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Abstract A general diffusive population model for
interactions of pioneer and climax species subject to
the no-fluxboundary condition is considered.Local and
global steady-state bifurcations aswell asHopf bifurca-
tions are investigated.A condition for Turing instability
not to happen is obtained, and the conditions for occur-
rences of Turing bifurcations and Hopf bifurcations are
also obtained. Numerical simulations are carried out to
demonstrate and extend the obtained analytic results
which suggest that the spatial diffusion may make the
climax speciesmore dominant. The results indicate that
themodel,with spatial diffusion incorporated , canhave
very rich spatial–temporal dynamics.
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1 Introduction

Population growth of a single species is often modeled
by u′ = uh(u), where the fitness function h is chosen
according to some basic characteristics of the species
under consideration. To model a pioneer species that
flourishes at very small population densities but pro-
gressively do worse as densities increase due to the
crowding effect, Verhulst [23] and Ricker [15] chose
a decreasing fitness function allowing a unique zero,
which is similar to f illustrated in Fig. 1. To model a
climax species that requires a minimum threshold for
survival, flourishes at appropriately higher population
densities due to the benefits of group defense or other
aggregate behaviors, and yet, struggles/suffers at fur-
ther higher densities due to overcrowding effect, Allee
[1] choose another function that has the properties of
the function g as shown in Fig. 1.

To study the interaction of a pioneer and a climax
species, Selgrade andNamkoong [17] proposed the fol-
lowing model:

{
u′ = u f (c11u + c12v),

v′ = vg(c21u + c22v),
(1.1)

where u and v represent the populations of the pioneer
and climax species, respectively, f and g are the pio-
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neer and climax fitness functions, respectively, which
are assumed to be dependent on the weighted total pop-
ulation of both species. Here, ci j > 0 (i, j = 1, 2)
reflect the interaction strengths of species j on the
species i . By the nature of climax and pioneer species,
f and g satisfy the following general assumptions:

f ′(z1) < 0 and f (z1) = 0, (1.2)

g ∈ C1 has exact two zeros: 0 < z+2 < z−2
and g′(z−2 ) < 0 < g′(z+2 ). (1.3)

Under (1.2) and (1.3), system (1.1) can have various
structures of equilibria, depending on the amplitudes of
the three positive numbers z1, z−2 and z+2 (see Fig. 1)
which are determined by particular forms of functions
f and g and the parameters therein.
In (1.1), there are four weight parameters, but after

a rescaling, we only need to consider two parameters,
as in the following scaled system

{
u′ = u f (c1u + v),

v′ = vg(u + c2v).
(1.4)

As was shown in [3], when c1 �= z1/z
±
2 and c2 �=

z±2 /z1, the equilibria as well as their local stability for
(1.4) can be described by Fig. 2, where the “ • ” denotes
the stable equilibrium, “ ◦ ” denotes the unstable equi-
librium and “ ∗ ” denotes the equilibrium whose sta-
bility further depends on the values of parameters c1
and c2. We refer to [3,18,21] for the qualitative study
of long-term behaviors including the stability of the
equilibria and Hopf bifurcations.

It is well known that spatial effect is an important
factor in ecology, and it is indeed considered as one of
the major factors that contribute to biological diversity
in the real world. Moreover, in the presence of spa-
tial effects, diffusion can have a complicated impacts
on spatial ecology. For example, incorporating diffu-
sion into a reaction (or kinetic) system, the diffusion
destroys the stability of an equilibrium (Turing insta-
bility) leading to the formation of certain patterns (see,
e.g., [22], or [5]) and the rich references therein), or
drive a temporally periodic but spatially homogeneous
dynamics to a spatially heterogeneous oscillation (see,
e.g., [20]); the diffusion can also drive the solution to
blow-up at finite time (see, e.g., [11]), or drive an oth-
erwise persistent competing species to extinction (see,
e.g., [6] ). There are also diffusive models which can
preserve the dynamics of the corresponding ODEmod-

els. In other worlds, it all depends on the nonlinear-
ity/nonlinearities in the reaction equation(s) and their
interplay with the diffusion, and hence, for any given
reaction diffusion model system, its spatial–temporal
dynamics needs to be analyzed separately.

Adding spatial and random movement (diffusion)
into (1.4) results in the following reaction–diffusion
model

⎧⎨
⎩

∂u
∂t = d1

∂2u
∂x2

+ u f (c1u + v),

∂v
∂t = d2

∂2v
∂x2

+ vg(u + c2v),
(1.5)

which has recently been investigated under some sce-
narios for the habitat domain with different bound-
ary conditions. In the case of bounded habitat domain,
Buchanan [4] gave a sufficient condition for the Turing
instability to happen under no-flux boundary condition,
and Liu and Wei [10] investigated Hopf bifurcation
under the zeroDirichlet boundary condition. Assuming
the habitat is the whole spatial space, Brown et. al. [2],
Yuan and Zou [27] and Weng and Zou [25] explored
the existence of traveling wave fronts and spreading
speeds when the interaction coefficients are in certain
ranges.

In both cases of bounded and unbounded domains,
understanding the solutions dynamics of (1.5) is far
from complete, and there are wide parameter ranges
for which the dynamics remains unclear. The goal of
this paper is to further explore system (1.5) subject to
the no-flux boundary condition in an bounded domain,
with emphasis on the spatial–temporal dynamics and
the effect of the diffusion on the dynamics. That is, we
will study the following boundary value problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u
∂t = ∂2u

∂x2
+ u f (c1u + v), in (0,+∞) × �,

∂v
∂t = d ∂2v

∂x2
+ vg(u + c2v), in (0,+∞) × �,

∂u(t,0)
∂x = ∂u(t,π)

∂x = 0, on (0,+∞) × ∂�.

