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Abstract

Without assuming monotonicity and differentiability of the activation functions and any symmetry of interconnections, we
establish some sufficient conditions for the globally asymptotic stability of a unique equilibrium for the Cohen-Grossberg neu-
ral network with multiple delays. Lyapunov functionals and functions combined with the Razumikhin technique are employed.
The criteria are all independent of the magnitudes of the delays, and thus the delays under these conditions are harmless.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Cohen and Grossbef§] proposed and studied an artificial feedback neural network, which is described by a
system of ordinary differential equations

n
xi = —a;i(x;) | bi(xi) — Ztijsj(xj) ., i=1...n (1.1)
j=1

wheren > 2 is the number of neurons in the netwosk,denotes the state variable associated tatiheeuron,

a; represents an amplification function, ads an appropriately behaved function. The » connection matrix

T = () tells how the neurons are connected in the network, and the activation fusgtarows how thejth
neuron reacts to the input. Functiags b; ands; are subject to certain conditions to be specified later. It is seen
that(1.1)includes the Hopfield neural network as a special case, which is of the form

n
. Xi .
C,'xi=—El.~|- E liij()Cj)—l—Ji, i=12,...,n, (1.2)
L .
Jj=1
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where the positive constants andR; are the neuron amplifier input capacitances and resistances, respedtively;
is the constant input from outside of the network apd; and7 = (¢j) are the same as {d.1).

Due to their promising potential for the tasks of classification, associative memory, parallel computations, and
their ability to solve difficult optimization problemgl.1) and (1.2)have greatly attracted the attention of the
scientific community. Various generalizations and modificationgldf) and (1.2have also been proposed and
studied, among which is the incorporation of time delay into the model. In fact, due to the finite speeds of the
switching and transmission of signals in a network, time delays do exist in a working network and thus should be
incorporated into the model equations of the network. For more detailed justifications for introducing delays into
model equations of neural networks, $&eand the recent bodl 4].

Marcus and Westerve8] first introduced a single delay in{@.2) and considered the following system of delay
differential equations:

n
. Xi .
Cixj = ——-+ E isi(xjt =)+ Ji, i=12...,n. (1.3)
R i=1

It was observed both experimentally and numericall{8ihthat delay could destroy an otherwise stable network
and cause sustained oscillations and thus could be harmful. S¢st@rhas also been studied by \JAb], Wu and
Zou [16]. Gopalsamy and HE5], and van den Driessche and Z[diB] studied a further generalized version with
multiple delays

n
Xi = —b;jx; + Ztijs]-(xj(t -Ti)+Ji, i=1L2...,n (1.4)
j=1

For the Cohen—Grossberg modgll), Ye et al.[18] also introduced delays by considering the following system of
delay differential equations:

K n
% (1) = —a; (x;) b,-(x,»)—ZZti}")sj(xj(t—rk)) . i=1,2....n, (1.5)

k=0 j=1

wheren x n matrixesT; = (ti](k)) represent the interconnections which are associated with dekayd the delays

w,k=0,1,..., K, are arranged such thatdrg < 71 < - -+ < 1¢.

Established in the pioneering work of Cohen and Grossf#irgnd Hopfield[7] was the “globally asymptotic
stability” of systemg1.1) and (1.2)respectively. It was proved that given any initial conditions, the solution of the
system(1.1) (or (1.2)) will converge to some equilibrium of the corresponding system. Such a “global stability” in
[3,7] was obtained by considering some potential functions under the assumption that the connectiofi isatrix
symmetricWhen it comes to the delayed systefhs3)—(1.5) it is natural to expect that this global stability remains
if the delays are sufficiently small. Indeed, such an expectation was confirnjgd, #8] under a certain type of
symmetryequirement. When a network is designed for the purpose of associative memories, it is required that the
system have a set of stable equilibria, each of which corresponds to an addressable memory. The global stability
confirmed in3,7,17,18]Jis necessary and crucial for associative memory networks. However, an obvious drawback
of the above work is the lack of description or even estimates for the basin of attraction of each stable equilibrium.
In other words, given a set of initial conditions, one knows that the solution will converge to some equilibrium, but
does noknow exactly to which equilibrium it will converge. In terms of associative memories, one does not know
precisely what initial conditions are needed in order to retrieve a particular pattern stored in the network. Also, the
work of Ye et al.[17,18] cannot tell what would happen when the delays increase. We have mentioned above that
large delay could destroy the stability of an equilibrium in a network. Even if the delay does not change the stability
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of an equilibria, it could affect the basin of attraction of the stable equilibrium. For such a topic, see the recent work
of Pakdaman et a]9,10], or Wu[14].

