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SPATIAL TEMPORAL DYNAMICS OF NICHOLSON BLOWFLY
EQUATION WITH TWO SHIFTING PARAMETERS*
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Abstract. In this paper, we obtain new results on the spreading speed and asymptotic propa-
gation properties for a diffusive Nicholson’s equation with two shifting parameters. By the method
of iterative strategies of travelling wave maps, we give a priori estimates on nontrivial solutions
which play a key role in the proof of global asymptotic behavior. These estimates in combination
with proper test functions allow us to establish the spatial-temporal propagation dynamics of this
extended Nicholson’s equation. These results enable us to develop a unified method for exploring
the spreading speeds and asymptotic propagation phenomena for a class of nontranslation invariant
delay reaction-diffusion equations on R™V.
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1. Introduction. The mature population of a species provided with (i) an age
structure characterized by immature and mature and (ii) a spatial structure reflected
by spatial variable(s) with homogeneous environment, can be described by a reaction
diffusion equation with delay:

(1.1) %(t, z) = dAu(t,z) — pu(t,z) + e °"Bu(t — 7,2)), v €QCR™

Here u(t,x) denotes the mature population at location z and time ¢; and for the
constant parameters, d stands for the diffusion rate of the matured individuals, u
and § are the death rates of the mature and immature populations respectively, the
delay 7 > 0 is the average maturation time, and B(u) is a birth rate function. In
(1.1), we have implicitly assumed that the immature individuals do not diffuse and
thus, a new born individual, if survived immature period, remains in the same lo-
cation when becoming mature. Equations of the form (1.1) have been widely stud-
ied for various birth functions with both bounded or unbounded domain 2. See,
e.g., [7, 11, 21, 28, 34, 35, 45, 50] and the references therein. Particularly, when
the birth function B(u) is the Ricker function B(u) = bue ", then (1.1) reduces
to the well-known and well-studied diffusive Nicholson blowfly equation (see, e.g.,
[27, 28, 29, 30, 36, 38, 44, 45, 48]):
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(1.2) %(t, z) = dAu(t,z) — pu(t,z) + e °Tbu(t — 7,x)e Y e Q C R

In reality, generically a habitat (living environment) is spatially and temporally
inhomogeneous. In the context of (1.2), this means that the parameters p and b (death
rate and maximal birth rate) depend on ¢t and z: p= p(t,z) and b= b(t,x). Among
all possible ways of dependence is the form through v-x —kt: u(t,x) = p(v-z—kt) and
b(t,z) =b(v-x—kt), where v is a unit vector in R”™ and « € R is a constant. This form
of dependence accounts for the scenario of shifting environment along the direction
v with constant shifting speed k. In such a case the monotonicity of the profile of
u(+) and b(+) indicates whether the environment is improving or worsening: if p(-) is
increasing and b(+) is decreasing, it is improving when x > 0 and it is worsening when
k < 0; while if p(-) is decreasing and b(+) is increasing, then it is worsening when x > 0
and it is improving when k < 0. Here, the concurrence of opposite monotonicity for
these two functions is due to the biological meaning of these two parameters.

Assuming a shifting environment with constant shifting speed & in the direction
v and incorporating the above mentioned type of heterogeneity into (1.2), we can
obtain a new model equation:

@(Lx) =dAu(t,z) — p(z - v — kt)u(t,x)

(1.3) =

+ e b(x v — Kt —7))u(t — 7,z)e ), reRYN.

Here we would particularly like to draw the reader’s attention to the fact: at time ¢
and location z, due to the shifting nature, the death rate pu(-) is evaluated at v-x — kt
while the birth rate term b(-) is evaluated at v-x — k(t — 7).

We point out that in recent years, spatial temporal dynamics for equations or sys-
tems with shifting environment has attracted the attention of many mathematicians
and ecologists. Many analytical works have been done on models with shifting envi-
ronments, mainly focusing on the extinction/persistence and the spreading speeds and
patterns. See, e.g., [1,2,3,4,5,9, 10, 12, 13, 14, 22, 33, 41, 42, 47, 49] and the relevant
references therein. However, to the best of the authors’ knowledge, these works are on
models that only have one shifting parameter. In contrast, the model equation (1.3)
has (i) two shifting parameters with solid ecological background which have opposite
monotonicity; (ii) a maturation delay in the unknown, and (iii) a shifting mediated
phase delay on the profile of the birth rate function. These three novel features make
(1.3) a novel, interesting, and yet challenging equation and brings in some challenges
in mathematics. In addition, we choose to work on a framework that allows spaces
of high dimension (in contrast to most existing works on similar topics but confined
to one-dimensional (1-D) space), because we believe that in high-dimensional spaces,
direction should play a role in one way or another, and it turns out the population
can, indeed, spread and expand with different speeds and rates in different directions,
as observed in the last section.

It is worth pointing out that, under an abstract setting, Weinberger [32] estab-
lished a theory of traveling waves and spreading speeds for monotone discrete-time
systems with spatial translation invariance. This theory has been further
extensively developed by other researchers for more general monotone and nonmono-
tone semiflows in various discrete and continuous-time evolution systems. See, e.g.,
[6, 16, 17, 18, 40, 47] and the related references therein. There are two common
features in the evolution equations in the aforementioned works: (f1) spatial trans-
lation invariance and (f2) spatial homogeneity. In general, (f1) and (f2) are related
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in the sense that spatial heterogeneity would lead to the lack of spatial translation
invariance. Regarding (f1), Yi and Zhao [42, 43] extended the theory of spreading
speeds and traveling waves for the monotone and nonmonotone semiflows without
spatial translation invariance in 1-D space. For (£2), there have also been some works
on spreading speeds and traveling waves for some R-D equations with certain special
types of spatial heterogeneities (also in 1-D space)—e.g., space periodic habitats in
[15, 24, 25, 26] and a jump type habitat in [48]. Shifting habitats are another spe-
cial type of spatial heterogeneity explored in the works mentioned in the preceding
paragraph, but the spatial systems in those works only allow one parameter to be of
such a heterogeneity and are in 1-D space. Here in this paper, our model arises from
age structured population dynamics and it contains two shifting parameters together
with a shifting mediated delay in addition to diffusion in higher-dimensional space.
For such an equation, the theories and methods developed in aforementioned works
cannot be, at least directly, applicable. Indeed, as far as the spreading speed and
traveling waves are concerned, we find that there is a lack of theory and method for
spatially heterogeneous (any type) systems in higher dimensions, not to mention that
there is a time delay.

In this paper, we will employ the iterative strategies of travelling wave maps in
[37, 48] to investigate the spreading speed of a class of non-translation-invariant de-
layed reaction diffusion equations (1.3) in RY. To this end, we introduce the following
auxiliary system:

(1.4) %(t,x) =dAu(t,z) — p(x; — kt)u(t,z) + blx; — k(t — 7))g(u(t — 7,)),

and establish some a priori estimates on nontrivial solution of (1.4). Then we make
use of these estimates and some test functions to investigate the heterogeneous steady
state, spreading speed, and asymptotic propagation properties for (1.3). The main
goal is to understand how the spatial-temporal dynamics are determined by some key
factors such as the shift speed &, the two limiting equations (as v -z — kt — +00), and
the maturation delay 7. Here, for convenience of presentation, based on the biological
background, we assume use, throughout this paper, the following properties for the
birth and death rate functions:

(H1) b(s) and p(s) are continuous and positive;

(H2) b(s) and p(s) are monotone but have opposite monotonicity;

(H3) 0 <b(£o0) < oo and 0 < p(£o0) < oo.

Also the function g(-) in (1.4) is intended to represent a class of functions that
includes the Ricker’s birth function in (1.2) and (1.3). Hence, we always assume that
g(+) possesses the following properties (as the Ricker function does):

(G) g:Ry — Ry is continuous and nondecreasing on R, with g being continuously
differentiable in some right neighborhood of 0 with g(0) = 0 and g(u) <
¢'(0)u Yu € Ry ; and there exists € € [0,1) such that ¢’(0) > 1—¢; moreover, for
such an e, there exists u* € (0,00) such that g(u*) = (1—e€)u*, g(u) > (1 —€)u
for all w e (0,u*), and 0 < g(u) < (1 — €)u for all u € (u*, o).

Let puy = p(£oo) and by = b(Foo). If u(-) is increasing and b(-) is decreasing
(leading to a decreasing e‘jzg)(g) ), then % < eﬁ%. It is not difficult to observe
that the environment is improving when s > 0 and it is worsening when x < 0. There
can be the following cases for the two limit equations:

e %7y e 0Th_
(B-1) o < l< =

e %7y efé:b,
(B-2) 1< o < T
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If u(-) is decreasing and b(+) is increasing, we have < 7b’ < €7+ and the environ-
ment is worsening scenario when x > 0 and it is improving when x < 0. Accordingly,
there can be the following cases for the two limit equations:

(W-1) = cqc e

(W-2) 1< & b= < 7“”—;3’*.

By applying the spatial mirror transformation, the case of increasing u(-) and de-
creasing b(-) with (B-1) can be converted to the case of decreasing p(-) and increasing
b(-) with (W-1). Therefore, in the rest of this paper, unless otherwise specified (in end
of section 4), we exclusively work on the case of decreasing u(-) and increasing b(-)
with (W-1) for x € R. The cases (B-2) and (W-2) will be investigated in forthcoming
papers.

This paper is organized as follows. In section 2, we present some notations.
In section 3, we derive some a priori traveling-like estimates on nontrivial solutions
to (1.4), which play a key role in the proof of the upward convergence and global
asymptotic behavior for (1.4). Then with these estimates and some test function,
in section 4, we establish the spatial-temporal propagation dynamics of (1.3). We
find that for the cases (W-1) and (B-1), the minimal wave speed of the better limiting
equation plays a crucial and actually decisive role in determining the spatial-temporal
dynamics of (1.3). We conclude the paper with section 5, in which we present some
discussions on the ecological implications of our main theoretical results in terms of
the spreading and expansion of populations; particularly in the two-dimensional (2-
D) case, we identify certain range of parameters within which, the spreading speed is
actually direction dependent.

2. Main results. We first introduce some notations. Let R, Rf =Ry X
RN~1, and let N be the sets of all N-dimensional real vectors, right-half real vectors,
positive integers, respectively. Let X = C(RY,R)NL>®(RY,R) and C' = C([-7,0], X).
Equipped with the usual supremum norm || - ||x = || - |[zec @y r) and || - |[c = || -
||Loo([_ﬂo]xRN7§), respectively, X and C are Banach spaces. Let X ={¢p € X : ¢(z) >
Oforallz e RV}, X ={peX:¢(x)>0forallz e RV}, CL ={peC:p0,z)>
0 for all (0,z) € [-7,0] x RV}, and C% = {p € C : p(6,x) > 0 for all (0,z) € [-7,0] x
RM}. Clearly, X, ,C, are closed cones in X, C, respectively. For any &, n € X (resp.,
C), we write { > nif {—n e Xy (resp., C1), E>nifE>nand {#n, > nif E—ne X
(resp., C3). Moreover, for v € X, X, ={¢ € Xy : ¢(z) < y(z) for all z € RN} and
C,={p e Cs: o) <~y forall (6,z) € [-7,0] x RV}, Sometimes, we also
write BC(X,Y) for C(X,Y)NL>®(X,Y), where X, are topological spaces. For any
¢ € BC(X,Y), we denote supremum norm of ¢ by ||¢||pe.

For readers’ convenience, we shall also treat an element ¢ € C' as a function
from [—7,0] x RY into R. For any a € R or ¢ € X, we also use a,¢ to denote the
constant function taking constant value a, ¢ in the corresponding function space, when
no confusion arises. So, we sometimes consider R, X as subsets of X, C', respectively,
that is, RC X CC.