(1.6)

Here, for simplicity, we will consider the simplest
bounded domain� = (0, π).Wewill study the dynam-
ics of (1.6), by comparing with the dynamics of (1.4),
which can be considered as a subsystem of (1.6), and
we hope to gain some insights on the impact the spatial
diffusion on the spatial–temporal dynamics.
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Fig. 1 Diagrams of fitness functions for pioneer (a) and climax (b) species
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Fig. 2 Structure of equilibria and their stability for the non-spatial model (1.4), depending on the ranges of the parameters c1 and c2

In what follows, we always assume that c1 �= z1/z
±
2

and c2 �= z±2 /z1 to exclude the critical cases. Due to
the no-flux boundary condition, systems (1.6) and (1.4)
share the same constant steady states. We show that the
linear stability of all constantboundary steady states for

(1.6) are the same as for (1.4) and the linearly unstable
constant coexistence steady states of (1.4) still remain
linearly unstable in (1.6). All these suggests that we
only need to focus on the interior positive constant
steady states, and we choose (u∗, v∗) labeled by “ ∗ ”
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in Fig. 2 to work on. We derive a very simple sufficient
condition, that is, d ≥ z+2 g′(z+2 ), for the Turing bifur-
cation not to occur, and this condition greatly improves
the corresponding condition d ≥ d̂ in [4] where d̂ may
tend to ∞ by varying c2. We then further investigate,
vigorously and with details, the local/global steady-
state bifurcation and Hopf bifurcation near this con-
stant steady state. Using c2 as the bifurcation parame-
ter, the numerical results suggest that the bifurcated
steady states branch connects to the climax bound-
ary equilibrium. These results indicate that the model,
after incorporatedwith spatial diffusion, can allow very
rich spatial–temporal dynamics/patterns, revealing the
impact that the spatial diffusion can have.

We point out that by using the same approach,
spatial–temporal dynamics/patterns have also been
recently explored for some other model systems, see,
e.g., [8,9,14,24,28,29]. However, the rich structure of
constant steady states of (1.6), corresponding to the
various positions of the three lines in Fig. 2, allows
various parameter ranges that would lead to different
natures of the interactions between the two species.
As such, it is worthwhile and important to investigate
the spatial–temporal dynamics/patterns of (1.6) with
various scenarios of the constant steady states of this
model.

The rest of this paper is organized as follows: In the
next section, we establish the well posedness of initial
value problem of (1.6) and study the linear stability
of constant steady states. In Sect. 3, we investigate the
steady-state andHopf bifurcations. Finally, we conduct
some numerical simulations to illustrate and extend the
analytic results.

2 Well posedness and linear stability

In this section, we first establish the well posedness of
the initial value problem of (1.6), and then, we prove
that the constant steady states labeled by “ • ” and “ ◦ ”
in Fig. 2 have the same linear stability/instability for
system (1.6) as for (1.4).

Lemma 2.1 For any given nonnegative initial function
(u0, v0) ∈ C([0, π ],R2), (1.6) admits a unique non-
negative bounded solution defined for all t ∈ (0,∞).

Proof The local existence and uniqueness of solutions
follows from the standard results of parabolic equa-
tions [7]. Let [0, T0) be the maximal interval of exis-

tence, where T0 is +∞ if the solution is bounded
in t ∈ [0, T0). Let γ := f (0) = max

z∈R f (z) and

U (t, x) := e−γ t u(t, x). Then, U (t, x) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂U (t,x)
∂t = ∂2U (t,x)

∂x2
−U (t, x)[γ − f (c1u(t, x) + v(t, x))],

∂U (t,0)
∂x = ∂U (t,π)

∂x = 0,

U (0, x) ≥ 0.

Using [12, Lemma 4.1, page 19] we obtain that
U (t, x) ≥ 0 for all t ∈ [0, T0) because γ −
f (c1u(t, x) + v(t, x)) ≥ 0. It then follows that
u(t, x) ≥ 0 for all t ∈ [0, T0). Similarly, we can
obtain that v(t, x) ≥ 0 for all t ∈ [0, T0). Let M1 :=
max

x∈[0,π ] u0(x), and z(t) be the solution to the following

problem

{ dz
dt = f (c1z),

z(0) = M1.

Then, from the monotonicity of f and the comparison
principle we have u(t, x) ≤ z(t) for all t ∈ [0, T0) and
x ∈ [0, π ]. Note that limt→+∞ z(t) = z1/c1, it follows
thatu(t, x) is bounded in t ∈ [0, T0). On the other hand,
let M2 = max{ max

x∈[0,π ] v(0, x),max
z∈R g(z)}, then it is not

difficult to obtain that v(t, x) ≤ M2 for t ∈ [0, T0) by
using the comparison principle. Thus, T0 = +∞ and
the solution is nonnegative and bounded. ��

Define X := {(u, v) ∈ H2(0, π) × H2(0, π), u′(0)
= u′(π) = v′(0) = v′(π) = 0} and N0 := {0} ∪
N, where N is the set of natural number. Linearizing
system (1.6) at a constant steady state (ue, ve) yields

∂

∂t

(
u
v

)
= L

(
u
v

)
,

where the operator L : X → X is defined by

L :=
(

∂2

∂x2
+ A B

C d ∂2

∂x2
+ D

)
, (2.1)

with

A = f (c1ue + ve) + c1ue f
′(c1ue + ve),

B = ue f
′(c1ue + ve),

C = veg
′(ue + c2ve),

D = g(ue + c2ve) + c2veg
′(ue + c2ve).
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Note that the eigenvalue problem

ϕ′′(x) = λϕ(x), ϕ′(0) = ϕ′(π) = 0,

has eigenvalues −n2, n ∈ N0 with corresponding
eigenfunctions cos(nx), which forms an orthonormal
basis of the space L2(0, π). Next we look for eigen-
functions of L in X . For this purpose, we assume that

(
φ

ψ

)
=

∞∑
n=0

cos(nx)

