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Abstract. An LMI (Linear Matrix Inequality) approach and an embedding tech-
nique are employed to derive some sufficient conditions for the global exponential
stability of discrete-time neural networks with time-dependent delays and constant
parameters. For networks with time-dependent parameters but constant delays, by
using the property of internally chain transitive sets, it is shown that these conditions
are also sufficient for the convergence of the networks.
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1. Introduction

When a neural network is updated discretely, the model describing the network is in
the form of system of difference equations (See, e.g., Hopfield [6]). Also, in numerical
simulations and practical implementation of a continuous-time neural network, dis-
cretization is needed, which leads again to a system of difference equations. Therefore,
it is of both theoretical and practical importance to study the dynamics of discrete-
time neural networks.

Recently, there has been increasing interest in the effects of delays on neural
dynamics of continuous-time networks. See, for example, [1, 13, 14, 18]. It has been
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noticed that delays sometimes are harmless in the sense that the appearance of delays
does not change the stability of the neural networks [17], and sometimes the delays
do change the dynamics quite a lot [13, 14].

In this paper, we consider a discrete-time neural network model with constant
parameters and variable delays

xi(n+ 1) = aixi(n) +

m
∑

j=1

wijgj(xj(n− k(n))) + Ii, n = 0, 1, . . . , (1.1)

and a model with time-dependent parameters and constant delay

xi(n+ 1) = ai(n)xi(n) +

m
∑

j=1

wij(n)gj(xj(n− k)) + Ii(n), n = 0, 1, . . . . (1.2)

In (1.1), k(n) are positive integers with 0 ≤ k(n) ≤ k (not necessarily increasing),
ai ∈ (0, 1), i ∈ {1, 2, . . . ,m} := N(1,m). While, in (1.2), ai(n) → ai, wij(n) →
wij , Ii(n) → Ii as n→ ∞, i, j ∈ N(1,m).

We will apply an LMI approach and an embedding technique to derive some
delay-dependent and delay-independent conditions under which system (1.1) admits
a unique equilibrium and which is globally exponentially stable.

We point out the LMI approach has been used by Liao, Chen and Snachez in [11]
to establish some stability criteria for delayed continuous-time neural networks and
by de Souza and Trofino in [4] for discrete-time periodic systems. In this paper, we
attempt to establish some LMI based stability criteria for the discrete time neural
network model (1.1), which can be easily tested by efficient and reliable algorithms
[2].

Motivated also by [3, 16], where an embedding technique was used in [3] for a
simple discrete-time neural netwok model having specific performance, and in [16] for
the attractivity of some Hopfield type continuous-time neural networks with delays,
we apply the embedding technique to system (1.1) to derive some sufficient conditons
for its exponential stability.

Note that system (1.2) has the autonomous system (1.1) as its limiting system.
In this paper, we will obtain a convergence result for the asymptotically autonomous
system (1.2) by relating (1.2) to (1.1) with interally chain transitive sets (for the
notion of interally chain transitive set, see, e.g., [19]).

The rest of the paper is organized as follows. In Section 2 we establish some
criteria for exponential stability of (1.1) by combining the LMI approach, Liapunov
function method, embedding technique and the comparison method for discrete mono-
tone systems. Section 3 is devoted to the convergence of the asymptotic discrete-time
neural networks (1.2), in which the chain transitive set and the strong attractivity
theorem [19] play a crucial role.
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2. Exponential stability of (1.1)

We use the following notations: λM (W ): the largest eigenvalue of the symmetric ma-
trix W ; λm(W ): the smallest eigenvalue of the symmetric matrix W ; WT : the trans-

pose of the matrixW ; W−1: the inverse of the matrix W ; ||x|| =
(
∑m

i=1 x
2
i

)
1

2 : the Eu-

clidean norm of the vector x = (x1, x2, . . . , xm)T ∈ R
m and ||W || =

(

maxλ(WTW )
)

1

2 :
the matrix norm induced by the Euclidean vector norm.