For an interval I C R, let I + [-7,0] = {¢t +6 : ¢t € T and 6 € [-7,0]}. For
w: (I +[-7,0]) xRY - R and t € I, we write wu(-,-) for the function defined by
u(0,2) =u(t+6,2) for (0,z) € [-7,0] x RV,

For readers’ convenience, by using the traveling wave transformation, we trans-
form system (1.3) to the following initial value problem (IVP) of delayed reaction-
diffusion equations in R with spatial switch:
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aa—qf(t,x) =dAw(t,z) + kv - Vw(t,z) — p(x - v)w(t,z) + e °7b(x - v+ kT)-
(2.1) w(t — 7,2 + krv)e”PETTEERTY) (¢ gy € (0,00) X RY,
Wy =@ € C+.

For given ¢ € C, by the method of steps, it is easy to see (2.1) has a unique solution
which exists for all ¢t > —7. Denote by u?(t,z) the unique solution of (2.1). Then, we
easily see that

by
0 P(t,x) < 0o, ———— » forall ¢ C 0}.
<urt.o) Smax{llem e b forall 157, e €\ (0}

Due to the noncompactness of the spatial domain, it is generally difficult and
inconvenient to describe the asymptotic behavior of solutions to (1.3) with respect to
the L*-norm. To overcome this difficulty, we use the following norms on X and C,
defined, respectively, by

16l := 27" sup{|¢(x)| : [|a|| <n} forall p€X,
n=1

lell:=Y 27" sup{le(0.2)| : 0 € [-7,0], ]z < n} forall peC.

n=1

3. Asymptotic propagation persistence. In this section, we shall adapt the
iterative strategies of travelling wave maps in [37, 48] to study asymptotic propagation
persistence of (1.3).

3.1. Iterative strategy. Let ¢; = (0,...,0,1,0,...,0) € RN x = (z1,2) €
R x RN=1 and

—ut 2
k(t, s p) = Liexp (—ﬂ) Y(t,z, 1) € (0,00) x RY x Ry

Given (c,&,m,€,u) € Ry x SN=1x §N=1x[0,1) x R4, define keg i, Qce, and c*
by

k<37$+05§aﬂ)d5, .’13750,
kc,i,u(m) = Ry
1, =0,

Qeeldie, p,g)(z) = /]R . (ke (@ = 9)0(y) + ke +7e€ — )g(6(y)|dy.
v*(c, €, 1, g;6,m) = ;I;% log /]RN {ekc)&u(m) + 9 (0)ke e, (x + ch)} ePr g g,

and

2d
p(e+g'(0)e™ ™) < p+op—dp?

24+4d
. Jpe |0, VA such that
c*(e,pu,g)=inf ¢ c €R . :

)

where z € RY and ¢ € X, = BC(RY,Ry) and g(-) is the function in the auxiliary
equation (1.4) related to (1.3), satisfying (G).
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LEMMA 3.1. Let £ € SN=1 and let v*(c, €, 11, g;€,m),c* (€, 11, g) be defined as above.
Then the following statements are valid.
(i) For any (v,m) € Ry x SN=1 we have

peCYPE

/kcgu(x—kcvf)e’”"dx— -+ cpf-m—dp?’
00, p 4 cpé -n—dp* <0.

p+cp&-n—dp® >0,

Hence, v*(c,€, 1, 9;1,m) = v*(c, €, 1, 9;€,€) Yne SN—L.
v*(c, € p1,9;€,€) >0 if and only if v*(c,€,p,9;€,m) >0Vne SNL.
c* (€, 1, 9) =sup{c € Ry :v*(c, €, 1, 9;€,€) > 0}

v*(c, €, 1,9;€,€) >0 if and only if ¢ < c*(e, 1, 9).

C*(Oaﬂag):C (1_ 7’/%” )Vﬁ>ﬂ>0-

c*(

0,41, 9) =limy 04 ¢*(0, + v, 852 g) if 9'(0) > 1
Proof. (i) It follows from the Fubini’s theorem that for any (p,v,£) € R% x SN-1,
there holds
/ keep(x+cy6)e!*d
RN

= / k(s,x +c[s +~]& p)dse””d x
R

N JRr,
/ / e <_|I+C[S+V]§|2> dseP*™d o
RN JR, ( 4d7rs 4ds

pe ™t [z + cls +7J¢II° >
= —_— exp| —————>—+px-n|dads
/]R+ (4dms) % /RN P < 4ds pE=1

[ et —erenmilocipe o+ (s -+ ex)& — 2dspn
= exp | — d xds
Ry RN

(4d7rs)% 4ds
:/ Me[dpg*cpﬁ-n*u]sfcw&'nds
Ry
r s Bt cepE-n—dp* >0,
=< (u+cp§-n—dp?)ecrrtn
00, A+ cp& -n —dp® <0.
(ii) By (i) and the definition of v*(c,€,u,9;€,m), we may obtain that for any
1

fi(e +g'(0)e”cTPEM)
o+ cp§ - n— dp?

! —cTp

Zinf{bg p(e+g'(0)e” ™)
w+cp — dp?

=v"(c, €6, 11,9:6, ),

v (e, € 1, 956,m) =inf{10g :p>0and p+cpé-n—dp? >0}

:p>0 and u+cp—dp2>0}

which yields (ii).
(iii) By the proof of (ii), we have

. . (e +g'(0)e” ) c+ /e +4dp
3.1 (€,¢) =inf{]1 : 0, — V- T
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and thus Ry 3 c—v*(c, €, 1, 9;€,€) € R is nonincreasing. If
o <sup{c€ Ry :v"(c, €, 1, 9;€,§) >0},
then v*(¢, €, 11,9;€,€) >0 for all ¢ € [0,0]. It follows from (3.1) that

24+4d
M(6+g/(0)6_L7p)>M+LP_dPQ Vpe <0,L+L2d+u>> LE[0,0’].

This and the definition of ¢*(e, i, g) lead to ¢* (e, 1, g) > o and thus

C*(G,‘LL,g) > sup{c€ R+ :U*(Cv E,M,g;f,f) > 0}

If o > sup{c € Ry : v*(c, €, 1, g; €,€) > 0}, then v*(o, €, u, g; €, &) < 0. This, together
with

e+ g'(0)e”TP) /
lim = 0 1
Jim, PE—y e+4'(0)>

and
! —cTp
lim wetg(0e ) _
civ/oTiaa) it cp—dp?

p—(
. . ’ —oT 2 o++4/02+4dp
implies that p(e+g'(0)e™7) < u+op—dp* for some p € (0, —Y55——). As a result,
c*(e,,9) < o, and by the arbitrariness of o, we have
(€, 9) <sup{c€ Ry :v™(c,€, p1,9;€,8) > 0}
(iv) If ¢ < ¢*(e, , g), then v*(c, e, 1, 9;€,€) > 0 follows from (iii) and the mono-
tonicity of Ry 3 ¢+ v*(c, €, 1, 9;&,€) € R. Suppose that v*(c, €, 1, g;€,€) > 0. Then

. [ 21+ 4d
(e +g'(0)e™ ") > p+cp—dp* Vpe |0, W

due to ¢’(0) > 1 — e and (3.1). Tt follows that

'O c+ 8+ /(e + 00)2 + ddp
’ 2d

pu(e+g'(0)e=(CT0ITY > it (e +80)p — dp? Vp €

for some dp > 0. Again, by the monotonicity of Ry > ¢ +— v*(c,€,p,9;€,€) € R, we
easily see that

o+ /o2 +4du

p(e+g'(0)e™77°) > p+op—dp® Vpe ¥

0,

)

and hence v*(o,€,11,9;€,£) > 0Vo € [0,¢+ do]. Consequently, (iii) gives c¢*(e, p,g) >
c+ 6y >c.
(v) In view of the definition of ¢*(e, i, g) and the fact that u+ op — dp? <0 for
a+\/o2+4du U+\/0'2+4d/7}
2d 2d

)

all pe , we may obtain that for any @ > u > 0, there holds

C* <1 - g?ﬁv gg)
[TRT

2 +4d
= inf {a S (1 - % + %g/(o)e*‘”f’) <fi+op—dp®,3pe (o, W) }

- 2444
:inf{aER+:ug/(0)€ UTp§u+Up—dp273pe (07U+;d+‘u)}

=c*(0, 1, 9).
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(vi) By the definition of ¢*(e, i, g), we have

* Hr—"
c 0,u+%79>
( Bty

/ —oT 2 4d
—i“f{U€R+i(u—W)g(0)6 ”<u+7+ap—dp2,3pe<o,a+ g ;Ld (“’LV))}

o+ \/02+4du>}
2d

<inf {cf ERy :pug'(0)e P <p+op—dp®,IpeE (0,

=c"(0,u,9) Yy>0.

So, it suffices to prove that liminf, o4 ¢*(0, 1 + 7, Z%g) > ¢*(0,1,9); otherwise,
there exists o9 € R such that liminfe_,o4 ¢*(0, pu + 7, ﬁg) < o9 <c*(0,u,9). The
latter inequality and (iv) imply v*(00,0,u,9;¢,€) > 0. Then, by (3.1), we have

2
pg' (0)e=9TP > i+ aop — dp® Vp € [0, Zoty oot ad W]. Thus, there exists 6y > 0 such

that for any v € [0,do] and p € [0, Zothoty (angj°)2+4d(”+7)], there holds

(1 —7)g (0)e™(F3TP > 4y oy 4 (0 + 8o)p — dp?.

Hence, by (3.1), we know that v*(cg + 09,0, 1 + 7, ﬁg;f,ﬁ) >0 and by (iv), we see

that ¢*(0, pu + 7, ﬁg) > 00+ dp Vv €[0,00]. Therefore,
.. . n—="
liminf ¢ (0711 + 7, g) > 09+ 0o > 09,
y—0+ oty
a contradiction. 0
The following lemma itemizes some properties of these maps Q7 ¢[-1€, i, gl.
LEMMA 3.2. Let (€,11,¢,€) €[0,1) x Ry x Ry x SN Q:= Quelie gl Xy —
X, and m(y,dy) = [ekee 1 (y) + §'(0)kee u(TcE +y)|dy Yy € RN, Then the following
statements hold:
(i) @ is a continuous and compact map on Xy in sense of Q|x, : X, = X4 isa
continuous and compact map with the compact-open topology;

(ii) Q 14s order preserving in the sense that Q[¢] > Q] for all ¢, € X with
¢ =;

(iii) @ s spatial translation invariant in the sense that Q[¢](z+y) = Qo (-+y)](2)
for all (z,y,6) €ERY x RN x X ;

(iv) Q[0]=0,Qu*]=u*, Qla] >a Va e (0,u*), and Qa] < a,Va € (u*,00);

(v) @ and m(y,dy) satisfy the inequalities in [47].

Based on Theorem 3.6 in [47], and Lemmas 3.1 and 3.2, we easily verify the

following results.

PROPOSITION 3.3. If (¢,§) € Ry x SN=! and ¢ < c¢*(e, i, g), then for any ¢ €
BC(RY,Ry)\ {0}, we have lim,, o ||Q7 [#; €, 1, g] — u*]| = 0.