(
an
bn

)

is an eigenfunction of L with the corresponding eigen-
value λ. Then, by a straightforward analysis, we con-
clude that there exists n ∈ N0 such that

Ln

(
an
bn

)
= λ

(
an
bn

)
, (2.2)

where

Ln :=
(−n2 + A B

C −dn2 + D

)
. (2.3)

Let tr(Ln) and det(Ln) be the trace and determinant of
the matrix Ln , respectively. Denote


n(λ) := λ2 − tr(Ln)λ + det(Ln), n ∈ N0. (2.4)

It then follows that λ is a eigenvalue of L if and only
if there exists n ∈ N0 such that 
n(λ) = 0, and the
corresponding eigenfunction is cos(nx)(an, bn)T . We
call 
n(λ) = 0 the n-th branch of the characteristic
equation. Since the sign of the real part of λ determines
the linear stability, it suffices to study the quantities
tr(Ln) and det(Ln).

Now we are in the position to present the stabil-
ity/instability of steady states of (1.6). It turns out that
diffusion does not change the stability of the constant
steady states labeled by “ • ” and “ ◦ ” in Fig. 2. We
note that the nine sub-figures are organized in terms of
the values of c1 and c2.

Lemma 2.2 The following statements hold.

(i) All steady states labeled by “ ◦ ” in Fig. 2 are
linearly unstable.

(ii) All steady states labeled by “ • ” in Fig. 2 are
linearly stable.

Proof For (i), since a the steady state of (1.4) labeled
by “ ◦ ” has an unstable manifold in R

2 and (1.4) is a
subsystem of (1.6), “ ◦ ” also remain linearly unstable
as a steady state of (1.6).

For (ii), we first notice that, by their forms of “ • ”
type equilibria, all “ • ” type belong to the set � =
�1 ∪ �2 ∪ �3, where

�1 =
{(

0,
z−2
c2

)
: c2 <

z−2
z1

}
= {(0, v) : v > z1}

�2 =
{(

z1
c1

, 0

)
: c1 <

z1
z−2

or c1 >
z1
z+2

}

= {
(u, 0) : u > z−2 or u < z+2

}

�3 =
{(

z−2 − c2z1
1 − c1c2

,
z1 − c1z

−
2

1 − c1c2

)
:

c1 >
z1
z−2

and c2 >
z−2
z1

}

If • ∈ �1, then the corresponding quantities

tr(Ln) = −n2(1 + d) + z−2 g
′(z−2 )

+ f (z−2 /c2), n ∈ N0,

det(Ln) = dn4 − [d f (z−2 /c2) + z−2 g
′(z−2 )]n2

+z−2 f (z−2 /c2)g
′(z−2 ), n ∈ N0. (2.5)

By a direct calculation, we obtain that λ1n = −n2 +
f (z−2 /c2) and λ2n = −dn2 + z−2 g′(z−2 ), n ∈ N0 are all
eigenvalues. Note that f (z−2 /c2) < 0 and g′(z−2 ) < 0
due to condition c2 < z−2 /z1. It follows that the steady
state (0, z−2 /c2) is linearly stable. By a similar calcula-
tion, we can prove the conclusion when • ∈ �2.

If • ∈ �3, then the corresponding quantities

tr(Ln) = −n2(1 + d) + c1ue f
′(z1)

+ c2veg
′(z−2 ), n ∈ N0,

det(Ln) = dn4 − [dc1ue f ′(z1) + c2veg
′(z−2 )]n2

− (1 − c1c2)ueve f
′(z1)g′(z−2 ), n ∈ N0.

Since c1 > z1/z
−
2 and c2 > z−2 /z1, f ′(z1) <

0, g′(z−2 ) < 0 and 1−c1c2 < 0. Therefore, tr(Ln) < 0
and det(Ln) > 0 for all n ∈ N0. It then follows that
all eigenvalues have negative real parts. The proof is
completed. ��
Remark 2.3 When c1 > z1/z

−
2 and c2 > z−2 /z1, near

the positive steady state (u∗, v∗) = (
z−2 −c2z1
1−c1c2

,
z1−c1z

−
2

1−c1c2
),

f (c1u + v) is decreasing in v and g(u + c2v) is
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1736 Y. Su, X. Zou

decreasing in u. This implies that (1.6) is of competi-
tive type interaction near (u∗, v∗). In such a case, we
may infer from Lemma 2.2-(ii) that no Turing bifur-
cation can occur. However when c1 < z1/z

+
2 and

c2 < z+2 /z1, near the positive steady state (u∗, v∗) =
(
z+2 −c2z1
1−c1c2

,
z1−c1z

+
2

1−c1c2
), f (c1u + v) is decreasing in v and

g(u + c2v) is increasing in u. This implies that (1.6) is
of predator–prey type interaction near (u∗, v∗). In such
a case, Turing bifurcation may occur around (u∗, v∗).
Lemma 2.2 also implies that there is neither Hopf bifur-
cation nor steady-state bifurcation near the steady states
labeled by “ • ”.

3 Bifurcations

3.1 Steady states bifurcations and Turing instability

All constant steady states labeled by ◦ and • in Fig. 2
have been studied in the previous section and have been
excluded for possible stability switch due to spatial dif-
fusion. In this section, we study the stability/instability
of the constant steady states labeled by ∗ in Fig. 2. This
means thatwe only focus on the casewhere c1 < z1/z

+
2

and c2 < z+2 /z1 and the constant steady state of interest

is given by the formula (u∗, v∗) = (
z+2 −c2z1
1−c1c2

,
z1−c1z

+
2

1−c1c2
).

As is seen in the proof of Lemma 2.2-(ii), there are
two corresponding quantities that determine the linear
stability:

tr(Ln) = −n2(1 + d) + c1u
∗ f ′(z1)

+ c2v
∗g′(z+2 ), n ∈ N0,

det(Ln) = dn4 − [dc1u∗ f ′(z1) + c2v
∗g′(z+2 )]n2

− (1 − c1c2)u
∗v∗ f ′(z1)g′(z+2 ), n ∈ N0.

