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Abstract

Without assuming monotonicity and differentiability of the activation functions and any symmetry of interconnections, we
establish some sufficient conditions for the globally asymptotic stability of a unique equilibrium for the Cohen–Grossberg neu-
ral network with multiple delays. Lyapunov functionals and functions combined with the Razumikhin technique are employed.
The criteria are all independent of the magnitudes of the delays, and thus the delays under these conditions are harmless.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cohen and Grossberg[3] proposed and studied an artificial feedback neural network, which is described by a
system of ordinary differential equations

ẋi = −ai(xi)


bi(xi)−

n∑
j=1

tij sj (xj )


 , i = 1, . . . , n, (1.1)

wheren ≥ 2 is the number of neurons in the network,xi denotes the state variable associated to theith neuron,
ai represents an amplification function, andbi is an appropriately behaved function. Then × n connection matrix
T = (tij ) tells how the neurons are connected in the network, and the activation functionsj shows how thej th
neuron reacts to the input. Functionsai , bi andsi are subject to certain conditions to be specified later. It is seen
that(1.1) includes the Hopfield neural network as a special case, which is of the form

Ciẋi = − xi

Ri

+
n∑

j=1

tij sj (xj )+ Ji, i = 1,2, . . . , n, (1.2)
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where the positive constantsCi andRi are the neuron amplifier input capacitances and resistances, respectively;Ji

is the constant input from outside of the network andxi , sj andT = (tij ) are the same as in(1.1).
Due to their promising potential for the tasks of classification, associative memory, parallel computations, and

their ability to solve difficult optimization problems,(1.1) and (1.2)have greatly attracted the attention of the
scientific community. Various generalizations and modifications of(1.1) and (1.2)have also been proposed and
studied, among which is the incorporation of time delay into the model. In fact, due to the finite speeds of the
switching and transmission of signals in a network, time delays do exist in a working network and thus should be
incorporated into the model equations of the network. For more detailed justifications for introducing delays into
model equations of neural networks, see[8] and the recent book[14].

Marcus and Westervelt[8] first introduced a single delay into(1.2)and considered the following system of delay
differential equations:

Ciẋi = − xi

Ri

+
n∑

j=1

tij sj (xj (t − τ))+ Ji, i = 1,2, . . . , n. (1.3)

It was observed both experimentally and numerically in[8] that delay could destroy an otherwise stable network
and cause sustained oscillations and thus could be harmful. System(1.3)has also been studied by Wu[15], Wu and
Zou [16]. Gopalsamy and He[6], and van den Driessche and Zou[13] studied a further generalized version with
multiple delays

ẋi = −bixi +
n∑

j=1

tij sj (xj (t − τij ))+ Ji, i = 1,2, . . . , n. (1.4)

For the Cohen–Grossberg model(1.1), Ye et al.[18] also introduced delays by considering the following system of
delay differential equations:

ẋi (t) = −ai(xi)


bi(xi)−

K∑
k=0

n∑
j=1

t
(k)
ij sj (xj (t − τk))


 , i = 1,2, . . . , n, (1.5)

wheren× n matrixesTk = (t
(k)
ij ) represent the interconnections which are associated with delayτk and the delays

τk, k = 0,1, . . . , K, are arranged such that 0= τ0 < τ1 < · · · < τK .
Established in the pioneering work of Cohen and Grossberg[3] and Hopfield[7] was the “globally asymptotic

