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Abstract

In this paper, we study the global asymptotic stability of a class of nonautonomous integro-
differential systems. By constructing suitable Lyapunov functionals, we establish new and explicit
criteria for the global asymptotic stability in the sense of Definition 2.1. In the autonomous case,
we discuss the global asymptotic stability of a unique equilibrium of the system, and in the
case of periodic system, we establish sufficient criteria for existence, uniqueness and global
asymptotic stability of a periodic solution. Also explored are applications of our main results
to some biological and neural network models. The examples show that our criteria are more
general and easily applicable, and improve and generalize some existing results.
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1. Introduction

Consider the n-dimensional nonautonomous integro-differential system of the form

Xi(t) = =bi(t)xi(t) + fi(t,x1(2), ..., xu();x1(t — T11(2)), ..., xu(t — Tin(2));
/t kii(t — s)x1(s)ds,...,

t
/ kin(t —s)xp(s)ds), t>=0, i=1,...,n (1.1)
together with the following assumptions:

(Aq1) For each i€ {1,2,...,n}, b;(¢) is bounded and continuous on R with b;(¢) > 0
for t > 0;

(Ar2) For each i,j€{l,2,...,n}, 7;(¢) is continuously differentiable with 7;;(¢) >0
and 1 — 7;;(¢) > 0 for ¢ > 0;

(Ay3) For each i,j€{1,2,...,n}, k;j :R" — R satisfies

/ kij(s)ds < 4 o0, / skij(s)ds < 4 o0;
0 0

(A14) For each i€{1,2,...,n}, fi:R" x R” Xx R" x R"” — R is bounded, continuous
and there exist nonnegative, bounded and continuous functions o;;(¢), B;;(¢), vij(t)
defined on R™ such that

|ﬁ(t,u1,...,un;Ul,...,U,,;Wl,...,Wn)—fi(l‘,lzl,...,l;,,;171,...,13,,;\/711,...,W,,)|
n
SZ[aij(f)Wj—ﬁj\+/3ij(f)|vj—5j\+Vzif(f)|Wj—Wj\], i=1,...,n
j=1
for any  (up,...oup), (U, ty), (Ve s V) (01, e ey On)y (Wi, e, wy), (W1, .,
w,) €ER".

We consider initial conditions of the form
xi(t):(pi(t)a te(_ooso]a izl,'”)n: (12)

where ¢;(¢) is bounded and continuous on (—o¢,0].

The interest in studying system (1.1) is justified by the fact that it includes many
important models arising from mathematical biology and neural networks, which have
been intensively and extensively studied in the literature. The term —b;(¢)x;(¢) in (1.1)
could represent the death rate in a population growth model in mathematical biology,
and could account for the resistance of a neuron amplifier in an artificial neural network.
For example, (1.1) includes the scalar delay differential equation

X(t)=—x(t) + f(x(t — 1)), (1.3)

which has been used to model many biological, physical and physiological phenomena
by choosing appropriate nonlinear function f (see, e.g., [1,7,12,13,17,20,26,27,36,37]
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and the references therein). Systems (1.1) also includes as a special case the Hopfield
neural network

duy(1) _u

G T e =12 (4
S

dt R

and its various modified versions with delays (see, e.g., [4-6,8-10,14-16,18,19,21,24
25,28-32,34,35,38,39,41]). A general modification of (1.4) will be discussed in Section
5 while seeking application of our main results. Another special case of (1.1) is the
bidirectional associate memory (BAM) neural network

du(t) n+m
Jj=n+l1
du,-(t) n .
T :_b,»ui(z)+;Tijgj(uj(t))ﬂ,-, i—ntl..ntm (L5)

which was first proposed by Kosko [22] and has since then been modified and studied
by others (e.g., [15,22,23,40]). Our main results will also be applied to a generalization
of (1.5) in Section 5.

Most of the works mentioned above for (1.3)—(1.5) focus on autonomous cases of
(1.1) in which existence and stability of equilibria of the systems and Hopf bifurcations
have been the main concerns. However, as far as non-autonomous cases are concerned,
there seems to be very little work in the literature on the asymptotic behaviour of the
solutions. Of particular importance is the property of global asymptotic stability which
is a needed property whenever a neural circuit is designed for solving various opti-
mization problems, for parallel computations, or for signal processing in real time. The
main purpose of this work is to present sufficient conditions for the global asymptotic
stability of (1.1)—(1.2). The criteria obtained in this paper are explicit, and thus, are
casily applicable.

The paper is organized as follows. In Section 2, we study system (1.1) in the
general form, and establish some fundamental criteria for global asymptotic stability in
the sense that the distance of any two solutions of (1.1) approaches zero. In Section 3,
we consider the autonomous case of (1.1), and obtain existence and global asymp-
totic stability of an unique equilibrium. Section 4 is dedicated to the periodic case of
(1.1), where existence and global asymptotic stability of a unique periodic solution is
explored. In order to illustrate some features of our main results, we discuss in
Section 5, some particular models arising from mathematical biology and neural net-
works.

2. General case

For convenience, we first introduce the following definition and lemmas.
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Definition 2.1. System (1.1) is said to be global asymptotically stable if for any two
solutions x;(¢) and x;(z) of (1.1)—~(1.2), one has

t gyw; (1) — %(1)| = 0.
Lemma 2.1. A/l the solutions of (1.1)~(1.2) are bounded on R™.

