemma 3.7. \lambda = 0 is not the root of the characteristic equation (3.12) for all
\tau > 0.

Proof. Setting \lambda = 0, the characteristic equation becomes  - J21(J12 +K12) = 0,
which contradicts the sign of J21, J12, and K12. The proof is complete.

When \tau = 0, the distribution of characteristic roots of (3.12) is implied by
Lemma 3.6. Particularly, when either (3.7) or (3.8) holds, all roots of (3.12) with
\tau = 0 have negative real parts. Thus, when \tau increases from \tau = 0, if (3.12) will ever
have roots coming to the right half of the complex plane, such roots must be a result
of a pair of complex roots crossing the pure imaginary axis from the left half to the
right half on the complex plane for some positive value of \tau . In what follows, we aim
to find a pair of purely imaginary roots of (3.12) under condition (3.7) or (3.8). Note
that (3.12) is an equation with \tau -dependent parameters; we can employ the results in
[5]. To this end, we first do some preparations below for the convenience of applying
results in [5]:

(C1) By simplifying, we obtain

J11 +K11 = u\ast 
\biggl( 

pqv\ast 

(1 + qu\ast )2
 - a

\biggr) 
.

From Lemma 3.6, under either (3.7) or (3.8), we know that (J11 +K11)| \tau =0

< 0. As pointed out before, v\ast (\tau ) is deceasing in \tau . Thus, we indeed have
J11+K11 < 0 for all \tau \in [0, \tau \ast \ast ), and accordingly, for any \omega \in \BbbR and \tau \in [0, \tau \ast \ast ),

P (i\omega , \tau ) +Q(i\omega , \tau ) = - \omega 2  - J12J21  - J21K12  - i\omega (J11 +K11) \not = 0.

Note that when (3.9) holds, by Lemma 3.6, there exist \omega 0 > 0 and \tau 0 > 0 such
that P (i\omega 0, \tau 0) +Q(i\omega 0, \tau 0) = 0 and the above condition no longer holds.

(C2) Direct calculation shows that for all \tau \in [0, \tau \ast \ast ), there holds

limsup
| \lambda | \rightarrow \infty 

\biggl\{ \bigm| \bigm| \bigm| \bigm| P (\lambda , \tau )Q(\lambda , \tau )

\bigm| \bigm| \bigm| \bigm| : Re\lambda \geqslant 0

\biggr\} 
= limsup

| \lambda | \rightarrow \infty 

\biggl\{ \bigm| \bigm| \bigm| \bigm|  - K11\lambda  - J21K21

\lambda 2  - J11\lambda  - J21J12

\bigm| \bigm| \bigm| \bigm| : Re\lambda \geqslant 0

\biggr\} 
= 0< 1.
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1566 XIAOKE MA, YING SU, AND XINGFU ZOU

(C3) Direct calculations also give

| P (i\omega , \tau )| 2 = (\omega 2 + J12J21)
2 + J2

11\omega 
2, | Q(i\omega , \tau )| 2 =K2

11\omega 
2 + J2

21K
2
12,

by which we obtain

F (\omega , \tau ) = | P (i\omega , \tau )| 2  - | Q(i\omega , \tau )| 2

= \omega 4 + (2J12J21 + J2
11  - K2

11)\omega 
2 + J2

21(J
2
12  - K2

12)

=: \omega 4 +B(\tau )\omega 2 +C(\tau ).

(3.13)

(C4) By the implicit function theorem, as long as F (\omega , \tau ) = 0 has a positive root
\omega , this root \omega = \omega (\tau ) must be continuously differentiable with respect to \tau .

Note that (3.13) is a quadratic function of \omega 2 whose positive roots will contribute
to the existence of Hopf bifurcation. More specifically, if C(\tau ) < 0 holds for all
\tau \in [0, \tau \ast \ast ), F (\omega , \tau ) = 0 has a unique positive real root. Now, we analyze the existence
of Hopf bifurcation on [0, \tau \ast \ast ) by employing the theory of Beretta and Kuang in [5].
In what follows, we will confine ourselves to this case: C(\tau )< 0.

Let \lambda =\pm i\omega (\omega > 0) be the root of (3.12). Substituting it into (3.12) and separat-
ing the real and imaginary parts, we have\biggl\{ 

J21K12 cos\omega \tau +K11\omega sin\omega \tau = - \omega 2  - J12J21,
K11\omega cos\omega \tau  - J21K12 sin\omega \tau = - J11\omega ,

which leads to \left\{   cos\omega \tau =
 - (J21K12+J11K11)\omega 

2 - J2
21J12K12

K2
11\omega 

2+J2
21K

2
12

=: P0(\tau ),

sin\omega \tau =  - K11\omega 
3+(J11J21K12 - K11J21J12)\omega 

K2
11\omega 

2+J2
21K

2
12

=:Q0(\tau ).
(3.14)

On the other hand, if \omega (\tau ) satisfies (3.14), then \omega (\tau ) must satisfy | P (i\omega , \tau )| 2 =
| Q(i\omega , \tau )| 2; that is, \omega (\tau ) must be a positive root of F (\omega , \tau ) = 0. If F (\omega , \tau ) = 0
has positive real root \omega (\tau ), then\biggl\{ 

cos\theta (\tau ) = P0(\tau ),
sin\theta (\tau ) =Q0(\tau )

will have solutions \theta (\tau ) \in [0,2\pi ] satisfying \omega (\tau )\tau = \theta (\tau ) + 2n\pi , n = 0,1,2, . . . , which
is equivalent to

Sn(\tau ) = \tau  - \theta (\tau ) + 2n\pi 

\omega (\tau )
= 0, \tau \in [0, \tau \ast \ast ), n= 0,1,2, . . . .(3.15)

Indeed, from (3.14), \theta (\tau ) can also be given by

\theta (\tau ) =

\biggl\{ 
arccosP0(\tau ) if Q0(\tau )> 0,
2\pi  - arccosP0 if Q0(\tau )< 0.