The initial conditions associated with (1.1) are of the form

xi(s) = φi(s), i = N(1,m), s ∈ N(−k, 0). (2.1)

Throughout this paper, we assume

(H) For each i ∈ N(1,m), gi : R → R is globally Lipschitz continuous with

sup
u,v∈R,u6=v

|gi(u) − gi(v)|

|u− v|
= li,

and |gi(u)| ≤Mi, u ∈ R,Mi > 0.

If we let x = (x1, x2, . . . , xm)T , A = diag(a1, a2, . . . , am), W = (wij)n×n, I =
(I1, I2, . . . , Im)T , and g(x(n)) = (g1(x1(n)), g2(x2(n)), . . . , gm(xm(n)))T , then (1.1)
can be written in form of matrices:

x(n+ 1) = Ax(n) +Wg[x(n− k(n))] + I, n ∈ N(0). (2.2)

As usual, a vector x∗ = (x∗1, x
∗
2, . . . , x

∗
m)T is said to be an equilibrium of (2.2) if it

satisfies
x∗ = Ax∗ +Wg(x∗) + I.

Based on our assumption on the activation functions, it is easily seen that (2.2) admits
at least one equilibrium.

2.1. LMI based criteria

In what follows, S > (≥) 0 means the matrix S is symmetric and positive definite
(semi-positive definite). From the theory of matrices, we have the following lemma.

Lemma 2.1. (i) If A > 0, B ≥ 0, α > 0, then A+B > 0, αA > 0;

(ii) A =

(

A11 A12

A21 A22

)

> 0 if and only if A11 > 0 and A22 − A21A
−1
11 A12 > 0;

(iii) For any real matrices A,B,C and a scalar ǫ > 0 with C > 0, the inequality

ATB +BTA ≤ ǫATCA+ ǫ−1BTC−1B

holds.
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Proof. (i) and (ii) can be found in [5] and (iii) is available in [15]. �

Suppose x∗ is an equilibrium of system (2.2) and let y(n) = x(n) − x∗ and
f(y(n)) = g(x(n)) − g(x∗). Then the stability of equilibrium x∗ of (2.2) corresponds
to that of the zero solution of the following system

y(n+ 1) = Ay(n) +Wf(y(n− k(n))). (2.3)

It follows from (H) that f has the property:

||f(y)|| ≤ ||L||||y||, (2.4)

with L = diag(l1, l2, . . . , lm).

Theorem 2.1. Assume that the time-dependent delay k(n) is bounded satisfying 0 ≤
k(n) ≤ k and ∆k(n) = k(n + 1) − k(n) < 1. If there exist two scalars q > 1, ǫ > 0
and two matrices P > 0, R > 0 such that

(

R WTPA
q

ǫ
APW P − qAPA− LQL

)

> 0, (2.5)

then the equilibrium x∗ of (2.2) is exponentially stable. More precisely, for any solu-
tion x(n) of (2.2), the following inequality holds

||x(n) − x∗||2 ≤ q−nC1 sup
s∈N(−k,0)

||x(s) − x∗||2, (2.6)

where

C1 =
λM (P ) + δλM (Q)||L||2

λm(P )
with δ =

1 − (1/q)k

q − 1
,

and
Q = q1+kǫR+ q1+kWTPW > 0.

Proof. Define V (n) = V (y(n)) by

V (n) = qnyT (n)Py(n) +
n−1
∑

s=n−k(n)

qsfT (y(s))Qf(y(s)). (2.7)

Then, we have

∆V (n) = V (n+ 1) − V (n)

= qn+1yT (n+ 1)Py(n+ 1) − qnyT (n)Py(n)

+

n
∑

s=n+1−k(n+1)

qsfT (y(s))Qf(y(s)) −

n−1
∑

s=n−k(n)

qsfT (y(s))Qf(y(s))

≤ qn+1 (Ay(n) +Wf(y(n− k(n))))T P (Ay(n) +Wf(y(n− k(n))))

−qnyT (n)Py(n) + qnfT (y(n))Qf(y(n))

−qn−k(n)fT (y(n− k(n)))Qf(y(n− k(n))),
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which further gives

∆V (n) ≤ qn+1yT (n)APAy(n) − qnyT (n)Py(n) + qnfT (y(n))Qf(y(n))

+qn+1[yT (n)APWf(y(n− k(n))) + fT (y(n− k(n)))WTPAy(n)]

+fT (y(n− k(n)))(qn+1WTPW − qn−k(n)Q)f(y(n− k(n))).

