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Abstract
In this paper, we study the spatial-temporal patterns of the solutions to
the diffusive non-local Nicholson’s blowflies equations with time delay
(maturation time) subject to the no flux boundary condition. We establish the
existence of both spatially homogeneous periodic solutions and various spatially
inhomogeneous periodic solutions by investigating the Hopf bifurcations at
the spatially homogeneous steady state. We also compute the normal form
on the centre manifold, by which the bifurcation direction and stability of
the bifurcated periodic solutions can be determined. The results show that
the bifurcated homogeneous periodic solutions are stable, while the bifurcated
inhomogeneous periodic solutions can only be stable on the corresponding
centre manifold, implying that generically the model can only allow transient
oscillatory patterns. Finally, we present some numerical simulations to
demonstrate the theoretic results. For these transient patterns, we derive
approximation formulas which are confirmed by numerical simulations.
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1. Introduction

Gurney et al [5] proposed the time delayed ODE model

dw(t)

dt
= −dw(t) + pw(t − τ)e−qw(t−τ) (1.1)

to describe the population dynamics of blowflies, hoping to explain the oscillatory phenomena
in Nicholson’s laboratory experiments [17]. Here w(t) is the size of the mature blowfly
population at time t , p is the maximum per capita daily egg production rate, 1/q is the size
at which the blowfly population reproduces at its maximum rate, d is the per capita daily
adult death rate and τ is the maturation time. Since [5], (1.1) has been widely quoted as
the Nicholson blowflies equation and has been extensively studied in the literature (see, e.g.,
[1, 10–12, 23, 28] and references therein).

In fact, (1.1) can be derived from the following age-structured population model (see,
e.g., [19]) 


∂u(t, a)

∂t
+

∂u(t, a)

∂a
= −d(a)u(t, a), t > 0, a > 0,

u(t, 0) = b
(
w(t)

)
, t > 0,

(1.2)

where u(t, a) is the population density of age a at time t , d(a) is the age-dependent death
rate, w(t) = ∫ +∞

τ
u(t, a) da is the total density of the mature population at time t , τ is the

maturation time and b(w) is the Ricker type’s birth function: b(w) = pwe−qw.
Taking into account spatial diffusion of the population in a one dimensional domain

� ⊂ R, parallel to (1.2), one can obtain a general diffusive age-structured model given by
(see, e.g., [15])


∂u(t, a, x)

∂t
+

∂u(t, a, x)

∂a
, t > 0, a > 0, x ∈ � ⊂ R,

= D(a)
∂2u(t, a, x)

∂x2
− d(a)u(t, a, x)

u(t, 0, x) = b
(
w(t, x)

)
, t > 0, x ∈ � ⊂ R,

(1.3)

where u(t, a, x) now is the population density of age a at time t and location x, D(a) is the
age-dependent diffusion rate, w(t, x) = ∫ +∞

τ
u(t, a, x) da is the total density of the mature

population at time t and location x. For fundamental theory and many interesting topics on
age-structured models, we refer to [16, 26, 27].

Under the assumption that the diffusion rate and death rate of the mature population are
age-independent, that is,

D(a) = Dm, d(a) = d for all a � τ,

one can derive the following equation from (1.3) for the mature population w(t, x):

∂w(t, x)

∂t
= Dm

∂2w(t, x)

∂x2
− dw(t, x) + ε

∫
�

Kα(x, y)b(w(t − τ, y)) dy, t > 0, x ∈ �,

(1.4)

where α = ∫ τ

0 D(a) da measures the mobility of the immature population and ε =
exp(− ∫ τ

0 d(a) da) is the survival factor accounting for the proportion of individuals that can
survive the immature period, while the kernel function Kα(x, y) depends on the boundary
condition, accounting for the probability that an individual born in location y will have moved
to location x after τ units of time (maturation time). Thus, the last term on the right hand
side of (1.4) sums up all individuals born in the domain τ time units ago who have moved to
location x at maturation. There is one thing in common for the kernel function Kα(x, y) under
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various boundary conditions, that is, as α → 0, Kα(x, y) tends to the Dirac delta function of
x − y: Kα(x, y) = δ(x − y), reducing (1.4) to the spatially local equation:

∂w(t, x)

∂t
= Dm

∂w2(t, x)

∂x2
− dw(t, x) + εb(w(t − τ, x)), t > 0, x ∈ �. (1.5)

For � = R, So et al [21] showed that Kα is nothing but the heat kernel function with the
parameter α determining its flatness. There have been many works on (1.4) or some special
cases of (1.4) (including (1.5)), dealing with such interesting topics as stability of the constant
steady states, travelling wave fronts connecting two constant steady states and the stability of
these fronts, as well as the asymptotic speed of spread. Such an unbounded domain case is
not the concern of this paper, and hence, we will not go further along this line. An interested
reader is referred to, for example, [2, 14, 21, 24, 36] and the references therein.

For � = [0, L], Liang et al [13] obtained the explicit forms of Kα(x, y) under some
common boundary conditions (including Neumann, Dirichlet, Robin and periodic conditions)
at the two ends x = 0, L and explored numerical methods for the solutions to the resulting
non-local reaction–diffusion equations. For the special case (1.5) (i.e., α → 0), under zero
Dirichlet boundary condition (a scenario for hostile boundary), So and Yang [22] investigated
the global stability of the steady states of (1.5), So et al [20] numerically explored Hopf
bifurcation of (1.5), and Su et al [25] analysed the existence and nonexistence of the positive
steady state of (1.5); while under zero-flux boundary condition, Yang and So [31] studied the
stability of the steady states and the existence of Hopf bifurcation, Yi et al [32] and Yi and
Zou [34,35] identified some ranges of the parameters within which the delay τ has no impact
on the global dynamics of (1.5). For the true non-local case, Xu and Zhao [30], Zhao [38]
and Yi and Zou [37] have obtained some results on the threshold dyanamics of (1.4) under
zero Dirichlet/Neumann boundary condition which support convergence of solutions to steady
states.