That is, if there is a \^\tau \in [0, \tau \ast \ast ) such that Sn(\^\tau ) = 0 for some n, then there exists a
pair of simple conjugate pure imaginary roots \lambda \pm (\^\tau ) = \pm i\omega (\^\tau ) for the characteristic
equation (3.12). Note that Sn(0) =  - (\theta (0) + 2n\pi )/\omega (0) < 0 and for any \tau \in [0, \tau \ast \ast ),
n \in \BbbN 0, Sn+1(\tau )< Sn(\tau ). Also for the sign of Q0 which is defined in (3.14), we have
the following lemma.
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JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT 1567

Lemma 3.8. If condition (3.7) or (3.8) holds, then Q0(\tau ) > 0 for all \tau > 0. If
(3.9) holds, then there exists a unique \tau c \in (0, \tau \ast \ast ) such that

Q0(\tau )

\Biggl\{ 
< 0, \tau \in (0, \tau c),
= 0, \tau = \tau c,
> 0, \tau \in (\tau c, \tau \ast \ast ).

Proof. Let \Delta = B2(\tau ) - 4C(\tau ) > 0 (note that we have assumed that C(\tau ) < 0).
Since \omega 2 = ( - B +

\surd 
\Delta )/2, we have

signQ0 = sign

\biggl\{ 
J11J21K12 +

K11

2

\bigl( 
J2
11  - K2

11

\bigr) 
 - K11

2

\surd 
\Delta 

\biggr\} 
.

From (3.11), J11J21K12 > 0 and K11

\surd 
\Delta /2> 0 for all \tau \in (0, \tau \ast \ast ).

When (3.7) or (3.8) holds, the fact that J11 - K11 < 0 together with (C1) implies
J2
11  - K2

11 > 0. Denote

A1 = J11J21K12 +
K11

2

\bigl( 
J2
11  - K2

11

\bigr) 
, A2 =

K11

2

\surd 
\Delta .

Then signQ0 = sign\{ A1  - A2\} . Calculations give

A2
1  - A2

2 = (J2
11  - K2

11)
\bigl[ 
J2
21K

2
12 +K11J21 (J11K12  - K11J12)

\bigr] 
> 0,

implying that Q0(\tau )> 0 for all \tau > 0.
When condition (3.9) is true, (J11+K11)| \tau =0 > 0. Note that J11+K11 decreases

in \tau and lim\tau \rightarrow \tau \ast \ast  - (J11 +K11) =  - a < 0. Thus, there exists a unique \tau c \in (0, \tau \ast \ast )
such that J11 +K11 > 0 if \tau < \tau c and J11 +K11 < 0 if \tau > \tau c. Therefore, if \tau < \tau c,
J2
11  - K2

11 = (J11 +K11)(J11 +K11)< 0. Denote

A3 = J11J21K12, A4 =
K11

2

\Bigl( 
K2

11  - J2
11 +

\surd 
\Delta 
\Bigr) 
.

Then signQ0 = sign\{ A3  - A4\} . By calculations, we obtain

A2
3  - A2

4 = (J2
11  - K2

11)
\Bigl[ 
J2
21K

2
12  - (J2

11  - K2
11) - 2J12J21 + 2

\surd 
\Delta 
\Bigr] 
< 0.

Hence, Q0 < 0 for all \tau \in (0, \tau c). If \tau = \tau c, J11 = K11 and \Delta = 4J2
21K

2
12. Evidently,

Q0(\tau c) = 0. The proof of Q(\tau ) > 0 for \tau \in (\tau c, \tau \ast \ast ) is similar to the case of (3.7) or
(3.8). The proof is complete.

Next, we verify the transversality condition at any critical value \tau = \^\tau . Let \lambda (\tau )
be the eigenvalue of (3.12) satisfying \lambda (\^\tau ) = i\omega (\^\tau ) = i\^\omega . Thus,

\delta (\^\tau ) := sign

\biggl\{ 
d Re\lambda 

d\tau 

\bigm| \bigm| \bigm| \bigm| 
\tau =\^\tau 

\biggr\} 
= sign\{ F \prime 

\omega (\omega (\^\tau ), \^\tau )\} \cdot sign
\biggl\{ 
d Sn(\tau )

d\tau 

\bigm| \bigm| \bigm| \bigm| 
\tau =\^\tau 

\biggr\} 
= sign

\Bigl\{ 
2\omega (\^\tau ) \cdot 

\surd 
\Delta 
\Bigr\} 
\cdot sign

\biggl\{ 
d Sn(\tau )

d\tau 

\bigm| \bigm| \bigm| \bigm| 
\tau =\^\tau 

\biggr\} 
= sign

\biggl\{ 
d Sn(\tau )

d\tau 

\bigm| \bigm| \bigm| \bigm| 
\tau =\^\tau 

\biggr\} 
.

(3.16)

If \delta (\^\tau ) \not = 0, the transversality condition is satisfied and Hopf bifurcation occurs at
\tau = \^\tau .