stability” of systems(1.1) and (1.2), respectively. It was proved that given any initial conditions, the solution of the
system(1.1)(or (1.2)) will converge to some equilibrium of the corresponding system. Such a “global stability” in
[3,7] was obtained by considering some potential functions under the assumption that the connection matrixT is
symmetric. When it comes to the delayed systems(1.3)–(1.5), it is natural to expect that this global stability remains
if the delays are sufficiently small. Indeed, such an expectation was confirmed in[17,18] under a certain type of
symmetryrequirement. When a network is designed for the purpose of associative memories, it is required that the
system have a set of stable equilibria, each of which corresponds to an addressable memory. The global stability
confirmed in[3,7,17,18]is necessary and crucial for associative memory networks. However, an obvious drawback
of the above work is the lack of description or even estimates for the basin of attraction of each stable equilibrium.
In other words, given a set of initial conditions, one knows that the solution will converge to some equilibrium, but
does notknow exactly to which equilibrium it will converge. In terms of associative memories, one does not know
precisely what initial conditions are needed in order to retrieve a particular pattern stored in the network. Also, the
work of Ye et al.[17,18]cannot tell what would happen when the delays increase. We have mentioned above that
large delay could destroy the stability of an equilibrium in a network. Even if the delay does not change the stability
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of an equilibria, it could affect the basin of attraction of the stable equilibrium. For such a topic, see the recent work
of Pakdaman et al.[9,10], or Wu[14].

On the other hand, in applications of neural networks to parallel computations, signal processing and other
problems involving the optimization, it is required that there be a well-defined computable solution for all possible
initial states. In other words, it is required that the network have auniqueequilibrium that isglobally attractive.
In fact, earlier applications of neural networks to optimization problems have suffered from the existence of a
complicated set of equilibria (see[12]). Thus, the global attractivity of a unique equilibrium for the model system is
of great importance for both practical and theoretical purposes, and has been the major concern of many authors. We
refer to Bélair[1], Cao and Wu[2], Gopalsamy and He[6], van den Driessche and Zou[13] for the delayed Hopfield
model(1.3) or (1.4). As for the delayed Cohen–Grossberg model(1.5), to the best of the authors’ knowledge, no
similar result has been established yet, and this fact motivates this work. Thus, the purpose of this paper is to obtain
some criteria for the global attractivity of a unique equilibrium of the following system

ẋi (t) = −ai(xi)


bi(xi)−

K∑
k=0

n∑
j=1

t
(k)
ij sj (xj (t − τk))+ Ji


 , i = 1,2, . . . , n, (1.6)

whereJi, i = 1,2, . . . , n, denote the constant inputs from outside of the system. We do not confine ourselves to
the symmetric connections and thus allow much broader connection topologies for the network. Moreover, unlike
most of the previous authors, we will not assume monotonicity and differentiability for the activation functions.
Our main results show that under some conditions on the connection strengths and structures, the delays could be
harmlessin the sense that the solutions of system(1.6)always converge to the unique equilibrium, irrespective of
the amplitudes of the delays.

This paper is organized as follows. InSection 2, we introduce some notations and assumptions. InSection 3, we
establish our main results on the globally asymptotic stability of(1.6). Some examples and numerical simulations
are given inSection 4to demonstrate the main results, and a summary is given inSection 5.

2. Preliminaries

LetR denote the set of real numbers and

Rn = R×R× · · · ×R︸ ︷︷ ︸
n

.

If x ∈ Rn, thenxT = (x1, . . . , xn) denotes the transpose ofx, ‖x‖2 = (xTx)1/2. LetRn×n denote the set ofn× n

real matrices. ForZ ∈ Rn×n, the spectral norm ofZ is defined as

‖Z‖2 = (max{|λ| : λ is an eigenvalue ofZTZ})1/2.
The initial conditions associated with(1.6)are given in the form

xi(s) = φi(s) ∈ C([−τ,0],R), i = 1,2, . . . , n, (2.1)

whereτ = max{τk,0 ≤ k ≤ K} = τK .
For functionsai(x) andbi(x), i = 1,2, . . . , n, we have the following assumptions:

(H1) For eachi ∈ {1,2, . . . , n}, ai is bounded, positive and continuous, furthermore we assume 0< αi ≤ ai(u) ≤
ᾱi .