LEMMA 3.4. Let c€[0,c*(e,11,9)), and let ¢ € C(RN,[0,u*))\ {0} have a compact
support. Then, for any v € (1, m), there is an n = n(c,$,7v) € N such that
Lo (R

Qn eldie,.9] =76 for all (0,€) €[0,c] x SN

Proof. Clearly, by Proposition 3.3, for any (o,¢) € [0,c] x SN=1, v € (1, W),
there is an A := A (0,€,¢,7v) € N such that Q;Vg [0;€, 11, g] > v¢. Note that

0,¢] x SN X RN 5 (0,6,2) = Q¢ [d56, 1, g](z) €R
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is continuous at (7,&,z) € [0,¢] x SN ™1 xRY due to the definition of Q7 cloie p, gl(z )
This, together with the compactness of supp(¢), yields that there is § = 5 (0 £, 0,7) >
such that Q. [¢;€, 1, g] > ~¢ for all < € [O dn(oc—680+0d) andne SVN-1n B5(§).
Clearly, by the compactness of [0,c] x SN1, there exist (c1,&1), (c2,&2), ..., (c1,&) €
[0,c] x SN=1 such that

l
[0 d x SNt cC U 6(ciy&ig,), i +0(cis §iy ,77)) % B5(Cz‘,§z‘,¢ﬁ)(€i)'

Let n = nc g, = Hi:l N (¢i,&i,¢0,7v). Then, by v > 1, the choice of n, and the
monotonicity of Qs.¢, we have Q375[¢;67u,g] >~ for all (0,€) €10,c] x SN1L. 0

For any (c,&) € Ry x SV~1 and «, 8> 0, we define linear operators
Qegals61,9]: C[~a,0]¥,R) = C([~a, ]V, R)
and
Qfg[a 67ﬂag]a QS?&,B[? 67,”79] : BC(RfJR) = O(R-]i\-raR) N Lm(RfaR) — BC(RQ\LR%

respectively, by

Qucaltremal@)= [ [ohecne—1)o) + hecalwt 7e€ ~vlo(ow)]dy

r€[~a,a)V,

QelCe gl () = / [ekcsu(w—y)sb( )+/fc§u(w+TC£—y)g(¢(y))]dy, zeRY,

Qe sl gl // eh(s, 2+ 56 — 1))

+k(s,z+c(s +7)6 —y;1)g(¢(y)) | dyds, = € RY.

Here, ¢ € C([~a,a]V,R), ¢ € C(Rf,R), and y € Rf. It is easy to verify that these
operators are order preserving.

LEMMA 3.5. If ¢ € [0,¢*(e,1,9)), k € N, and ¢1,¢2,...,¢r € BCRN R,) \
{0} have compact supports, then there exist Ncy = Negy bo,...ds € N and ozf/,,k =
7 b1 o i > O such that Qng”fa[qu;e,u,g](O) > 2% for all (0,&,7) €[0,¢] x SNt x
(NN[Lk]) and a> oy,

Proof. Take 8* > 0 and ¢ € C(R"™,[0,u*)) \ {0} with compact support such
that ||| Lo mry = ¢(0), suppy C [-5*,8 BN, and ¢ < Queneld,) for all (0,€,5) €
[0,¢] x SN=L x (NN 1,k]).

By Lemma 3.4 with

N

2u* u™
max {1, 73Lp(0) } + m
Y= B )

we know that there is n1 € N such that Q)% [¢; €, 1, g] > ¢ for all (0,£) € [0,¢] x SN-1

According to lima—e0 Q) o [05€, 11, 9](0) = ng[go,e,u,g](O) > % for all (0,€) €

0,c] x SN=1 we know that for any (0,¢) € x SN=1  there exists a, ¢ > 0 such
13

that Q7 . [p;€,1,9](0) > =%, Based on the contmulty of
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0,¢] x SN 5 (0,8) Q% olwie 1, g](0) ER Va € (0, 00),

we know that there exist [ € N and (¢1,£1,01), (¢2,82,02), ..., (c1,&,01) € [0,¢] X
SN=15(0,1) with [0,¢] x SN~ CJ_, (¢; — 8iy¢i + 6) X Bs, (&) such that

QZ’Z’O‘%@ [@;QM,Q}(O) > 3

for all (0,&) € (¢;— i, ¢i+0;) x (Bs, (&) NSV ~1) and i € [0,1]NN. Let o* = max{ay, ¢, :
i €[0,{]NN}. Then Q) ,[ps€, 1, 9](0) > % for all (0,€) €[0,c] x SN~1 and a > a*
due to the monotonicity of Qg}g’a[go; €, 11, 9](0) with respect to a € [0, 00).

Thus, by the choice of ¢ and the monotonicity of Qs ¢ o[ ; €, it, g], we have

Qe gl0) = Qt olpie g (0) = =
for all (0,&,7) €[0,¢] x S¥=1 x (NN[1,k]) and a > ay ), = max{a*, 5*}.

LEMMA 3.6. Let ¢ € [0,c*(e,11,9)), a € (0,00), ¢ € C([~a,a]V,Ry), ¥
BC(RY,Ry), and n € RN with n > aer. If Y(z+n) > ¢(z) for all z € [—a,a
then Q[ €,11,9)(x + 1) > Qegalds €, 1, gl(x) and hence (Q2%)"[v; €, p, gl(z +n) >
cha[¢76ug]( x) for all (x,€) € [~a,a]V x SN=! and n € N.

Proof. By the definitions of Q¢%[€,p,9] and Qceals€ p, 9], we can conclude
that for any (x,&) € [~a, o]V SN_

Q?g [1/)7 €, I, g] (-T + 77)
B /RN [ek@f’u(x T =Y(Y) + ke +n+ 76 — y)g(w(y))} dy

\.Zm [

= / e [ekc,&,u(fE — Yy +n) +keep(z+7c€ —y)g((y + n))] dy
> / . [ekc,g,u(:v — V(Y +n) +keep(z+7c€ —y)g(P(y + 77))} dy

Z / el [ch,a,u(ff —9)P(y) + kegp(x + T — y)g(¢(y))] dy

= Qc,é,a [¢7 €, 1, g] (Z‘)
This completes the proof. 0

Let B.(z) = {y € R¥||ly — z|| < r} and B, := B,(0), for simplicity. For any
z € RV, let us denote U(x) ={z € RN|By Dz + A(z)}, where

A(2) { 2(—35), f;iIS_N\{O}’

LEMMA 3.7. If A(z) and U(z) as shown above, then the following statements are
true:
(i) #+ A(z) € By and thus x € U(z) for all x € Bio.
(ii) U(zx) is a nonempty open set for all v € Bg. o
(iii) There exist ko €N and x1,...,z%, € RY such that Uf"zl U(x;) 2 Bio-

Proof. (i) Fix xz € Elo and y € A(z). Clearly, we only consider the case of x # 0.
Then ||z|| <10 and ||y + 2 fian |l < 1. 1t follows that ||z +y|| < |y + a1l — H;”H | <
1+ |||=]| — 3] <9, which yields (i).
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(ii) follows from (i) and the definition of U(x), while (iii) follows from (i), (ii),
and the compactness of Byg. O

For any r € (0,00), define h,,(; : RY — R by

1, r € B,,
he(x)=4q 0, T €RN\ By,
r+1—|lzll, z€B1\B,
and
max{1 — ||z||,0}, xz; =0,
() — 32,
Gi(®) max{l— ’ac—&— i ,0}, z; #0,
[l

where j=1,2,...,ky and (ko,x;) is defined as in Lemma 3.7.
LEMMA 3.8. For any r € [19,00) and z € By11, there is j := j., € {1,2,...,ko}
such that h,(y + 2) > (;(y) for all y € RN, where ko is defined as in Lemma 3.7.

Proof. Fix r €[19,00) and z € B,y1. By applying Lemma 3.7-(iii) and letting

0, z =0,
= 10

z —z z#0,
Izl

we know that there exists j € {1,2,...,ko} such that z* € U(x;). It follows that for
any y € A(x;), there holds

ly+zll=llz = 2"+ 2"+l
<llz==2"[1+9
<|l|z]] - 10[ +9
<max{19,r}=r.

This, together with the definitions of h,,&;, implies h,(y + 2z) > 1 > (;(y) for all
y € A(z;) and thus h, > (. 0

For any given T > 1, define the function A7 : RV — R, by
hT(z) = hp(xz — (2T,0,...,0)") Vo € RV,

PROPOSITION 3.9. If ¢ € [0,c¢*(e,1u,9)) and € € (0,1], then there exist ng =
no(c,e) € N and to = to(c,e) > 19 such that (Q5% 5)"° [ehTse, 1, 9] > “hT for all
B,T >tg, and (0,€) €10,c] x SN-L.

Proof. By applying Lemma, 3.5 to ¢; = (; and k = kg, there exist n* € N and o* >
14 7¢ such that Q;";_a* lg;¢,1,¢;](0) > % for all (0,&,7) € [0,¢] x SN~1 x (NN[1, ko)).
It follows from Lemma 3.8 and the definitions of Ay, h” that for any T > 19 + 2a* and
z € By, there exists jr. € N([1, ko] such that h” (z+z+(2T,0,...,0)'") > (... (z)
for all 2 € RY. This, together with Lemma 3.6, implies that for all 7 > 19 + 2a*,
2 € Byyr, and (0,¢) €[0,¢] x SY~1, we have

2u*
— 3 .

(fog)n* [5hT; €, :vagKZ + (2T7 Oa RN O)w) Z ngf,a* [g; g, K, CjT,z](O)
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To complete the proof, we define a new map RJ% 5: BC(RY,R) — BC(RY,R) by
o’ 5 B <7 €U, g )
- ANeksx+ag D)) + ks, + (s + 7)€~ 5)o(C(y)] dyds

for all (z,€) e RY x SN~=! and ¢ € BC(RY,R).
Based on the definitions of ng’g,Rgfg’ 5 and the conditions of g, we easily check
that

Q[ €, 9]l e < (14 €) max{u, [|C]| L=},
|1 RS% 51¢5 € 1,9l o < (14 @) max{u®, ||¢|| o< Fe ™7,

where 0,3 € Ry, £€ SV and ¢ € BO(RY,R).

By taking ng :=ng(c,e) =n* € N and tg =to(c,€) > 19 + 2a* such that

4™ max{e,u* e H0 < %,

we may obtain that for any 8,7 > to, o € [0,¢], £ € SN~1, and x € (2T.,0,...,0)" +
By, there holds

(Q%e.s)"[eh™s €, 1. 9)()

= [Qfg - fi‘fg,g]"“ [EhT' & M, 9]( )

> Q)™ [eh™ s €, 1, 9)( Z o (1+ )" Y| Ry, s[max{e, u*}; €, 1, g]|| L~
> [QF]™[eh” s €, p, gl(z) — 2"0(1 + €)™ max{e,u*ye
> [QE ™ [¢h eud@%%“mwﬁwﬂf”
u*
> 5
-2
which, combining with the definition of A, yields the proof. ]

3.2. Propagation persistence. The relation between solution mapping and
integral operator ;fgﬁ[-;e,,u,g} will be given below, which will contribute to the
propagation persistence with parameters, as well as upward convergence properties in
the next section.

Let 12 = p(£00), bi = b(£00), 71 = 1 + sup,cg u(s), and let u?(t,; u(-),b(-), g)
denote the mild solutions of the following initial value problem for the auxiliary equa-
tion (1.4):

%(t, x) =dAu(t,z) — p(zy — kt)u(t,z) + bz — k(t — 7))g(u(t — 7,2)),

(32) (t,z) € (0,00) x RN,
u(t,z) = (t,x), (t,x) € [-7,0] x RV,
Now, let T'(t) be the semigroup generated by the linear system,
{ %(t,x) — dAu(t,z), t>0,
u(0,z) = ¢(x), reRVN,
that is, for (z,¢) € R x X,
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TO)E) = o), .

- s -y
100l = G [, owe (< 4y, es0

The following result gives the comparative relationships between the solutions of
(3.2) and the operators Q2% 5[ €, 1, g].

LEMMA 3.10. Assume that v, «, tg, >0, 0 >0, £ € Siv = SNﬂRf, pelCy,
and ( € BO(RY Ry) such that b(s—o7) > by —v >0, pu(s) < py+v < for all s > a.
Suppose

(3.3)

u? (t,x + [0€ + Kert + aer; u(-),b(+), g) > ((x) for all (t,z) € [to — T, t0 + B] x RY.

Then

_ b
u?(t,x +[08 + kea]t +aers pu(-), b(+),9) 2 Q7% GE Mg 1 +ﬁ Tg (x)

for all (t,x) € [to, to + 8] x RY. Here, €= ||c€ + kei|| and

o€ + key
= —— ||o€ + ke 0,
e1, [lo€ + Kei||=0.