Combining the above analyses and the results in [5], we have proved the following
theorem on the stability of E\ast and existence of Hopf bifurcation for system (1.4) in
terms of \tau .
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1568 XIAOKE MA, YING SU, AND XINGFU ZOU

Theorem 3.9. Assume that (3.7) or (3.8) holds. If S0(\tau ) = 0, \tau \in [0, \tau \ast \ast ) has two
positive real roots, denoted by \tau 1 and \tau 2, respectively, with \tau 1 < \tau 2. Then \delta (\tau 1)> 0 and
\delta (\tau 2)< 0, meaning that when \tau increases, Hopf bifurcation occurs at \tau = \tau 1 and \tau = \tau 2.
Moreover, if Sn(\tau ) = 0 has no other zeros for all n\geqslant 1, then the positive equilibrium
E\ast is locally asymptotically stable when \tau \in [0, \tau 1) \cup (\tau 2, \tau \ast \ast ); it is unstable when
\tau \in (\tau 1, \tau 2), yielding its stability to a periodic solution arising from Hopf bifurcation.

Next, we consider the case when condition (3.9) holds. By Lemma 3.8 and the def-
inition of Sn(\tau ), Sn(\tau ) has a jump discontinuity at \tau c, but the characteristic equation
(3.12) has no pure imaginary root when \tau = \tau c. Therefore, if \tau \in (0, \tau c) or \tau \in (\tau c, \tau \ast \ast ),
the existence of the pure imaginary roots of the characteristic equation (3.12) is still
equivalent to the existence of zeros of Sn(\tau ), and the transversality condition can still
be confirmed by using (3.16). With these observations, and by Lemma 3.7 and the
conclusion of Ruan and Wei in [28], we then obtain the following theorem for the case
when (3.9) holds.

Theorem 3.10. Assume that (3.9) holds. If S0(\tau ) = 0 for \tau \in [0, \tau \ast \ast ) has only one
positive real root, denoted by \tau 3, and \delta (\tau 3)< 0, then Hopf bifurcation occurs at \tau = \tau 3.
Moreover, if Sn(\tau ) = 0 has no other zeros for all n\geqslant 1, the positive equilibrium E\ast is
unstable when \tau \in [0, \tau 3) and is locally asymptotically stable when \tau \in (\tau 3, \tau \ast \ast ).

This theorem and Lemma 3.6(ii) show that a longer maturation delay of the
prey may help the otherwise unstable coexistence equilibrium E\ast regain its stability,
restoring from sustained oscillation to dynamics of convergence to equilibrium. This
is in contrast to the more common effect of delay: delay can destroy the stability of
a stable equilibrium through Hopf bifurcation.

4. Properties of Hopf bifurcation. Through the analyses in the preceding
sections, we have known that Hopf bifurcation will occur under the appropriate con-
ditions. In this section, we always assume that Hopf bifurcation occurs at a critical
value \^\tau for the parameter \tau and \pm i\^\omega are a pair of purely imaginary roots of the cor-
responding characteristic equation for the linearized system of (1.4) at E\ast . We will
explore the properties of Hopf bifurcation, including the direction and stability.

Let \tau = \^\tau + \mu . Thus, Hopf bifurcation occurs at \mu = 0. Considering the following
transformation x(t) = u(\tau t)  - u\ast , y(t) = v(\tau t)  - v\ast , our model (1.4) becomes the
following functional differential equation in \scrC ([ - 1,0],\BbbR 2

+):

dX

dt
=L\mu (Xt) +G(\mu ,Xt),(4.1)

where X(t) = (x(t), y(t))T \in \BbbR 2
+, Xt(\theta ) =X(t+ \theta ), \theta \in [ - 1,0], L\mu : \scrC ([ - 1,0],\BbbR 2

+)\rightarrow \BbbR ,
G :\BbbR \times \scrC ([ - 1,0],\BbbR 2

+)\rightarrow \BbbR , and the definitions of L\mu and G are as follows:

L\mu \phi = (\^\tau + \mu ) [B1\phi (0) +C1\phi ( - 1)] , G(\mu ,\phi ) =

\biggl( 
G1(\mu ,\phi )
G2(\mu ,\phi )

\biggr) 
,

where \phi = (\phi 1, \phi 2)
T \in \scrC ([ - 1,0],\BbbR 2

+), and

B1 =

\Biggl( 
 - d - 2au\ast  - pv\ast 

1+qu\ast + pqu\ast v\ast 

(1+qu\ast )2  - m
c

cpv\ast 

1+qu\ast  - cpqu\ast v\ast 

(1+qu\ast )2 0

\Biggr) 
=:

\biggl( 
b1 b2
b3 0

\biggr) 
,

C1 =

\Biggl( 
r0e

 - d0(\^\tau +\mu )

1+kv\ast 
 - r0e

 - d0(\^\tau +\mu )ku\ast 

(1+kv\ast )2

0 0

\Biggr) 
=:

\biggl( 
c1 c2
0 0

\biggr) 
,
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JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT 1569

G1(\mu ,\phi ) = (\^\tau + \mu )
\bigl[ 
m1\phi 1( - 1)\phi 2( - 1) +m2\phi 

2
2( - 1) +m3\phi 1( - 1)\phi 2

2( - 1) +m4\phi 
3
2( - 1)

+(n1  - a)\phi 2
1(0) + n2\phi 1(0)\phi 2(0) + n3\phi 

3
1(0) + n4\phi 

2
1(0)\phi 2(0) + h.o.t.

\bigr] 
,

G2(\mu ,\phi ) = - c(\^\tau + \mu )
\bigl[ 
n1\phi 

2
1(0) + n2\phi 1(0)\phi 2(0) + n3\phi 

3
1(0) + n4\phi 

2
1(0)\phi 2(0) + h.o.t.