In the sequel, we use c2 as the parameter and for the
sake of convenience we write Ln(c2) instead of Ln . Let
p = n2, then det(Ln(c2)) = 0 reduces to h(p) = 0,
where h(p) is a quadratic function defined by

h(p) = dp2 − [dc1u∗ f ′(z1) + c2v
∗g′(z+2 )]p

−(1 − c1c2)u
∗v∗ f ′(z1)g′(z+2 ), p > 0. (3.1)

The existence of zeros of h(p) plays an important role
in the study of bifurcation. It has been shown in [4] that
h(p) has no zero if d > d̂ where

d̂ = − v∗g′(z+2 )

c21u
∗ f ′(z1)

(
1 + √

1 − c1c2
)2

, (3.2)

and hence, no Turing bifurcation can happen under this
condition. We point out that by the dependence of u∗
on c2, one easily sees that d̂ → ∞ as there c2 →
(z+2 /z1)−, meaning that d̂ can become arbitrarily large.
In the following, we improve this condition to a much
weaker one: d ≥ z+2 g′(z+2 ). For this purpose, we first
establish a property of the discriminant of h(p) = 0.

Lemma 3.1 Given f, g, z1, z
+
2 , d and c1, the follow-

ing equation for c2

(c1du
∗ f ′(z1) + c2v

∗g′(z+2 ))2

+ 4d(1 − c1c2)u
∗v∗ f ′(z1)g′(z+2 ) = 0.

admits a solution ĉ2 ∈ (0, z+2 /z1) such that h(p)
has two positive zeros p+(c2) ≤ p−(c2) when c2 ∈
(ĉ2, z

+
2 /z1] and it has no zero point when c2 < ĉ2.

Moreover, p−(c2) is increasing, and p+(c2) is decreas-
ing in c2. Besides, p+(ĉ2) = p−(ĉ2), p+(z+2 /z1) = 0
and p−(z+2 /z1) = z+2 g′(z+2 )/d.

Proof Since f ′(z1) < 0 and g′(z+2 ) > 0, it is not
difficult to check that when c2 = 0, h(p) > 0 for all
p ≥ 0. When c2 = z+2 /z1,h(p) = 0 has two solutions
0 and z+2 g′(z+2 )/d. For each fixed p > 0, we calculate
to obtain

d

dc2
h(p)

= −p[(z1 − c1z
+
2 )g′(z+2 ) − c1d(z1 − c1z

+
2 ) f ′(z1)]

(1 − c1c2)2

+ z1(z1 − c1z
+
2 ) f ′(z1)g′(z2)

1 − c1c2

+ c1(z1 − c1z
+
2 )(z+2 − c2z1) f ′(z1)g′(z2)

1 − c1c2
< 0,

whichmeans that h(p) is decreasing in c2 for all p > 0.
Therefore, there exists ĉ2 > 0 such that h(p) has no
zero point when c2 < ĉ2 and h(p) has two zero points
p±(c2) > 0 when c2 ∈ (ĉ2, z

+
2 /z1]. Moreover, p+(c2)

and p−(c2) are strictly decreasing and increasing in c2,
respectively. When c2 = ĉ2, minp>0 h(p) = 0 and

− (c1du∗ f ′(z1) + ĉ2v∗g′(z+2 ))2

4d
−(1 − c1ĉ2)u

∗v∗ f ′(z1)g′(z+2 ) = 0.

The proof is completed. ��
By the bifurcation theory for R-D systems (see, e.g.,

[26, Theorem 3.2]), steady-state bifurcation can occur
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Rich spatial–temporal dynamics 1737

only if there exists a nature number n such that h(n2) =
0.We then immediately obtain a sufficient condition on
the diffusion rate to exclude the possibility of steady-
state bifurcation, which also immediately leads to a
necessary condition for Turing instability to occur.

Theorem 3.2 If d ≥ z+2 g′(z+2 ), then there is no steady-
state bifurcation for (1.6), and hence, Turing bifurca-
tion can not occur.

Proof By the proof of Lemma 3.1, for c2 ∈ (0, ĉ2),
the equation h(p) = 0 has no real roots; for c2 ∈
[ĉ2, z+2 /z1), h(p) = 0 has two positive roots p+(c2)
and p−(c2) 0 < p+(c2) ≤ p−(c2) < z+2 g′(z+2 )/d.
Therefore, for c2 ∈ (0, z+2 /z1), either h(p) = 0 has no
real roots, or it has real roots but they are less than
1, implying that there is no positive integer n such
h(n2) = 0. It follows that no steady-state bifurcation
can occur under the condition d ≥ z+2 g′(z+2 ). ��

The above theorem implies that d < z+2 g′(z+2 ) is a
necessary condition for steady-state bifurcation which
will be assumed in the following. Under this condition,
by Lemma 3.1, at least for n = 1, there is a cS12 ∈
(0, z+2 /z1) such that h(12) = 0 when c2 = cS12 . For

general integer n ≥ 1, let cSn2 ∈ (0, z+2 /z1) denote the
value of c2, if any, at which h(n2) = 0 has a positive
root, that is, det(Ln(c

Sn
2 )) = 0.

Define

M :=
{
cSn2 : det

(
Ln

(
cSn2

))
= 0, 0 < cSn2

< z+2 /z1, n = 1, 2, . . .
}
, (3.3)

the set of all critical values for the parameter c2 for pos-
sible steady-state bifurcation. Then, M is non-empty
under the aforementioned necessary condition as at
least it contains cS12 .