Proof. Let u(t,z) = u?(t,x;u(-),b(:),g) for all (t,x) € [-7,00) x RY. Then by
(3.2), we know that for any (¢,z) € [to, to + 8] x RY, there holds

u(t, @ + oté + (st + a)er)
> [ eI (¢ = )= (s = r)u(s. )
+b([ ) — ks + K7)gluls — T, -))] (z + ot + (st + a)er)ds
-/ [ 2kt s+ ot + (nt - @)er — i) [ (3 s — s )] s

+ [ /RN %k(t — s+ ot + (st -+ a)er = i) [bys — s + w7)g(uls — 7)) |dyds

t .
> / / k(t — s,z + ot +Jﬁt +a)er — y; ) [(ﬁ —u(y — ns))U(S,y)} dyds
to US€+(NS+a)el+1R§ n

t
1
+/ / —k(t —s,x + ot + (Kt + a)er — y; i)
to 0(3*7’)54»(&37&7'4»&)61#»]]{5 H
X [b(yl — ks + K7)g(u(s — T, y))} dyds
t—tg 1
2/ /N ﬁk(s,w + 05 + Kser — y; i) [(ﬁ— pt = Y)ult — s,y + [0€ + Kea(t — s)
0 R
N t—tg 1
+a61)}dyds+/ / —k(s,z+o(s+ 1)+ k(s+T)er —y; )
0 RY I

X [(b+ —=7)g(u(t —s — 1,y + [0§ + re1](t — s — 7) + aer))] dyds
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t—to 1
2/ /N —k(s,x + o8& + rser —y; ) (7 — py — )¢ (y)] dyds
R

/ 0/]R —k(s,z+o(s+7)+k(s+7)er —y;0) [(by —7)9(C(y))]dyds

—Hy—7 _ by
=Q>% G — i, ———g| (). 0
C;ﬁ;t*to |: Iu /’[’ ( )

The following result produces comparative relationships between solutions of (3.2)
and iterations of ng"gwﬁ[-;e,u,g], which will be used to derive a priori estimates on
nontrivial solutions to (3.2) under the travelling wave transformation.

LEMMA 3.11. Assume that v, o, tg, 3>0, 0 >0, £ € SY, pe Cy, and { €
BC(RY ,Ry) such that b(s — o7) > by — vy >0, pu(s) < py +v <@ for all s > a.
Suppose

u? (t,x + [0€ + kert + aer; u(-),b(+), g) > ((x) for all (t,x) € [to — 7, t0 + B] x RY.

Then, for any I €N and i € [1,1] NN, we have

WP (b, + [0€ + redlt + aes; (), b(0),9) > (Q% s )’ [c, 7

Zorﬁalii(t,x) £t0+1+311-|(-)( )1, to + 8] x RY 1+I + (i —1)7 < B. Here, ¢,& is
efined as in Lemma )

Proof. First, note that the case where i =1 follows from Lemma 3.10. Now, let
i

fsup{ie[l,f]ﬂN:HIJr(i1)T<[3},

u(t,z) = u? (1,3 5( ). b(-). ). amd Qu[oh] = Q% [ 4= i, M7 ] Define

v awdican, TRt tae) > (Q ) (() for al
Fsup P ILINN: L nd () [to+ 5 + (G — Dr to+ B xRY [

+ (14+i")B +

Then ¢* > 1. It suffices to prove i* = I. Otherwise, for any (¢,z) € [to 13T

i*1,to + B] X Rf , it follows from Lemma 3.10 and the choice of ¢* that

u(t,x + [o€ + /{el]t + aey)

>Qgy_its o, (Q )" [C]I(@)

+1I

>Q. [<czl [l @)

I

=(Q_2)" (),

1+7

which yields a contradiction with the choice of ¢*. This proves the claim and hence
the proof is complete. ]

The following result produces asymptotic propagation persistence, that is, some
a priori traveling-like estimates on nontrivial solutions to (3.2), which play a key role
in the proof of the upward convergence and global asymptotic behavior to (3.2).
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PROPOSITION 3.12. Suppose that g is nondereasing and subhomogeneous with
g'(0) > ’;—i. Let ¢ € [0,6*(0,/@.,%9)). Then there exist ag > 0, €9 > 0, Ty > 19,
and T* > Ty such that, for all o € [ag,0), € € (0,&0], T € [Tp,0), o € [0,c],
£e SN and solutions u: [—7,00) x RV — R of (3.2) satisfying o€ € key +RY and
u(t,oté + aey +-) > eh® for all t € [—7,T*], we have u(t,oté + aey +-) >eh™ for all
teRy and u(t,oté + aer + ) >eh® for all t € (T*,00).

Proof. Define

(by —7)g'(0)

G:Ry x(0,00)3 (u,y) —
% (0,00)3 (1) 1

min{u,v} € R.

According to the definition of G and Lemma 3.1-(v), (vi), we know that there exists
~v € (0, min{@ — p4,b4}) such that

0G(0 by — n— g —

O3 o1, 2005 6(n), and ce [o,c* (” N “*”G(-m)) )
ou pt+y I I

By applying Proposition 3.9, we know that there exist ng € N and ty > 19 such that

( Z?E,ﬁ)no E*hT; K LEL 77ﬁ7 M++7G(7’y):| > QE*hT
i i
with e* = (b — )¢’ (0)y/5(us + ) for all B, T >tg, and (0,¢) €[0,¢] x S¥~L.

Take ag > 0 with b(s —o7) > by —v >0, u(s) < pg + for all s > ag, and let
g0 =5, Tp =to, and T* = (1 +ng)to + nr.

Suppose that a € [ag,0), € € (0,e0], T € [Ty, ), o € [0,¢], £ € S¥~1, and
u:[—7,00) x RN — R, is a bounded solution of (3.2) satisfying o¢ € ke; + RY and
u(t,oté +aey +-) >eh? for all t € [—7,T*]. Let T** =sup{t >0:u(t,oté +ae; +-) >
eh® for all s €[0,¢]}. Then T** >T*. We claim that T** = co. Otherwise, T** < co.

It follows from Lemma 3.11 that, for any ¢ € [2007:1* + (no — 1)7,T**], we have

n— iy — +
ult, ot + aer + ) > (QF, po )0 [ehT;“ “ﬁ* QTR ”G(-,w}

U>5>n0+1 7]
oo ynmo | & wp H— Py =7 _ Byt
> °|—¢c"h 5 5 s — G )
> (@em)" | Sethrs P i B G )|
€ oo mo |k M T My =Y _ g Y
> Ej(Qm&To) 0 [5 hr; ﬁ+ J +ﬁ G('ﬁ)] >2eh”.

In particular, u(T**,0T**¢ + aeq + -) > eh”, and thus there exists § > 0 such that
u(t,oté + aey +-) > eh? for all t € [T**,T** + 6], a contradiction with the choice of
T**. So, T** = c0. |

4. Main results. In this section, we shall obtain our main results about propa-
gation dynamics of (1.3). Without loss of generality, we first consider the case v =¢e;
in subsections 4.1, 4.2, and 4.3. Then in subsection 4.4, we will establish some results
for (1.3) with a general direction v.

With v =e;, (1.3) reads

(4.1)

%(L z) = dAu(t,z) — p(zy — kt)u(t,z) + e 7b(xy — k(t — 7))u(t — 7, z)e2E72)
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For convenience, by the travelling wave transformation w(t,x) = u(t,z + keit), we
introduce the auxiliary equations:
ow

(4.2) =

(t,x) = dAw(t,z) + kKwy, — p(x)w(t, z)

+e70b(zy + KT w(t — 7,2 + KTey )e VT RTE)
as well as the associated auxiliary equations:

(4.3)
dw
ot

Here, garr : Ry — R is defined by

(t,x) =dAw(t,x) + kwy, — p(z1)w(t,z) + b(x1 + kT)gm(w(t — 7,2 + KTeq)).

(4.4) gm(u) = e min{ue™", Me~M}

with M >0, where u € R;. Then, for any M > 0, we know that g, is nondecreasing
and subhomogeneous on [0, M], ga(u) < e °Tue™* for all u € [0, M], and ga(u) =
e %Tue™" for all small nonnegative u.

Note that c*(O,qu,Z—:gM) = c*(O,p+,Z—:e’5TIdR+) for all M in (0,00). As a

result, we may always denote ¢*(0, i, Z—:gM) by c¢*. Clearly,

(4.5)

24+4d
c*:inf{aél&.:b+e_5Te_”pS,u++0p—dp2,3p€<O,J+ 02d+ M+>}-

We point out that this ¢* is nothing but the minimal wave speed and the spreading
speed of the limiting equation of (1.3) (including (4.1)) with the two shifting parame-
ters replaced by pu* and b, respectively, under the assumption W;. By the definition
of ¢*, we see that the speed of ¢* depends on the delay 7 and it is decreasing in 7.

For given ¢ € C1, by the method of steps, is easy to see (4.2) and (4.3) have mild
solutions w?(t, ), w¥9M(¢,z) € Ry with the initial value wg = ¢ which exists for all
t > 0. Clearly, mild solutions w?(t,x),w?9 (¢, x) are also classical solutions of (4.2),
(4.3), respectively, for all t > 7 (see, e.g., [19, 20, 31, 34]).

Denote by ® the solution semiflow of (4.2), that is, ® : R, x Cy — C is defined
by ®(t,¢) = (w?), for all (¢,¢) € Ry x Cy. Simarly, we write ®(¢,¢; gaq) for (w¥9m),
if there is a need.

The following result shows that any nontrivial solution of (4.3) is far away from the
trivial equilibrium, which is key to proving upward convergence of nontrivial solutions
and the existence of force steady states.

PROPOSITION 4.1. Assume that M >0 and k € R, and let ¢* and gy be given,
respectively, by (4.5) and (4.4). Then, for any c €[0,c*) N (k,00), ¢ € Cy \ {0}, there
exist e, , >0 and o, >0 such that w9 (t,x) > ec for all (t,x) €U, ., where

Deo={t2z)eRy x RN :t>a,z> ey, and ||z + keyt|| < ct}
for all o € Ry. Hence, if |k| < ¢, then Y(-,x) > e, for all ¥ € w(p;gm) =

w(p; @(-,59M)), T € acpe1 + RY . Moreover, if || < ¢, then for any v > 0, there
exists £+, > 0 such that Y(-,2) > &4, for all Y € w(p;gm),x € —ver + RY.
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Proof. Take ¢ = CEC* €0, 1o, and T with ¢ as in Proposition 3.12.
Without loss of generality, we may assume that u(t,z) := w?9M (¢, z — keyt) > 0 for
all (¢t,z) € [-7,00) x RN. Define

g1 =inf{u(t,x):t€[-7,T*] and |jz||<1+ag+ (¢+6)T"},

and let €., = min{eg,e1}. Thene; >0, ec, >0, and u(t,oté+age;+-) > e. ,hT for all
te[-7,T*, T €[Ty,2Tp), o € 0,¢], and £ € SN~ with o€ € ke; +RY . Tt follows from
Proposition 3.12 and the choices of ay, €¢, Ty, and T* that u(t, ot +aper+-) > 56#,hT
for all t € Ry, T € [Ty, 2Ty), o € [0,¢], £ € SN=1 with o € ey +RY. In particular,
u(t,oté + aper +Toer) > e, forallt e Ry, 0 €[0,¢], £ € SN=1 with o € key —HRﬁ
Letting

2 T
Q¢ 1= Max {TO + g, 1+ M} ,

ct—c
we easily check that

||z+kert—aper — Tpeq|
t

(t,x) €Qc,, , implies z—ape1—Toer € RY and €[0,¢.
As aresult, w¥9M (L, x) = u(t,x + Keit) > ecp for all (t,2) € Q7 , . This, combined
with the definition of w(p; ga), implies ¥ (-, z) > e, for all ¥ € w(w; gm), T € e pe1+
RY.

Next, let us fix v > 0 and take

-7 s}
€, H 9
€ = exp (—s*)ds > 0.
Y6 P ﬁ ac,ptety p ( )
Vad

According to the definition of the mild solutions of (4.3), we know that for any (z,v) €
RY x w(p;gaq), there holds

w¥IM (1, x) > D[(0 + Kkeyp)

e (x
B x—i—ne yl|?