\bigr] 
,

where

m1 = - r0e
 - d0(\^\tau +\mu )k

(1 + kv\ast )2
,m2 = - ku\ast m1

1 + kv\ast 
,m3 = - km1

1 + kv\ast 
,m4 =

k2u\ast m1

(1 + kv\ast )2
,

n1 =
pqv\ast 

(1 + qu\ast )3
, n2 = - p

(1 + qu\ast )2
, n3 = - pq2v\ast 

(1 + qu\ast )4
, n4 =

pq

(1 + qu\ast )3
.

By the Riesz representation theorem, there exists a bounded variation function
\eta (\theta ,\mu ) in \theta \in [ - 1,0] such that for any \phi \in \scrC ([ - 1,0],\BbbR 2

+),

L\mu \phi =

\int 0

 - 1

d\theta \eta (\theta ,\mu )\phi (\theta ).

In fact, we can choose \eta (\theta ,\mu ) = (\^\tau + \mu ) [B1\delta (\theta ) - C1\delta (\theta + 1)] , where \delta is Dirac-delta
function.

For \phi \in \scrC ([ - 1,0],\BbbR 2
+), define

A(\mu )\phi (\theta ) =

\left\{     
d\phi (\theta )

d\theta 
,  - 1\leqslant \theta < 0,\int 0

 - 1

d\mathrm{s}\eta (s, \mu )\phi (s), \theta = 0,
R(\mu )\phi (\theta ) =

\biggl\{ 
0,  - 1\leqslant \theta < 0,

G(\mu ,\phi ), \theta = 0.

Then the original model (1.4) is equivalent to the following abstract ODE:

\.Xt =A(\mu )Xt +R(\mu )Xt.(4.2)

For \psi \in \scrC 1([0,1], (\BbbC 2)\ast ), the adjoint operator A\ast of A(\mu ) is defined as

A\ast \psi (s) =

\left\{     
 - d\psi (s)

ds
, 0< s\leqslant 1,\int 0

 - 1

d\eta T (\xi ,0)\psi ( - \xi ), s= 0,

and a bilinear form

\langle \psi ,\phi \rangle =\psi (0)\phi (0) - 
\int 0

 - 1

\int \theta 

\xi =0

\psi (\xi  - \theta )d\eta (\theta )\phi (\xi )d\xi ,

where \phi \in \scrC ([ - 1,0],\BbbR 2
+), \eta (\theta ) = \eta (\theta ,0). It can be shown that \langle \psi ,A\phi \rangle = \langle A\ast \psi ,\phi \rangle ,

\langle \lambda \psi ,\phi \rangle = \lambda \langle \psi ,\phi \rangle .
Since \pm i\^\omega are the eigenvalues of the original system (1.4) at the positive equilib-

rium E\ast , \pm i\^\omega \^\tau are the eigenvalues of A(0) and they are also the eigenvalues of A\ast .
By a direct calculation, the vectors

q(\theta ) = (1, \gamma )T ei\^\omega \^\tau \theta , \theta \in [ - 1,0] and q\ast (s) =D(1, \gamma \ast )ei\^\omega \^\tau s, s\in [0,1],

are the eigenvectors of A(0) and A\ast corresponding to the eigenvalues i\^\omega \^\tau and  - i\^\omega \^\tau ,
respectively, satisfying \langle q\ast (s), q(\theta )\rangle = 1 and \langle q\ast , q\rangle = 0, where

\gamma =
b3
i\^\omega 
, \gamma \ast =

 - b2  - c2e
 - i\^\omega \^\tau 

i\^\omega 
, D=

1

1+ \gamma \gamma \ast + \^\tau e - i\^\omega \^\tau (c1 + c2\gamma )
.
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Using the relevant theory of Hassard, Kazarinoff, and Wan [17], we aimed to
obtain the properties of Hopf bifurcation. For the solution Xt of (4.1) at \mu = 0, define

z(t) = \langle q\ast ,Xt\rangle and W (t, \theta ) =Xt(\theta ) - z(t)q(\theta ) - z(t)q(\theta ).

On the central manifold C0, W (t, \theta ) =W (z, z, \theta ), where

W (z, z, \theta ) =W20(\theta )
z2

2
+W11(\theta )zz +W02(\theta )

z2

2
+ \cdot \cdot \cdot .

Then the flow of system (4.2) on the central manifold C0 is determined by the equation

\.z(t) = i\^\omega \^\tau \langle q\ast (s),Xt\rangle + q\ast (0)f(0,Xt(\theta )) =: i\^\omega \^\tau z(t) + q\ast (0)G0,

where G0 =G(0, z(t)q(\theta ) + z(t)q(\theta ) +W (z, z, \theta )). Denote

G0 =Gz2

z2

2
+Gz\=zz\=z +G\=z2

\=z2

2
+Gz2\=z

z2\=z

2
+ \cdot \cdot \cdot ,

g(z, \=z) = q\ast (0)G0 =D(1, \gamma \ast )

\biggl( 
G1(0,Xt)
G2(0,Xt)

\biggr) 
=D(G1(0,Xt) + \gamma \ast G2(0,Xt)),

and z(t) satisfies

\.z(t) = i\^\omega \^\tau z(t) + g(z, \=z)(t).(4.3)

Let

g(z, \=z) = g20
z2

2
+ g11z\=z + g02

\=z2

2
+ g21

z2\=z

2
+ \cdot \cdot \cdot .