In this paper, we consider the true non-local equation (1.4) with the Ricker type birth
function b(w) = pwe−qw on the domain � = [0, π ] subject to the zero-flux boundary
condition. By the results in [30, 34, 35, 38], it is known that when 1 < pε/d < e2, the
equation has a positive constant steady state E+(pε/d) which attracts all positive solutions to
this boundary value problem, and therefore there will be no temporal and/or spatial patterns
arising from (1.4). It is natural to ask what will happen when pε/d > e2, and addressing this
question constitutes the goal of this paper.

To proceed, we note that for � = [0, π ] and with the zero-flux boundary condition, [13]
has shown that the kernel function Kα(x, y) in (1.4) is

Kα(x, y) = 1

π

[
1 +

+∞∑
n=1

(cos n(x + y) + cos n(x − y)) e−αn2

]
.

Plugging this into (1.4), re-scaling by

ŵ(t̂) = qw

(
t

τ

)
, D̂m = τDm, τ̂ = dτ, and β = pε

d

and dropping the hats for the simplicity of notations , we obtain


∂w(t, x)

∂t
= Dm

∂2w(t, x)

∂x2
− τw(t, x) +

βτ

π

∫ π

0
w(t − 1, y) exp{−w(t − 1, y)}

×
[

1 +
+∞∑
n=1

(
cos n(x + y) + cos n(x − y)

)
e−αn2

]
dy, x ∈ [0, π ],

∂w(t, 0)

∂x
= ∂w(t, π)

∂x
= 0.

(1.6)
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As such, in the rest of this paper we only need to focus on the boundary value problem (1.6)
in the range β ∈ (e2, ∞).

Section 2 is devoted to a thorough Hopf bifurcation analysis for (1.6), using β ∈ (e2, ∞)

as a bifurcation parameter. We show that there is a sequence of critical values for β

at which Hopf bifurcations occur. Among these critical values, the first one presents
Hopf bifurcation generating spatially homogeneous periodic solutions around the spatially
homogeneous positive steady state E+(β), while the rest give rise to periodic solutions that
are spatially inhomogeneous, demonstrating various spatial patterns. By applying the centre
manifold theory and the normal form method, we are also able to provide, in the appendix,
an explicit algorithm for determining the direction of the Hopf bifurcation and stability of
the bifurcating periodic solutions. We also study the dependence of Hopf bifurcation points
and the bifurcated oscillations on some model parameters including the diffusion rates of the
mature and immature populations. We prove that there exist spatially heterogeneous periodic
solutions which are cos(nx)-perturbations of E+(β); and show that for some parameter values,
they can be stable on the centre manifold but unstable in the whole phase space. Therefore,
generically (1.6) only allows transient spatial patterns. In section 3, we present numerical
simulations which demonstrate our theoretical results; in particular, the simulations show that
a solution with a cos(nx)-like initial function tends to a cos(nx)-like time-periodic solution in
a relatively long time, and then it eventually converges to a spatially homogeneous periodic
solution. The numerical simulations shows that the non-locality caused by the mobility of
the immature population (measured by α) will shorten the duration of such transient spatial
patterns, and to our best knowledge, this is the first time that such an effect is observed/reported.

To end this introduction, we point out that Gourley and Ruan [4] generalized (1.5) to the
following equation by introducing distributed delay

∂w(t, x)

∂t
= Dm

∂w2(t, x)

∂x2
− dw(t, x) + εb

(∫ 0

−∞
f (s)w(t + s, x) ds

)
. (1.7)

Hu and Yuan [8] further generalized (1.7) to a spatially non-local version

∂w(t, x)

∂t
= Dm

∂w2(t, x)

∂x2
− dw(t, x) + εb

(∫ 0

−∞

∫
�

f (s, x, y)w(t + s, y) dy ds

)
. (1.8)

In both [4, 8], by using delay as the bifurcation parameter, the authors considered Hopf
bifurcations at the positive constant steady state, but only explored spatially homogeneous
periodic solutions. Note that for a PDE system subject to zero-flux boundary condition, a
bifurcated spatially homogeneous periodic solution can also be bifurcated in the corresponding
kinetic equation (equation without diffusion), the effect of diffusion cannot be reflected by such
bifurcations. Overall, spatially inhomogeneous time-periodic solutions in reaction–diffusion
systems subject to zero-flux boundary condition have been overlooked. The recent work Yi
et al [33] is an exception, where for a PDE model without delay, the authors observed that
the bifurcated spatially inhomogeneous periodic solution are unstable. But here we have gone
further by showing that such a spatially inhomogeneous periodic solution can be stable in
the corresponding centre manifold, and can be numerically observable in a relatively long
time period if the initial distribution is close to the central manifold (being a cos nx-like
shape). We would also like to point out that the system (1.8) was proposed as a mathematical
generalization of (1.7), and hence, of (1.5); our model (1.6) is rigorously derived from the
standard age structured PDE model (1.3), and thus, all terms and parameters in (1.6) have clear
biological explanations.
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2. Characteristic equations and Hopf bifurcations

In this section, we study the local stability of the spatially homogeneous positive steady state
and Hopf bifurcations for (1.6). Unlike in [4, 8] where delay was used as the bifurcation
parameter, we will use β as the bifurcation parameter.

