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Abstract In this paper, a ratio-dependent predator–
prey model with diffusion is considered. The stability
of the positive constant equilibrium, Turing instabil-
ity, and the existence of Hopf and steady state bifurca-
tions are studied. Necessary and sufficient conditions
for the stability of the positive constant equilibrium
are explicitly obtained. Spatially heterogeneous steady
states with different spatial patterns are determined. By
calculating the normal form on the center manifold, the
formulas determining the direction and the stability of
Hopf bifurcations are explicitly derived. For the steady
state bifurcation, the normal form shows the possibility
of pitchfork bifurcation and can be used to determine
the stability of spatially inhomogeneous steady states.
Some numerical simulations are carried out to illustrate
and expand our theoretical results, in which, both spa-
tially homogeneous and heterogeneous periodic solu-
tions are observed. The numerical simulations also
show the coexistence of two spatially inhomogeneous
steady states, confirming the theoretical prediction.
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1 Introduction

Predator–prey interactions in nature are largely respon-
sible for the rich biodiversity of complex ecosystems
[3]. As such, qualitative and quantitative analysis on
the predator–prey relationships is of practical and the-
oretical significance and has been an important area in
population biology. A classical predator–prey model
without considering the spatial effect is the following
system of ordinary differential equations:

{ d N
dt = r N

(
1 − N

K

) − G(N , P)P,

d P
dt = ηG(N , P)P − γ P.

(1.1)

where N and P stand for prey and predator densities,
respectively. Here r > 0 is the prey intrinsic growth
rate, K presents the environmental carrying capacity,
the function G(N , P) describes predation known as
the functional response, η accounts for the efficiency
of biomass conversion from predation, and γ is the
predator’s per-capita death rate.

Traditionally, G(N , P) was assumed to depend on
the prey population P only, that is, G(N , P) = g(N )
where the Holling type (II) is typically adopted for
g(N ). However, it was found that such a predator–prey
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model with prey-dependent functional response may
face the so-called “paradox of enrichment” [23,35] and
the “biological control paradox” [4,30]. There have
been efforts in modifying (1.1) with prey-dependent
functional response G(N , P) = g(N ) to avoid the
paradoxes. Astrom [9] argued that there need not be
any paradox if the linear per capital growth rate of
prey is replaced by the nonlinear one 1 − (N/K )θ ,
where θ > 0 is a species- specific parameter. Deng et
al. [18] showed that replacing the constant per-capita
death rate γ by the density dependent rate γ + s P
in (1.1) can also get rid of the paradox. The third
direction of efforts is to adopt the ratio-dependent
functional response by letting G(N , P) = g(N/P)
leading to the following ratio-dependent prey–predator
system:

⎧⎨
⎩

d N
dt = r N

(
1 − N

K

) − αN P
P+αβN ,

d P
dt = ηαN P

P+αβN − γ P,
(1.2)

which was suggested by Arditi and Ginzburg [5]. Here
α and β are predator’s attack rate and handling time,
respectively. Since P/N accounts for the relative avail-
ability of preys for the predators, such a ratio-dependent
predation mechanism may well justify the scenario of
those predations when searching for prey is a major
portion of predation [1,5,6,14,17]. Model (1.2) has
been supported by numerous field and laboratory exper-
iments and observations [1,5,6]. Moreover, theoretical
analysis on (1.2) has shown that it can exhibit neither
the paradox of enrichment nor the biological control
paradox [7,24,25]. As such, ratio-dependent predation
is gradually gaining acceptance. There have been a lot
of works dedicated to the study of (1.2) and its vari-
ous variations, which have shown that ratio-dependent
predation can support very rich dynamics. See, e.g.,
[1,5,6,13,20,24–28,36,43–45] and references therein.

On the other hand, it is known that spatial dispersion
is an main factor that contributes to the spatial hetero-
geneity leading to spatial patterns. The importance of
spatial models has been recognized by the biologists for
a long time and has been one of the dominant themes in
both ecology and mathematical ecology [8,22,31,32].
A natural way to incorporate the spatial dispersion into
(1.2) is by adding a diffusion term into each of the two
equations in (1.2), resulting in the following system of
reaction diffusion equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂N (x,t)
∂t = d1�N (x, t)+ r N (x, t)

(
1 − N (x,t)

K

)
− αN (x,t)P(x,t)

P(x,t)+αβN (x,t) ,

∂P(x,t)
∂t =d2�P(x, t)+ ηαN (x,t)P(x,t)

P(x,t)+αβN (x,t)−γ P(x, t),

(1.3)

where d1 and d2 are the diffusion rates of the prey and
predator, respectively, x is the spatial variable, and �
is the Laplancian operator with respect to x . For sim-
plicity, let us consider one-dimensional space meaning
that x is a scalar, and hence �N (x, t) = Nxx (x, t) and
�P(x, t) = Pxx (x, t). Re-scaling the variables by

u = αβ

ηK
N , v = αβ

η2 K
P, t̃ = η

β
t, x̂ =

√
η

β
x

and then dropping the hats, (1.3) is transformed to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(x,t)
∂t =d1uxx (x, t)+au(x, t)

(
1− u(x,t)

b

)
− bu(x,t)v(x,t)

bu(x,t)+v(x,t) ,
∂v(x,t)
∂t =d2vxx (x, t)+

(
bu(x,t)

bu(x,t)+v(x,t)−c
)
v(x, t),

(1.4)

where

a = rβ

η
, b = αβ

η
, c = γβ

η
.