Proof. By the boundedness of f;, there exist positive constants M; > 0 such that any
solution of (1.1)—(1.2) satisfy

—bi(t)xi(t) — M; < Xi(t) < — bi(0)xi(t) + M.
By the above inequality and the boundedness of b;(¢), the conclusion follows. [J

Lemma 2.2 (see Barbalat [3]). Let f be a nonnegative function defined on [0,+00)
such that f is integrable on [0,+00) and is uniformly continuous on [0,+00). Then

li t)=0.
Jim_f()=0

We now take some suitable Lyapunov functionals and by some analysis and esti-
mates, obtain some sufficient conditions for the global asymptotic stability of system

(1.1), as stated below.

Theorem 2.1. Assume that there exist positive constants p; >0, i =1,2,...,n, such

that
jnf ¢ pibi(t) ;uj %O+ T W)
+/Oo '})j,'(l—FS)kjj(S)dS >0 (21)
0
or

n +o00
jnf $2ubi(6) = > | (ocij(z)w,-,»(t)wj(t) /0 k,,-(s>ds)

j=1

ﬂji(C;l(t))

o (“”'(I) IEEER0)

+/mwﬂ+ﬂ@mm§ > 0, (2.2)
0

where C;l(t) is the inverse function of (;j(t) =t — 1;j(t). Then system (1.1) is global
asymptotically stable.
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Proof. Let x;(¢),x;(¢) be any two solutions of (1.1)—(1.2).
If (2.1) is satisfied, consider the Lyapunov functional V' (¢) defined by

n : S (SRQ) )
V = i i — X PRy AT ) = d
(1) ;u {Ix(t) x(t)|+; o l—r'i,(ci;‘(s)) x;(s) — %;(s)| ds

n oo t
+Z/0 / 7i5(0 + $)kij(5)]x;(0) ij(6)|d9ds}, (2.3)
= t—s
for + = 0. One can easily show that

V()= wli(t) = 5(0)l,  £=0 and V(0) < + oo
i=1

Calculating the upper right derivative V'(¢) of V(¢), we get

V(1)

i=1 j=1

< Z Hi {_bi(t)|xi(t) —X(0)| + Z o (1) (2) — X;(2)]

+ 3 B0l — (1)) = Fi(t — (1))

J=1

+ Z 7ij(1)
=1

/_ kij(t — s)(xj(s) — X;(s))ds

S| BG @) _ _
+ [1_;1](2”10)) e (1) = 35(0)] = Biy () eyt — 135(1)) = %5t — 73;(1))|

> Uo Vi (2 )k ()] (1) — %;(0)| ds

J=1

—/0 i (Okij(8)|xj(t —s) — X(t — 5)| dS} }

< Z i {bi(t)|xi(t) — Xi(1)] + Z o ()] (2) — %;(1)]
i=1

J=1

+z": (&' (1))

TCU_](’)) () — x,(2)|

j=1
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+Z / Vif(t+S)kij(S)|Xj(l‘)—fj(l‘)‘ds
j=1 70

i=1 j=1

< Z {—uibz‘(f)|xi(l) —x(t)| + Z w0 ()|xi(t) — %i(2)]

n i 1B (L5 (1))

= ‘éjj(g];l(t)) i () — %i(2)]

j=1

+ZH//O Vit 4 $)kji(s) ds|xi(1) fi(t)|}
j=1

. ‘ Bi( ' (1))
< - ,‘b,‘ 1)+ i it + —
; wibi(t) ;u, _a,(> ()

+ / Dt + () ds | $ pealr) — 0.
0

Now let
ﬁji(gﬁl(t))
L= (1))

I<i<nteR

+/0 Vji(’+5)kfi(s)dS] } > 0.

Then, from (2.1) we know ¢; > 0, and the above estimate leads to

V() < —cr Y l(t) — F(0).
i=1

cri= min inf < k(1) = Yy | ai(t) +
=1

Integrating both sides of (2.4) with respect to ¢ gives
t n
V(t)+ cl/ > Jxi(s) = Fils)|ds < V(0) < + 00, >0,
0 imi
Therefore, V' (¢) is bounded on 0 < ¢ < oo, and also

/lel(s) Xi(s)ds < () <+oo, t=0,

which implies

> i(t) = T(1)] € L'[0, +00).

i=1

(2.4)
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On the other hand, by the boundedness of b;(?), fi(,-,-,-),x;(t) and x;(¢) and (1.1), we

known that X,(¢),X;(¢) are also bounded and therefore Yoy xi(t) —xi(¢)| is uniformly
continuous on [0, +00). By Lemma 2.2 we can conclude that

Jim le (1) = 5(0)| = 0,

which proves that system (1.1) is global asymptotically stable.
If (2.2) is satisfied, consider the Lyapunov functional defined by

D S UREIIE L o N AN U CT CO) B!
V(t)—;u, 5 i(1) x,(t))+2j§:1j /t_w) _T.U(gl(s))<x,<s> i(5)) ds

1 n oo gt i
) ; /O /, 20+ k()5 (0) - %,(0))* do ds} :

Calculating the upper right derivative of ¥(¢) and using the inequality 2ab < a® + b?,
one has

V()