Letting B = WTPAy, C = R, it follows from Lemma 2.1 (iii) that

yT (n)APWf(y(n− k(n))) + fT (y(n− k(n)))WTPAy(n)
≤ ǫfT (y(n− k(n)))Rf(y(n− k(n))) + 1

ǫ
yT (n)APWR−1WTPAy(n),

which shows

∆V (n) ≤ −qnyT (n)
(

P − qAPA− LQL−
q

ǫ
APWR−1WTPA

)

y(n)

−qn−k(n)fT (y(n− k(n)))
(

Q− q1+k(n)(ǫR+WTPW )
)

fT (y(n− k(n))).

Recalling that Q = q1+k(ǫR +WTPW ), we know from Lemma 2.1 that Q > 0 and
Q− q1+k(n)(ǫR +WTPW ) > 0. This shows that

∆V (n) ≤ −qnyT (n)Ωy(n),

where Ω = P − qAPA−LQL− q

ǫ
APWR−1WTPA. Condition (2.5) and Lemma 2.1–

(ii) imply that Ω > 0 and hence
∆V (n) ≤ 0.

Therefore, we have

V (n) ≤ V (0) = yT (0)Py(0) +
−1
∑

s=−k(0)

qsfT (y(s))Qf(y(s))

≤ λM (P )||y(0)||2 +

−1
∑

s=−k

λM (Q)||L||2||y(s)||2qs

≤
(

λM (P ) + δλM (Q)||L||2
)

sup
s∈N(−k,0)

||y(s)||2.

On the other hand, from the definition of V (n) it follows that

V (y(n)) ≥ qnλm(P )||y(n)||2.

We then obtain

||y(n)||2 ≤ q−nλM (P ) + δλM (Q)||L||2

λm(P )
sup

s∈N(−k,0)

||y(s)||2,

which gives (2.6) and thus the proof is complete. �

By defining a different Liapunov function, we have the following theorem.
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Theorem 2.2. Assume that there are two matrices P > 0, Σ > 0 and a scalar
σ ∈ (0, 1) such that

(

Σ WTPA
APW σP −APA

)

> 0 (2.8)

and
λM (Σ +WTPW )||L||2 < λm(P )(1 − σ). (2.9)

Then every solution of (2.2) is exponentially stable satisfying

||x(n) − x∗||2 ≤ C2σ
γ̄n sup

s∈N(−k,0)

||x(s) − x∗||2, (2.10)

where

C2 =
λM (P )

λm(P )(1 − C3(γ̄))
, C3(γ) =

λM (Σ +WTPW )||L||2

λm(P )σγk(σγ − σ)

and

γ̄ = sup{γ ∈ (0, 1) : 0 < C3(γ) ≤ 1 −
1

2
(1 − C3(0))}.

Proof. Define V (n) = V (y(n)) = yT (n)Py(n), then we have

λm(P )||y(n)||2 ≤ V (n) ≤ λM (P )||y(n)||2 (2.11)

and

∆V (n) = V (n+ 1) − V (n) = yT (n+ 1)Py(n+ 1) − yT (n)Py(n)

= (Ay(n) +Wf(y(n− k(n))))
T
P (Ay(n) +Wf(y(n− k(n))))

−yT (n)Py(n)

= yT (n)(APA − P )y(n) + fT (y(n− k(n)))WTPAy(n)

+yT (n)APWf(y(n− k(n))) + fT (y(n− k(n)))WTPWf(y(n− k(n)))