To check whether a cSn2 ∈ M is a true steady-state
bifurcation point, one needs to verify the transversality
condition. Note thatM only has finitely many elements
by virtue of the boundedness of p±(c2). Let λ(c2) be
the solution of
n(λ) = 0 satisfying λ(cSn2 ) = 0. Then,
we have the following transversality result.

Lemma 3.3 For fixed n ∈ N and cSn2 ∈ M,

Sign

{
d

dc2
λ(cSn2 )

}
= −Sign

{
tr(Ln)(c

Sn
2 )

}
, if tr(Ln)

(cSn2 ) �= 0.

Proof Taking the derivative of both sides of the equa-
tion
n(λ(c2)) = 0 with respect to c2, and then replac-
ing c2 by cSn2 , we obtain

d

dc2
λ

(
cSn2

)
= 1

tr(Ln)
(
cSn2

) d

dc2
det(Ln)

(
cSn2

)
.

Noting that

d

dc2
det(Ln)(c2) < 0

for any fixed c1 ∈ (0, z1/z
+
2 ) and c2 ∈ (0, z+2 /z1), the

proof is then completed. ��
Nowwe are ready to state the main result on steady-

state bifurcations.

Theorem 3.4 Given f , g, z1, z
+
2 , c1 andd < z+2 g′(z+2 ),

suppose that cSk2 ∈ M satisfies the following assump-
tion:

(H) tr(Lk)
(
cSk2

)
�= 0 and cSk2 �= cSn2 for any cSn2

∈ M and n �= k.

Then, there exists a smooth curve �k of steady state
of (1.6) bifurcating from (c2, u, v) = (cSk2 , u∗, v∗),
with �k contained in a global branch Ck of the nonzero
steady states of (1.6). Moreover:

(i) Near (cSk2 , u∗, v∗), �k = {(c2(s), u(s), v(s) : s ∈
(−ε, ε))}, where u(s) = u∗+sak cos(kx)+sψ1(s),
v(s) = v∗ + sbk cos(kx) + sψ2(s) for some
smooth functions c2(s), ψ1(s) and ψ2(s) such that
c2(0) = cSk2 , ψ1(0) = ψ2(0) = 0, ψ1, ψ2 ∈
{ψ : ∫ π

0 ψ(x) cos(kx)dx = 0} and ak, bk sat-

isfy Lk(c
Sk
2 )(ak, bk)T = (0, 0)T .

(ii) Ck either contains another (cSn2 , u∗, v∗), cSn2 ∈ M;
or there exist c2 ∈ (0, z+2 /z1) and v(x) ≤ z−2 /c2
such that (c2, 0, v(x)) ∈ Ck or (c2, z1/c1, 0) ∈ Ck;
or the projection of Ck onto c2-axis contains the
interval (cSk2 , z+2 /z1) or (0, cSk2 ).

The first statement is on local steady-state bifurca-
tion. It follows directly from Lemma 3.3 and [26, The-
orem 3.2]. Before moving to the proof for the second
statement, we first recall the following maximum prin-
ciple (see [26] and the references therein) and Harnack
inequality (see [13] and the references therein).

Lemma 3.5 Let � be a bounded Lipschitz domain in
R
n, and let g ∈ C(�̄ × R). If z ∈ W 1,2(�) is a weak

solutions of the inequalities
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p

Fig. 3 Graph of h(p) = 0 and tr(L p) = 0 with z1 = 2, z+2 = 1,
c1 = 1.5, f ′(z1) = −0.5 and g′(z+2 ) = 0.5. The horizontal lines
are p = n2, n ∈ N0


z + g(x, z) ≥ 0 in �, ∂z ≤ 0 on ∂�,

and if there is a constant K such that g(x, z) < 0 for
z > K, then z ≤ K a.e. in �.

Lemma 3.6 Let � be a bounded Lipschitz domain in
R
n, and let c(x) ∈ Lq(�) for some q > n/2. If z ∈

W 1,2(�) is a weak solutions of the boundary value
problem


z + c(x)z = 0 in �, ∂z = 0 on ∂�,

then there is a constant C1, determined only by ||c||q , q
and �, such that

sup
�

z ≤ C1 inf
�

z.

Proof of Theorem 3.4 (ii) Let (u(x), v(x)) be a non-
negative steady state solution of (1.6). Then, byLemma
3.5, we have

0 ≤ u(x)≤ z1/c1 and 0≤v(x) ≤ z−2 /c2, a.e. in [0, π ],
(3.4)

which then implies that

|| f (c1u(x)+v(x)||L∞ ≤ max{ f (0), | f (z1+ z−2 /c2)|}

and

||g(u(x) + c2v(x)||L∞

≤ max

{
|g(0)|, |g(z1/c1 + z−2 )|, max

z∈(z+2 ,z−2 )

g(z)

}
.

By using the Harnack inequality in Lemma 3.6, we see
that there exists a constant C̃ , such that

sup
(0,π)

u(x) ≤ C̃ inf
(0,π)

u(x) and sup
(0,π)

v(x) ≤ C̃ inf
(0,π)

v(x).

(3.5)

Nextweclaim that if (c2, 0, v(x)) /∈ Ck and (c2, z1/c1, 0)
/∈ Ck for any c2 ∈ (0, z+2 /z1), v(x) ∈ W 1,2[0, π ] and
v(x) ≤ z−2 /c2, then all solutions in Ck are bounded.
Indeed, note that the solutions in Ck near bifurcation
point are positive. It then follows from (3.4) and (3.5)
that we only need to prove that if (c2, 0, v(x)) /∈ Ck
and (c2, z1/c1, 0) /∈ Ck for any c2 ∈ (0, z+2 /z1),
v(x) ∈ W 1,2[0, π ] and v(x) ≤ z−2 /c2, then there exists
a constant K such that

sup
(0,π)

u > K and sup
(0,π)

v > K , for (c2, u(x), v(x))∈Ck .