Denote X := {φ ∈ W 2,2(0, π), φ′(0) = φ′(π) = 0} and let C = C([−1, 0], X) be
the Banach space of continuous X-values functions on [−1, 0] equipped with the sup norm.
From [29] or [7], (1.6) with the following initial condition

w(t, x) = η(θ, x) ∈ C
(
[−1, 0], W 1,2(0, π)

)
, t ∈ [−1, 0]

have a unique local solution. By an easy calculation we know that (1.6) has a spatially
homogeneous steady state E+ = ln β. Since we always assume that β > e2 in the rest of this
paper, it follows that E+ is indeed a positive steady state. The linearization of (1.6) about E+ is


∂w(t, x)

∂t
= Dm

∂2w(t, x)

∂x2
− τw(t, x) +

(1 − ln β)τ

π

( ∫ π

0
w(t − 1, y)

×
[

1 +
∑+∞

n=1

(
cos n(x + y) + cos n(x − y)

)
e−αn2

]
dy, x ∈ [0, π ], t > 0

∂w(t, 0)

∂x
= ∂w(t, π)

∂x
= 0, t > 0.

(2.1)

It is well known that the eigenvalue problem

φ′′(x) = νφ(x), φ′(0) = φ′(π) = 0,

has eigenvalues ν = −n2, n ∈ N0, with the corresponding normalized eigenfunctions
ρn cos(nx), where ρ0 = √

1/π and ρn = √
2/π for n > 0, and {ρn cos(nx)}∞n=0 forms a

complete and orthonormal basis for X. Here and in the sequel, we follow the tradition to
denote by N the set of all natural numbers and N0 = N

⋃{0}.
To explore the stability of E+, we plug the trial function w(t, x) = eλtφ(x) into (2.1).

Before this, we note that φ(x) can be expressed in terms of {ρn cos(nx)}∞n=0 as

φ(x) =
+∞∑
n=0

cnρn cos(nx).

Making use of the orthogonality of {ρn cos(nx)}∞n=0 after plugging, we are led to

cn

(
λ + τ + Dmn2 − τ(1 − ln β)e−λe−αn2) = 0, n ∈ N0. (2.2)

Denote �n(λ) = λ + τ + Dmn2 − τ(1 − ln β)e−λe−αn2
. Note that φ(x) is non-trivial if and

only if cn �= 0 for some n ∈∈ N0, implying that λ is an eigenvalue of the linearization equation
(2.1) if and only if there exists n ∈ N0 such that �n(λ) = 0. Thus, (2.1) has the following set
of characteristic equations:

�n(λ) = 0, n ∈ N0. (2.3)

It is easy to see that λ = 0 is not an eigenvalue. If λ = ±iω (ω > 0) are the solutions of
(2.3), then substituting it into (2.3) and separating the real and imaginary parts, we obtain the
following equations{

ω = τ(ln β − 1)e−αn2
sin ω,

τ + Dmn2 = τ(1 − ln β)e−αn2
cos ω,

n ∈ N0. (2.4)

For fixed τ, Dm and α, let ω
j
n ∈ ( π

2 + 2jπ, π + 2jπ) be the solution of the following equation

tan ω = − ω

τ + Dmn2
, n ∈ N0, j ∈ N0 (2.5)
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and

βj
n = exp

{
1 − τ + Dmn2

τe−αn2 cos ω
j
n

}
, n ∈ N0, j ∈ N0. (2.6)

From the definitions of ω
j
n and β

j
n , we know that ±iωj

n are the roots of �n(λ) = 0 with β = β
j
n

and β
j
n can also be expressed as

βj
n = exp

{
1 +

ω
j
n

τe−αn2 sin ω
j
n

}
, n ∈ N0, j ∈ N0. (2.7)

It is obvious that w
j
n is increasing in τ and Dm for n ∈ N and j ∈ N0, and is independent of α,

and β0
0 > e2. From the above discussions, we can easily obtain following further information

about w
j
n and β

j
n .

Lemma 2.1. The following statements hold.

(i) ±iωj
n, n ∈ N0, j ∈ N0 are the purely imaginary roots of (2.3) with β = β

j
n , and (2.3)

has no other purely imaginary root
(ii) For any fixed n ∈ N0, β

j
n < βk

n if j < k. For any fixed j ∈ N0, β
j
n < β

j
m if n < m.

Therefore, β
j
n < βk

m if n � m, j � k and (n, j) �= (m, k)

(iii) β
j

0 , j ∈ N0 is independent on Dm and α. For any fixed n ∈ N and j ∈ N0, β
j
n is a

increasing function of Dm and α.

Let λ(β) = γ (β) + iω(β) be the root of (2.3) satisfying γ (βk
n) = 0 and ω(βk

n) = ωk
n,

when β is close to βk
n , for n ∈ N0, k ∈ N0. Then we have the following transversality result.

Lemma 2.2. γ ′(βk
n) > 0, for any n ∈ N0, k ∈ N0.

Proof. Taking the derivative on both side of (2.3) with respect to β, and replacing β by βk
n ,

we have

dλ

dβ
(βk

n) = −τe−iωk
ne−αn2

βk
n[1 + τ(1 − ln βk

n)e
−iωk

ne−αn2 ]
. (2.8)

Using the fact that λ = iωk
n is the solution of (2.3), replacing τ(1 − ln βk

n)e
−iωk

ne−αn2
by

iωk
n + τ + Dmn2 and matching the real parts of both sides of the resulting equation yields

γ ′(βk
n) = −τe−αn2

[cos ωk
n(1 + τ + Dmn2) − ωk

n sin ωk
n]

βk
n[(1 + τ + Dmn2)2 + (ωk

n)
2]

> 0. (2.9)

�

From lemmas 2.1 and 2.2 and using the result of Ruan and Wei [18, corollary 2.4], we
now are in the position to state a conclusion on the distribution of roots of (2.3).

Lemma 2.3. The following statements hold.