[ g )

/ e H exp<_|m+f<ae1—y||2>6 dy

ac,¢el+Rf (4d7r)% 4d “¥

1 |1 + K —y1 ]2
=¢E. © _ d
Ec,p€ /a T exp< 1 Y1

¥

Eepe H [

= Cf/?r /1 i exp(fSQ)ds.
A,me

This, together with the invariance of w(yp; ga), implies that

1/1(3 .’E) Z Ev,c,p

for all ¥ € w(p;9m),x € —ver + ]Rf. The proof is complete. d

v

4.1. Asymptotic extinction. In this subsection, we will study the asymptotic
extinction properties of (4.2) by constructing some appropriate test functions. We
first confirm the asymptotic extinction in the direction —e;.
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THEOREM 4.2. For any ¢ € Cy, there holds

[sup{w?(t,z): (t,z) € Ry x RN with t,—x, € [ar,00)}] =0.

lim
a— 00
Hence, lim;_,oo[sup,, <., w?(t,2)] =0 Ve > 0.

Proof. Fix (p,€69) € Cv x (0, %) Then, there exist ag, A\g,vo > 0 such
that

Ao — p— + €0 + 6757(6_ + eo)e*)“” =0,
d(70)2 + K0 — p— + €0 + 0T (b + €9) €7 =0,
wlo—ag) —p— + € >0,b(a—ag+ k1) —b_ — €p <0 Va € (—0,0].

Define Z : [~7,00) x RV — R by
Z(t,x) = w?(t,x — agey) — Moe 20t — Moe°® Y(t,z) € [-7,00) x RY,

where Mo =SUp(; z)e[—r,00)xrd (W7 (t,2)|. It follows from (4.2) that

%—f(t,x) <dAZ(t,x)+ KkZy, — (u— —€0)Z(t,x)
+e70T(b_ +€0) Z(t — T,z + KTer), (t,x) € Ry x ((—00,0] x RN71),
Z(t,z) <0,(t,x) € [-7,0] x RN J[-7,0) x ]Rf.

By applying the step arguments and the Phragmén-Lindel6f type maximum principle
[23], we may obtain that Z(t,x) < 0 for all (t,z) € [-7,00) x RY. This and the
definition of Z directly lead to our results. The proof is now complete. ]

Next, we show the asymptotic extinction beyond a moving hyperplane in the
direction ej.

THEOREM 4.3. If ¢ > 0 and ¢ € Cy with ¢(-,x) being zero for all sufficiently
positive x1, then

tlim [sup{w?(t,z): (t,z) € Ry x RN with z1 >t(e + ¢* —k)}] =0.
—00

Proof. In view of the definition of ¢*, there exist ¢y € (0,5) and A >0 such that

—dN\? + (c+ K)A+ pg = bpe 9Te MR with c:=c¢* — Kk + €.
Let M = el sup, cpn (||@(, 7)||e)*1) and define Z : [—7,00) x RN — R by
Z(t,x) =w?(t,x) — Me 17D (L, 2) € [-7,00) x RV,
It follows from (4.2) that

a—Z(t,x) <dAZ(t,x) + kZy, — ut Z(t, )

ot
+e 0T, Z(t — 7,2 + kTep), (t,x) € (0,00) x RV,
Z(t,z) <0,(t,x) € [-7,0] x RV,

By applying the step arguments and the Phragmén-Lindel6f type maximum principle
[23], we may obtain that Z(t,x) < 0 for all (t,z) € [-7,00) x RY. This and the
definition of Z directly lead to our results. The proof is now complete. 0

Now, we explore asymptotic extinction in other directions by using similar argu-
ment to Theorem 4.3.
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THEOREM 4.4. If e >0, £ € SN=1 € Cy with (-,x) being zero for all suffi-
ciently positive x - £, then

tli)m [sup{w?(t,z): (t,x) eRy x RN with x- £ >t(e +c* — K&} =0.
oo

Proof. In view of the definition of ¢* that there exist ¢y € (0,5) and A > 0 such
that

—dN? 4+ (c+ KEDA + iy = bye T MEAREIT yith ¢ = ¢* — k&) + &0.
Let M = e I sup, cpn (|@(, 2)|[e*€) and define Z : [—7,00) x RN =R by
Z(t,x) =w?(t,x) — Me M=) (L, 2) € [-7,00) x RV,

Tt follows from (4.2) that

Z
8—(25,3:) <dAZ(t,x) + kZy, — pt Z(t, )

ot
+e70Tb, Z(t — 1,2 + KTer), (t,2) € (0,00) x RY,
Z(t,z) <0,(t,x) € [-7,0] x RV,

By applying the step arguments and the Phragmén—Lindel6f type maximum principle
[23], we may obtain that Z(t,x) < 0 for all (t,z) € [-7,00) x RY. This and the
definition of Z directly lead to our results. The proof is now completed. ]

4.2. Upward convergence. In this subsection, we are ready to derive upward
convergence of nontrivial solutions of (4.2) in space-time region.

THEOREM 4.5. Assuming that 2—16’57 <e? Ifk<c* and ¢ € Ci\{0}, then for
any ¢ € (max{x,0},c*), there holds

algrgo[inf{w@(t,x) H(tx) €Qr L = [sup{w?(t,z): (t,z) € Qg , }] =w",

lim
a— 00

—oT
where (2., is defined as in Proposition 4.1 and w* = log(%). Hence, if || < ¢,

then limg, 00 ¥ (-, ) = w* for all ¥ € w(y).

Proof. Suppose that k& < ¢*, ¢ € C;L\{0}, and ¢ € (max{x,0},c*). By Proposi-
tion 4.1, there exist €*,a™ > 0 such that

by
t) = w?(t,x) < M* = N
w(t,z) :==w?(t,x) < max{||gO|L ’,u+e57+1}

for all (t,z) € [-7,00) x RY and w(t,x) > &* for all (t,z) € Q% .. .. For any
5,

e €0, 0*2_0]7 define

W_(e) = lim [inf{w(t,z): (t,r) € Q. 4}

a—0o0

and

Woe(e) = Jim fsup{ut,2): () € Oy}

Then e¢* < W_(e) < Wi(e) < M* for all € € [0, C*Q_C]. Since W4 (g) are monotone
in e €10, %], we may assume, without loss of generality, that W_ and W, are

continuous at some ¢; € [0, “5<].
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To complete the proof, we only prove W_(g1) = Wi(e1) =
W_(e1) < Wi(er) or W_(e1) = Wy(e1) # w*. By letting f,(w) —
and applying Lemma 2.3 in [44], we easily see that either (I) fo([W_(e ) W+(51)]) -
(0,W4(e1)) or (I1) fo([W-(e1),W4(e1)]) C (W_(g1),00). It suffices to consider case
(IT) since case (I) can be dealt by similar arguments. In view of (II) and the definition
of f,, we know that

w Otherw1se
— —w— 67'

Jro((W=(e1) = 70, W4 (€1) +0]) € (W-(e1) + 70,00) for some o > 0.

According to the definitions by, u4, Wi (e1), we may obtain that there exists g > a*
such that

Wi(er) +0>w(t,x) > Wo(e1) = V(t,z)€ QZ+51 a0,
w(xy) < py +v0,0(z1 + 7)) > by — o V1 € [ag, 00

w. 20 .
Wil pyy

Take ¢ > max{1,c*,|x|,7} such that [ nyHSQ,lf(s,y;,u_|r +70)dyds > oo

€(0,21) and choose a7 > 1 + max{ag + 302, =2} with
e1—¢

w_M* [+ +0 Yo
——¢ —\ | — — g — < —.
20tir + 70) XP( d (a1 — g |“|@)> 3

As a result, we may verify that for any (¢,z) € Q7. ,,, there holds

||z + ke1s —y|| < o implies y; > ap and (t —s — 7,y +r7e1) € Qo o, Vs €0, 0].
By letting T}, 4, (5)[¢](2) = e~ 1+ 903 (s)[p](z+kers) V(s,x,¢) € Ry xRN x X,
it follows from (4.2), Fubini’s theorem, and Lemma 2.1-(iv) in [39] that for any (¢,z) €

Q:JFC «,» there holds

w(t, z) =w" (g, x)

=Ty (@t =0 )@) + | Ty g (0= )[4 + 70— - ex)]u(s + -0,

+
+ub(-'61—|—Ii7')f,m(w(8—|—t—Q—T,~—|—Ii7’61))j|($)d8
by — 0
)
> // k(o — s, +rei(o = 8) = ys i+ +70) (1+ +70 — p(y1))
M4t RN
0
xw(s+t—o,y)dyds + // k(o—s,x+ rei(o—$) —y; it +70)
i+ Jo JrN
+
X ub(yl + KT) fyo(w(s+t — o — 7,y + kTeq))dyds
by =0
p—M*

e
> - / / k(o — s,z + re1(o—s) — y; i+ +70)dyds
0 00,00] xRN -1

H+ + Y0

o
L (W_(e1) +70) / / (s, + ers — i iy +0)dyds
0 |z+rers—y||<eo
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2 M* =+ —(prt+n0)s
2W7(51)+ﬂ— p— / / (1+ +70)e
M+ + Yo VAdrs
X exp (—( L. ‘:lli_ y)” > dsdyy

2 M* [y + +

>W_(e1)+ ’Yoi M / H+ ’Yo H+ ’YO|I “|klo—1] | dwn
3 2(p++7)
270 p—M* [+ + 7

>W_(e Jrifiex — | — (a1 — |K|0 — &

> ? +W_(21).

This, together with the definition of W_((), implies W_(¢) > W_(e1) + % V( €
(0,e1), a contradiction with the continuity of W_(-) at €. This completes the proof. O

4.3. Existence/nonexistence and attractivity of forced steady states.
In this subsection, we shall establish the existence, nonexistence, and attractivity of
forced steady states of (4.2). First, we shall prove the existence and attractivity of
forced steady states of (4.2) when |k| < ¢*.

THEOREM 4.6. Assume that |k| < c¢*. Then (4.2) has a positive steady state w .
Moreover, if either (k=0 and Z—ie“” <e?)or (k#0 and bJ’;jT < 2e), then (4.2) has
a unique positive steady state wy which attracts all solutions of (4.2) with the initial
value p € C \ {0}, in the sense that limy_, o |[(w?)s — wy|| =0 for all p € C4 \ {0}.

Proof. First, we shall establish the existence of wi. Let M = N—e_‘ST L and

let €, m 0, m defined as in Proposition 4.1 with ¢ = ‘kl'; Then w(£4 55 0M) > Em
for all = € . meq + RY. Note that 0 < ®(¢,1;9m) < (¢, p39m) < P(t,¢) for all
(t, (,O’IZJ)ER+XCM XCM with ¥ <. Let

A{¢€C+:w</§l;g/w> ScpSM}.

Clearly, A is a nonempty, closed, and convex subset in C such that A C C¢ and
O(t, A) C A for all t > 0. This, together with the compactness of ® and Theorem
3.4.7 in [8], implies that ® has a positive steady state wy € A, located in C N Cpy.