Without loss of generality for one-dimensional
bounded domains, we consider the interval [0, π ] for
variable x and pose the zero flux boundary condition
to represent a closed (isolated) environment:

ux (0, t)=ux (π, t)=vx (0, t)=vx (π, t) = 0, t ≥ 0.

(1.5)

Typical initial conditions are as follows:

u(x, t) = φ(x, 0), v(x, t) = ψ(x, 0) ≥ 0 ( �≡ 0),

x ∈ [0, π ].
The dynamics of system (1.4) with (1.5–1.6) or sim-

ilar systems has also been recently studied, for exam-
ple, in [2,10–12,19,33,40]. Aly et al. [2] showed that
diffusion-driven instability may occur for such systems
giving rise to a spatially inhomogeneous solution of
cos x shape. Self-organized spatial patterns and chaos
in the ratio-dependent predator–prey system have been
reported by Banerjee [10] and Banerjee and Petrovskii
[11]. Bartumeus et al. [12] performed the linear stability
analysis and reported diffusion-driven instability. Fan
and Li [19] studied the global asymptotic stability of the
unique positive constant equilibrium solution for (1.4).
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Bifurcation analysis of a diffusive ratio-dependent predator–prey model 51

Pang and Wang [33] studied qualitative properties of
solutions to this reaction–diffusion system and showed
that although the unique positive constant steady state
is globally asymptotically stable for the corresponding
ODE model, nonconstant positive steady states exist for
the PDE version. Wang et al. [40] investigated the spa-
tiotemporal complexity of a ratio-dependent predator–
prey system and numerically revealed that the typical
dynamics of population densities is the formation of
isolated groups and that the spatially extended model
not only has more complex dynamic patterns in the
space but also allows chaos and spiral waves. How-
ever, the conditions for Turing instability in all these
works mentioned above are all necessary conditions
only, and the mechanisms and scenarios of pattern for-
mation remain less studied and poorly understood.

Recently, theoretical studies on the mechanisms of
spatiotemporal pattern formation in diffusive predator–
prey models have become an area of active research.
However, most of such works in the literature deal with
models with prey-dependent response functional, see
[34,39,46,47] and references therein. As far as diffu-
sive ratio-dependent prey–predator models go, there
is an obvious lack of rigorous analysis on how diffu-
sion rates and other model parameters affect spatiotem-
poral pattern formation. Such a lack has limited our
understanding of the ratio-dependent predation mech-
anism and its impact on biodiversity and spatial pat-
terns. The purpose of this paper is to provide such a rig-
orous analysis for the diffusive ratio-dependent prey–
predator model (1.4). More precisely, we will employ
the bifurcation theory to investigate how the diffusion
will induce the Turing instability and how other para-
meters will affect the pattern formation, all analytically.
Necessary and sufficient conditions for the occurrence
of Turing instability are obtained, and Hopf and pitch-
fork bifurcations are also investigated in details. To the
best of our knowledge, this is the first work to report
the pitchfork bifurcation in diffusive predator–prey sys-
tems and to determine the stability of spatially inhomo-
geneous steady state by calculating the related normal
form. When Hopf and Turing bifurcations occur simul-
taneously, the dynamics near the bifurcation point are
much richer and the theoretical analysis is more com-
plicated. We leave the detailed study for this case in
another paper [37] .

The rest of the paper is organized as follows. In Sect.
2, the local stability of the positive constant equilib-
rium, Turing instability induced by diffusion, and the

existence of Hopf and steady state bifurcations are stud-
ied. In Sect. 3, the formulas for determining the direc-
tion and stability of Hopf bifurcation and the type of
steady state bifurcation are derived by using the normal
form theory for partial differential equations. In Sect. 4,
some numerical simulations are presented to illustrate
and expand the theoretical results. The paper ends by a
conclusion section.

2 Stability, turing instability and bifurcation
analysis

Simple calculations show that system (1.4) has the
zero equilibrium E0 = (0, 0) (total extinction) and
the boundary equilibria E1 = (b, 0) (extinction of
predator). It also has a positive constant equilibrium
E∗ = (u∗, v∗) (coexistence of prey and predator) with

u∗ = b(a + (c − 1)b)

a
v∗ = b(1 − c)u∗

c

= b2(1 − c)(a + (c − 1)b)

ac
,

provided that following condition holds:

(P0) 0 < c < 1, a > b(1 − c).