<D i b)) = T + D o (D)xi(t) — (0| (8) — ()]
i=1

J=1

D BiOei(e) — Tl (¢ — Tii(1)) — £t — 735(0)|

j=1
+ > 7(0) / (¢ = $)[lxi(r) = F() xy(s) — F5(5)] ds
=1 e
NPy
2217 RI0) (x;(t) — x,(1))
1 n
=5 2 B0t = (1) = F(t — (1))
j=1

+ % ; /0°° Pt + $)hig(s)(xj(1) — %;(1))* ds

_% Z /0 Vij(t)kij(s)(xj‘(l —s)— fj(l _ S))2 ds}
j=1
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n 1 n
< {—bxt)(xi(t)—f,»(r))z 5 2t (D10 =50 + (1) = F(1))’]
i=1

J=1

1 n
+ 3 Z Bii(OIxi(t) — X)) + (x(t — 155(2)) — X;(t — 135(2)))?

j=1
1 <& ! oy
F3 | [ - o - s pas
j=1 e
+ /_ kij(t — $)(x;(s) — X;(5))* ds}

N R0 N
zz BT AR

1 n
=3 D Bt = (1) = Tt = ;1))
j=1

+%Z/O Pif (1 + $)kip () (1) — (1)) ds
j=1
1 & o0
=1

n l n
< Z Wi {—bi(f)(xi(f) — %(1))* + 3 Z o (£)(xi(t) — %i(1))?
=1

=1
* % ; o () (x(t) — %,(1))

3 Zﬁ,,(t)(x,(t) 0P+ Z NIy

(1) = %(1)?
1 < '
F3 2w [ k-9 - 5P ds
=1 oo

o [
+§,’:21 /0 Vit 4 $)(s)(x; (1) — %5(2)) ds}
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i=1

n 1 n
<4 — b)) — F(0)) + 5 Hi D e ()xt) = (1))
=1

1 n
+ 5 D () = T(1)?
j=1

. ﬁji(Cﬁl(f))

1 ‘ - 2 1 = 2
+5 iPi()(xi(1) —xi(2))” + 5 ' (1) — xi(t
3 2 MDD —EOF 4 3 Dy S (0 = 50

1 & !
3 2w [ k=) dstuto) = 70
J=1 —oo
y | e+ ko) s - 507
) - j o ji ji i i

< —a Y () =50,

J=1

where ¢; > 0 is defined by

I<i<nteR"

. . 1 n 1 n 1 n
Cy = min inf ,llibf(t) — 5 Z,ul-ot,-j(t) — 5 Z ,Ll_/'O{jl'(t) — 5 Z ,Lll'ﬁl']'(t)
j=1 j=1 =1

I G @)
Z — (G (1))

1 n ¢ 1 n )
_ E Zlui"))ij(l)/ k,‘j(t — S)dS — 5 Z'u// "/j,‘(t “!‘S)kj,'(S) ds > 0.
j=1 > =170

Proceeding as in the proof of the first part, we also obtain the global asymptotic stability
of (1.1). O

Remark 2.1. For the purpose of interpreting the results biologically, one may prefer
explicit conditions in terms of b;(t), o;;(¢), Pi(¢) and y;;. Various sets of such conve-
nient conditions can be easily derived by choosing different values for y; > 0. Since
the paper is already lengthy, we do not list such specifications here, and will have to
leave it for readers. This remark also applies to Theorems 3.1, 4.2 and 5.2 for the
corresponding special cases.
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3. Autonomous case

In this section, we consider an autonomous case of (1.1), that is,

Xi(t) = =bixi(t) + fi (xl(t),...,x,,(t);xl(t = Ti1)s s Xnl = Tin);

/t kii(t —s)xl(s)ds,...,/t kin(t — s)x,,(s)ds) , t=0. (3.1)

The corresponding assumptions become

(As1) For each i,j€{1,2,...,n}, b; >0, 7;; >0 and k;; : R — R" satisfies
o0 o0
/ kij(s)ds < + oo, / skij(s)ds < + oo;
0 0

(Az2) fi:R" x R" x R” — R is bounded, continuous and there exist nonnegative
constants «;; > 0, f;; = 0 and y;; = 0 such that for any (u1,...,u,), (#1,...,i,),
(Ul,---,vn),(ﬁl,---,ﬁn), (Wl,...,w,,),(vf/l,...,m_/,,)GR", we haVe

|f}(u1,...,7/ln;vl,...,UH;WI,...,W,,)__f‘j(’/?l,...,ﬁn;El,...,ﬁn;WI,...,wn)|
n
<D Lol — g+ Bylyy = 5l +ylwy =Wl i=L.n.
j=1

Lemma 3.1. The set of equilibria of (3.1) is nonempty in R”".

Proof. Consider the mapping F :R"” — R” defined by
1 t t
(Fe)= 1/ (xl,...,xn;xl,...,xn;/ (e sy ds..... [ kin(f—s)xnd5>
bl' — 00 — o0

1
= 3f,-(xl,---,xn;X1,...,xn;anxl,...,amxn)
i

1
= 5, Jibrxi i),

where a;; = [*__ ky(t—s)ds, A =diag(a,...,an), x=(x1,....x,) ER", i,j=1,....n.
It is obvious that F' is continuous. By the boundedness of f;, there exists positive
constant M > 0 such that for any x = (x1,...,x,)T €R", we have

IF ()]l < M,
where ||x|| := max;<;<n x|, x €R".