On the other hand, in applications of neural networks to parallel computations, signal processing and other
problems involving the optimization, it is required that there be a well-defined computable solution for all possible
initial states. In other words, it is required that the network hauaigueequilibrium that isglobally attractive
In fact, earlier applications of neural networks to optimization problems have suffered from the existence of a
complicated set of equilibria (s¢&2]). Thus, the global attractivity of a unique equilibrium for the model system is
of great importance for both practical and theoretical purposes, and has been the major concern of many authors. W
refer to Bélaifl], Cao and W{i2], Gopalsamy and H@], van den Driessche and Z§i8] for the delayed Hopfield
model(1.3) or (1.4). As for the delayed Cohen—Grossberg madeb), to the best of the authors’ knowledge, no
similar result has been established yet, and this fact motivates this work. Thus, the purpose of this paper is to obtair
some criteria for the global attractivity of a unique equilibrium of the following system

K n
() = —ai(xi) | biGx) = Y Y isji e —m) + 4 |, i=12...n, (1.6)
k=0 j=1
whereJ;,i = 1,2,...,n, denote the constant inputs from outside of the system. We do not confine ourselves to

the symmetric connections and thus allow much broader connection topologies for the network. Moreover, unlike
most of the previous authors, we will not assume monotonicity and differentiability for the activation functions.
Our main results show that under some conditions on the connection strengths and structures, the delays could b
harmlesdn the sense that the solutions of systéin®) always converge to the unique equilibrium, irrespective of
the amplitudes of the delays.

This paper is organized as follows. $ection 2 we introduce some notations and assumptionSelction 3we
establish our main results on the globally asymptotic stabilitfidd). Some examples and numerical simulations
are given inSection 4to demonstrate the main results, and a summary is giveeaion 5

2. Preliminaries
Let R denote the set of real numbers and

R'=RxRx---xR.

n

If x € R", thenx! = (x1, ..., x,) denotes the transposexf||x|l> = (xTx)2. Let R"*" denote the set of x n
real matrices. FoZ € R"*", the spectral norm of is defined as

IZ]l2 = (max{|A| : »isan eigenvalue o " Z})%/2.
The initial conditions associated with.6) are given in the form
xi(s) =¢i(s) e C([—1,0,R), i=12...,n, (2.1)

wheret = maX{t;,0 <k < K} = 1¢.
For functionsq; (x) andb; (x),i =1, 2, ..., n, we have the following assumptions:

(Hy1) Foreach € {1,2,...,n},aq; is bounded, positive and continuous, furthermore we assume0< g; (1) <
o;.

(Hz) Foreach € {1,2,...,n},b; € CY(R,R) andb, > 0.
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For the activation functions (x),i = 1, 2, ..., n, they are typically assumed to be sigmoid which implies that
they are monotone and smooth, that is, they are required to satisfy the following:

(A1) s; € CY(R), s{(x) > 0forx € R ands;(0) = sup,cg s/ (x) > 0,i =1,2,...,n.
(A2) 5;(0) =0and lim,_ 400 5; (x) = 1.