(i) If β ∈ (e2, β0
0 ) (note that β0

0 > e2), then all roots of (2.3) have negative real parts.

(ii) For n ∈ N0, (2.3) has purely imaginary roots if and only if β = β
j
n , j ∈ N0. When

β = β0
0 , all the roots of (2.3), except ±iω0

0, have negative real parts.
(iii) If β > β0

0 , then (2.3) has at least one pair of roots with positive real parts.

The following result on the stability of the spatially homogeneous steady state E+ = ln β

follows directly from the above lemma.
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Theorem 2.4. For any fixed τ , the spatially homogeneous steady state E+ = ln β is
asymptotically stable when β ∈ (e2, β0

0 ) and unstable when β > β0
0 . Moreover, (1.6)

undergoes a Hopf bifurcation at w = ln β and β = β0
0 .

Remark 2.5. The first Hopf bifurcation value β0
0 is independent of diffusion coefficients Dm

and α, so is the stability of the spatially homogeneous steady state E+.

In what follows, we always impose the following assumption when we study Hopf
bifurcations around β = βk

n for k, n ∈ N0.

(Hk
n ) Equation �n(λ) = 0 with β = βk

n has only one pair of purely imaginary roots ±iωk
n.

This assumption is equivalent to the following condition due to lemma 2.1:

(Hk
n )∗ βk

n �= β
j
m, ∀(m, j) ∈ {(m, j) : m > n, j < k} ∪ {(m, j) : m < n, j > k}.

With the above preparation, we have the following theorem.

Theorem 2.6. If (Hk
n )∗ holds for n, k ∈ N0, then (1.6) undergoes a Hopf bifurcation at

w = ln βk
n when β = βk

n , and the bifurcating periodic solutions can be written as

w(t, x) = ln β + 2

√
− (β − βk

n)γ
′(βk

n)

Re{Cnk
1 (0)} ρn cos

(
2πt

T

)
cos(nx) + O(β − βk

n), (2.10)

where

T = 2π

ωk
n

[
1 − τnk

2
γ ′(βk

n)(β − βk
n)

Re{Cnk
1 (0)} + O

(
(β − βk

n)
2
)]

,

τ nk
2 = − 1

ωk
n

[
Im{Cnk

1 (0)} − Re{Cnk
1 (0)}ω′(βk

n)

γ ′(βk
n)

]
,

and Cnk
1 (0) is a constant in the normal form which is calculated in the appendix.

Proof. The existence of Hopf bifucation at β = βk
n directly follows from lemmas 2.1–2.2 and

the expression (2.10), and the formulas for T and τnk
2 are direct result of applying the centre

manifold theorem in [3] and normal form method in [6], with detailed derivation given in the
appendix. �

Remark 2.7. Based on the above discussions, we also have the following remarks.

(i) If (Hk
n ) with n �= 0 holds and ReCnk

1 (0) �= 0, then (1.6) admits spatially inhomogeneous
periodic solutions with form (2.10) in a left or right neighbourhood of βk

n . From expression
(2.10), we see that at time t these solutions are cos(nx)-perturbations of the spatially
homogeneous steady state ln β.

(ii) Using lemma (2.3)-(iii), we know that when β > β0, an unstable manifold in a small
neighbourhood of the steady state always exists. Therefore, all inhomogeneous periodic
solutions arising from local Hopf bifurcations are unstable in the phase space. But its
stability on the centre manifold is determined by the sign of the corresponding ReCnk

1 (0).
(iii) From lemma (2.1), we see that for any fixed n � 1 the critical value β0

n , from which
cos(nx)-like time-periodic solutions are bifurcated, is increasing both with respect to the
mature diffusion coefficients Dm and in the immature mobility constant α. Therefore,
increasing α may will enlarge β0

n and therefore, may help eliminate cos(nx)-like
oscillations in time around the steady state.
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π/2 µ

y=K(n)µ

y=sin(µ)

Figure 1. Illustration of the solution of the first equation of (2.11)

Next we explore in more detail the impact of the mature diffusion rate Dm on the existence
of imaginary roots in spatially inhomogeneous periodic solutions. To this end, we use Dm as
a parameter. We have seen from lemmas 2.1 and 2.3 that if β � β0

0 , then (2.3) has no purely
imaginary roots for all Dm > 0 and α � 0. Thus, in the sequel we only need to consider those
β > β0

0 with β �= β
j

0 , since β
j

0 , j ∈ N are critical values for β that are independent of Dm

at which, only spatially homogeneous periodic solutions are bifurcated. For convenience, we
set M = {β : β > β0

0 and β �= β
j

0 , j ∈ N}.
Assume that λ = ±iµ are a pair of purely imaginary roots of �n(λ) = 0. Then, the real

parts in the equation �n(iµ) = 0 lead to

K(n)µ = sin(µ) (2.11)

and the imaginary parts result in

(τ + Dmn2)K(n) = − cos(µ) (2.12)

where

K(n) = eαn2

τ(ln β − 1)
.

Note that K(n) > 0 (since β ∈ M) and K(n) is increasing in n with K(∞) = ∞ if α > 0.
Thus, if K(1) � 2/π , then (2.11) cannot have any root µ > 0 at which cos µ < 0 (see
figure 1), implying that �n(λ) = 0 cannot have purely imaginary roots for all n ∈ N.

When K(1) < 2/π , there is an N � 1 such that K(n) < 2/π for n � N and K(n) � 2/π

for n > N . In such a case, for each n � N , define

In = max
{
j ∈ N0 : (2.11) has a solution µj

n in the interval (π/2 + 2jπ, π + 2jπ)
}
.

(2.13)

Then, for 0 � j < k � In, we have

− cos(µ0
n) � − cos(µj

n) > − cos(µk
n) � − cos(µIn

n ).