Using Lemma 2.1(iii) with ǫ = 1, B = WTPAy,C = Σ, we further have

∆V (n) ≤ yT (n)[−P +APA+APWΣ−1WTPA]y(n)

+fT (y(n− k(n)))[Σ +WTPW ]f(y(n− k(n)))

≤ yT (n)[−P +APA+APWΣ−1WTPA]y(n)

+λM (Σ +WTPW )||L||2||y(n− k(n))||2

= −(1 − σ)yT (n)Py(n) − yT (n)[σP −APA−APWΣ−1WTPA]y(n)

+λM (Σ +WTPW )||L||2||y(n− k(n))||2

Notice that condition (2.8) and Lemma 2.1(ii) imply that

σP − APA−APWΣ−1WTPA > 0.

This shows that

∆V (n) ≤ −(1 − σ)V (n) + λM (Σ +WTPW )||L||2||y(n− k(n))||2, n ∈ N(1),
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and hence we have

V (n) ≤ σnV (0) + λM (Σ +WTPW )||L||2
n−1
∑

s=0

σn−1−s||y(s− k(s))||2. (2.12)

From (2.11), it follows that

V (0) ≤ λM (P )||y(0)||2 ≤ λM (P )|| sup
s∈N(−k,0)

||x(s) − x∗||2.

Thus, (2.11), together with (2.12), shows that

||y(n)||2 ≤ σnλM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2 + C4

n−1
∑

s=0

σn−1−s||y(s− k(s))||2, (2.13)

where

C4 =
λM (Σ +WTPW )||L||2

λm(P )
.

Condition (2.9) guarantees that γ̄ ∈ (0, 1) exists and C3(γ̄) ≤ 1
2 (1 + C3(0)) < 1.

Multiplying both sides of (2.13) by σ−γ̄n, we have

σ−γ̄n||y(n)||2 ≤ σ(1−γ̄)nλM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2

+C4

n−1
∑

s=0

σn−1−s−γ̄n||y(s− k(s))||2

≤
λM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2 + C4σ
−1+(1−γ̄)n ×

n−1
∑

s=0

σ−(1−γ̄)sσ−γ̄k(s)σ−γ̄(s−k(s))||y(s− k(s))||2.

Letting
z(n) := sup

s∈[−k,n]

σ−γ̄s||y(s)||2 (2.14)

and noticing that k(n) ≤ k and σ ∈ (0, 1), we obtain

σ−γ̄n||y(n)||2 ≤
λM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2 + C4σ
−γ̄k 1

σγ̄ − σ
z(n)

=
λM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2 + C3(γ̄)z(n),
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which shows that

z(n) = sup
s∈[−k,n]

σ−γ̄s||y(s)||2

≤ sup
s∈[−k,n]

(

λM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2 + C3(γ̄)z(s)

)

=
λM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2 + C3(γ̄)z(n).

Therefore,

(1 − C3(γ̄))z(n) ≤
λM (P )

λm(P )
sup

s∈N(−k,0)

||x(s) − x∗||2.

This indicates that

||y(n)||2σ−γ̄n ≤ z(n) ≤ C2 sup
s∈N(−k,0)

||x(s) − x∗||2,

or
||y(n)||2 ≤ σγ̄nC2 sup

s∈N(−k,0)

||x(s) − x∗||2.

Thus the proof is complete. �

Remark 2.1. Theorem 2.1 and Theorem 2.2 show that the equilibrium of (2.2) is
unique.

Remark 2.2. In Theorem 2.1, a technical assumption is required: ∆k(n) < 1, which
implies that the time-dependent delays are non-increasing. Moreover, the condition
(2.5) is delay-dependent through the expression of Q. Theorem 2.2 only requires that
k(n) be bounded and the condition (2.8) in Theorem 2.2 is independent of delay.