(H2) For eachi ∈ {1,2, . . . , n}, bi ∈ C1(R,R) andb′
i > 0.
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For the activation functionssi(x), i = 1,2, . . . , n, they are typically assumed to be sigmoid which implies that
they are monotone and smooth, that is, they are required to satisfy the following:

(A1) si ∈ C1(R), s′i (x) > 0 for x ∈ R ands′i (0) = supx∈R s′i (x) > 0, i = 1,2, . . . , n.
(A2) si(0) = 0 and limx→±∞ si(x) = ±1.

As pointed out in[13], for some purpose of networks, non-monotonic and not necessarily smooth functions might
be better candidates for neuron activation functions in designing and implementing an artificial neural network. Note
that in many electronic circuits, amplifiers that have neither monotonically increasing nor continuously differentiable
input–output functions are frequently adopted (e.g., piecewise linear functions). This suggests a modification of
(A1) and (A2) to the following:

(H3) For eachi ∈ {1,2, . . . , n}, si : R→ R is globally Lipschitz with Lipschitz constantLi , i.e.|si(ui)−si(vi)| ≤
Li |ui − vi | for all ui, vi ∈ R.

(H4) For eachi ∈ {1,2, . . . , n}, |si(x)| ≤ Mi , x ∈ R for some constantMi > 0.

Note that unlike in[18], T = ∑K
k=0 Tk is not required to be symmetric in this paper, which means that our results

will be applicable to networks with much broader connection structures.

3. Main results

First, we show that system(1.6)does have an equilibrium.

Proposition 3.1. If (H1), (H2) and(H4) hold, then for every inputJ , there exists an equilibrium for system(1.6).

Proof. Let the inputJ be given. By (H1), x∗ is an equilibrium of(1.6) if and only if x∗ = (x∗
1, . . . , x

∗
n)

T is a
solution of the system

bi(xi)−
K∑
k=0

n∑
j=1

t
(k)
ij sj (xj )+ Ji = 0, i = 1, . . . , n. (3.1)

From(H4), we obtain∣∣∣∣∣∣
K∑
k=0

n∑
j=1

t
(k)
ij sj (xj )− Ji

∣∣∣∣∣∣ ≤
K∑
k=0

n∑
j=1

|t (k)ij |Mj + |Ji | =: Pi.

By (H2), we know thatb−1
i exists and is increasing. Now consider the equivalent (to(3.1)) system

xi = hi(x1, x2, . . . , xn) := b−1
i


 K∑
k=0

n∑
j=1

t
(k)
ij sj (xj )− Ji


 , i = 1,2, . . . , n.

Then we have

|hi(x1, x2, . . . , xn)| ≤ max{|b−1
i (|Pi |)|, |b−1

i (−|Pi |)|} := Di for i = 1,2, . . . , n.

It follows thath = (h1, h2, . . . , hn)
T maps a bounded setD = D1 × D2 × · · · × Dn to itself. By the Brouwer’s

fixed point theorem[5, Theorem 3.2], h(x) has a fixed pointx∗ inD, which gives an equilibrium of(1.6). The proof
is complete. �
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Let x∗ be an equilibrium of(1.6)andu(t) = x(t)− x∗. Substitutingx(t) = u(t)+ x∗ into (1.6) leads to

u̇i (t) = −ai(ui + x∗
i )


bi(ui + x∗

i )−
K∑
k=0

n∑
j=1

t
(k)
ij sj (uj (t − τk)+ x∗

j )+ Ji


 (3.2)

for i = 1,2, . . . , n. Using the relationJi = −bi(x
∗
i )+∑K

k=0
∑n

j=1 t
(k)
ij sj (x

∗
j ), system(3.2)can be written as

u̇i (t) = −αi(ui(t))


βi(ui(t))−

K∑
k=0

n∑
j=1

t
(k)
ij gj (uj (t − τk))