We argue by contradiction by assuming that this is not
true. Then, there exists a sequence (cn2 , un, vn) ∈ C
such that sup(0,π) un(x) → 0 or sup(0,π) vn(x) → 0
as n → ∞. Consequently, there exists a subsequence,
which we still denote by (cn2 , un, vn), such that cn2 →
c∞
2 , un → u∞ and vn → v∞ as n → ∞ with u∞ = 0
or v∞ = 0. If v∞ = 0, then u∞ satisfying the following
equation:


u∞ + u∞ f (c1u∞) = 0,

which only has two solutions 0 and z1/c1 according to
[7, Lemma 10.1.1]. It contradicts with (c2, z1/c1, 0) /∈
Ck . Similarly, if u∞ = 0, then v∞ satisfies


v∞ + v∞g(c2v∞) = 0,

contradicting with (c2, 0, v) /∈ Ck . The proof is com-
pleted. ��

123



Rich spatial–temporal dynamics 1739

0
1

2
3

4

0

500

1000
0.775

0.78

0.785

0.79

0.795

0.8

0.805

Distance x

u(t,x)

Time t 0
1

2
3

4

0

500

1000
0.81

0.815

0.82

0.825

0.83

0.835

Distance x

v(t,x)

Time t

Fig. 4 Numerical simulation for (1.6) with f (z) = 1− z/2, g(z) = −(x − 2)2/4+ 1/4, c1 = 1.5, d = 0.02 and c2 = 0.26. The initial
functions are (0.78 + 0.01 cos(2x), 0.82 + 0.01 cos(2x)). The solution tends to a positive steady state

3.2 Hopf bifurcations

In this subsection, we still assume that d < z+2 g′(z+2 )

and explore possible Hopf bifurcation(s). Parallel to
cSn2 in the preceding section, we define

cHn
2 := −c1z

+
2 f ′(z1) + n2(1 + d)

(z1 − c1z
+
2 )g′(z+2 ) − c1z1 f ′(z1) + c1n2(1 + d)

, n∈N0,

(3.6)

which is the solution of tr(Ln)(c2) = 0 and is a possible
Hopf bifurcation point. The following lemma describes
the basic properties of cHn

2 .

Lemma 3.7 The following statement holds.

(i) 0 < cH0
2 < z+2 /z1;

(ii) cHm
2 < cHn

2 , if m < n.

Proof (i) Since z1 > c1z
+
2 and g′(z+2 ) > 0, a direct

calculation gives

cH0
2 = −c1z

+
2 f ′(z1)

(z1 − c1z
+
2 )g′(z+2 ) − c1z1 f ′(z1)

< z+2 /z1.

(ii) Consider the following function

c̃2(p) = −c1z
+
2 f ′(z1) + p(1 + d)

(z1 − c1z
+
2 )g′(z+2 ) − c1z1 f ′(z1) + c1 p(1 + d)

.

Differentiating it with respect to p, we obtain

dc̃2(p)

dp

= (1 + d)(z1 − c1z
+
2 )g′(z+2 ) − c1 f ′(z1)(1 + d)(z1 − c1z

+
2 )

[(z1 − c1z
+
2 )g′(z+2 ) − c1z1 f ′(z1) + c1 p(1 + d)]2 > 0.

Therefore, c̃2(p) is a strictly increasing function,
proving (ii).

��
Define

N :=
{
cHn
2 : 0 < cHn

2 < z+2 /z1 and cHn
2 < cSn2 , for n ∈ N

}
,

From Lemma 3.7, we know N �= ∅ and it indeed
contains finitely many elements. The following lemma
implies that N contains all possible Hopf bifurcation
values for the parameter c2.

Lemma 3.8 Given f, g, z1, z
+
2 and c1,
n(λ) = 0 has

a pair of purely imaginary solutions if and only if c2 =
cHn
2 ∈ N.

Proof 
n(λ) = 0 has a pair of purely imaginary solu-
tions λ = ±iω if and only if there exists n ∈ N0 and
c̄2 such that

trLn(c̄2) = 0, detLn(c̄2) > 0 and ω = √
detLn(c̄2).

From the definitions of cHn
2 , we know that trLn(c̄2) =

0 if and only if c̄2 = cHn
2 . Next we examine

detLn(c
Hn
2 ) > 0 for cHn

2 ∈ N . It is not difficult to cal-

culate that detLn(c
H0
2 ) > 0 and detLn(c

Sn
2 ) = 0. For

fixed n ∈ N, detLn(c2) is a strictly decreasing function
according to the proof of lemma 3.3. Thus, we obtain
that detLn(c

Hn
2 ) > 0 for cHn

2 ∈ N . ��
Let λH (c2) = γ (c2) + iω(c2) be the root of 
n(λ)

satisfying γ (cHn
2 ) = 0 andω(cHn

2 ) =
√
detLn(c

Hn
2 ) for
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Fig. 5 Numerical simulation for (1.6) with f (z) = 1 − z/2,
g(z) = −0.25(x − 2)2 + 0.25, c1 = 1.5, d = 0.02 and
c2 = 0.273.The initial functions are (0.77+0.01 cos(2x), 0.84+

0.01 cos(2x)). The solution tends to a spatially inhomogeneous
steady state which is a cos(2x)-perturbation of the constant
steady state

cHn
2 ∈ N . Then, we have the following transversality
result.

Lemma 3.9 Re
{

d
dc2

λH (cHn
2 )

}
> 0 for cHn

2 ∈ N.

Proof Taking the derivative of both sides of the equa-
tion 
n(λ

H (c2)) = 0 with respect to c2, we have

d

dc2
λH (c2) = λ(c2)

dtrLn(c2)
dc2

− ddetLn(c2)
dc2

2λ(c2) − trLn(c2)
.