Note that

(τ + Dmn2)K(n) = eαn2
(τ + Dmn2)

τ (ln β − 1)
>

eα(τ + Dm)

τ(ln β − 1)
>

eα

ln β − 1
.

Thus, if

eα

ln β − 1
� − cos(µ0

n) (2.14)
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then none of the µ
j
n, j = 0, 1, · · · , In, can satisfy (2.12), implying that (2.3) cannot have

purely imaginary roots for Dm > 0. On the other hand, if (2.14) is reversed, i.e.,
eα

ln β − 1
< − cos(µ0

n), (2.15)

then, there exists a Jn ∈ N with Jn < In such that

(Dm)jn := [τ(1 − ln β) cos(µj
n)e

−αn2 − τ ](n2)−1 > 0. (2.16)

In other words, µ
j
n also satisfies (2.12) when Dm = (Dm)

j
n for 0 � j � Jn, meaning that

iµ
j
n, 0 � j � Jn, are roots of (2.3). One can also easily see that for any fixed n � N ,

(Dm)
j
n < (Dm)kn, if j, k � Jn with j > k; and for any fixed j � Jn, (Dm)

j
n < (Dm)

j
m, if

m < n � N .
Summarizing the above analysis and noting that K(1) � 2/π is equivalent to β �

exp( π
2τ

eα + 1), we obtain the following lemma.

Lemma 2.8. The following statements hold.

(i) When β � exp( π
2τ

eα + 1), (2.3) has no purely imaginary root for any Dm > 0.
(ii) When β > exp( π

2τ
eα + 1), there exists an N > 1 such that for every n � N , In in (2.13)

is well-defined. Moreover,
(ii)-1 if (1−ln β) cos(µ0

1)e
−α � 1, then (2.3) has no purely imaginary root for any Dm > 0;

(ii)-2 if (1 − ln β) cos(µ0
1)e

−α > 1, then there exists an Jn ∈ N with Jn < In such that
(Dm)

j
n given by (2.16) is positive for 0 � j � Jn, and iµj

n, 0 � j � Jn, are roots of
(2.3) for Dm = (Dm)

j
n.

In the case of (ii)-2, for any fixed 1 � n � N , let λ(Dm) = ξ(Dm) + iµ(Dm) be the root
of �(λ, n) = 0 satisfying ξ((Dm)kn) = 0 and µ((Dm)kn) = µk

n, when Dm is close to (Dm)kn,
for 0 � k � Jn. A calculation similar to the proof of lemma 2.2 verifies the transversality
condition as stated below.

Lemma 2.9. For any fixed 1 � n � N , ξ ′((Dm)kn) < 0, ∀ k = 0, . . . , Jn.

By the above two lemmas, we have the following theorem confirming the bifurcation of
spatially inhomogeneous periodic solutions, in terms of the diffusion rate Dm.

Theorem 2.10. In addition to the assumptions for (ii)-2 in lemma 2.8, further assume that
except for the pair λ = ±iµk

n, there is no other purely imaginary root for the characteristic
equation �n(λ) = 0 when Dm = (Dm)kn. Then (1.6) undergoes a Hopf bifurcation at w = ln β

at Dm = (Dm)kn, and the bifurcating periodic solutions can be written as

w(t, x) = ln β + 2

√
− (Dm − (Dm)kn)ξ

′(0)

Re{C̃nk
1 (0)} ρn cos

(
2πt

T̃

)
cos(nx) + O(Dm − (Dm)kn), (2.17)

with

T̃ = 2π

µk
n

[
1 − τ̃ nk

2
ξ ′((Dm)kn)(Dm − (Dm)kn)

Re{C̃nk
1 (0)} + O

(
(Dm − (Dm)kn)

2
)]

,

τ̃ nk
2 = − 1

µk
n

[
Im{C̃nk

1 (0)} − Re{C̃nk
1 (0)}µ′((Dm)kn)

ξ ′((Dm)kn)

]
,

where C̃nk
1 (0) is given by the same formula (4.22) as for Cnk

1 (0) in the appendix with βk
n being

replaced by β and Dm replaced by (Dm)kn.

Remark 2.11. From lemma 2.8-(i), for any fixed β and τ , Hopf bifurcation will not occur for
large α = ∫ τ

0 D(a) da. This suggests that large diffusion rate of immature individuals tends to
destroy spatially inhomogeneous patterns. Also note that (Dm)kn < (Dm)km, for m < n � N .
This implies that the smaller Dm may lead to more complicated spatial patterns.
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Table 1. Critical values.

n ω0
n β0

n β1
n ReCn0

1 (0)

0 2.4556 9.8976 49.9956 −1.6299
1 2.4570 10.0561 — −1.7625
2 2.4611 10.5590 — −1.6715
3 2.4677 11.4993 — −1.5284
4 2.4768 13.0730 — −1.3409

Figure 2. Numerical simulations of (1.6) with τ = 3, Dm = 0.01, α = 0 and
initial function ln β + 0.2. (a) β = 1.5, the solution approaches to the steady state.
(b) β = 9.7, the solution still approaches to the steady state but with noticeable
oscillations. (c)β = 9.9, the solution tends to a spatially homogeneous periodic solution.

3. Numerical analysis and discuss

In this section we present some numerical simulations for (1.6) to illustrate the obtained analytic
results.