The coefficients g20, g11, g02, and g21 can be calculated as follows:

g20 = 2D\^\tau 
\Bigl[ 
\gamma e - 2i\^\omega \^\tau (m1 +m2\gamma ) + n1  - a+ n2\gamma  - c\gamma \ast (n1 + n2\gamma )

\Bigr] 
,

g11 =D\^\tau 
\bigl[ 
m1(\gamma + \gamma ) + 2m2\gamma \gamma + 2(n1  - a) + n2(\gamma + \gamma ) - c\gamma \ast (2n1 + n2(\gamma + \gamma ))

\bigr] 
,

g02 = 2D\^\tau 
\Bigl[ 
\gamma e2i\^\omega \^\tau (m1 +m2\gamma ) + n1  - a+ n2\gamma  - c\gamma \ast (n1 + n2\gamma )

\Bigr] 
,

g21 = 2D\^\tau 

\biggl\{ 
m1

\biggl( 
e - i\^\omega \^\tau W

(2)
11 ( - 1) +

ei\^\omega \^\tau 

2
W

(2)
20 ( - 1) +

ei\^\omega \^\tau 

2
\gamma W

(1)
20 ( - 1) + \gamma e - i\^\omega \^\tau W

(1)
11 ( - 1)

\biggr) 
+m2

\Bigl( 
2\gamma e - i\^\omega \^\tau W

(2)
11 ( - 1) + \gamma ei\^\omega \^\tau W

(2)
20 ( - 1)

\Bigr) 
+m3\gamma e

 - i\^\omega \^\tau (\gamma + 2\gamma ) + 3m4\gamma 
2\gamma e - i\^\omega \^\tau 

+ (n1  - a)
\Bigl( 
W

(1)
20 (0) + 2W

(1)
11 (0)

\Bigr) 
+ n2

\biggl( 
\gamma W

(1)
11 (0) +

\gamma 

2
W

(1)
20 (0) +

1

2
W

(2)
20 (0) +W

(2)
11 (0)

\biggr) 
+3n3 + n4(\gamma + 2\gamma ) - c\gamma \ast 

\biggl[ 
n1

\Bigl( 
W

(1)
20 (0) + 2W

(1)
11 (0)

\Bigr) 
+ n2

\biggl( 
\gamma W

(1)
11 (0) +

\gamma 

2
W

(1)
20 (0)

+
1

2
W

(2)
20 (0) +W

(2)
11 (0)

\biggr) 
+ 3n3 + n4(\gamma + 2\gamma )

\biggr] \biggr\} 
,

where

W20(\theta ) =
ig20

\^\omega \^\tau 
q(0)ei\^\omega \^\tau \theta +

i\=g02

3\^\omega \^\tau 
\=q(0)e - i\^\omega \^\tau \theta +E1e

2i\^\omega \^\tau \theta ,

W11(\theta ) = - 
ig11

\^\omega \^\tau 
q(0)ei\^\omega \^\tau \theta +

i\=g11

\^\omega \^\tau 
\=q(0)e - i\^\omega \^\tau \theta +E2,
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JOINT IMPACT OF MATURATION DELAY AND FEAR EFFECT 1571

and E1 = (E
(1)
1 ,E

(2)
1 )T \in \BbbR 2, E2 = (E

(1)
2 ,E

(2)
2 )T \in \BbbR 2 satisfy

E1 = 2

\Biggl( 
2i\^\omega  - b1  - c1e

 - 2i\^\omega \^\tau  - b2  - c2e
 - 2i\^\omega \^\tau 

 - b32i\^\omega 

\Biggr)  - 1\Biggl( 
\gamma e - 2i\^\omega \^\tau (m1 +m2\gamma ) + n1  - a+ n2\gamma 

 - c(n1 + n2\gamma )

\Biggr) 
,

E2 = - 
\biggl( 
b1 + c1 b2 + c2
b3 0

\biggr)  - 1\biggl( 
(m1 + n2)(\gamma + \gamma ) + 2m2\gamma \gamma + 2(n1  - a)

 - c[2n1 + n2(\gamma + \gamma )]

\biggr) 
.

Consequently, we obtain

c1(0) =
i

2\^\omega \^\tau 

\Biggl( 
g11g20  - 2 | g11| 2  - 

| g02| 2

3

\Biggr) 
+
g21

2
,

\mu 2 = - Re(c1(0))

Re(\lambda \prime (\^\tau ))
, \beta 2 = 2Re(c1(0)).

(4.4)

By the theory of normal forms and central manifold for delay (or functional) differ-
ential equations in [17], the above expressions determines the direction and stability
of the Hopf bifurcation at \tau = \^\tau as stated in the following theorem.

Theorem 4.1. The following statements hold:
(i) If \mu 2 > 0 (\mu 2 < 0), the bifurcated periodic solution appears for \tau in the right

neighborhood (left neighborhood) of \^\tau .
(ii) If \beta 2 < 0 (\beta 2 > 0), the bifurcated periodic solution is asymptotically orbital

stable (unstable).

5. Numerical simulations. In this section, we present some numerical simula-
tions to illustrate the main analytic results obtained in the preceding sections. These
simulations can more visually demonstrate the impact of the prey's maturation delay.
For this purpose, we will refer to some sets of parameter values in [37] under three
different scenarios, as this will make comparison convenient/straightforward.

5.1. Case of two periodic solutions when \bfittau = 0. We choose the following
parameter set and fixed k = 60, which is consistent with the parameters of Figure 7
in [37]:

r0 = 0.12, d= 0.01, a= 0.01, p= 0.5, q= 0.6, c= 0.4, m= 0.05, d0 = 0.1.(5.1)

With (5.1), model (3.6) has a subcritical Hopf bifurcation occurring at k = k\ast =
58.2352 (see Lemma 3.6). From (3.4) and (3.5), we obtain \tau \ast \approx 24.8491, \tau \ast \ast \approx 22.2708.
By Theorem 3.5, if \tau \in [24.8491,+\infty ), the trivial equilibrium E0 is globally asymp-
totically stable; if \tau \in [22.2708,24.8491), the boundary equilibrium E1 is globally
asymptotically stable; if \tau \in [0,22.2708), there exists a unique positive equilibrium
E\ast .