 , i = 1,2, . . . , n, (3.3)

whereαi(ui(t)) = ai(ui(t)+x∗
i ), βi(ui(t)) = bi(ui(t)+x∗

i )−bi(x
∗
i ), gj (uj (t)) = sj (uj (t)+x∗

j )− sj (x
∗
j ). If we

let u = (u1, . . . , un)
T ∈ Rn, Tk = (t

(k)
ij )n×n, A(u) = diag{α1(u1), . . . , αn(un)}, B(u) = (β1(u1), . . . , βn(un))

T ∈
Rn, g(u) = (g1(u1), . . . , gn(un))

T, then system(3.3)can be further expressed in the matrix form

u̇ = −A(u)

(
B(u)−

K∑
k=0

Tkg(u(t − τk))

)
. (3.4)

It is obvious thatx∗ is globally asymptotically stable for(1.6)if and only if the trivial solutionu = 0 of (3.3)or (3.4)
is globally asymptotically stable. Moreover, theuniquenessof the equilibrium of(1.6) follows from its globally
asymptotic stability.

Theorem 3.1. Suppose(H1)–(H4) are satisfied. If

b′
i (u) ≥ γi, i = 1,2, . . . , n for some γi > 0, (3.5)

θ := min
1≤i≤n


αi

ᾱi
γi − Li

K∑
k=0

n∑
j=1

|t (k)ji |

 > 0, (3.6)

then, for every inputJ ,system(1.6)has a unique equilibriumx∗ which is globally asymptotically stable, independent
of the delays.

Proof. Let

V (t) = V (u)(t) =
n∑
i=1


 1

ᾱi
|ui(t)| +

K∑
k=0

n∑
j=1

|t (k)ij |Lj

∫ t

t−τk

|uj (s)| ds


 . (3.7)

Then the upper-right derivative ofV along a solution of(3.3) is given by

D+V (t)=
n∑
i=1


 1

ᾱi
u̇i (t) sgn(ui(t))+

K∑
k=0

n∑
j=1

|t (k)ij |Lj (|uj (t)| − |uj (t − τk)|)



=
n∑
i=1


− 1

ᾱi
ai(ui(t)) sgn(ui(t))


βi(ui(t))−

K∑
k=0

n∑
j=1

t
(k)
ij gj (uj (t − τk))




+
K∑
k=0

n∑
j=1

|t (k)ij |Lj (|uj (t)| − |uj (t − τk)|)


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≤
n∑
i=1


− 1

ᾱi
ai(ui(t)) sgn(ui(t))βi(ui(t))+

K∑
k=0

n∑
j=1

|t (k)ij ||gj (uj (t − τk))|

+
K∑
k=0

n∑
j=1

|t (k)ij |Lj (|uj (t)| − |uj (t − τk)|)



≤
n∑
i=1


−αi

ᾱi
γi |ui(t)| +

K∑
k=0

n∑
j=1

|t (k)ij |Lj |uj (t)|

 = −

n∑
i=1


αi

ᾱi
γi − Li

K∑
k=0

n∑
j=1

|t (k)ji |

 |ui(t)|

≤ − min
1≤i≤n


αi

ᾱi
γi − Li

K∑
k=0

n∑
j=1

|t (k)ji |

 n∑

i=1

|ui(t)|,

that is

D+V (t) ≤ −θ

n∑
i=1

|ui(t)| ≤ 0. (3.8)

In the above estimate, we have used

sgn(ui(t))βi(ui(t)) ≥ γi |ui(t)|, (3.9)

which follows from condition(3.5), since

sgn(ui(t))βi(ui(t))= sgn(ui(t))βi(ui(t)) = sgn(ui(t))(bi(ui(t)+ x∗
i )− bi(x

∗
i )) = sgn(ui(t))b

′
i (ξ)ui(t)

= b′
i (ξ)|ui(t)| ≥ γi |ui(t)|,

whereξ lies betweenui(t) andui(t) + x∗
i . By virtue of (3.7) and (3.8), we know that