Let Q := {x€R":||x||cc <M}, it is easy to show that @ C R” is convex and
compact. By the Brouwer fixed point theorem, there exists x* € R” such that x*=F(x"),
that is

1 t t
x; = b—f, <xT,...,xZ;xT,...,x;;/ ki (¢ — s)xf ds,...,/ kin(t — s)x7, ds> ,
L —00 —00

which implies x* is an equilibrium of (3.1). [
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Applying Theorem 2.1 to system (3.1), we can claim

Theorem 3.1. If there exist positive constants p; >0, i =1,2,...,n, such that

wibi — Zﬂj(fxﬁ +Bi+vi)>0, i=1..,n
j=1
or .,
2pbi — Z (i + Bij + vip) + wioyi + Bji + 7)1 >0, i=1,....n
j=1
Then system (3.1) has a unique equilibrium that is global asymptotically stable.

4. Periodic case

The main purpose of this section is to establish criteria for existence and global
asymptotic stability of a unique periodic solution of (1.1) when it is a periodic system.
So, we consider the system in the same form of (1.1)

Xi(t) = —=bi(t)xi(t) + fi (t,xl(t), ces X (8);x1(8 — Ti1(2)),s - o x 0 (2 — Tin(2));

t t
/ ki (¢ —S)xl(s)ds,...,/ ki (2 —s)x,,(s)ds) ,
t=0,i=1,...,n, (4.1)

but with different assumptions corresponding to the periodic case:

(A41) For each i€{1,2,...,n}, bi(t) is continuous with b;(z) > 0 and b;(¢ + w) = b;(¢)
for t e RT;

(A4) For each i,j€{1,2,...,n}, 1;; is continuous with 7;;(f + w) = 7;;(¢) on R™;

(Ag3) For each i €{1,2,...,n}, fi:R" x R” x R” x R” — R is bounded, continuous
and w-periodic in the first variable;

(A44) For each i,j€{1,2,...,n}, k;j:RT — R" satisfies

/ kij(s)ds < 4+ oo, / skij(s)ds < 4+ oo;
0 Jo

(A4s) For each i,j€{1,2,...,n}, t;; is continuously differentiable with ;;(#) > 0 and
1— ‘L",‘j(l) >0 on R+;

(A46) There exist nonnegative, bounded and continuous functions o;(¢), Bi;(£), yi;(¢)
defined on R such that

|_f}(t,1/l1,...,u,,;l)l,...,U,,;Wl,...,Wn)—f,'(t,lzl,...,12,,;171,...,17”;VT/1,...,W”)|
n
<D Loy — il + By — 5| + 9(Olw; =)l i=1..m,
j=1
for any  (up,... uy), (U1, tly)y U1y 0n)y (015ee ey Un)y (Whse ooy W), (Wi, ety
wy)€R".
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The method used here to prove the existence of periodic solutions, will be the
continuation theorem developed from coincidence degree theory. For the reader’s con-
venience, we shall first summarize below a few concepts and results from [11] that
will be used in this section.

Let X,Z be normed vector spaces, L:DomL C X — Z a linear mapping, and
N :X — Z a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dim(Ker L) = codim(ImL) < 4 oo and ImL is closed in Z. If L is
a Fredholm mapping of index zero, then there exist continuous projectors P: X — X
and Q:Z — Z such that ImP = Ker L, ImL = Ker Q = Im(I — Q). It follows that
L|pom 1rkerp : (I — P)X — Im L is invertible. We denote the inverse of that map by Kp.
If Q is an open bounded subset of X, the mapping N will be called L-compact on Q
if ON(Q) is bounded and Kp(I — Q)N : Q — X is compact. Since Im Q is isomorphic
to Ker L, there exists isomorphisms J :/m Q — Ker L.

In the proof of our existence theorem below, we will use the continuation theorem
from Gaines and Mawhin [11, p. 40].

Lemma 4.1 (continuation theorem). Let L be a Fredholm mapping of index zero and
let N be L-compact on Q. Suppose

(a) For each A€(0,1), every solution x of Lx = ANx is such that x ¢ 08,
(b) ONx # 0 for each x € 0Q N Ker L and

deg{JON,Q N KerL,0} # 0.

Then the equation Lx = Nx has at least one solution lying in DomL N Q.
Now we state our main result on the existence of periodic solutions of (4.1)

Theorem 4.1. If (A41)—(Agq) hold, then system (4.1) has at least one periodic solution
with period o.
Proof. Let

X=Z={x(t)=(x1(t),...,x,(t)) € CR,R")|x(t + w) =x(¢), t R}

and

n 2 1/2
= i(t f X(2).
x| (Z (ng i >|) ) or any x € X(Z)

i=1

Then X and Z are both Banach spaces when they are endowed with the norm || - ||.
Let

Nx = <—b,~(t)x,(t) + fi(t,x1(8), ..., x,(2); x1(t — T51(8)), -, xu(t — Tin(2));

/t ki (t — s)xl(s)ds,...,/t kin(t — 5)x,(s) ds)) R

nx1
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for any x € X and
1 w w
Lx =X, Px:—/ x(t)d:, xelX; Qz:—/ z(t)dt, zeZ.
w Jo w Jo
Then, it follows that
w
KerL={x|lxeX,x=hheR"}, ImL= {z|z EZ,/ z(t)dt = O}
0
and

dim(Ker L) = n = codim(Im L).

Obviously, Im L is closed in Z, therefore, L is a Fredholm mapping of index zero. One
can easily show that P and Q are continuous projectors such that

ImP=KerL, KerQ=InL=Im({I— Q).