As pointed out irf13], for some purpose of networks, non-monotonic and not necessarily smooth functions might
be better candidates for neuron activation functions in designing and implementing an artificial neural network. Note
thatin many electronic circuits, amplifiers that have neither monotonically increasing nor continuously differentiable

input—output functions are frequently adopted (e.g., piecewise linear functions). This suggests a modification of
(A1) and (&) to the following:

(H3) Foreach € {1,2,...,n},s; : R — Risglobally Lipschitz with Lipschitz constadt;, i.e.|s; (u;) —s; (v;)| <
Lilu; — vi| for all uj,v; € R.
(Hg) Foreach € {1,2,...,n},|si(x)| < M;, x € R for some constan/; > O.

Note that unlike if18], T = Z/f:o T is not required to be symmetric in this paper, which means that our results
will be applicable to networks with much broader connection structures.

3. Main results
First, we show that systefi.6) does have an equilibrium.

Proposition 3.1. If (H1), (H2) and(H4) hold, then for every input/, there exists an equilibrium for systgf6).

Proof. Let the input/ be given. By (H), x* is an equilibrium of(1.6) if and only if x* = (xj, ...,x;;)T is a
solution of the system
K n
bi(xi)—zzti}">sj(x,)+1,-=o, i=1...,n. (3.1)
k=0 j=1

From(Hg4), we obtain
K n K n
k k
Yo s = g < Y3 160 1M 10 =2 P
k=0 j=1 k=0 j=1

By (H2), we know tha1bl.‘1 exists and is increasing. Now consider the equivalent3tb)) system

K n
. — k .
xi=hi(x1,x2,...,xn).=bil E Eti})sj(xj)—J,- , i=12,...,n.
k=0 j=1

Then we have
hi(x1, X2, .. ., x)| < max{|b; X (P, 17 (=PI} := D; for i =1,2,...,n.

It follows thati = (h1, ha, ..., h,)" maps a bounded sé& = D1 x D, x --- x D, to itself. By the Brouwer’s
fixed point theorenf, Theorem 3.2)h(x) has a fixed point* in D, which gives an equilibrium dfL.6). The proof
is complete. O
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Let x* be an equilibrium of1.6)andu(¢) = x(¢) — x™*. Substitutingx (z) = u(¢t) + x* into (1.6) leads to

K n
i (1) = —ai (i +x7) | biCwi +x7) =Y 315 it — 1) +x) + J; (3.2)
k=0 j=1
fori =1,2,...,n.Using the relation; = —b; (x;) + Z/f:o Z’J’.Zl tiJ(k)Sj (x;-‘), system(3.2) can be written as
K n
i (1) = —ai i () | Biui @) =YY tg;wjc =7 | i=12....n, (3:3)
k=0 j=1

wherew; (u; (1)) = ai (ui (1) +x[°), Bi (ui (1)) = bi(ui (1) +x7) = bi(x[), g (u (@) = 5 ;1) +x7) —s;(x7). f we
letu = (u1, ..., u))" € R, Ti = (6 Vnsn, A) = diaglar (1), ..., an un)}, Bw) = (Br(awa), ..., Bu(u))" €

R", gw) = (g1(11), ..., &n (uy))T, then systenf3.3) can be further expressed in the matrix form
K
i = —Au) (B(u) — ) Tigut - m))) . (3.4)
k=0

Itis obvious that* is globally asymptotically stable f@i.6)if and only if the trivial solution: = 0 of (3.3)or (3.4)
is globally asymptotically stable. Moreover, thaiquenes®f the equilibrium of(1.6) follows from its globally
asymptotic stability.

Theorem 3.1. SupposéHi)—(Hg) are satisfied. If

biw) >y, i=12...,n forsomey; >0, (3.5)
o K n
e i & . (k)
6 = min 5 L; k;:.;”“ 1t >0, (3.6)
= J:

then for every input/, systen{1.6)has a unique equilibrium* which is globally asymptotically stahledependent
of the delays