Replacing c2 by c
Hn
2 and separating real and imaginary

parts, we have

Re

{
d

dc2
λH

(
cHn
2

)}
= 1

2

d

dc2
trLn(c2) = v∗g′(z+2 ) > 0

for any n ∈ N0. ��

Based on the previous analysis on purely imaginary
solutions of the characteristic equation as well as the
Hopf bifurcation theorem, we immediately obtain the
following result on Hopf bifurcations for (1.6).

Theorem 3.10 For any cHk
2 ∈ N, if cHk

2 �= cSn2 for any

cSn2 ∈ M with n �= k, then Hopf bifurcation occurs at

c2 = cHk
2 .

Remark 3.11 It is clear that the periodic solutions
bifurcated from c2 = cH0

2 are spatially homogeneous,

while those bifurcated from cHn
2 with n ≥ 1 are spa-

tially inhomogeneous. Moreover, by Lemmas 3.3, 3.9
and Ruan and Wei [16, Corolary 2.4] we know that all
spatially inhomogeneous bifurcating periodic solutions
are unstable, because there is an unstable manifold. We
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Fig. 6 Numerical simulation for (1.6) with f (z) = 1 − z/2,
g(z) = −0.25(x − 2)2 + 0.25, c1 = 1.5, d = 0.02 and
c2 = 0.273.The initial functions are (0.77−0.01 cos(2x), 0.84−

0.01 cos(2x)). The solution tends to a spatially inhomogeneous
steady state which is a cos(2x)-perturbation of the constant
steady state

also point out that the stability of the bifurcated periodic
solutions on the center manifold can be determined by
directly using the formula (2.31) in [26], but the for-
mula is very lengthy for our model, and hence, we omit
the details here.

Let c∗
2 := min{c : c ∈ M ∪ N }. Combining our

results obtained above with the result in Ruan and Wei
[16, Corolary 2.4], we then obtain the following result
on the stability of the positive steady state.

Theorem 3.12 The positive steady state (u∗, v∗) is
asymptotically stable when c2 ∈ (0, c∗

2) and unstable
when c2 > c∗

2 .

4 Numerical simulations and discussions

In this section we present some numerical simulations
for (1.6) to illustrate and extend our analytic results. To
this end, we need to choose particular functions for f
and g. Theoretically, any f and g satisfying (1.2) and
(1.3) can be used; biologically f and g can be specified
based on the characteristics of the involving pioneer
species and climax species. Here, our main purpose is
to numerically demonstrate that a positive steady state
can lose its stability either through Turing bifurcation
or through Hopf bifurcation. For demonstration of the
former (i.e., Turing bifurcation), we take the following
relative simple functions for f (z) and g(z):

123



1742 Y. Su, X. Zou

0
1

2
3

4

0

500

1000

1500
−0.2

0

0.2

0.4

0.6

0.8

Distance x

u(t,x)

Time t 0
1

2
3

4

0

500

1000

1500
0

2

4

6

8

10

12

Distance x

v(t,x)

Time t

Fig. 7 Numerical simulation for (1.6) with f (z) = 1 − z/2, g(z) = −0.25(x − 2)2 + 0.25, c1 = 1.5, d = 0.02 and c2 = 0.28. The
initial functions are (0.75 + 0.01 cos(2x), 0.87 + 0.01 cos(2x)). The solution converges to a boundary steady state

f (z) = 1 − z/2 and g(z) = −(z − 2)2/4 + 1/4.

(4.1)

For these two functions, (1.2) and (1.3) obviously hold,
with z1 = 2, z+2 = 1 and z−2 = 3.We choose c1 = 1.5
and d = 0.02 so that

c1 < z1/z
+
2 = 2 and d < z+2 g

′(z+2 ) = 0.5.

Then, we may numerically obtain all possible steady-
state and Hopf bifurcation points for the parameter c2,
as indicated in Fig. 3, where the intersections of the
parallel horizontal lines with the broken curve are the
steady-state bifurcation points and the intersections of
the parallel horizontal lines with the full curve are the
Hopf bifurcation points. Therefore, in the interval of
interest (0, z+2 /z1) = (0, 1/2) for c2, there are four
steady-state bifurcation points and one Hopf bifurca-
tion point, and they have the following order:

0 < cS22 ≈ 0.2716 < cS12 ≈ 0.2853 < cS32 ≈ 0.3616

< cH0
2 ≈ 0.4286 < cS42 ≈ 0.4420 < z+2 /z1 = 0.5.

Thus, c∗
2 = cS22 ≈ 0.2716 according to the definition

of c∗
2.
The numerical simulation given in Fig. 4 shows that

a positive spatially homogeneous steady state exists and
is asymptotically stable when c2 < c∗

2. Figures 5 and
6 illustrate that when c2 passes through c∗

2, two stable
spatially inhomogeneous steady states appear and they
are cos(2x)-perturbations of the constant steady state,
suggesting that c∗

2 is a actually pitchfork bifurcation

0 0.1 0.2 0.3 0.4 0.5
0
1

4

9

16

25

c2

p

Fig. 8 Graph of h(p) = 0 and tr(L p) = 0 with z1 = 2, z+2 = 1,
c1 = 1.5, d = 0.2, f ′(z1) = −1 and g′(z+2 ) = 4. The horizontal
lines are p = n2, n ∈ N0

point (see also [19] for a similar result). On the other
hand, it has been shown in [3] that the constant steady
state is stable under homogeneous perturbations when
c2 < cH0

2 . Therefore, Turing instability occurs when c2
passes through c∗

2 but remains in (c∗
2, c

H0
2 ) since c∗

2 <

cH0
2 .
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Fig. 9 Numerical simulation for (1.6) with f (z) = 2 − z, g(z) = −4(x − 2)2 + 4, c1 = 1.5, d = 0.2 and c2 = 0.28. The initial
functions are (0.72 + 0.01 cos(2x), 0.9 + 0.01 cos(2x)). The solution approaches a uniformly positive steady state
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Fig. 10 Numerical simulation for (1.6) with f (z) = 2 − z, g(z) = −4(x − 2)2 + 4, c1 = 1.5, d = 0.2 and c2 = 0.305. The initial
functions are (0.72 + 0.01 cos(2x), 0.9 + 0.01 cos(2x)). The solution tends to a uniformly positive steady state