Furthermore, the generalized inverse (to L) Kp:ImL — Ker P N Dom L exists and is
given by

Kp(z):/otz(s)ds— ;/Ow/o[z(s)dsdt.

Thus
1 w
ONx = ( / lb,-(t)x,—(t)Jrﬁ(t,xl(t), e X (), x1( — T (), - - x0(E — Tin(2));
 Jo

/f ki (t — s)xl(s)ds,...,/t kin(t — 5)x,(s) ds)] dt)

nxl1

and

Kp(I — Q)Nx

= (/ [_bi(s)xi(s) + fi (S,M(S), s Xn(8)521(8 = T (8))s -, Xu(s = Tin(5));
0

/‘Y kil(s — u)xl(u)du,...,/t kin(s — u)x, (1) du)} ds>

- ((L /Ow /Ot [—b[(S)xi(S)+ﬁ(S,X1(S), e Xu(8); 2108 — Ti1(8))s - X0 (5 — Tin(5));

nx1

/S k(s — u)xl(u)du,...,/[ kin(s — u)x,,(u)du)] ds dt>

nxl1
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_ <<t1> / [b,-(s)x,-(s)Jrfi (s,xl(s),...,x,,(s);xl(s‘c,-l(s)),...,x,,(sr,-n(S));
0

o 2

/S kin(s — u)xi(u)du,..., /t kin(s — u)xn(u)du)] ds)

Clearly, ON and Kp(I — Q)N are continuous. Using the Arzela—Ascoli theorem, it is

not difficult to show that Kp(I — Q)N(Q) is compact for any open bounded set Q C X.
Moreover, ON(Q) is bounded. Thus, N is L-compact on Q with any open bounded set
Q2 C X. The isomorphism J of Im Q onto Ker L can be taken to be identity mapping,
since Im Q = Ker L.

Now we are in the position to search for an appropriate open, bounded subset 2
for the application of the continuation theorem. Corresponding to the operator equation
Lx = ANx, A€(0,1), we have

nx1

Xi(t)y=4 lbi(t)xi(t) + fi (f,xl(f), e Xy ()31 (8 = 11 (2))s - X0 (E = Tia(2));

/t k(¢ —s)xl(s)ds,...,/t kin(t — s)x,(s)ds)} R

>0, i=1,...,n (4.2)

Assume that x = x(¢) € X is a solution of (4.2) for a certain A€ (0,1), we shall first
show that x(¢) is uniformly bounded with respect to 4. Multiplying both sides of (4.2)
by x;(¢) and integrating over the interval [0, ®], we have

0= ()xi(t)d
/0 xi(¢)x;(¢)de
=1 [—/0 bi(t)(xi(t))zdt+/0 xi(t) fi (f,m(t),m,xn(t);
x1(t = i (1))s - X0 (t = Tin(2));

/t kil(t—s)xl(s)ds,...,/t k,-,,(t—s)xn(s)ds> dt], i=1,...,n,

(4.3)
then

/ b,-(t)\x,—(t)\2dt</ P (O] | filt,x1(2), ..o x0(0); x1(E =131 (2)), - -, X0 (£ —Ti(2));
0 0

/t ki (t — s)xl(s)ds,...,/t kin(t — s)x,(s)ds || dt
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0]
<M,-/ |x;(¢)] dt
0

10} 1/2
<A@¢w(/‘hxnﬁm> =l
0

where M; is the bound of f;, and hence

2
0 M
/ |x,~(l‘)\2 dr < (b1> w, i=1,...,n
0 i

From (4.4), it follows that there exists a 7 € [0, w] such that

M:
it < —.  i=1,...,n

1

Therefore

xi()| < |xi(t0)| +

Kmmm

for any ¢ € [0, w]. From (4.2), it follows that

M; @
<7+/meu
bi 0

Amem<Amwmmw

“
0

/t kir(t — s)x1(s) ds,...,/t kin(t — $)x,(5) ds)

<b§’/ ()] df + Mo
0

12

w
< b'o (/ |x[(t)|2dt) + Mo
0

M; M;

< b — o+ Mo =— (b} + b})o,
b; b;

which, together with (4.5), implies

|x,(t)|<bf;+ﬁ(b:‘+bf)w I:Bi, lzl,...,l’l.
i i

fi (taxl(t)’”'axn(t);xl(t - Til(t))r"':xn(t - Tin(t));

125

(4.4)

(4.5)
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Let
Q= {x(eX] x| < B}, (4.6)

where

n 1/2 n
S M,
B := max B? J—] = R
<121 l) min{b!,...,b.}

Then for any x € 0Q N Ker L, we have Lx # JNx, for 1€ (0, 1), which implies that Q
satisfies the requirement (a) in Lemma 4.1. In addition, when x € 0QNKer L=0QNR",
x is a constant vector in R” with ||x|| =B, and

*T(ONx)
:in [; /0( bi(t)x; dt + i/o fi (t,xl(t),...,xn(t);xl(t —11(t)), ..., X,
i=1