Proof. Let

n 1 K n ¢
Vi =V =Y. {5'”"(’” +3°3° |ti}">|L,-/ luj (s)] ds:| : (3.7)
i =Tk

i=1 k=0 j=1

Then the upper-right derivative &f along a solution of3.3)is given by

n 1 K n
DV =Y {5»‘”@ SQNu; (1) + Y Y 1 1L ()] — |t — rk)|>}

i=1 k=0 j=1

n

1 K n
=> l—&—ia; (ui (1)) SGN; (1)) [ﬂi i) =Y > g - m))}

i=1 k=0 j=1

k=0 j=1

K n
+ Y O (1)) = (e — mn}
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< {——a, (ui (1)) G, (1)) Bi (ui (1) + Z Z 115118 (£ = 7))

i=1 k=0 j=1

k=0 j=1

+ ZZ 15 1L (o ()] = e — mn]
sZ {——V,Iu 0 +ZZ|r(")|Lj|uj(r>|} — - (—% - Li ZZ' 5| ) i (1)

k=0 j=1 i=1 k=0 j=1
. e oy -
< - min (_— ~ L ZZI ) D w0l
k=0 j=1 i=1

that is

DTV() <=6 |ui(t)] <0. (3.8)

i=1

In the above estimate, we have used

sgn(u; (1)) Bi (ui (1)) = yilui(1)], (3.9)
which follows from condition(3.5), since

SgNu; (1)) Bi (ui (1)) = sgNu; (1)) Bi (u; (1)) = sGN(u; (1)) (b; (u; (1) + x7') — b; (x;")) = sgNu; (1))b; (§)u; (1)

=b;(&)|u; ()] = yilu; (1],

where¢ lies between; (r) andu; (1) + x;. By virtue of (3.7) and (3.8)we know thaty "}, |u;(¢)| is bounded for
all t+ > 0. Thus the solutions dB.3) exist for allz > 0. From(3.8), we have

V(1) +9/ Z|u (s)|ds < V(0) < oo, (3.10)

which shows tha} "7_; |u;(t)| € L0, 00). Applying Lemma 1.2.2 of6, pp. 4-5] we then know that the trivial
solution of(3.3) or (3.4)is globally asymptotically stable, and henceis globally asymptotically stable fd..6).
The proof is complete. O

Theorem 3.2. Assume thatH;)—(H4) and(3.5) hold. If

o ; ¢ (k) 2, (k)
pi= min (2&—iy, ZZ(” |+ L2l |))>o, (3.11)

k=0 j=1

then the equilibriumx* of systen{1.6)is globally asymptotically stable

Proof. Let V(z) = V(u)(¢) be defined by

V@) (t) = Z (—uz(l‘) + Z Z |t(k) gf(u,(s)) ds) . (3.12)

i=1 k=0 j=1 1=
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Then,

=

DV() = —2u i + Z Z 145182 (1)) — g5(u;(t — )

i=1 k=0 j=1

N

__al(u JuiBi(ui) + —az (ui)u; ZZt(k)gj(uj(t — 7))

k=0 j=1

Il
N

+ Z Z 1 1(82(uj (1) — 83(u;(t — 7))

k=0 j=1

N

< ——y,u +2ZZ|t luig(uj (2= rk)>|+ZZ|r<k’|(g,<u,<r)> g3 (1—70)))

i=1 k=0 j=1 k=0 j=1
Using the fact that &b| < (a2 + b?), we can get

n

DTV <Y ——y,u - Z Z 14512 + g2(uj (1))

i=1 k=0 j=1

n

<y ——y,u +ZZ<|N" 24+ L2140 1u?)

i=1 k=0 j=1

k k
<- —y, ZZ(V“HL?V,-E)D uZ(t)

i=1 k=0 j=1

<—min —y, ZZ(WHL 5D Zuz(t)——uZuz(t)w

1<i<
=t=n k=0 j=1

The rest of the proof is similar to the proof ®heorem 3.1and thus, is omitted here. The proof is completé&.]

Note that both(3.6) and (3.11jeglect the signs of the entries of the connection matrices, and thus, differences
between excitatory and inhibitory effects are ignored. In the casgof = 1, b; (x) = b; x, van den Driessche and
Zou[13] made an attempt to recognize such a difference. Next we will use the Lyapunov—Razumikhin technique
to generalize Theorem 2.4 i3] to system(3.4).