In Fig. 7, we increase c2 a little bit to 0.28 ∈
(cS22 , cS12 ) and choose a cos(2x)-perturbation of the
constant coexistence steady state as the initial func-
tion. We see that the solution converges to the bound-
ary steady state (0, z−2 /c2). Combining this numeri-
cal observation and the global steady-state bifurca-
tion Theorem 3.4 (ii), we may expect that the bifur-
cation branch bifurcated from cS22 contains the bound-
ary steady state (0, z−2 /c2). As such, as c2 increases,
the constant coexistence steady state loses its stabil-
ity and the bifurcated stable spatially inhomogeneous
coexistence steady state evolves and merges into the
boundary constant steady state (0, z−2 /c2). This means

that the climax species becomes dominant as c2 passes
through c∗

2.
To observe the scenario that the positive steady state

loses its stability through Hopf bifurcation, we choose

f (z) = 2 − z and g(z) = −4(z − 2)2 + 4. (4.2)

Then, direct calculations yield

z1 = 2, z+2 = 1, z−2 = 3.

Set c1 = 1.5 and d = 0.2 so that

c1 < z1/z
+
2 = 2 and d < z+2 g

′(z+2 ) = 0.5.
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Fig. 11 Numerical simulation for (1.6) with f (z) = 2 − z,
g(z) = −4(x − 2)2 + 4, c1 = 1.5, d = 0.2 and c2 = 0.335.
The initial functions are (0.66+0.01 cos(2x), 1+0.01 cos(2x)).

The solution oscillates in the very beginning and then tends to a
boundary steady state

With the above choice, the numerical result given in
Fig. 8 depicts all steady-state and Hopf bifurcation
points for c2 ∈ (0, z+2 /z1), with the intersections of
the parallel horizontal lineswith the broken curve being
the steady-state bifurcation points and the intersections
of the parallel horizontal lines and the full curve being
the Hopf bifurcation points. As is seen in Fig. 8, there
are four steady-state bifurcation points and two Hopf
bifurcation points, and they have the following order:

0 < cH0
2 = 0.3 < cS22 ≈ 0.3334 < cS12 ≈ 0.3632

< cH1
2 ≈ 0.3968

< cS32 ≈ 0.4152 < cS42 ≈ 0.4712 < z+2 /z1 = 0.5.

Therefore, c∗
2 = cH0

2 = 0.3. Figure 9 shows that the
positive spatially homogeneous steady state is asymp-
totically stable when c2 < c∗

2. Note that c
∗
2 is the first

Hopf bifurcation point of the spatially homogeneous
equation (1.4). It then follows that no Turing bifurca-
tion occurs in such a case. As c2 passes through c∗

2, but

stay in (c∗
2, c

S2
2 ), no Turing bifurcation occurs and the

bifurcated spatially homogeneous time periodic solu-
tion is asymptotically stable (see Fig. 10).

Finally, we choose c2 to be further away from the
first Hopf bifurcation point cH0

2 and numerically find
that the bifurcated time periodic solutions disappear
and the solution starting from a cos(2x)-perturbation
of the positive steady state converges to the boundary
steady state (0, z−2 /c2). This again indicates that the

climax species becomes dominate as c2 is away from
c∗
2 (Fig. 11).

5 Conclusions

We have analyzed the diffusive pioneer–climax inter-
action model (1.6) with the no-flux boundary condi-
tion. We have found that the diffusion does not affect
the stability/instability of boundary equilibria, neither
does the diffusion change the instability of the unstable
coexistence equilibria. But the diffusion can destroy the
stability of those stable coexistence equilibria, and the
consequence of the loss of stability of such a coexis-
tence equilibrium can be either Turing bifurcation lead-
ing to pattern formation or Hopf bifurcation leading to
a temporally periodic solution. Conditions for each of
the two cases are obtained, and are numerically demon-
strated by choosing some particular functions for the
two interaction terms f and g.

Note that the functions given in (4.1) and (4.2) for
f and g are of the same type. Indeed, the f in (4.1) is
nothing but just the half of the f given in (4.2), while
the g in (4.1) is the sixteenth of the g given in (4.2).
However, as was seen in Sect. 4, such a small difference
can lead to significant difference in bifurcation paths as
c2 is increased. These two numerical examples indicate
that really the particular forms of functions f and g and
the involving parameters matter a lot. Of course, when
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applying the model (1.6) to a particular pair of pioneer
and climax species,we need to choose f and g to reflect
the main biological feature of these two species, as in
[1,15,23]. There are also some discussions on this topic
in [17]where the correspondingODEversion (1.1) was
initially proposed.

In this paper, we have used c2 as the bifurcation
parameter, which reflects the relative weight of the
impact of the intra-species interaction versus that of
the inter-species interaction on the climax species v.
Thus, small c2 would correspond to a scenario of inter-
species interaction dominance, while large c2 would
explain an scenario of intra-species interaction domi-
nance. This together with the other conditions on diffu-
sion rates (large d := d2/d1) in Sect. 3 and the nature of
the per capita growth function g for species v explains,
to certain extent, why increasing c2 (under appropri-
ate conditions on d) would destroy the stability of a
stable positive (coexistence) equilibrium. As explained
above, the bifurcation path is sensitive to the particu-
lar pair of f and g. Moreover, our simulation results
in Sect. 4 show that the bifurcations at c∗

2 are super-
critical. We point out that for general case, determina-
tion of the direction of bifurcation and the stability of
the bifurcated spatial–temporal dynamics requires very
dedicate and lengthy computations of normal form and
central manifold, and is thus omitted in this paper.
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