∑n
i=1 |ui(t)| is bounded for

all t ≥ 0. Thus the solutions of(3.3)exist for allt ≥ 0. From(3.8), we have

V (t)+ θ

∫ t

0

n∑
i=1

|ui(s)| ds ≤ V (0) < ∞, (3.10)

which shows that
∑n

i=1 |ui(t)| ∈ L1[0,∞). Applying Lemma 1.2.2 of[6, pp. 4–5], we then know that the trivial
solution of(3.3)or (3.4) is globally asymptotically stable, and hencex∗ is globally asymptotically stable for(1.6).
The proof is complete. �

Theorem 3.2. Assume that(H1)–(H4) and(3.5)hold. If

µ := min
1≤i≤n


2

αi

ᾱi
γi −

K∑
k=0

n∑
j=1

(|t (k)ij | + L2
i |t (k)ji |)


 > 0, (3.11)

then the equilibriumx∗ of system(1.6) is globally asymptotically stable.

Proof. Let V (t) = V (u)(t) be defined by

V (u)(t) =
n∑
i=1


 1

ᾱi
u2
i (t)+

K∑
k=0

n∑
j=1

|t (k)ij |
∫ t

t−τk

g2
j (uj (s))ds


 . (3.12)
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Then,

D+V (t)=
n∑
i=1


 1

ᾱi
2uiu̇i +

K∑
k=0

n∑
j=1

|t (k)ij |(g2
j (uj (t))− g2

j (uj (t − τk)))




=
n∑
i=1


− 2

ᾱi
αi(ui)uiβi(ui)+ 2

ᾱi
αi(ui)ui

K∑
k=0

n∑
j=1

t
(k)
ij gj (uj (t − τk))

+
K∑
k=0

n∑
j=1

|t (k)ij |(g2
j (uj (t))− g2

j (uj (t − τk)))




≤
n∑
i=1


−2αi

ᾱi
γiu

2
i +2

K∑
k=0

n∑
j=1

|t (k)ij ||uigj (uj (t−τk))|+
K∑
k=0

n∑
j=1

|t (k)ij |(g2
j (uj (t))−g2

j (uj (t−τk)))


 .

Using the fact that 2|ab| ≤ (a2 + b2), we can get

D+V (t)≤
n∑
i=1


−2αi

ᾱi
γiu

2
i +

K∑
k=0

n∑
j=1

|t (k)ij |(u2
i + g2

j (uj (t)))




≤
n∑
i=1


−2αi

ᾱi
γiu

2
i +

K∑
k=0

n∑
j=1

(|t (k)ij |u2
i + L2

j |t (k)ij |u2
j )




≤ −
n∑
i=1


2αi

ᾱi
γi −

k∑
k=0

n∑
j=1

(|t (k)ij | + L2
i |t (k)ji |)


 u2

i (t)

≤ − min
1≤i≤n


2αi

ᾱi
γi −

K∑
k=0

n∑
j=1

(|t (k)ij | + L2
i |t (k)ji |)




n∑
i=1

u2
i (t) = −µ

n∑
i=1

u2
i (t) ≤ 0.

The rest of the proof is similar to the proof ofTheorem 3.1, and thus, is omitted here. The proof is complete.�

Note that both(3.6) and (3.11)neglect the signs of the entries of the connection matrices, and thus, differences
between excitatory and inhibitory effects are ignored. In the case ofai(x) = 1, bi(x) = bix, van den Driessche and
Zou [13] made an attempt to recognize such a difference. Next we will use the Lyapunov–Razumikhin technique
to generalize Theorem 2.4 of[13] to system(3.4).

Theorem 3.3. Suppose that(H1)–(H4) and(3.5)hold. If

δ
def=L

K∑
k=0

‖Tk‖2η < 1, (3.13)

where

L = max
1≤i≤n

Li, η = max1≤i≤n{ᾱi}
min1≤i≤n{αiγi}

,
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then, for any input J, system(1.6)has a unique equilibriumx∗, which is globally asymptotically stable, independent
of the delays.