(t — Tin(2)); /t kil(t — s)x1(s)ds,... ,/ kin(t — s)xn(s)ds> dt]

o0

fi (t,xl(t), e Xy(@);x1(E—Ti1(2)), - X

:

n 1 0] 5 1 w
< —— | b)) dr + x| —
> S| bompa s [

(t—rm(t));/_t kn(t—S)M(S)ds,---,/_t km(t—S)xn(S)dS>

o0

< 1= bl + M)

i=1

n
< —min{b{,....BL}|x|* + > Mj|lx|| <o.
i=1

Therefore, ONx # 0 for x € 0Q N Ker L. Let

F(u,x)=—pux + (1 — w)ONx,  ue(0,1),

then xTF(u,x) <0 for x €0Q N Ker L. From the homotopy invariance of Brouwer
degree, it follows that

deg{JON,Q N Ker L,0} = deg{ON, Q2 N Ker L,0} = deg{—1, 2 N Ker L,0} # 0,

where J and [ are the identity operator. By now we have proved that Q verifies all
the requirements in Lemma 4.1. Hence, the system (1.1) has at least one w-periodic
solution x*(¢) in Q and it is clear that x*(¢) is bounded by B. [

Note that if a w-periodic solution x*(¢) of (4.1) is global asymptotically stable then
it is in fact unique. Now combining Theorems 2.1 and 4.1, we immediately have
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Theorem 4.2. Assume (A41)—(Age) hold. If either (2.1) or (2.2) is also satisfied, then
system (4.1) has a unique periodic solution of period w, which is global asymptotically
stable.

Remark 4.1. In (As), 757 = 0 is not required. This means Theorem 4.1 is valid for
both the retarded case (with all 7;; > 0) and the mixed case (with some 7;; < 0) of

(1.1).

5. Applications and discussion

In this section, we illustrate our results established in the previous sections by con-
sidering some particular mathematical models arising from mathematical biology and
neural networks.

Example 5.1. Consider the following delayed red blood cells model
N(t) = —a(t)N(t) + b(t)e N=), (5.1)

where a(t) and b(t) are positive, bounded and continuous functions. t(#) is continuously
differentiable for ¢t > 0, 7(¢) = 0 and 1—7(¢) > 0 on [0,400). N(t) denotes the number
of red blood cells at time ¢, a(¢) is the probability (in some sense) of death of a red
blood cell at time ¢, b(¢) is related to the production of red blood cells per unit time,
7(¢) is the time required to produce a red blood cell.

System (5.1) has been investigated by many authors (see, e.g., [7,20,37]). Chow [7]
studied the existence of periodic solution of (5.1) under the assumption that a(¢), b(¢)
and t(¢) are all positive constants; Jiang and Wei [20] also studied the existence of
positive periodic solution. But none of [7,20] discussed stability of periodic solutions.
In contrast, we will examine all the three aspects corresponding to Sections 2—4.

It is not difficult to show that (5.1) satisfies the assumptions on (1.1). The initial
conditions of (5.1) is of the form

x(t) = QD(I), te (_0090]’ QD(O) > 0,

where ¢ is bounded and continuous on (—o0,0]. A standard argument will result
in the following positive invariant result for (5.1).

Lemma 5.1. For any solution N(t,¢) of (5.1), ¢ as above, we have N(t,¢) >0
for t > 0.

Applying Theorems 2.1, 3.1 and 4.1 to (5.1), we obtain the following theorem.

Theorem 5.1. If

. b))
S e
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where (~\(t) is the inverse function of {(t) =t — ©(t). Then system (5.1) is global
asymptotically stable. In particular,

(1) if a(t), b(t) and (t) are periodic of period w, then system (5.1) has a unique
positive w-periodic solution, which is global asymptotically stable;

(i1) if a(t) =a,b(t) =b and ©(t) =t are all constants with a > b, then the unique
equilibrium determined by aN = be™™ is global asymptotically stable.

Remark 5.1. One can easily show that Lemma 5.1 and Theorem 5.1 also hold for the
following equation:

dy(t)
dr

b(1)
1+ y(t — (1))’
where the assumptions on a(#), b(¢) and (¢) and the initial conditions are the same as

those in (5.1), This equation has also been used to model the blood cells and existence
of periodic solutions of the equation was discussed by Mallet-Paret and Nussbaum [25].

—a(t)y(?) +

Example 5.2. Consider the system of delay differential equations

dxi() _ —by()x1(t) + oy (¢) arctan x,(¢ — 2(7)),
d ;T (5.2)
xjt(t) = —by(t)x2(2) + 0p(¢) arctan x; (¢ — 71(2)),

where b;(t),o;(¢) are nonnegative, bounded and continuous and 7;(¢#) are nonnegative,
continuously differentiable with 1 — 7;(¢) > 0, i = 1,2.

When b;(t) = 1, 7(¢t) = 1 and oy(t) = 0p(t) = constant, then (5.2) reduces to
the example used in [2,33], where existence of periodic solutions was established via
bifurcation.

Theorem 5.2. If there exist positive constants u; > 0, pp > 0 such that

. B %2(511(1))}
B {’“b‘”) SRS
and

. B o (G (1)) }
tlerg{uzbz(t) “171—752((;10)) >0,
or

| (')
tg%g {zmbl(z) — (mon(t) + 1_11(4'11@))> } =0

. g_l !
tlerkfl {2/121)2([) - (#2062(1) + %) } =0



M. Fan, X. Zoul Nonlinear Analysis 57 (2004) 111135 129

where {~Y(t) is the inverse function of (i(t)=t — 1i(t), i =1,2. Then system (5.2) is
global asymptotically stable. In particular,

(1) if o:(t), bi(t) and ©:(t) (i=1,2) are periodic of period w, then system (5.2) has
a unique w-periodic solution, which is global asymptotically stable;

(i1) if bi(t)=b;, 1:(t)=1;, oy =0 are all constants, and there exist u; >0, i=1,2,
such that

by > oon,  poby > pioy
or
min{2p; 61,2100y} > pio + (oo,

then system (5.2) has a unique equilibrium, which is global asymptotically stable.