Firstly, we choose α = 0, τ = 3 and Dm = 0.01. By using formulas (2.5), (2.6),
(4.21) and (4.22), we can obtain table 1 for the related critical values of bifurcations. Note
that β1

0 = 49.9956, which is greater than all β0
n for n � 4. It follows that assumption (H 0

n )
holds for n � 4. Therefore, from the theoretic results in the last section, we see that for (1.6)
the spatially homogeneous steady state is asymptotically stable if β < 9.8976 and unstable
if β > 9.8976. Moreover, stable spatially homogeneous periodic solutions occur when β

crosses through 9.8976 and cos(nx)-like, n = 1, 2, 3, 4 periodic solutions appear when β

crosses through 10.0561, 10.5590, 11.4993 and 13.0730, respectively, and they are stable on
the centre manifolds.
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Figure 3. Numerical simulations of (1.6) with τ = 3, Dm = 0.01, β = 10.1, α = 0
and initial function ln β + 0.6 cos(x). (a), (b) and (c) describe the solution in locations
x = 0 (blue), x = π

2 (green) and x = 2π

5 (red); (d) solution follows a cos(x)-like periodic
pattern with time period 2.56 which is close to 2π

ω0
1

= 2.5572 first, then approaches a

homogeneous periodic solution, demonstrating transient oscillatory patterns.

When 1 < β < β0
0 the spatially homogeneous steady state is asymptotically stable, as

shown in figures 2(a) and (b). When β crosses through β0
0 , Hopf bifurcation occurs and the

bifurcated periodic solutions are stable as shown in figure 2(c). Besides, the bifurcated periodic
solution is spatially homogeneous.

In figure 3, we use the initial function which is a cos(x)-perturbation of the spatially
homogeneous steady state. Figure 3(a) plots the solutions at x = 0 (blue), x = π

2

(green) and x = 2π
5 (red) in the time interval [0, 50]. Figures 3(b) and (c) are for time

intervals [50, 100] and [750, 800], respectively. Figure 3 shows that the solution is spatially
inhomogeneous at first, and then it tends to a cos(x)-like periodic solution as shown in
figure 3(d). Further, the period of the periodic solution is about 2.56 which is close to the
period of the bifurcated periodic solution 2π

ω0
1

= 2.5572 (see figure 3(b)). Moreover, the solution

approaches to a spatially homogeneous periodic solution with the same period after around
time 700.

Since the cos(nx)-like bifurcated periodic solutions are stable on the centre manifolds,
we can see from figures 4 and 5(b) that they can be observed for a relatively long period if
we choose a perturbation of cos(nx) as the initial function, when the parameter β crosses
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Figure 4. Numerical simulations of (1.6) with τ = 3, Dm = 0.01 and α = 0. (a)
β = 10.6, initial function ln β + 0.6 cos(2x), the solution follows a cos(2x)-like pattern
for some time and then approaches a uniform periodic solution. (b) β = 11.5, initial
function ln β + 0.6 cos(3x), the solution follows a cos(3x)-like pattern for some time
and then tends to a uniform periodic solution.

Figure 5. Numerical simulations of (1.6) with τ = 3, Dm = 0.01 and α = 0. (a)
β = 11.5, initial function ln β + cos(4x), the solution directly approaches to a uniform
periodic solution. (b) β = 13.5, the solution follows a cos(4x)-like periodic pattern for
some time before approaching a homogeneous periodic solution.

through the critical values β0
n . Figure 5(a) shows that a solution with initial function being a

cos(4x)-perturbation of the steady state will not converge to any cos(4x)-like periodic solution,
instead it will tend to a spatially homogeneous periodic solution directly when β is less than the
critical value β0

4 . Figures 3, 4 and 5 suggest that the spatially homogeneous periodic solution
exists for a wide range of the parameter β and it is stable.

Now, we explore the effect of the non-locality caused by the mobility of the immature
population. To this end, we choose α = 0.1, τ = 3 and Dm = 0.01. Similarly, we can obtain
table 2 for related critical values of bifurcations. From table 2 and the theoretic results we know
that: for (1.6) the spatially homogeneous steady state is asymptotically stable if β < 9.8976
and unstable if β > 9.8976; cos(nx)-like, n = 1, 2, periodic solutions appear when β crosses
through 11.3744 and 19.0092, respectively, and they are stable in on the corresponding centre
manifolds.

In figure 6, we use a cos(x)-perturbation of the spatially homogeneous steady state as the
initial function. Figures 6(a) and (b) illustrate that the spatially homogeneous steady state is
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Table 2. Critical values.

n ω0
n β0

n β1
n ReCn0

1 (0)

0 2.4556 9.8976 49.9956 −1.6299
1 2.4570 11.3744 — −1.5036
2 2.4611 19.0092 — −0.8333
3 2.4677 69.5551 — —

Figure 6. Numerical simulations of (1.6) with τ = 3, Dm = 0.01, α = 0.1 and
initial function ln β + 1.5 cos(x). (a) β = 9.5, the solution approaches to the steady
state. (b) β = 10, the solution tends to a spatially homogeneous periodic solution.
(c) β = 15, the solution first follows a cos(x)-like inhomogeneous periodic solution for
some time and then approaches a uniform periodic solution.

asymptotically stable if β < 9.8976 and unstable if β > 9.8976, respectively. Figure 6(b)
further illustrates that there is no transient spatial pattern if β < 11.3744. Figure 6(c) shows
that the solution follows a spatially inhomogeneous and time-periodic pattern for some time
before it eventually converges to a spatially homogeneous periodic solution. Comparing the
numerical results for α = 0 and α = 0.1, we find that the spatial non-locality may shorten the
duration of the transient spatial patterns.
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Appendix: Normal form

Assume (Hk
n ) holds and let β = βk

n + µ, µ ∈ R. Then µ = 0 is a Hopf bifurcation value for
(1.6). For φ ∈ C, denote

Lµφ := − τφ(0) +
(1 − ln(βk

n + µ))τ

π

×
∫ π

0
φ(−1)

[
1 +

+∞∑
n=1

(
cos n(x + y) + cos n(x − y)

)
e−αn2

]
dy,

fµφ := τ

π

{ ∫ π

0

[(
1

2
ln(βk

n + µ) − 1

)
φ2(−1) +

(
1

2
− 1

6
ln(βk

n + µ)

)
φ3(−1) + O

(
φ4(−1)

)]

×
[

1 +
+∞∑
n=1

(
cos n(x + y) + cos n(x − y)

)
e−αn2

]
dy,

A(µ)φ = φ̇ + X0[Lµ(φ) + Dm
∂2φ

∂x2 (0) − φ̇(0)] and R(µ)φ := X0fµ(φ), where

X0 =
{

0, θ ∈ [−1, 0)

1, θ = 0.