Proof. Let V (t) = V (u)(t) = (1/2)‖u‖2
2. Using

‖g(u(t − τk))‖2
2 =

n∑
j=1

g2
j (u(t − τk)) ≤

n∑
j=1

L2
j u

2
j (t − τk) ≤ L2‖u(t − τk)‖2

2,

we can estimate the up-right derivative ofV along solutions of(3.4)as follows:

D+V (t)= −uTA(u)B(u)+ uTA(u)

K∑
k=0

Tkg(u(t − τk))

≤ −
n∑
i=1

αi(ui)βi(ui)ui + ‖u‖2‖A(u)‖2

K∑
k=0

‖Tk‖2‖g(u(t − τk))‖2

≤ −
n∑
i=1

αiγiu
2
i + ‖u‖2 max1≤i≤n{ᾱi}

K∑
k=0

‖Tk‖2‖g(u(t − τk))‖2

≤ − min
1≤i≤n

{αiγi}
n∑
i=1

u2
i + max1≤i≤n{ᾱi}

K∑
k=0

‖Tk‖2L‖u(t − τk)‖2‖u‖2.

Let τ = max{τk; k = 1, . . . , K}. Then for thoset satisfying

u(t) �≡ 0 and maxs∈[−τk,0]‖u(t + s)‖2 = ‖u(t)‖2, (3.14)

we have

D+V (t) ≤ −
(

min
1≤i≤n

{αiγi} − max
1≤i≤n

{ᾱi}L
K∑
k=0

‖Tk‖2

)
‖u‖2

2 = −(1 − δ)

(
min

1≤i≤n
{αiγi}

) n∑
i=1

u2
i (t) < 0.

From Theorem 2.3 in[13], it follows that the trivial solution of system(3.4) is globally asymptotically stable, and
therefore,x∗ is globally asymptotically stable for system(1.6). This completes the proof. �

4. Examples and simulations

In this section, we give some examples to demonstrate our criteria.Examples 4.2–4.4also show that the three
criteria do not include one another.

Example 4.1. Consider the all excitatory doubly stochastic connection matrix studied in[8,15], i.e., ai(u) =
1, bi(u) = u, k = 0, tii = 0, tij = 1/(n − 1) for i �≡ j , sj (u) = s(u), j = 1, . . . , n, is increasingly sigmoid with
neuron gains′(0) = supx∈R s′(x) > 0. Then,‖T0‖ = 1, L = s′(0), and all(3.6), (3.11) and (3.13)reduce to

s′(0) < 1. (4.1)

Note that(4.1)has been proved by Wu[15] to be a sufficient and necessary condition for such a network to have a
unique equilibrium that is a global attractor, independent of delay. However, Theorem 1 in[17] cannot be applied
to this case ifτ ≥ s′(0).
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Example 4.2. Consider(
ẋ1

ẋ2

)
= −

(
2 + sinx1 0

0 2+ cosx2

)

×
[(

1 0

0 1

)(
x1

x2

)
−
(

1
16

1
12

7
48

1
24

)(
s1(x1(t−τ1))

s2(x2(t−τ1))

)
−
(

1
24

1
48

1
16

1
6

)(
s1(x1(t−τ2))

s2(x2(t−τ2))

)
+
(
J1

J2

)]
,

(4.2)

wheres1(u) = sin(u) ands2 = cos(u) satisfy(H3) and(H4) with L = 1. Thenθ = 1/48> 0,µ = −1/16< 0
andδ = 1.07> 1. Theorem 3.1is applicable and shows that the equilibriumx∗ of (4.2) is globally asymptotically
stable. However, bothTheorems 3.2 and 3.3are not applicable here.

Example 4.3. Consider(
ẋ1

ẋ2

)
= −

(
2 0

0 2

)
x(t)+

(
1 1

4

1 1
4

)(
sin(x1(t − τ))

cos(2x2(t − τ))

)
+
(
J1

J2

)
. (4.3)

In this example,γ1 = γ2 = 2, L1 = 1, L2 = 2 and henceL = 2, η = 1/2. By simple calculations, we have
θ = −2 < 0, µ = 3/4, δ = 1.458, which shows thatTheorem 3.2is applicable but bothTheorems 3.1 and 3.3are
not.