Example 5.3. Consider the neural network model without self-connection.

d)(ci(tt) = —x(t) + atanh[c; y(t — 1)],
% = —y(¢) + atanh[cox(t — 1)), o)

where a,cy,cy,7 are all nonnegative constants. This is the system studied in [16],
where it is proved that if ac; < 1, ac, < 1, then the zero solution of (5.3) is global
asymptotically stable. An immediate application of Theorem 3.1 to (5.3) gives an
improvement to the above result, as stated below.

Theorem 5.3. If there exist uy > 0 and pp > 0 such that
M1 > ppacy,  fp > pacy
or
min{2u;, 212} > wacy + wac,.
Then the zero solution of (5.3) is global asymptotically stable.
As promised in the introduction, we will apply our main results to general modifi-

cations of both Hopfield neural network and the BAM neural network. We start with
the former.

Example 5.4. Consider the following nonautonomous Hopfield-type neural network
with infinite delay

d ; ; n n
iy M -2+ D)+ 3T O = )

+ZT},”(r)/ kij(t — $)g;(u;(s))ds + I(t), =0, (5.4)
=1 -
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where Ci(¢) >0, R;(t) > 0, Tiy)(t), Tigz)(t), E§3)(t), I;(t) are bounded and continu-
ous on R™; 7;(¢) is nonnegative, continuously differentiable such that 1 — 7;;(z) > 0;
ki; :R™ — R is integrable and is normalized such that

" +00 00
/ kij(s)ds =1, / skij(s)ds < 4 oo;
0 0

gi :R — R is bounded and continuous and there exist positive constants G; > 0 such
that for any u;,u; € R, we have

|gi(u1) — gi(u2)| < Giluy — us].

System (5.4) describes the dynamics of a large-scale system composed of #n elemen-
tary units, also called neurons, which are massively interconnected. More precisely,
u; corresponds to the ith neuron activation state, while g;(u;(-)), represent the input
—output activation functions of the neurons and are typically assumed to have a sig-
moidal shape (i.e. they are bounded and increasing functions of u; and have bounded
derivatives). Similar to [34], here this assumption is weakened to a Lipschitz-type
condition. [; represent varying external input signals to the neural network and Tl-jk)
define the interconnections (or synaptic strength) between the n neurons. System (5.4)
represents a natural generalization of Hopfield’s original model by taking into account
the processing time of individual neurons and the finite switching speed of the neuron
amplifiers by incorporating time delay of various forms into the system. The presence
of the term involving Tiy) assumes, in addition to the delayed propagation of signals,
a set of local interactions in the network whose propagation time is instantaneous.

System (5.4) has many applications in the fields of neurobiological modelling and
analogue computing and is general enough to include many Hopfield-type neural net-
work models as special cases. For instance, let us assume that all the parameters in
(5.4) are constants. In addition, if Tl.gz) = Tif) = 0, then (5.4) represents Hopfield’s
original neural network model [19]; if Tl.(iz) = 0, then (5.4) is the systems considered by
Cao [6] and [41]; if Tl§.3) = 0, then (5.4) is the systems investigated by Gopalsamy and
He [14] and Joy [21]; if Tigl) = Tif) = 0, then (5.4) becomes the system considered by
Bélair [4], Campbell and Bélair [5], Gopalsamy and He [14], Liao and Xiao [25], and
Roska et al. [31]. It has been argued (see [21,25] and references therein) that it is rea-
sonable to study neural network models with varying time delays and time-dependent
coeflicients.

The next theorem gives sufficient conditions for the global asymptotic stability of
the generalized Hopfield-type neural network model (5.4).

Theorem 5.4. [f there exist positive constants p; =0, i =1,2,...,n, such that

| s . 7)) TG @)l
T M—— /iYe ‘
e+ | Ci(ORA(1) Z_;M TG G e — 1 (0)

oo [Tt + 5))|
+ J
0

kii(s)d 0
Ci(t +5) ils)ds| o>
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or

n

,G(Té«”(t) RO |T,§”<r>>

: 24
o, q(z)&(r)‘% oo oo oo

e (mon, T2 (1)
BE TGO T @G o) - a0

+/+OO ‘T}?)(tﬂ)'k d 0
——kji >0,
o Cj(t+s) ](S) S

where Ci;l(t) is the inverse function of (;j(t) =t — 1;j(t). Then system (5.4) is global
asymptotically stable. In particular,

(1) if further assume that Ci(t),R;(t), Tl-}(t), T,%(t), T,%-(t),[i(t) and t;;(t) are periodic
of period w, then system (5.4) has a unique w-periodic solution, which is global
asymptotically stable;

SN _ _ 1oy — 200y — T2 T304y — T3 _

(i) if Ci(t) = Ci, Ri(t) =R, T(t) = i}a Ti(t) =Ty, T;(0) =Ty(t), L(t) =1 and
1,;(t)=1;; are all constants and there exist positive constants y; > 0, i=1,2,...,n,
such that

Hi -
CR: ;

G T ) ) 3)
LTI TR T >0

or

2u; “~ [wG; 1 2 3 WG 1 2 3
cr O [C (T TP ITE D+ S (T TP+ ITD| > 0.
1 1 ]:1 1

then system (5.4) has a unique equilibrium, which is global asymptotically stable.