Remark 2.3. Based on Theorem 2.1 and Theorem 2.2, we can determine the upper
bound of q in (2.6) and the lower bound of σ in (2.10) so that the neural network (2.2)
has a rapid convergence. This requires solving the following optimization problems:

{

Max q
Subject to P > 0, R > 0 and (2.5) is satisfied

(2.15)

and
{

Min σ
Subject to P > 0,Σ > 0 and (2.8) and (2.9) are satisfied,

(2.16)

respectively. Note that (2.15) and (2.16) can be solved easily by the LMI Toolbox
such as the Scilab developed by INRIA and ENPC in France, which is available at:
www-rocq.inria.fr/scilab/.
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Example 2.1. Consider

{

x1(n+ 1) = 1/2x1(n) + 1/4 tanh(x1(n− 1)) + 1/8 tanh(x2(n− 1))

x2(n+ 1) = 1/2x2(n) + 1/4 tanh(x1(n− 1)) + 1/16 tanh(x2(n− 1)).
(2.17)

In this example, k(n) = k = 1, L = I, W =

(

1/4 1/8
1/4 1/16

)

. Taking R = I,

P =

(

8/5 0
0 9/5

)

, ǫ = 1/2 and q = 6/5, we then find that R > 0, P > 0, ǫ > 0,

q > 1 and (2.5) holds. This shows, by Theorem 2.1, that the zero solution of (2.17)
is globally exponentially stable with the exponential decay rate less than 1/q = 5/6.

2.2. Embedding technique deduced stability

We employ the embedding technique for exponential stability of (1.1) in this subsec-
tion. Note that we only need to consider the stability of the zero solution of system
(2.3). In this subsection, we assume that for each i ∈ N(1,m), fi satisfies

0 ≤
fi(u) − fi(v)

u− v
≤ li, for u 6= v.

Denote W+ = (w+
ij),W

− = (w−
ij) with w+

ij = max{wij , 0}, w
−
ij = max{−wij , 0}

and h(−s) = −f(s). It follows from W = W+ −W− that (2.3) can be embedded into
a 2m-dimensional system

[

u(n+ 1)
v(n+ 1)

]

=

[

A 0
0 A

] [

u(n)
v(n)

]

+

[

W+ W−

W− W+

] [

f(u(n− k(n))
h(v(n− k(n))

]

. (2.18)

Let

z(n) =

[

u(n)
v(n)

]

, B =

[

A 0
0 A

]

, C =

[

W+ W−

W− W+

]

, F (z(n)) =

[

f(u(n))
h(v(n))

]

,

then (2.18) can be rewritten as

z(n+ 1) = Bz(n) + CF (z(n− k(n))). (2.19)

For system (2.19) we have the following comparison theorem.

Theorem 2.3. Let φ(n) and ψ(n) be two solutions of (2.19) with initial data φ(s),
ψ(s), s ∈ N(−k, 0). Then φ(n) ≤ ψ(n) provided that φ(s) ≤ ψ(s) for s ∈ N(−k, 0).
Moreover, if φ(n) satisfies

φ(n+ 1) ≥ Bφ(n) + CF (φ(n − k(n))), n ≥ 0,

and z(n) is the solution of (2.19) with initial data z(s), s ∈ N(−k, 0), then z(s) ≤
φ(s), s ∈ N(−k, 0) implies z(n) ≤ φ(n), n ≥ 1.
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Proof. Taking advantage of the fact that both B and C are non-negative matrices,
we can easily complete the proof by using the method of induction. �

A consequence of Theorem 2.3 is the following

Corollary 2.1. Let {y(n)}, n ∈ N(1) be the solution of (2.3) with initial data {y(s)},

s ∈ N(−k, 0) and φ(n) =

[

u(n)
v(n)

]

, n ∈ N(1) the solution of (2.19) with initial data

φ(s) =

[

u(s)
v(s)

]

, s ∈ N(−k, 0). If −v(s) ≤ y(s) ≤ u(s), s ∈ N(−k, 0), then we have

−v(n) ≤ y(n) ≤ u(n) for n ∈ N(1).

We now introduce the definitions of Class K0 and Class K for matrices.