Fig. 1. Numerical solution for(4.2). Here we chooseJ1 = 5/48, J2 = 5/24 and two sets of data as: (i)τ1 = 1, τ2 = 2, and the initial data are:
x1(s) = 1, x2(s) = −es+0.5, for s ∈ [−2,0]; (ii) τ1 = 2, τ2 = 3 and the initial data are:x1(s) = 1, x2(s) = −es+0.5, for s ∈ [−3,0].
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Example 4.4. Consider

(
ẋ1

ẋ2

)
= −

(
1 0

0 1

)
x(t)+




1

2
−1

2
1

2

1

2






sin

(
2√
3
x1(t − τ)

)

sin

(
2√
3
x2(t − τ)

)

+

(
J1

J2

)
. (4.4)

Here,

ai(xi(t)) = 1, bi(xi(t)) = xi(t), si(xi) = sin

(
2xi√

3

)
for i = 1,2, K = 1,

T0 = 0, τ1 = τ, T1 =




1

2
−1

2
1

2

1

2


 ,

and

θ = 1 − 2√
3
< 0, µ = −1

3
and δ =

√
2

3
< 1.

All conditions ofTheorem 3.3are satisfied, therefore, system(4.4)has an equilibrium, which is globally asymptot-
ically stable. None ofTheorems 3.1 and 3.2is applicable to this example. The results in[17,18]cannot be applied
to (4.4)since the matrixT0 + T1 is not symmetric andsi, i = 1,2 are not monotonic.

Fig. 2. Numerical solution for(4.3). Here we chooseJ1 = −1/4 = J2 and two sets of data as: (i)τ = 1, τ = 2, x1(s) = 1, x2(s) = −es+0.5,
for s ∈ [−1,0]; (ii) τ = 2, x1(s) = 1, x2(s) = −es+0.5, for s ∈ [−2,0].
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Fig. 3. Numerical solution for(4.4). Here we chooseJ1 = J2 = 0 and two sets of data as: (i)τ = 2, the initial data are:x1(s) = 1, x2(s) = −es+0.5,
for s ∈ [−2,0]; (ii) τ = 4, x1(s) = 1, x2(s) = −es+0.5, for s ∈ [−4,0].

To conclude this section, we present some numerical simulations forExamples 4.2–4.4. The simulations are
performed by the DDEs Solver developed by Shampine and Thompson[11], and are shown inFigs. 1–3, respec-
tively.

5. Summary

As is widely known, time delays do exist in a neural network, due to the finite speeds of switching and transmission
of signals in the network. Although delays do not change the structure of the equilibria of the network, they can destroy
the stability of an otherwise stable equilibrium. Even if the delays do not change the stability of an equilibrium, they
can affect the basin of the attraction of a stable equilibrium. As far as a unique equilibrium is concerned, seeking
conditions under which the unique equilibrium is globally stable is of both theoretical and practical importance for a
neural network. In this paper, we discuss the global stability of the Cohen–Grossberg neural network with delays in a
very general setting. We first establish the existence of an equilibrium for the network under quite general conditions,
using the Brouwer’s fixed point theorem. By constructing appropriate Lyapunov functionals, or Lyapunov functions
combined with the Razumikhin technique, we obtain three criteria, each of which guarantees that the equilibrium
is globally attractive, which also implies the uniqueness of the equilibrium. All of these criteria are independent
of the magnitudes of the delays, and therefore, in the above content, delays are harmless in a network with the
structure satisfying one of the criteria. We give some examples to demonstrate our criteria, and also to show that the
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three criteria do not include one another. We also present some numerical simulations for these examples, which all
support our theoretical conclusions.
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