Then (1.6) can be rewrite as the following

w′(t) = A(µ)wt + R(µ)wt , (4.1)

where ‘′’ is the derivative with respect to t and wt = w(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C([0, 1], X) and φ ∈ C([−1, 0], X), we define a bilinear form as following

(ψ, φ) =
∫ π

0
ψ̄(0)φ(0) dy +

∫ 0

−1

∫ π

0

(1 − ln βk
n)

π

[ ∫ π

0
ψ̄(s + 1, z)

×
[

1 +
+∞∑
n=1

(
cos m(y + z) + cos m(y − z)

)
e−αn2

]
dzφ(s, y) dy ds. (4.2)

In the rest of this section, we always use similar notations to those used in Hassard et al [6].
Define qnk(θ) = eiωk

nθρn cos(nx), and q∗
nk(s) = P k

n eiωk
nsρn cos(nx), n ∈ N0, k ∈ N0, where

P k
n = (1 + τ + Dmn2 − iωk

n)
−1.

Then by direct computations we have

(q∗
nk, qnk) = (q̄∗

nk, q̄nk) = 1 and (q∗
nk, q̄nk) = (q̄∗

nk, qnk) = 0.

Let wt be the solution of (1.6) when µ = 0 and define znk(t) = (qnk, wt ) and Wnk(t, θ, x) =
wt(θ) − 2Re{znk(t)qnk}. Using the definitions of znk, Wnk and the bilinear form, it is not
difficult to verify that (1.6) is reduced to the following system:


z′
nk(t) = iωk

nznk +
∫ π

0
q̄∗

nk(0)f0 dy,

(Wnk)′(t) = A(0)Wnk − 2Re

{∫ π

0
q̄∗

nk(0)f0 dyqnk(θ)

}
+ X0f0, θ ∈ [−1, 0],

(4.3)

where f0 = f0
(
2Re{znk(t)qnk} + W(t, θ)

)
. Denote

gnk(znk, z̄nk) =
∫ π

0
q̄∗

nk(0)f0 dy := gnk
20

z2
nk

2
+ gnk

11znkz̄nk + gnk
02

z̄2
nk

2
+ gnk

21
z2
nkz̄nk

2
+ · · · . (4.4)
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Then, the Poincaré normal form for (1.6) has the following form:

z′
nk = λ(µ)z + Cnk

1 (µ)z2z̄ + h.o.t., (4.5)

and

Cnk
1 (0) = i

2ωk
n

(
gnk

20gnk
11 − 2|gnk

11 |2 − 1

3
|gnk

02 |2
)

+
gnk

21

2
. (4.6)

To obtain the existence of the non-trivial periodic solutions, the only remaining thing is the
calculations of Cnk

1 .
Using the centre manifold theorem given in [3], we know that on the centre manifold

Wnk(t, θ) has the following form

Wnk = Wnk
20 (θ, x)

z2
nk

2
+ Wnk

11 (θ, x)znkz̄nk + Wnk
02 (θ, x)

z̄2
nk

2
+ · · · . (4.7)

By expanding the series and comparing the corresponding coefficients, we have

gnk
20 =




2τ√
π

P̄ k
n

(
1

2
ln βk

0 − 1

)
e−2iωk

0 , n = 0

0, n �= 0,

(4.8)

gnk
02 =




2τ√
π

P̄ k
n

(
1

2
ln βk

0 − 1

)
e2iωk

0 , n = 0

0, n �= 0,

(4.9)

gnk
11 =




2τ√
π

P̄ k
n

(
1

2
ln βk

0 − 1

)
, n = 0

0, n �= 0,

(4.10)

g0k
21 = 2τ

π
P̄ k

0

(
1

2
ln βk

0 − 1

) ∫ π

0
[eiωk

0 W 0k
20 (−1) + 2e−iωk

0 W 0k
11 (−1)] dy +

τ

π
P̄ k

0 (3 − ln βk
0 )e−iωk

0

(4.11)

and

gnk
21 = 8τ

π2
P̄ k

n

(
1

2
ln βk

n − 1

) ∫ π

0
cos(ny)

∫ π

0
cos(nz)

(
1

2
eiωk

nWnk
20 (−1)

+ e−iωk
nWnk

11 (−1)

) +∞∑
m=1

(
cos m(y + z) + cos m(y − z)

)
e−αm2

dz dy

+
9τ

π
P̄ k

n

(
1

2
− 1

6
ln βk

n

)
e−iωk

ne−αn2
, n �= 0. (4.12)

Next we calculate the centre manifold. Let

Hnk(znk, z̄nk, θ) = −2Re

{∫ π

0
q̄∗

nk(0)f0 dyqnk(θ)

}
+ X0f0

:= Hnk
20 (θ)

z2
nk

2
+ Hnk

11 (θ)znkz̄nk + Hnk
02 (θ)

z̄2
nk

2
+ Hnk

21 (θ)
z2
nkz̄nk

2
+ · · · .