Definition 2.1. Let A ∈ {A = (aik), i, k = 1, . . . , n; aik ≤ 0, i 6= k}. The matrix A
is said to be of class K0 (respectively, K) if there is a vector x > 0 such that Ax ≥ 0
(respectively, Ax > 0).

Denoting L = diag(l1, . . . , lm), D =

[

L 0
0 L

]

and the identity matrix with

dimension m by Im, and using the property of matrices of class K0 and class K, we
may establish our exponential stability result as follows.

Theorem 2.4. Assume that there is a σ ∈ (0, 1) such that

Ω1 := σI2m −B − σ−kCD

is of class K0. Then the zero solution of (2.3) is (globally) exponentially stable in the
sense that for every solution y(n) of (2.3), there exist ξ0, η0 ∈ R

m with ξ0 > 0 and
η0 > 0 such that

−σnη0 ≤ y(n) ≤ σnξ0.

Proof. Ω1 ∈ K0 implies that there exists a vector (ξ, η)T ∈ R
2m with ξ ∈ R

m, η ∈ R
m

and ξ > 0, η > 0 such that

Ω1

[

ξ
η

]

≥ 0.

Let y(n) be the solution of (2.3) with initial data y(s), s ∈ N(−k, 0). We then can
find a positive constant q such that −qη ≤ y(s) ≤ qξ for s ∈ N(−k, 0). Denoting

the solution of (2.19) with initial data φ(s) =

[

u(s)
v(s)

]

= q

[

ξ
η

]

, s ∈ N(−k, 0), by

φ(n) =

[

u(n)
v(n)

]

, we then have −v(n) ≤ y(n) ≤ u(n) for n ∈ N(1). The fact that

Ω1

[

qξ
qη

]

≥ 0 implies that z(n) =

[

qσnξ
qσnη

]

, n ∈ N(−k), satisfies

z(n+ 1) ≥ Bz(n) + CDz(n− k(n)), for n ≥ 0,
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which shows that z(n) =

[

qσnξ
qσnη

]

, n ∈ N(1) is a solution of the following inequality

z(n+ 1) ≥ Bz(n) + CF (z(n− k(n))), for n ≥ 0,

with initial data z(s) =

[

qσsξ
qσsη

]

, s ∈ N(−k, 0). The fact that φ(s) = q

[

ξ
η

]

≤
[

qσsξ
qσsη

]

, s ∈ N(−k, 0), and the comparison Theorem 2.3 imply that

φ(n) ≤ z(n) =

[

qσnξ
qσnη

]

, n ∈ N(1).

This indicates that

−σnη0 := −qσnη ≤ y(n) ≤ qσnξ =: σnξ0

for all n ∈ N(1). Thus y(n) → 0 exponentially as n→ ∞ and the proof is complete.
�

Corollary 2.2. If
Ω′

1 := I2m −B − CD

is of class K, then the zero solution of (2.3) is (globally) exponentially stable.

Proof. Ω′
1 is of class K implies that there is a σ ∈ (0, 1) such that Ω1 defined as in

Theorem 2.4 is of class K0. Therefore the proof follows from Theorem 2.4. �

Denoting |W | = (|wij |), we have

Corollary 2.3. If there exists a σ ∈ (0, 1) such Ω2 := σIm−A−σ−k|W |L is of class
K0 or equivalently if Ω′

2 := Im − A − |W |L is of class K, then the zero solution of
(2.3) is (globally) exponentially stable.

Proof. Since Ω2 := σIm −A− σ−k|W |L is of class K0, there exists a positive vector
ξ ∈ R

m such that Ω2ξ ≥ 0. This implies that

Ω1

[

ξ
ξ

]

≥ 0,

which shows that Ω1 is of class K0 and then the conclusion follows from Theorem 2.4.
�

Remark 2.4. In [5], the matrices of class K0 (K) are called M−matrices (nonsin-
gular M−matrices). Many other equivalent definitions are also available in [5]. For
example, a matrix M is of class K if (a) all principal minors of M are positive; or
(b) every real eigenvalue of M is positive.
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Next, we give an example to demonstrate the exponential stability of a two-neuron
network.