For the set of parameters given in (5.1), the numerical simulation result in Wang,
Zanette, and Zou [37] shows that system (3.6) has a stable positive equilibrium E\ast ,
a stable periodic solution, and an unstable periodic solution that bifurcates near E\ast .
That is, the corresponding ODE model exhibits a bistability phenomenon: if the initial
value is within the unstable limit cycle, prey and predators will tend to a steady state,
and if the initial value is larger, outside the unstable limit cycle, the populations of
prey and predator oscillate periodically. Now let us look at the situation when the
maturation delay \tau is incorporated. Figure 1(a) gives the graph of S0(\tau ) and S1(\tau )
defined by (3.15) for \tau \in [0, \tau \ast \ast ). As can be seen from Figure 1(a), Sn(\tau ) = 0 does not
have positive roots for any n\geqslant 1, and S0(\tau ) has two zeros, denoted by \tau 1, \tau 2, where

\tau 1 \approx 0.0614, \tau 2 \approx 17.2473.
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(c) Bifurcation diagram at \tau 2

Fig. 1. Bifurcation points and bifurcation diagram for model (1.4) with k = 60 and other pa-
rameters given in (5.1).

By (3.16), there hold S\prime 
0(\tau 1) > 0 and S\prime 

0(\tau 2) < 0. Thus, Hopf bifurcation occurs at
\tau 1 and \tau 2 by Theorem 3.9. Direct calculations give that when \tau = \tau 1, Re(c1(0)) \approx 
0.0001 > 0; when \tau = \tau 2, Re(c1(0)) \approx  - 0.3491 < 0. Then \mu 2(\tau 1) < 0, \mu 2(\tau 2) < 0.
Consequently, according to Theorem 4.1, the bifurcated periodic solution bifurcating
from \tau 1 is unstable and appears in the left neighborhood of \tau 1; the bifurcated periodic
solution bifurcating from \tau 2 is stable and appears in the left neighborhood of \tau 2. More-
over, if \tau \in [0, \tau 1) \cup (\tau 2, \tau \ast \ast ), all characteristic roots of (3.12) have strictly negative
real parts and E\ast is locally asymptotically stable; if \tau \in (\tau 1, \tau 2), there exists a pair of
characteristic roots with strictly positive real parts and E\ast is unstable.

With the help of the DDE-BIFTOOL package in [13], we plot the diagram of
global Hopf bifurcation with respect to delay \tau in Figure 1. In (b) and (c) of Figure 1,
the horizontal coordinate represents delay \tau , and the vertical coordinate represents the
amplitude of the periodic solution. Each point on the dashed curve in (b) represents an
unstable periodic solution, and each point on the solid curve in (c) represents a stable
periodic solution. We found that the local unstable Hopf bifurcation bifurcating from
\tau 1 exists globally at the left side of \tau 1 until \tau = 0. The locally stable Hopf bifurcation
bifurcating from \tau 2 also exists globally at the left side of \tau 2 until \tau = 0, implying that
the bistable scenario observed in [37] for (3.6) (i.e., \tau = 0 in (1.4)) actually remains
valid for (1.4) when \tau \in (0, \tau 1).

Next, we performed simulations near \tau 1 and \tau 2 to illustrate the stability of E\ast .
Choosing \tau = 0.02 < \tau 1, the positive equilibrium E\ast is (u\ast , v\ast ) = (0.2941,0.0454).
Note that (b) and (c) of Figure 1 show that there exist an unstable periodic solution
and a stable periodic solution. Figure 2(a) indicates that our model inhibits the
bistability phenomenon: the populations of prey and predator tend to a locally stable
periodic solution if the initial values are outside the unstable limit cycle, and when
the initial value is smaller, within the unstable limit cycle, populations will approach
a positive steady state. Therefore, the bistability phenomenon generated by system
(3.6) will not disappear when the introduced delay \tau is small (\tau \in (0, \tau 1) = (0,0.0614)),
as shown in Figure 2(a). If \tau 1 < \tau < \tau 2, E

\ast loses its stability, and Figure 1(c) shows
that there exists a stable periodic solution meaning that all the solution will converge
to the stable periodic solution (as demonstrated in Figure 2(b) for \tau = 0.1 \in (\tau 1, \tau 2)
and Figure 2(c) for \tau = 16.5\in (\tau 1, \tau 2).

Near \tau 2, the simulations show that with the increase of delay passing \tau 2, the stable
periodic solution disappears, merging with and yielding its stability to the coexistence
equilibrium E\ast , making E\ast globally asymptotically stable. See Figures 2(c) and 2(d)
for a demonstration.

5.2. Case of one periodic solution when \bfittau = 0. Fix k = 40 and let other
parameters remain the same as in (5.1). For model (3.6), the positive equilibrium is
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(a) \tau = 0.02 < \tau 1 (b) \tau = 0.1 > \tau 1

(c) \tau = 16.5 < \tau 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.005

0.01

0.015

0.02

0.025

(d) \tau = 18 > \tau 2

Fig. 2. Dynamical behaviors of model (1.4) with k = 60 and other parameters given in (5.1).
Here the red star represents the initial value, and the red arrow indicates the direction of the trajec-
tory. (Color available online.)

unstable and there exists a stable periodic solution. As \tau \ast and \tau \ast \ast are independent of
k, we just need to see the dynamics of model (1.4) when \tau \in [0, \tau \ast \ast ).