Next, the uniqueness will be a consequence of the global attractiveness of w4 in
C+\{0}. So, we need to show that wy attracts all solutions of (4.2) with the initial
value o € O \{0}. Fix ¢ € Oy \{0}. Let vo := 1+ M+||¢|]| oo (j—r,0]xrN &) It follows
from Theorem 4.2 and the conditions of u(-),b(+) there exist 19,bg, Ao > 0, and pg > 1
such that

wi(2) <1L,9p(,2) <1V € (—00,—po + k7] x RV 9 € w(yp),
p(r1 — po) > pio,b(x1 + KT — po) < by Yy <0,
o — pto + € 0ThgeoT =0.
Let
a* =sup{a € R:¢(0,2) > aw (x) V(0,2,9) € [-7,0] x ([=po,00) x RV 1) x w(p)}

and

a* =inf{a € R:9(0,7) < aws () V(0,2,9) € ([-7,0] x ([—po, 0)) x RV 1) x w(ip)}.
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Then 0 < a* <1 < a} < o0 due to Proposition 4.1 and Theorem 4.5. For any
P € w(p), set
’U(t,l‘) = @[t +7, 1,[)](0,1‘ - 0061) - aiw-i—(x - p061> +7067)\0t V(t,d?) € [—T,OO) X RN

By (4.2) and the choices of a* , pg,70, and Ao, it follows that v(¢,x) satisfies the
following equation:

O (1,0) > ANvas(,2) + v, (1,2) — s — ool 2)

+e70b(x1 + KT — po)p(t, x)v(t — T, + KTey),
(t,x) € (0,00) x ((—00,0] x RN~1),
>0, (t,z) €[0,00) x RY,
v(8,z) >0, (0,x) € [-7,0] x RV,

where

1
p(t, x) ::/ (1 — sw¥(t,x — poer + krer) — (1 — s)a* wy (x — poe; + KTey))
0
« efsww(t,mfpoel+nrel)7(17s)aiw+(a:fpoel+/i‘rel)ds e [O7 1]

for all (t,2) € R, x (—00,0] x R¥N~1. By the step arguments and the Phragmén—
Lindeldf type maximum principle [23], it follows that v(¢t,z) > 0 for all (¢,z) €
[~7,00) x RY. By the arbitrariness of ¢, we then have

w(p) >a*wy —ye M VEER,,

and hence, w(yp) > a* w,. Similarly, we can obtain w(y) <a*w,. Thus, it suffices to
prove that a’ =a* =1. Assume, by contradiction, that {a*,a* } # {1}. By Lemma
3.3-(iii) in [46], we easily check that either (I) ke=%* > a* V(u,k) € (0,2] x [a* ,a%]
or (IT) ke =R < a* V(u,k) € (0,2] x [a* ,a’].

We only consider the case of (I) since the case of (II) can be dealt with in a similar
way. Note that wy,w(p) <2, and thus (I) implies a* € (0,1) and (6, 2)e" ) >
a* w, (z)e™+®) (0, 2,1) € [-7,0] x RN x w(¢p). By letting

Z¢(t,${}) = ww(t’x) - aiw+($) V(t,m,l/}) € [_7-700) X RN X W((P),
it follows from (4.2) and Theorem 4.5 that there exist €, ap > 0 such that

%Ltw(t,x) >dAZY (t,z) + /@'Z;f’l (t,x) —p_Z%(t,z),(t,z) € (0,00) x RY,
Z¥(t,x) >0, (t,z) € [-T,00) x RV,
ZY(t,x) > €, (t,x) € [-T,00) X (aper +RY).
As a result, Z¥(0,x) > ¢y Vx> age; and
ZY(t,x) > e =T () [Z2%(0,-)](x 4 ker) V(t, x,9) € (0,00) x RY x w(yp).

These, together with the second paragraph in the proof of Proposition 4.1, implies
Z¥(1,x) > e Y(z,v) € ([—po, o] x RVN71) x w(p) for some ¢; > 0. Hence, by the
arbitrariness of ¢ and the properties of w(p), we easily see that

Y —a* wy >min{e, €1}, € [—pp,00) x RV,
a contradiction to the definition of a* . This completes the proof. ]

By slightly adapting the proof of Theorems 4.5 and 4.6, we may verify the follow-
ing corollary.
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COROLLARY 4.7. Assume that |k| < ¢* and ¢ € C \ {0}. If either (k=0 and

Zj =0T <e?) or (k#£0 and b+e © <2e¢), then

b
lim sup{||(ww)t —wyl||: ey with p <y < +6_57} =0.
t—oo 7

Second, we shall give the existence of forced steady states of (4.2) when x> c*.

THEOREM 4.8. Assume that k > c¢*. Then (4.2) has positive steady states wy in
ce.

Proof. Let b(s) = min{b(s), ure' ™07} for all s € R, and let w# R (t,z) be the
solution of (4. 2) by replacing (b(-), k) with (b(-),&). Clearly, ¢* > ¢*(0, iy, ;%QM) >0
with M := m. Choose ag > 1 such that

Jao.Mm (1) S g < e Tue ™" Vu € [0, M]

and gq,,m(u) is nondecreasing in u € R4, where go, am : Ry — Ry is defined by

1
e OTue~ U gy € [O, ] ,
(u) = @0

Jaog, MU 1 . 1
— u —,Q | .
a061+57 ao’

By applying Theorem 4.6 to w¥-°(t, x), there exists W, € C(R",(0,1]) such that
WOt ) =W (x) V(t,z) € [-7,00) x RY

and wHO(t,x) — Wy, locally uniform in z, as t — oo. According to the monotonicity
of b(-),u(-), we easily check that for any ¢t > 0, w'°(¢,x), and hence W, (z) are
nondecreasing in x; € R, which implies 8871 > 0 for all RY. As a result, we know
that

W.

WP (0,2) 2 0% (1, Gy a0, D)) > W ()
0

for all (t,z,0) € [-7,00) x RN x A with A := {p € C, : % < ¢ < M}, where

W,

T:(t 3 Gaw. M, D(+)) Tepresents the solution of (4.3) with (¢,b,gas) be replaced by
(W b »9ao.M)- Using the same discussions as in the first paragraph of the proof of
Theorem 4.6, we may get the existence of forced steady states w,. This completes
the proof. ]

Finally, we shall give the nonexistence of forced steady states of (4.2) when k <

—c*.

THEOREM 4.9. Let k < —c*. Then (4.2) has no nontrival steady state wy €
i\ {0},

Proof. Suppose that (4.2) has nonnegative steady state wy € C4 \ {0}. Then
wy € C(RY, (0, —21)). Take ¢ = C*% It follows from the definition of ¢* that

) g edT L

there exists A > 0 such that

—dN2 + (¢ — K)A + puy = bpe 0Te M7,
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.
Let h(y,€) =d(y)?+rxy—p_ +e+e 07 (b_+¢€)e? 7 for all (v,¢) € Ry x (0, %)
Then ~(0,0) <0 and lim,_,o h(7y,0) >0, which imply (v, €p) =0 for some (7o, €9)

8T
(X, ) x (0, %) By using the proof of Theorem 4.2, there exists My =
SUDP(¢,z)e[—r,00) xRN W7 (t,2)| such that wy (z) < Moe?*1, and hence, w4 (z) < Moe o
for all z € RV.
Define Z : [-7,00) x RN — R by
Z(t,x) = wy (z) — Moe* ™+ y(t ) € [-7,00) x RV,

It follows from (4.2) that

Z
a—(t, x) <dAZ(t,x)+ kZy, — puy Z(t,x)

ot
+e 0Tb, Z(t — 1,2 + KTer), (t,2) € (0,00) x RY,
Z(t,z) <0,(t,x) € [-7,0] x RN,
By applying the step arguments and the Phragmén—Lindel6f type maximum principle

[23], we may obtain that Z(t,x) <0 for all (t,x) € [-7,00) x RN. By letting ¢ — oo,
we easily get wy =0, a contradiction. This completes the proof. ]

4.4. Asymptotic propagation and spreading speed. In this subsection, we
shall turn our attention to (1.3) with general direction v and reorganize results of the
above three subsections to obtain propagation dynamics for (1.3). To this end, we
first note that the ¢* defined in (4.5) only depends on the limit equation with u™ and
bt and is independent of the direction v. In what follows, we will see this c¢* also
plays an important role for (1.3) with general direction v.

THEOREM 4.10. Let u®(t,z) be the solution of (1.3). Then the following state-
ments hold.
(i) Asymptotic extinction. If p € C, then

CYliﬂlrréo(sup{u“”(t,:Js) (t,x) ERy X RN with - v <kt —a,t >a}) =0.
Moreover, if € € SN=Y and (-, ) is zero for all sufficiently positive x-£, then
Jim [sup{u?(t,2): (t,z) € Ry x RN with - &> t(e+c*)}] =0 Ve > 0.
Additionally, if ¢ has a compact support, then
lim (sup{uf (t,z) : [|a]| > t(c" +¢)}) =0.

(ii) Upward convergence. If p € C; \ {0}, K <c*, and z—:e*‘” <eé?, then, for
any € € (0,min{c*,c* — k}),

) b+67§7
lim ( supq [u?(t,x) —log it
a—00

H+
lz|| <t(c* —¢e),x-v> (OH—Ht)}) =0.

b
lim (sup{ u?(t,x) —log (+ 6_6T> ‘ ]|
t—o00 H+

<t(c"—¢), andz-v>t(e+k)})=0.

Y

a,

Hence,
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(iii) Existence and nonexistence. When k> —c* and b—:e_‘ST <e?, then (1.3)
has a forced wave wi(x — kvt) € Ci \ {0} with limg.,—_ccwy(z) =0 and
lim,,. 0o W (2) = log(zie_&); while when k < —c*, (1.3) has no nontrivial
waves of the form wy (x — kvt) with speed k.

(iv) Spreading phenomenon. If ¢ € C+ \ {0} and || < ¢* with either (k=0
and —*6_5" <e?) or (k#0 and b+€ <2e), then

tlim (sup{|u?(t,x) — wy(x — kut)|:||z]| <t(c* —€)}) =0 Ve > 0.

(v) Uniformly extinction. If k > ¢* and ¢ € Cy \ {0} with ¢(-,x) being zero
for all sufficiently positive x - v, then

tlim (sup{u®(t,x):x € RN})=0.
—00

Proof. Without loss of generality, we may assume v = e;. For any given ¢ € C,
we should realize that u?(t,x) = w?(t,x — keyt) for all (t,z) € [-7,00) x RN where
3(0,7) = (0, + kbey) ¥(0,x) € [-7,0] x RN,

Clearly, (i) follows from Theorems 4.2-4.4, (ii) follows from Theorem 4.5, and (iii)
follows from Theorems 4.6-4.9.

(iv) To finish the proof, it suffices to prove that

tli}m (sup{|w? (t,z) —wy(z)|: ||z + kert]| <t(c" —e)}) =0Ve>0,p € C; \ {0}.

Suppose that p € Cy \ {0}, v € (0, log(b+e ” )), and let ¢ = ¢* — e Ve > 0. Without
loss of generality, we may assume ¢ > || and ¢ < M. According to Theorems 4.2
and 4.5, we know that there exists ag > 0 such that
wi(z) +w?(t,x) <y Vt,—x-e1 € [ag,00),
|wy (z) — log (b+e 67) | + |w?(t,x) — log (%) | <y Vt,z-er € [ap,0)
with ||z + keyt]] < te.

This leads to
(4.6) |wi(x) —w?(t,x)| <V, |z-e1] € [, 00) with ||z + keit|| < te.

In view of the uniqueness of w,, we easily see wi(z) = wy(z1e1) = ¢4 (1)
for all x € RY. Take 6y = €5¢. Again, by applying Theorems 4.5, there exists
aq > max{ayp, %} such that

—oT

b+6

1
e (0, (0 ) 2 Wo = g (20 ) (k) €0,

it

Choose ¢ € C(RY, [0, Wy]) \ {0} with
supp(¢) C Bi(e1 + arer) :={x € RN : ||z — (14 a1)es|| < 1}.

By Corollary 4.7, there exists as > 0 such that ||[(w?):(-,z) — wy(z)|| < 7 for all
(t,z,%) € [az,00) X [~ag, agler x C with ¢ <9 < %67‘57-
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Let a3z = 2(1+5°+C+‘“Ig§1+7+a1+0‘2). According to the definition of €

easily check that

*
c+60,a1)

we

(t,2) € [az,00) x RN ||z + wter|| < et, |z - e1] < ap
(0,%) € [-7,0] x By(e1 +are1)

=({t+0—ag,x—x10+7)€E Dot 60,01
This, together with the choice of ¢, implies that
(WP)t— (- 4+ 2 —x101) > P V(t,2) € [a3,00) x RN

with |21] < ag and ||z + kte1|| < ct. Tt follows from (4.2) and the choice of ag that for
any (t,r) € [az,00) x RV, with |z1| < o and ||z + kte;|| < ct, there holds
[lw?(, 2) — wo ()]
= [lw7) =2 (ag, ) — wo (2)]]
= [l e TR (g rer) — w (z101)]] <7,
which, together with (4.6), implies (iv).