Remark 5.2. Theorem 5.4 improves and generalizes the main results of [6,8,14,39].
For example, if the coefficients of (5.4) are constants and Tl.(jz) = T,.5.3) = 0, then (5.4)
is the system investigated by Hirsch [18], and the second sufficient criterion in Theorem
5.4(ii) agrees with Theorem 3 in [18]. Note, however, that the conditions in [18] are
more restrictive, since it has been assumed that g; is C! and that there exist positive
constants G, for i=1,...,n, such that 0 < gi(;) < G;, for all ;. When Tl.;l) = Tl.;}) =0,
(5.4) becomes the system investigated in [14,34], and the first sufficient criterion in
Theorem 5.4(i1) with p; =1, T,.(jl) = Tf) = 0 improves the main theorem in [14] and
Theorem 2.1 in [34]. As for the periodic case, Theorem 5.4(i) with T73(1) = T (1) = 0,
Ci(t)=C; >0, Ri(t)=R; >0, T,} = T;; being constants, and /;(¢#) being periodic
improves the main results in [20].
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Example 5.5. Consider a general modification of the BAM neural network (1.5) to the
following

dui(t) B n+m n+m

o = hOu® + 3 TPOgw0) + D TP 0g it = (1))
Jj=n+1 J=n+1
n+m t
+ ) T,g.”(t)/ kif(t — $)gj(uj(s))ds + Ii(t), =0, i=1,....n,
Jj=n+1 -

d ; n n
U0 o) + 3 T g ) + 3 TR gt~ )
j=1 J=1

390 / kit — $)g,uy(s)) ds + I,(0),
j=1 —oo

t=0,i=n+1,....n+m, (5.5)

where b;(t) > 0 is bounded and continuous on R™, and Tiy)(t), Tlgz)(t), ]}5»3)(t),ll-(t),
7;;(t), kij,g; are all as in Example 5.4. Such a model, initially proposed by Kosko
[22] in the original form of (1.5), demonstrates a two-layer architecture for hetero
associate memories. Various special cases of (5.5) have been discussed by many au-
thors (see, e.g., [15,22,23,40]). System (5.5) can be formally simplified to a system
of Hopfield-type (5.4) by suitably choosing nonlinear terms, but such a simplification
will alter the bidirectional interplay of the input—output nature of the two layers, and
thus may result in ignorance of the two-layer structure.
An immediate consequence of Theorems 2.1, 3.1 and 4.1 is the following.

Theorem 5.5. Assume there exist positive constants p; >0, i =1,2,...,n+ m, such

that
= TP (1))
inf < bi(t) = Y Gy |ITV 0] + L
teRT j;l I J 1— Tji(Cjil(t))

+o0o
+/ 1T+ ) ki(s)ds | p >0, i=1,....n,
A .

TP ()]
1- fji(Cﬁl(f))

te

. (1)
1ri{f+ wibi(t) — g 1 WG |17 (0] +
=

+oo
+/ |Tj(i3)(t+s)|kji(S)dS >0, i=n+1,....,n4+m
0
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or
n+m
1 2 3
jnf §2ubi() = > | wG(T (0] + T+ T (1))
J=n+1

eN0)]

(3) ki(s)d ’
— il (1) +/0 T3 (2 + 5) [k (s) S> >0

+1,G, <|T%”(r) +

i=1,...,n,

n

; ) (2) (3)
jnf. Zuibm—zlj wG( Ty O + 17570 + 757 (0)])
=

TP ()]

+ G | 1TV 1
Gy | (1)] — ji(Cj,- )

+/ [Tt + 5)|kji(s) ds >0,
0

i=n+1,....,.n+m,

where C;l(t) is the inverse function of (;j(t) =t — 1;j(t). Then system (5.5) is global
asymptotically stable. In particular

(1) if further assume that b;(t), U(t), Ij(t), U(t) Ii(t) and (1), i,j=1,...,n are
periodic of period w, then system (5.5) has a unique w-periodic solutzon which
is global asymptotically stable;

(it) if bi(t)=b, T (1) =T} m(r) T, 1) =TS (1) =1I; and (1) =1;; are

y o U y ooy y o

all constants, and there exist positive constants y; >0, i =1,2,...,n+ m, such
that
n+m
wibi = Y wG(TV |+ TP+ 1D >0, i=1,....n,
J=n+1

1 2 3 .
wibi =Y G (TP + TP+ T >0, i=n+1,...n4m

or

n+m
2ubi — > G TS|+ TP +75))

Jj=n+1
1 2 3 .
+-Mﬂ3K|Tﬁ)|+_|Té)y+‘]ﬁ)|ﬂ >'0> I:ZI,“.,n,

1 2 3
2p;b; Z[ﬂtG(‘T(')|+|Ti§‘)|+|Ti5‘)‘)

+ujGj(|T_,5-”| HTP+ T >0, i=n+lntm,

then system (5.5) has a unique equilibrium, which is global asymptotically stable.
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Remark 5.3. Theorem 5.7 improves and generalizes the main results obtained in
[15,22,40].
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