Example 2.2. Consider
{

x1(n+ 1) = 1/2x1(n) + 1/4 tanh(x1(n− 2)) − 1/4 tanh(x2(n− 2))

x2(n+ 1) = 1/4x2(n) − 1/8 tanh(x1(n− 2)) + 1/2 tanh(x2(n− 2)).
(2.20)

In this example, m = 2, L = I2 and A =

(

1/2 0
0 1/4

)

, W =

(

1/4 −1/4
−1/8 1/2

)

. It

is easy to verify that Ω′
2 = I2−A−|W |L =

(

1/4 −1/4
−1/8 1/4

)

is of class K and thus,

by Corollary 2.3, every component of each solution of (2.20) exponentially converges
to zero.

3. Convergence of asymptotic neural networks (1.2)

In this section, we study the convergence of system (1.2). Note that system (1.2) can
be rewritten as

x(n+ 1) = A(n)x(n) +W (n)g(x(n − k)) + I(n), n ∈ N(0), (3.1)

with
A(n) → A,W (n) →W, I(n) → I, as n→ ∞. (3.2)

Note that the global exponential stability achieved in Section 2 for system (2.2) shows
that the equilibrium of (2.2) is unique under the stability conditions. Then we have

Theorem 3.1. Assume that all conditions in Theorem 2.1 or in Theorem 2.2 or
Theorem 2.4 are satisfied, then all solutions of (3.1) will converge to the unique equi-
librium of the limiting system (2.2).

Proof. Let X := {z : z = (z−k, z−k+1, . . . , z−1, z0)}, where for each i ∈ N(−k, 0),
zi = (zi,1, zi,2, . . . , zi,m) ∈ Rm. Define ||z|| = max

−k≤i≤0
||zi|| with ||zi|| = max

1≤j≤m
|zi,j |,

then (X, || · ||) is a Banach space. Let d(u, v) = ||u − v|| for u, v ∈ X be the norm
induced metric, then (X, d) is a metric space. In the following, the space X is referred
as the metric space (X, d).

For any z = (z−k, z−k+1, . . . , z0) ∈ X , we define Sn : X → X,n = 0, 1, . . . , and
S : X → X, by

Snz = (z−k+1, z−k+2, . . . , z0, A(n)z0 +W (n)g(z−k) + I(n))

and
Sz = (z−k+1, z−k+2, . . . , z0, Az0 +Wg(z−k) + I),

respectively. Let

T0 = I, Tn z = Sn−1 ◦ Sn−2 ◦ · · · ◦ S1 ◦ S0 z, n = 1, 2, . . . ,
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Then it is seen from (3.2) that Tn is asymptotic to S.
Let Z0 = (x(−k), x(−k + 1), . . . , x(0)), where

x(−j) = (x1(−j), x2(−j), . . . , xm(−j)), j = k, k − 1, . . . , 0,

are the initial conditions of (3.1). Let Zn = TnZ
0, then {Zn : n ≥ 0} is an orbit of the

discrete process Tn and {x(n) : x(n) = (Zn)k+1, n ≥ 0} is the solution vector of (3.1)
with initial conditions given by Z0. By the variation of constants formula, we can
easily show that the solution of (3.1) will be bounded for given bounded initial data.
Therefore, it follows from Lemma 1.2.2 of [19] that the omega limit set of any orbit
of {Tn} is internally chain transitive for S. Under the given assumptions, we know
that the equilibrium, denoted by x∗, of (2.2) is unique and is globally stable. This
implies that A := {(x∗, x∗, . . . , x∗)} is the global attractor of S, i.e., A is an attractor
and W s(A) = X . By the strong attractivity theorem: Theorem 1.2.1 of [19], we
conclude that the omega limit set of any orbit of {Tn} is the set A. This implies that
x(n) = (Zn)k+1 → x∗ as n → ∞, which shows that all solutions of (3.1) converge to
the unique equilibrium of the limiting system (2.2). The proof is complete. �
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