Theorem 3.3. Suppose thatH1)—(H4) and(3.5) hold. If

df
eLZ”Tk”ZU <1 (3.13)
k=0

where

L = max Liv _ n']axlfifn{&i} ’
1<i<n Min1<;<n{o; vi)
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then for any input J systen(1.6) has a unique equilibrium*, which is globally asymptotically stablemdependent
of the delays

Proof. LetV () = V(u)() = (1/2)||u||§. Using

lg(t — )z =Y gfut —w) < > Liub(t — ) < L?|lu(t — w3,
j=1 j=1

we can estimate the up-right derivativeldfalong solutions o{3.4) as follows:

K
DTV(#t)=—u' Aw)Bwu) + u" A(u) Z Trg(u(t — %))
k=0

n K
<= wiuBiwui + lull2l A2 Y 1 Tell2l gt — w2

i=1 k=0

n K
<= ayiu? + llullamaxi<i<p{@} Y ITkll2llg @t — )l
i=1 k=0

n K
<= min o) Y uf + maxai<ald) Y I Tll2Llu = wollzllullz.
== i=1 k=0
Lett = max{t; k= 1,..., K}. Then for those satisfying
u@®) #0 and  maxe—q.ollu(t + )2 = lu®l2, (3.14)
we have
K n
DV (1) < (lrglgn{g, vi) = max{a )L ;} ||Tk||2) lull3 = (1 -9 (lrgi@n{g, vi }) qu ) <o0.
= 1=

From Theorem 2.3 ifil3], it follows that the trivial solution of systerB.4)is globally asymptotically stable, and
thereforex* is globally asymptotically stable for systgih.6). This completes the proof. |

4. Examplesand simulations

In this section, we give some examples to demonstrate our criietamples 4.2—4.4lso show that the three
criteria do not include one another.

Example 4.1. Consider the all excitatory doubly stochastic connection matrix studi¢,ib), i.e., a; (1) =
Lbiw) =uk=0t=01t=1m-Dfori # j,s;jw) =sw),j=1...,n,isincreasingly sigmoid with
neuron gain’(0) = sup,cg s'(x) > 0. Then,||Tp|| = 1, L = 5'(0), and all(3.6), (3.11) and (3.13educe to

s'(0) < 1. (4.2)

Note that(4.1) has been proved by Wa5] to be a sufficient and necessary condition for such a network to have a
unigue equilibrium that is a global attractor, independent of delay. However, Theoreftt 7] tannot be applied
to this case ift > s/(0).
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Example 4.2. Consider

X1 2+ sinxy 0
(xz):_( 0 2+ COSx2>
G50 3 G- (3 D))
0 1/ \x = s2(x2(t—71)) & & s2(x2(t—72)) L)
(4.2)

wheres; (u) = sin(u) andsp = cos(u) satisfy(Hz) and(Hg) with L = 1. Thend = 1/48> 0, u = —-1/16< 0

and$ = 1.07 > 1. Theorem 3.1s applicable and shows that the equilibriurhof (4.2)is globally asymptotically
stable. However, botliheorems 3.2 and 3&e not applicable here.
Example4.3. Consider

¢ 2 0 1 sin(x1(tr — J
ol () + Calt =m0 ) () (4.3)
X2 0 2 1 CcoSs(2x2(t — 1)) Jo

In this exampleys = y» = 2, L1 = 1, Ly = 2 and hencd. = 2, n = 1/2. By simple calculations, we have

0 =—-2<0,u=3/4,5 = 1.458, which shows thatheorem 3.2s applicable but botffheorems 3.1 and 3&e
not.