The simulations tell us that there exists a unique \tau c \approx 2.5903 which is a first type
of discontinuity point of Sn(\tau ) and it is not a root of the characteristic equation (3.12).
Figure 3(a) depicts the graphs of S0(\tau ) and S1(\tau ), while Figure 3(b) is just a vertical
rescaling of Figure 3(a) to the range of [ - 1,7] for \tau \in (\tau c, \tau \ast \ast ) = (2.5903,22.2708). We
found that there exists

\tau 3 \approx 16.8381

such that S0(\tau 3) = 0 with \delta (\tau 3) = S\prime 
0(\tau 3) < 0 and Sn(\tau ) has no zeros for any n \geqslant 1.

By Theorem 3.10, Hopf bifurcation occurs at \tau = \tau 3. Moreover, we calculate that
when \tau = \tau 3, Re(c1(0))\approx  - 0.1729< 0. Then \mu 2(\tau 3)< 0, implying that the bifurcated
periodic solution bifurcating from \tau 3 is stable and appears in the left neighborhood of
\tau 3. We also plot the global Hopf bifurcation diagram in Figure 3(c), which shows that
if 0< \tau < \tau 3, populations of predator and prey tend to the stable bifurcated periodic
solution. The population dynamics of (1.4) in this situation are similar to that for
the model (3.6). When \tau 3 < \tau < \tau \ast \ast , the periodic solution disappears, merging with
the coexistence equilibrium E\ast , which becomes stable.
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(c) Global Hopf bifurcation di-
agram

Fig. 3. Bifurcation points and bifurcation diagram for model (1.4) with k = 40 and other pa-
rameters given in (5.1).
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Fig. 4. Bifurcation points and bifurcation diagram for model (1.4) with k = 30 and other pa-
rameters given in (5.2).

Fix k = 30 and the other parameters as shown in (5.2) below. For this set of
parameters, model (3.6) has a supercritical Hopf bifurcation occurring at k = k\ast =
35.1563 by Lemma 3.6. The positive equilibrium is unstable because of k = 30< k\ast ,
and there exists a stable periodic solution.

r0 = 0.06, d= 0.01, a= 0.01, p= 0.5, q= 1, c= 0.4, m= 0.05, d0 = 0.2.(5.2)

For this set of parameters, (3.4) and (3.5) are calculated as \tau \ast = 8.9588, \tau \ast \ast = 7.5204.
By Theorem 3.5, if \tau \in [8.9588,+\infty ), E0 is globally asymptotically stable; if \tau \in 
[7.5204,8.9588), E1 is globally asymptotically stable.

Within (0,7.5204), there exists a unique \tau c \approx 0.4251 which is the first type discon-
tinuity point of Sn(\tau ), and it is not the root of the characteristic equation (3.12). Fig-
ure 4(a) gives the graph of S0(\tau ) and S1(\tau ), and Figure 4(b) is the local graph of S0(\tau )
and S1(\tau ) for \tau \in (0.4251,7.5204). We found that Sn(\tau ) does not have zeros for all
n\geqslant 1 and S0(\tau ) has a unique zero, \tau 4 \approx 1.2841 with \delta (\tau 4) = S\prime 

0(\tau 4)< 0. Thus, Hopf bi-
furcation occurs at \tau = \tau 4 by Theorem 3.10. Further, we have Re(c1(0))\approx  - 0.0034< 0
when \tau = \tau 4, and hence \mu 2(\tau 4)< 0, meaning that the bifurcated periodic solution ap-
pears in the left neighborhood of \tau 4 and is stable (see Figure 4(c)).
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Fig. 5. Bifurcation points and bifurcation diagram for model (1.4) with k = 20 and other pa-
rameters given in (5.3).

5.3. Case of no periodic solution when \bfittau = 0. With the parameters given
by

r0 = 0.4, d= 0.01, a= 0.05, p= 0.5, q= 0.6, c= 0.4, m= 0.05, d0 = 0.1,(5.3)

ODE model (3.6) has a supercritical Hopf bifurcation occurring at k = k\ast = 9.7918.
Take k = 20 > k\ast so that the positive equilibrium E\ast is locally asymptotically
stable. Then we can numerically calculate the critical values in (3.4) and (3.5) as
\tau \ast = 36.8888, \tau \ast \ast = 27.8442. By Theorem 3.5, if \tau \geq 36.8888, E0 is globally asymptot-
ically stable; if \tau \in [27.8442, 36.8888), E1 is globally asymptotically stable. Moreover,
for 0< \tau < 27.8442, Figure 5(a) shows that Sn(\tau ) = 0 does not have positive real root
for all n\geqslant 1 and S0(\tau ) = 0 has two positive real roots