(4.13)

Expanding both sides of the second equation of (4.3) and comparing the corresponding
coefficients, we can obtain that

(2iωk
n − A(0))Wnk

20 = Hnk
20 , (4.14)

A(0)Wnk
11 = −Hnk

11 , (4.15)

(2iωk
n + A(0))Wnk

02 = −Hnk
02 . (4.16)

101



Nonlinearity 27 (2014) 87 Y Su and X Zou

By comparing coefficients of the both sides of (4.13), we have that for θ ∈ [−1, 0),

Hnk
20 (θ) = −gnk

20qnk(θ) − ḡnk
02 q̄nk(θ),

Hnk
11 (θ) = −gnk

11qnk(θ) − ḡnk
11 q̄nk(θ).

Substituting the above equations into (4.14) and (4.15) respectively, leads to

Ẇ nk
20 (θ) = 2iωk

nW
nk
20 (θ) + gnk

20ρn cos(nx)eiωk
nθ + ḡnk

02ρn cos(nx)e−iωk
nθ ,

Ẇ nk
11 (θ) = gnk

11ρn cos(nx)eiωk
nθ + ḡnk

11ρn cos(nx)e−iωk
nθ .

Solving the above equations, we obtain,

Wnk
20 (θ) = −gnk

20

iωk
n

ρn cos(nx)eiωk
nθ − ḡnk

02

3iωk
n

ρn cos(nx)e−iωk
nθ + Enk(x)e2iωk

nθ ,

Wnk
11 (θ) = gnk

11

iωk
n

ρn cos(nx)eiωk
nθ − ḡnk

11

iωk
n

ρn cos(nx)e−iωk
nθ + Fnk(x),

where Enk(x) and Fnk(x) can be expressed as Enk(x) = ∑+∞
m=0 Enk

m cos(mx) and Fnk(x) =∑+∞
m=0 Fnk

m cos(mx), respectively, and Enk
m and Fnk

m (m, n ∈ N0) are constants for fixed
parameters. However,

H 0k
20 = − g0k

20

√
1

π
− ḡ0k

02

√
1

π
+

2τ

π

(
1

2
ln β − 1

)
e−2iωk

0 , (4.17)

Hnk
20 = − gnk

20

√
2

π
cos(nx) − ḡnk

02

√
2

π
cos(nx) +

2τ

π

(
1

2
ln β − 1

)
e−2iωk

n

+
2τ

π

(
1

2
ln β − 1

)
e−2iωk

ne−4αn2
cos(2nx), n �= 0, (4.18)

H 0k
11 = − g0k

11

√
1

π
− ḡ0k

11

√
1

π
+

2τ

π

(
1

2
ln β − 1

)
, (4.19)

Hnk
11 = − gnk

11

√
2

π
cos(nx) − ḡnk

11

√
2

π
cos(nx) +

2τ

π

(
1

2
ln β − 1

)

+
2τ

π

(
1

2
ln β − 1

)
e−4αn2

cos(2nx), n �= 0. (4.20)

Substituting (4.17) and (4.19) into (4.14) and (4.15), respectively, we then have for n = 0,

E0k = 2τ( 1
2 ln βk

0 − 1)e−2iωk
0

π [2iωk
0 + τ − (1 − ln βk

0 )τe−2iωk
0 ]

+
+∞∑
p=1

E0k
p cos(px)

and

F 0k = 2( 1
2 ln βk

0 − 1)

π ln βk
0

+
+∞∑
p=1

F 0k
p cos(px).

Similarly, we can obtain that for n > 0,

Enk = 2τ( 1
2 ln βk

n − 1)e−2iωk
n

π [2iωk
n + τ − (1 − ln βk

n)τe−2iωk
n]

+
2τ( 1

2 ln βk
n − 1)e−2iωk

ne−4αn2
cos(2nx)

π [2iωk
n + 4Dmn2 + τ − (1 − ln βk

n)τe−2iωk
ne−4αn2 ]

+
+∞∑

p=1,p �=2n

Enk
p cos(px)
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and

Fnk = 2( 1
2 ln βk

n − 1)

π ln βk
n

+
2τ( 1

2 ln βk
n − 1)e−4αn2

cos(2nx)

π [4Dmn2 + τ − (1 − ln βk
n)τe−4αn2 ]

+
+∞∑

p=1,p �=2n

F nk
p cos(px).

Then, we have

g0k
21 = τ

π
P̄ k

0 (3 − ln βk
0 )e−iωk

0 + 4τ 2P̄ k
0

(
1

2
ln βk

0 − 1

)2 [
P̄ k

0

iωk
0

e−2iωk
0 − 7P k

0

3iωk
0

+
e−3iωk

0

π [2iωk
0 + τ − (1 − ln βk

0 )τe−2iωk
0 ]

+
2e−iωk

0

πτ ln βk
0

]
,

gnk
21 = 2τ 2P̄ k

n

(
1

2
ln βk

n − 1

)2

e−αn2

[
2e−3iωk

n

π [2iωk
n + τ − (1 − ln βk

n)τe−2iωk
n]

+
4e−iωk

n

πτ ln βk
n

]

+ τ 2P̄ k
n

(
1

2
ln βk

n − 1

)2

e−5αn2

[
2e−3iωk

n

π [2iωk
n + 4Dmn2 + τ − (1 − ln βk

n)τe−2iωk
ne−4αn2 ]

+
4e−iωk

n

π [4Dmn2 + τ − (1 − ln βk
n)τe−2iωk

ne−4αn2 ]

]
, for n �= 0.

Therefore,
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]
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0 , (4.21)
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+
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]
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2
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)2
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[
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n

π [2iωk
n + 4Dmn2 + τ − (1 − ln βk

n)τe−2iωk
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+
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π [4Dmn2 + τ − (1 − ln βk
n)τe−2iωk

ne−4αn2 ]

]
, for n �= 0. (4.22)
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