(v) follows from Theorems 4.2 and 4.3 with ¢ = #“5%. This completes the
proof. 0

As a direct corollary, we easily obtain the propagation dynamics for (1.3) on R.

COROLLARY 4.11. Let u®(t,x) be the solution of (1.3) with N = 1. Then the
following statements hold.
(i) If pe Cy, then

lim (sup{u?(t,z): (t,x) € Ry X R with x <kt —a,t > a})=0.

a—r 00

Moreover, if (-,x) is zero for all sufficiently positive x, then

tlim [sup{v?(t,z): (t,z) ERy X R with x >t(s + ")} =0 Ve >0.
—00

(ii) If p e CL\ {0}, K < c*, and Z—ie*‘” <€?, then, for all € € (0,min{c*,c* —k}),

lim (sup {
a— 00

Hence,

lim (sup {
t—o0

(iii) Equation (1.3) has forced waves wy (x—kt) € CL\{0} with lim,_, o wi(x) =
0 and lim, oo wy(x) = log(i—ie“”), when k> —c* and ﬁe“% <e2. Also,
(4.2) has no nontrivial waves w4 (x — Kt), when k< —c*.

(iv) If ¢ € C1 \ {0} and |k| < c* with either (k=0 and Z—:e_‘ST <e?)or (k#0

S
and <" < 2¢), then
1t

b
u?(t,) — log (*e—&) ’ > a0t st <o <H(c —a)}) _o.
it

u?(t,z) — log <b+e_67> ‘ itle+ k) <a<t(ch— 5)}) =0.

K4

tli)m (sup{|u?(t,x) —wy(z — Kt)] :x <t(c" —¢e)})=0Ve>0.
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(V) If k> c* and ¢ € Cy \ {0} with o(-,x) being zero for all sufficiently positive
x, then
tlim (sup{u?(t,x):x € R})=0.
—00

Note that all of the above results are for the case (W-1). As mentioned in the
end of the introduction, by applying the mirror transform, the case (B-1) can be con-
verted to case (W-1), and accordingly, parallel conclusions can be drawn by applying
Theorem 4.10 for the case (B-1). This immediately leads to the following corollary.

COROLLARY 4.12. Assume that p(-) is increasing, b(-) is decreasing and (B-1)
holds, and let

24+ 44
¢ —inf {0 €R, : b e 0Te—0TP <pu_+op— dp2,z|p€ (0, W) } ’

If u?(t,x) is the solution of (1.3), then the following statements hold:
(i) If pe Cy, then

aleréo(sup{uw(t,x) ((t,x) eRy x RY with x-v >kt +a,t>a}) =0.
If €€ SN=1 and ¢(-,x) is zero for all sufficiently negative x - £, then
tlggo [sup{u?(t,z): (t,z) ERy x RN with x- £ < —t(e +c*)}] =0Ve > 0.
Additionally, if ¢ has a compact support, then
Jim (sup{u? (¢, 2) :[lal| 2 #(e” +2)}) =0,

(i) If pe CL \ {0}, k> —c*, and Z—:e‘5T <eé?, then, for all e € (0,min{c* ,c* +

K}),
(o

and x-v < (mfa)}) =0.
Hence,

lim (sup{
t—o0
andm-uﬁt(n—e)}) =0.

(iii) Equation (1.3) has forced waves w_(x — xvt) € Cy \ {0} with limg., e
w_(z)=0 and limy.,, _ccw_(z) = log(z—ie"”), when k < c* and u—:e"” <
e2. Also, (4.2) has no nontrivial waves w_(x — kvt), when k> c* .

(iv) If o € CL \ {0} and || < c* with either (k=0 and Z—:ef‘” <e?)or (k#0

b 6—57'

and — <2e), then

b_
u?(t,z) — log (e‘sT) ‘ > oz <t(et —e),
W

u?(t,z) — log (Z_e&) ’ Hlzl| <t(c* —e),

tli}m (sup{|u®(t,x) — w_(x — kt)|: ||z|| <t(c* —€)}) =0 Ve > 0.

(v) If k < —c* and ¢ € C; \ {0} with ¢(-,x) is zero for all sufficiently negative
- v, then

tli)m (sup{u®(t,x):x € RV})=0.
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5. Discussion on ecological implications. In this section, we explore the
implications of the main results in Theorem 4.10 in terms of population spreading.
Since the parameter € in Theorem 4.10 can be arbitrarily small, we can explain the
results more conveniently by letting € — 0. Then, by Theorem 4.10-(i)—(ii), for large t
(asymptotically), the population only persists in the time varying region €,,(t) given
by

(5.1) Q) ={z eR":||z|| < ¢t and x-v > kt}.
For the 1-D space R, this time dependent region becomes
(5.2) O (t)={zeR:|z| <c't and z > kt},

which is illustrated in Figure 1 for the cases (a) 0 < k < ¢*; (b) —¢* < k < 0; (¢)
k < —c*. From the Figure 1, we can conveniently distinguish the three cases for « as
below:
(1-a) For the case 0 < k < ¢*, the population spreads to the right with speed c¢*
with domain expansion rate c¢* — k.
(1-b) For the —c* < k < 0, the population spreads to both directions, with a right
speed c* and a left speed —k; the domain expansion rate is still given by ¢* — k.
(1-c) For the cases k < —c*, the population spreads to both directions with the
same speed c*; the domain expansion rate is 2c*.
For the 2-D space R?, denoting v = (cos f, sin ), the time dependent persistence
region becomes

(5.3) Qo(t) ={(z,y) €ER:2® + y* < c*t and zcosby + ysinfby > kt}.

For convenience of demonstration and yet without loss of generality, we choose v =
e1 = (1,0); accordingly, we illustrate the corresponding Q4 (¢) in Figure 2, also for the
three cases (a) 0 < k < ¢*; (b) —¢* <k < 0; and (c¢) kK < —c*. From Figure 2, we can
observe the following:

(2-a) For the case 0 < k < c*, the population spreads with speed c¢* in every
direction 6 between —@ and 6 where 6 = arccos(x/c*); the population does
not spread in other directions. Moreover, by calculating the area of the shaded
region, we can obtain a time dependent domain expansion rate as

2t [(c*)2arccos (cﬁ*) — Kk (c*)? — HQ} .

o : T =nt
T =nt r=—c't r=c"t
= c't \ /
. v =kt
g ' w=ct / b d

. x Q(t) = (—c't,c't)
Q4(t) = (kt,c*t) Qi(t) = (st.c’t)

(a) 0 <k <c*. (b) —¢* < k < 0. (c) k< —c.

Fi1G. 1. Time varying persistence region Q1 (t) for the 1-D space, demonstrated by the solid bold
line on x-axis.
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Kt

(c) Kk < —c".

Fi1G. 2. When the direction v = e1 = (1,0), time varying existence region Qa(t) for the 2-D
space is demonstrated by the shaded portion inside the circle with radius c*t.

(2-b) For the case —c* < k < 0, we present the following:
(i) The population spreads with the same speed ¢* in every direction 6; between
—6 and 6 where § =7 — arccos(|k|/c*).
(ii) In every direction 0 € (—m,—0) U (6, 7), the population also spreads but
with a direction dependent speed c(02) = ||/ cos 5.
(iii) The domain expansion rate is also time dependent and is given by

2t {(c*)Qarccos (g) + |K|\/m:| ;

where arccos (Ci) > 7.
(2-¢) For the cases k < —c*, the population spreads with the same speed ¢* in all
directions and the habitat domain expands at the rate 27 (c*)>t.

Acknowledgment. We would like to thank the anonymous referees for their
valuable comments, which led to an improvement in our presentation.

REFERENCES

[1] H. BERESTYCKI AND J. FANG, Forced waves of the Fisher-KPP equation in a shifting envi-
ronment, J. Differential Equations, 264 (2018), pp. 2157-2183, https://doi.org/10.1016/
j.jde.2017.10.016.

[2] H. BERESTYCKI AND L. Rossl, Reaction-diffusion equations for population dynamics with forced
speed. 1. The case of the whole space, Discrete Contin. Dyn. Syst., 21 (2008), pp. 41-67,
https://doi.org/10.3934/dcds.2008.21.41.

[3] H. BERESTYCKI AND L. RossI, Reaction-diffusion equations for population dynamics with forced
speed. 11. Cylindrical-type domains, Discrete Contin. Dyn. Syst., 25 (2009), pp. 19-61,
https://doi.org/10.3934/dcds.2009.25.19.

[4] Y. Du, L. WEI, AND L. ZHOU, Spreading in a shifting environment modeled by the diffu-
sive logistic equation with a free boundary, J. Dynam. Differential Equations, 30 (2018),
pp. 1389-1426, https://doi.org/10.1007/s10884-017-9614-2.

J. FANG, Y. Lou, AND J. Wu, Can pathogen spread keep pace with its host invasion?, STAM
J. Appl. Math., 76 (2016), pp. 1633-1657, https://doi.org/10.1137/15M1029564.

J. FANG, X. YU, AND X.-Q. ZHAO, Traveling waves and spreading speeds for time—space periodic
monotone systems, J. Funct. Anal., 272 (2017), pp. 4222-4262, https://doi.org/10.1016/
j.jfa.2017.02.028.

[7] S. GOURLEY AND J. WU, Delayed non-local diffusive systems in biological invasion and disease
spread, Nonlinear Dynam. Evol. Equ., 48 (2006), pp. 137200, https://doi.org/10.1090/
fic/048/06.

[8] J. K. HALE, Asymptotic Behaviour of Dissipative Systems, American Mathematical Society,
Providence, RI, 1989.

5

6

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1016/j.jde.2017.10.016
https://doi.org/10.1016/j.jde.2017.10.016
https://doi.org/10.3934/dcds.2008.21.41
https://doi.org/10.3934/dcds.2009.25.19
https://doi.org/10.1007/s10884-017-9614-2
https://doi.org/10.1137/15M1029564
https://doi.org/10.1016/j.jfa.2017.02.028
https://doi.org/10.1016/j.jfa.2017.02.028
https://doi.org/10.1090/fic/048/06
https://doi.org/10.1090/fic/048/06

Downloaded 07/07/25 to 129.100.58.76 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ON DIFFUSIVE NICHOLSON BLOWFLY EQUATION 2909

9] H. Hu, T. Y1, AND X. ZoU, On spatial-temporal dynamics of a Fisher-KPP equation with a

shifting environment, Proc. Amer. Math. Soc., 148 (2020), pp. 213-221, https://doi.org/
10.1090 /proc,/14659.

[10] H. Hu AND X. Zou, Ezistence of an extinction wave in the Fisher equation with a shift-

ing habitat, Proc. Amer. Math. Soc., 145 (2017), pp. 4763-4771, https://doi.org/10.1090/
proc/13687.

[11] Y. KuaNG, Delay Differential Equations. Academic Press, New York, 1993.
[12] K.-Y. LaMm AND X. Yu, Asymptotic spreading of KPP reactive fronts in heterogeneous shift-

(13]

14]

(15]

(16]

(17]

(18]

19]

20]

21]

(22]

23]

(24]

[25]

[26]

27]

28]

29]

(30]

B.

ing environments, J. Math. Pures Appl., 167 (2022), pp. 1-47, https://doi.org/10.1016/
j-matpur.2022.09.001.

L1, S. BEWICK, J. SHANG, AND W. F. FAGAN, Persistence and spread of a species with a shift-
ing habitat edge, SIAM J. Appl. Math., 74 (2014), pp. 1397-1417, https://doi.org/10.1137/
130938463.

W.-T. L1, J.-B. WANG, AND X.-Q. ZHAO, Spatial dynamics of a nonlocal dispersal population

X.

X.

X.

R.

R.

R.

M.

A.

M.

H.

J.

model in a shifting environment, J. Nonlinear Sci., 28 (2018), pp. 1189-1219, https://
doi.org/10.1007/s00332-018-9445-2.