Rl Kle

FNTENFNTIN

1 T T T T T T T T T
- x1(t)
— x2(t)
+ X
0.5 + %0
+
or et
et
- T1=1,T2=2
S os +.r1=2,12=3 i
< .
-9 i
-1.5 .
-2 | 1 1 | 1 1 1 | |
0 1 2 3 4 5 6 7 8 9 10

time t

Fig. 1. Numerical solution fof4.2). Here we choosé; = 5/48, J, = 5/24 and two sets of data as: ¢) = 1, 2 = 2, and the initial data are:
x1(8) = 1, x2(s) = —e5195 fors e [-2, 0]; (ii) 71 = 2, 72 = 3 and the initial data are1 (s) = 1, x2(s) = —e"105 fors € [-3, 0].
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Example4.4. Consider

10 1 1 sin (ixl(t — r)>
X1 5 5 J1
. x+ |2 2 V3 + . (4.4)
%2 01 1 sin (Zx (t—1) J2
2 2 V32
Here,
. 2x; .
a;(x; (1)) =1, bi(x; (1)) = x; (1), si(x;) = sin (73) for i =1,2, K =1,
1 _1
_ _ 12 2
TO - 07 tl - T’ Tl - 1 1 £
2 2
and
2 1 2
0=l_ﬁ<0’ n=-3 and 8=\/;<l.

All conditions of Theorem 3.Zre satisfied, therefore, systéf4)has an equilibrium, which is globally asymptot-
ically stable. None oTheorems 3.1 and 3i8 applicable to this example. The result§1@,18] cannot be applied
to (4.4) since the matriXlp + 71 is not symmetric and;, i = 1, 2 are not monotonic.

14 T T
_ x1(t)
_ xz(t)
. Lo
X,(t)
051 + 2V 4
foq}ﬂ
+
++
+F
o+ ++++
+ T+ ++
N ++++++++++++++++4¢;+
+
Z -05F .
—1=1
+:1=2
1k ]
-1.5, .
-2 l L
0 5 10 15
time t
Fig. 2. Numerical solution fo¢4.3). Here we choosd, = —1/4 = J> and two sets of data as: @)= 1,7 = 2, x1(s) = 1, x2(s) = —e' 105,

fors € [—1,0]; (i) T = 2, x1(s) = 1, x2(s) = —e103 fors e [-2, 0].
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1 3 T T

) I I I I I I I | I
0 10 20 30 40 50 60 70 80 90 100

time t

Fig. 3. Numerical solution fai.4). Here we choosé; = J, = 0 and two sets of data as: fi)= 2, theinitial dataarex; (s) = 1, x2(s) = —e* 105,
fors € [—2,0; (i) T = 4, x1(s) = 1, x2(s) = —€195 fors € [—4, 0].

To conclude this section, we present some numerical simulatiorSx@mples 4.2—4.4The simulations are
performed by the DDEs Solver developed by Shampine and Thonjp&hrand are shown ifrigs. 1-3 respec-
tively.

5. Summary

Asiswidely known, time delays do existin a neural network, due to the finite speeds of switching and transmission
of signals in the network. Although delays do not change the structure of the equilibria of the network, they can destroy
the stability of an otherwise stable equilibrium. Even if the delays do not change the stability of an equilibrium, they
can affect the basin of the attraction of a stable equilibrium. As far as a unique equilibrium is concerned, seeking
conditions under which the unique equilibrium is globally stable is of both theoretical and practical importance for a
neural network. In this paper, we discuss the global stability of the Cohen—Grossberg neural network with delays ina
very general setting. We first establish the existence of an equilibrium for the network under quite general conditions,
using the Brouwer’s fixed point theorem. By constructing appropriate Lyapunov functionals, or Lyapunov functions
combined with the Razumikhin technique, we obtain three criteria, each of which guarantees that the equilibrium
is globally attractive, which also implies the uniqueness of the equilibrium. All of these criteria are independent
of the magnitudes of the delays, and therefore, in the above content, delays are harmless in a network with the
structure satisfying one of the criteria. We give some examples to demonstrate our criteria, and also to show that the
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three criteria do not include one another. We also present some numerical simulations for these examples, which all
support our theoretical conclusions.
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