\tau 5 \approx 3.3311, \tau 6 \approx 9.1766,

at which \delta (\tau 5) = S\prime 
0(\tau 5) > 0 and \delta (\tau 6) = S\prime 

0(\tau 6) < 0. By Theorem 3.9, Hopf bifur-
cation occurs at \tau 5 and \tau 6. Furthermore, Re(c1(0)) \approx  - 0.0378 < 0 when \tau = \tau 5 and
Re(c1(0)) \approx  - 0.1012 < 0 when \tau = \tau 6, implying that \mu 2(\tau 5) > 0 and \mu 2(\tau 6) < 0.
Therefore, the bifurcated periodic solution bifurcating from \tau 5 is stable and appears
in the right neighborhood of \tau 5; the bifurcated periodic solution bifurcating from \tau 6 is
stable and appears in the left neighborhood of \tau 6. The global Hopf bifurcation diagram
is presented in Figure 5(b), which shows that the two bifurcated periodic solutions
actually merge for \tau \in (\tau 5, \tau 6) = (36.8888,27.8442). In this case, with the increase of
delay, the periodic solution appears (E\ast loses its stability) and then disappears (E\ast 

regains its stability).
If the parameter values in (5.3) are replaced by

r0 = 0.03, d= 0.01, a= 0.01, p= 0.5, q= 0.1, c= 0.4, m= 0.05, d0 = 0.1,(5.4)

then straightforward calculations show that condition (3.7) holds and there is no Hopf
bifurcation for ODE model (3.6) for any k > 0 because of k\ast =  - 3.5146 < 0. Thus,
the positive equilibrium of model (3.6) is always locally asymptotically stable for any
k > 0. In the meantime, two critical values in (3.4) and (3.5) are now calculated
to be \tau \ast = 10.9861, \tau \ast \ast = 8.7035. By Theorem 3.5, if \tau \geq 10.9861, E0 is globally
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asymptotically stable; if \tau \in [8.7035, 10.9861), E1 is globally asymptotically stable;
and if \tau \in [0,8.7035), system (1.4) has a unique positive equilibrium E\ast . With the
help of MATLAB, there is no Hopf bifurcation. Hence, for any \tau \in [0,8.7035), E\ast is
globally asymptotically stable. We conclude that with the parameter set (5.4), the
delay \tau will not impact the stability of E\ast , meaning that as long as it exists, it is
globally asymptotically stable.

6. Summary and conclusion. In this paper, we have modified the existing
ODE predator-prey model with the fear effect as defined in [37] by incorporating
the maturation delay, leading to a delay differential equation (DDE) system for the
interaction of the predator and prey. This modification turns a finite-dimensional
dynamical system to an infinite-dimensional system (1.4). We have addressed the
well-posedness of the new model system and thoroughly analyzed its dynamics. We
have found that the new DDE system has rich dynamics, meaning that within different
ranges of the model parameters, including the maturation delay as a new parameter in
comparison with the ODE model in [37], there can be various asymptotical behaviors.
Particularly, we have explored the impact of the maturation delay \tau within various
scenarios for the corresponding ODE model (3.6).

Our mathematical results show that for the new DDE model, there exist two
critical values, denoted \tau \ast and \tau \ast \ast . If 0< \tau < \tau \ast \ast , the prey and predator populations
will co-persist, tending either to a stable positive equilibrium or to a stable periodic
solution. This suggests that smaller time delay is beneficial to the survival of both prey
and predator populations. If \tau \ast \ast < \tau < \tau \ast , however, the predator will go extinct and
the prey will tend to a positive steady state. This is because if the maturation period is
long but not too long, the rate of the immature prey entering the mature stage would
be small but not too small, leading to a lack of adult prey for the predator to predate.
Such a lack may then drive the predator to extinction since we have assumed that
the predator is a specialist predator and it only predates on the matured prey. If the
maturation period is too long, the prey itself cannot survive, let alone the specialist
predator, a scenario implied by the global asymptotical stability of the extinction
equilibrium E0.

Most interesting is the dynamics of DDE model (1.4) when the delay \tau is in the
intermediate range, which is a reality for many prey species. In this range, we have
seen that, depending on other parameters, there can be different long-term dynamics
corresponding to the bifurcations about the positive equilibrium E\ast caused by the
delay \tau , as presented in Theorems 3.9 and 3.10.

Some numerical simulations further reveal that the bifurcations obtained in The-
orems 3.9 and 3.10 are actually global. The respective bifurcation diagrams depict,
within different ranges of the fear effect level k, how the time delay can affect the
stability, causing stability switches (some are cascaded switches). For the reader's
convenience, we organize the bifurcation diagrams in Figure 6 for (3.6) and (1.4) with
the respective given parameter sets. An interesting result observed from Figure 6 is
that the stability of the positive equilibrium in model (1.4) changes from stable to
unstable to stable as \tau increases (see the cases of (5.1) with k = 60 and (5.3) with
k = 20 in Figure 6). At the same time, Hopf bifurcation occurred when the stability
changes, meaning that the unstable and stable periodic solutions in ODE model (3.6)
disappear successively as the maturation delay increases, as shown in the case of (5.1)
with k = 60 of Figure 6. Another interesting result is that the stability of positive
equilibrium changes from unstable to stable, and the stable periodic solution in ODE
model (3.6) disappears when stability reversal happens (see the case of (5.1) with
k= 40 and (5.2) with k= 30 in Figure 6).
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Parameters
Diagram of the stability of equilibria and 

Hopf bifurcation for (3.6)

(5.1)

(5.2)

(5.3)

Diagram of the stability of equilibria and 

Hopf bifurcation for (1.4)
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Fig. 6. Dynamics of model (1.4) when subcritical or supercritical Hopf bifurcation occurs for
ODE model (3.6) where the y-coordinate represents the amplitude of the periodic solution.

In conclusion, both stable and unstable periodic solutions in the corresponding
ODE model [37] may disappear as time delay increases. Moreover, as given in the case
of (5.3) with k = 20, when the positive equilibrium is locally asymptotically stable
in ODE model (3.6), a periodic solution appears and then disappears as the delay
increases. Our results reveal how the maturation delay and the fear effect jointly
impact the population dynamics of the predator-prey system and suggest certain
parameter ranges for coexistence of both the predator and prey, which is a desired
goal for the purpose of biodiversity.
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