L1aNG, Y. Y1, AND X.-Q. ZHAO, Spreading speeds and traveling waves for periodic evolu-
tion systems, J. Differential Equations, 231 (2006), pp. 57-77, https://doi.org/10.1016/
j.jde.2006.04.010.

LIANG AND X.-Q. ZHAO, Asymptotic speeds of spread and traveling waves for monotone
semiflows with applications, Comm. Pure Appl. Math., 60 (2007), pp. 1-40, https://
doi.org/10.1002/cpa.20154.

LIANG AND X.-Q. ZHAO, Spreading speeds and traveling waves for abstract monostable
evolution systems, J. Funct. Anal., 259 (2010), pp. 857903, https://doi.org/10.1016/
j.jfa.2010.04.018.

Lui, Biological growth and spread modeled by systems of recursions. 1. Mathematical theory,
Math. Biosci., 93 (1989), pp. 269-295, https://doi.org/10.1016/0025-5564(89)90026-6.

H. MARTIN AND H. L. SMITH, Abstract functional-differential equations and reaction-
diffusion systems, Trans. Amer. Math. Soc., 321 (1990), pp. 1-44, https://doi.org/
10.1090/S0002-9947-1990-0967316-X.

H. MARTIN AND H. L. SMITH, Reaction-diffusion systems with time delays: Monotonicity,
invariance, comparison and convergence, J. Reine Angew. Math., 413 (1991), pp. 1-35,
https://doi.org/10.1515/crll.1991.413.1.

Mer, J. W.-H. So, M. Y. L1, AND S. S. SHEN, Asymptotic stability of travelling waves
for Nicholson’s blowflies equation with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 134
(2004), pp. 579-594, https://doi.org/10.1017/S0308210500003358.

B. Porapov AND M. A. LEwis, Climate and competition: The effect of moving range
boundaries on habitat invasibility, Bull. Math. Biol., 66 (2004), pp. 975-1008, https://
doi.org/10.1016/j.bulm.2003.10.010.

H. PrROTTER AND H. F. WEINBERGER, Mazimum Principles in Differential Equations,
Prentice-Hall, 1967.

. SHEN, Variational principle for spreading speeds and generalized propagating speeds in time

almost periodic and space periodic KPP models, Trans. Amer. Math. Soc., 362 (2010),
pp. 5125-5168, https://doi.org/10.1090/S0002-9947-10-04950-0.

. SHEN AND A. ZHANG, Spreading speeds for monostable equations with nonlocal dis-

persal in space periodic habitats, J. Differential Equations, 249 (2010), pp. 747-795,
https://doi.org/10.1016/j.jde.2010.04.012.

. SHEN AND A. ZHANG, Stationary solutions and spreading speeds of monlocal monostable

equations in space periodic habitats, Proc. Amer. Math. Soc., 140 (2012), pp. 1681-1696,
https://doi.org/10.1090/S0002-9939-2011-11011-6.

L. SMITH, Monotone Dynamical Systems: An Introduction to the Theory of Competitive
and Cooperative Systems: An Introduction to the Theory of Competitive and Cooperative
Systems, American Mathematical Society, Providence, RI, 1995.

W.-H. So, J. Wu, anD X. Zou, A reaction—diffusion model for a single species with age
structure. I Travelling wavefronts on unbounded domains, R. Soc. Lond. Proc. Ser. A Math.
Phys. Eng. Sci., 457 (2001), pp. 1841-1853, https://doi.org/10.1098 /rspa.2001.0789.

J. W.-H. So AND Y. YANG, Dirichlet problem for the diffusive Nicholson’s blowflies equation, J.

Differential Equations., 150 (1998), pp. 317-348, https://doi.org/10.1006/jdeq.1998.3489.

J. W.-H. So AND X. Zou, Traveling waves for the diffusive Nicholson’s blowflies equation, Appl.

Math. Comput., 122 (2001), pp. 385-392, https://doi.org/10.1016/S0096-3003(00)00055-2.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1090/proc/14659
https://doi.org/10.1090/proc/14659
https://doi.org/10.1090/proc/13687
https://doi.org/10.1090/proc/13687
https://doi.org/10.1016/j.matpur.2022.09.001
https://doi.org/10.1016/j.matpur.2022.09.001
https://doi.org/10.1137/130938463
https://doi.org/10.1137/130938463
https://doi.org/10.1007/s00332-018-9445-2
https://doi.org/10.1007/s00332-018-9445-2
https://doi.org/10.1016/j.jde.2006.04.010
https://doi.org/10.1016/j.jde.2006.04.010
https://doi.org/10.1002/cpa.20154
https://doi.org/10.1002/cpa.20154
https://doi.org/10.1016/j.jfa.2010.04.018
https://doi.org/10.1016/j.jfa.2010.04.018
https://doi.org/10.1016/0025-5564(89)90026-6
https://doi.org/10.1090/S0002-9947-1990-0967316-X
https://doi.org/10.1090/S0002-9947-1990-0967316-X
https://doi.org/10.1515/crll.1991.413.1
https://doi.org/10.1017/S0308210500003358
https://doi.org/10.1016/j.bulm.2003.10.010
https://doi.org/10.1016/j.bulm.2003.10.010
https://doi.org/10.1090/S0002-9947-10-04950-0
https://doi.org/10.1016/j.jde.2010.04.012
https://doi.org/10.1090/S0002-9939-2011-11011-6
https://doi.org/10.1098/rspa.2001.0789
https://doi.org/10.1006/jdeq.1998.3489
https://doi.org/10.1016/S0096-3003(00)00055-2

Downloaded 07/07/25 to 129.100.58.76 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2910

(31]

(32]

(33]

(34]
(35]

(36]

(37]

(38]

(39]

[40]

[41]

42]

[43]

[44]

[45]

(46]

[47]

(48]

[49]

C.

Y.

TAISHAN YI, YURONG ZHANG, AND XINGFU ZOU

TRrAvVIS AND G. WEBB, Ezxistence and stability for partial functional differential equations,
Trans. Amer. Math. Soc., 200 (1974), pp. 395-418, https://doi.org/10.1090/S0002-9947-
1974-0382808-3.

. F. WEINBERGER, Long-time behavior of a class of biological models, SIAM J. Math. Anal.,

13 (1982), pp. 353-396, https://doi.org/10.1137/0513028.

. Wu, Y. WaANG, AND X. Zou, Spatial-temporal dynamics of a Lotka-Volterra competition

model with nonlocal dispersal under shifting environment, J. Differential Equations, 267
(2019), pp. 4890-4921, https://doi.org/10.1016/j.jde.2019.05.019.

. Wu, Theory and Applications of Partial Functional Differential Equations, Applied Math-

ematical Sciences, Springer-Verlag, New York, 1996.
XU AND X.-Q. ZHAO, A monlocal reaction-diffusion population model with stage structure,
Can. Appl. Math. Q., 11 (2003), pp. 303-319.

. YANG AND J. SO, Dynamics for the diffusive Nicholson’s blowflies equation, in Dynamical

systems and differential equations, Vol. II, W. Chen and S. Hu eds., Springfield MO:
Southwest Missouri State University, 1998, pp. 333-352.

Y1 AND Y. CHEN, Study on monostable and bistable reaction—diffusion equations by it-
eration of travelling wave maps, J. Differential Equations, 263 (2017), pp. 7287-7308,
https://doi.org/10.1016/j.jde.2017.08.017.

Y1, Y. CHEN, AND J. Wu, Threshold dynamics of a delayed reaction diffusion equation
subject to the Dirichlet condition, J. Biol. Dynam., 3 (2009), pp. 331-341, https://doi.org/
10.1080/17513750802425656.

Y1, Y. CHEN, AND J. Wu, Global dynamics of delayed reaction—diffusion equations in
unbounded domains, Z. Angew. Math. Phys., 63 (2012), pp. 793-812, https://doi.org/
10.1007/s00033-012-0224-x.

. Y1, Y. CHEN, AND J. Wu, Unimodal dynamical systems: Comparison principles, spread-

ing speeds and travelling waves, J. Differential Equations, 254 (2013), pp. 3538-3572,
https://doi.org/10.1016/j.jde.2013.01.031.

. Y1, Y. CHEN, AND J. Wu, Asymptotic propagations of asymptotical monostable type equa-

tions with shifting habitats, J. Differential Equations., 269 (2020), pp. 5900-5930, https://
doi.org/10.1016/j.jde.2020.04.025.

. Y1 AND X.-Q. ZHAO, Propagation dynamics for monotone evolution systems without spa-

tial translation invariance, J. Funct. Anal., 279 (2020), 108722, https://doi.org/10.1016/
j.jfa.2020.108722.

Y1 AND X.-Q. ZHAO, Spatio-temporal Dynamics for Non-Monotone Semiflows with Limiting
Systems Having Spreading Speeds, preprint, arXiv:2305.00051, 2023.

. Y1 AND X. Zou, Global attractivity of the diffusive Nicholson blowflies equation with Neu-

mann boundary condition: A non-monotone case, J. Differential Equations., 245 (2008),
pp. 3376-3388, https://doi.org/10.1016/j.jde.2008.03.007.

Y1 AND X. Zou, Map dynamics versus dynamics of associated delay reaction—diffusion
equations with a Neumann condition, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.,
466 (2010), pp. 2955-2973, https://doi.org/10.1098 /rspa.2009.0650.

Y1 AND X. Zou, On Dirichlet problem for a class of delayed reaction—diffusion equa-
tions with spatial non-locality, J. Dynam. Differential Equations, 25 (2013), pp. 959-979,
https://doi.org/10.1007/s10884-013-9324-3.

Y1 aNnD X. Zou, Asymptotic behavior, spreading speeds, and traveling waves of mon-
monotone dynamical systems, STAM J. Math. Anal., 47 (2015), pp. 3005-3034, https://
doi.org/10.1137/14095412X.

Y1 AND X. Zou, Propagation and heterogeneous steady states in a delayed nonlocal R-
D equation without spatial translation-invariance, J. Differential Equations, 268 (2020),
pp. 1600-1632, https://doi.org/10.1016/j.jde.2019.09.004.

YUAN AND X. Zou, Spatial-temporal dynamics of a diffusive Lotka—Volterra competition
model with a shifting habitat 11: Case of faster diffuser being a weaker competitor, J.
Dynam. Differential Equations, 33 (2021), pp. 2091-2132, https://doi.org/10.1007 /510884~
020-09885-w.

[50] X.-Q. ZHAO, Dynamical Systems in Population Biology, 2nd ed., Springer-Verlag, New York,

2017.

Copyright (C) by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1090/S0002-9947-1974-0382808-3
https://doi.org/10.1090/S0002-9947-1974-0382808-3
https://doi.org/10.1137/0513028
https://doi.org/10.1016/j.jde.2019.05.019
https://doi.org/10.1016/j.jde.2017.08.017
https://doi.org/10.1080/17513750802425656
https://doi.org/10.1080/17513750802425656
https://doi.org/10.1007/s00033-012-0224-x
https://doi.org/10.1007/s00033-012-0224-x
https://doi.org/10.1016/j.jde.2013.01.031
https://doi.org/10.1016/j.jde.2020.04.025
https://doi.org/10.1016/j.jde.2020.04.025
https://doi.org/10.1016/j.jfa.2020.108722
https://doi.org/10.1016/j.jfa.2020.108722
https://arxiv.org/abs/2305.00051
https://doi.org/10.1016/j.jde.2008.03.007
https://doi.org/10.1098/rspa.2009.0650
https://doi.org/10.1007/s10884-013-9324-3
https://doi.org/10.1137/14095412X
https://doi.org/10.1137/14095412X
https://doi.org/10.1016/j.jde.2019.09.004
https://doi.org/10.1007/s10884-020-09885-w
https://doi.org/10.1007/s10884-020-09885-w

	Introduction
	Main results
	Asymptotic propagation persistence
	Iterative strategy
	Propagation persistence

	Main results
	Asymptotic extinction
	Upward convergence
	Existence/nonexistence and attractivity of forced steady states
	Asymptotic propagation and spreading speed

	Discussion on ecological implications
	Acknowledgment
	References