In the following, we assume that the condition (P0)
holds so that u∗ > 0 and v∗ > 0 and hence E∗ is bio-
logically meaningful. We are interested in the stability
of the positive equilibrium E∗ .

Let

f (1)(u, v) = au
(

1 − u

b

)
− buv

bu + v
,

f (2)(u, v) = buv

bu + v
− cv. (2.1)

Then the linearization of (1.4) at the equilibrium E∗ is

(
∂u
∂t
∂v
∂t

)
= d�

(
u
v

)
+ A

(
u
v

)
, (2.2)

with

d� =
(

d1� 0

0 d2�

)
, A =

(
a11 a12

a21 a22

)
,
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where

a11 = ∂ f (1)

∂u
(u∗, v∗) = b(1 − c2)− a, a12

= ∂ f (1)

∂v
(u∗, v∗) = −c2 < 0,

a21 = ∂ f (2)

∂u
(u∗, v∗) = b(1 − c)2 > 0, a22

= ∂ f (2)

∂v
(u∗, v∗) = c(c − 1) < 0.

(2.3)

Corresponding to the Neumann boundary condition,
define the real-valued Sobolev space

X =
{
(u, v)∈W 2,2(0, π),

∂u

∂x
= ∂v

∂x
=0 at x =0, π.

}
.

It is well known that the eigenvalues of d� on X are
−d1k2 and −d2k2, k ∈ N0 = {0, 1, 2, . . . } , with
corresponding normalized eigenfunctions β1

k and β2
k ,

where

β1
k (x) =

(
γk(x)

0

)
, β2

k (x) =
(

0

γk(x)

)
,

γk(x) = cos(kx)

‖ cos(kx)‖2,2
, k ∈ N0.

Then the normalized eigenfunctions form an normal-
ized orthogonal basis for X . In order to study the linear
stability of E∗, we consider the trial function of the
form(

u
v

)
=

∞∑
k=0

(
pk1β

1
k + pk2β

2
k

)
eλt , pk1, pk2 ∈ C.

(2.4)

Noting that {β1
k (x), β

2
k (x)} is an orthogonal basis, we

then know that (u(x, t), v(x, t))T defined by (2.4) is
a nontrivial solution of (2.2) if and only if there is a
k ∈ N0 such that λ satisfies

det(λI − Mk − A) = 0, (2.5)

where I is the 2 × 2 identity matrix, and Mk =
−k2diag(d1, d2). It follows from (2.5) that the char-
acteristic equation of (2.2) consists of the following
sequence of quadratic equations:

�k(λ) � λ2 + Tkλ+ Jk = 0, k ∈ N0, (2.6)

where

Tk = (d1+d2)k
2−(a11+a22)

= (d1+d2)k
2−b(1−c2)+a+c(1−c),

Jk = d1d2k4−(d1a22+d2a11)k
2+a11a22−a12a21

= d1d2k4−
[
d1c(c−1)+d2

(
b(1−c2)−a

)]
k2

+ c(1−c)[a+b(c−1)]. (2.7)

2.1 Hopf and steady state bifurcations

It is well known that Tk = 0 and Jk > 0 are necessary
conditions for Hopf bifurcation to occur. By (2.3) and
(2.7), Tk = 0 is equivalent to

a = aH (k, b) � b(1−c2)−c(1−c)−(d1+d2)k
2,

(2.8)

and Jk = 0 is equivalent to

a = aT (k, b) � d2(1 − c2)k2 + c(1 − c)2

d2k2 + c(1 − c)
b

−d1d2k4 + d1c(1 − c)k2

d2k2 + c(1 − c)
. (2.9)

Combining (2.8) and (2.9), the two lines a = aH (k, b)
and a = aT (k, b) intersect at

b = b∗
k �

(
1 + d2k2

c(1 − c)

)2

. (2.10)

Note that (2.8) is equivalent to

b = bH (k, a) � a

1 − c2 + c

1 + c
+ (d1 + d2)k2

1 − c2 .

(2.11)

Clearly, bH (k, a) �= bH ( j, a) for k �= j . For fixed
k, if b > b∗

k and a = aH (k, b), then Eq. (2.6) has a
purely imaginary roots ±i

√
Jk . To verify the transver-

sality condition, taking b as a parameter and lettingλ(b)
be the root of Eq. (2.6) such that Reλ (bH (k, a)) =
0, I mλ (bH (k, a)) = √

Jk . Then taking the derivative
of both sides of Eq. (2.6) with respect to b, we have

d Reλ(b)

db

∣∣∣∣
b=bH (k,a)

= 1 − c2

2
> 0. (2.12)

By (2.8), (2.9), and (2.12), we can define the follow-
ing straight lines in the b − a plane:

Hk : a = aH (k, b), b > b∗
k , k = 0, 1, . . . , (2.13)

on which system (1.4) undergoes Hopf bifurcations
near the equilibrium E∗.

The line H0 corresponds to the case in the absence of
diffusion. Notice that under the condition (P0), J0 =
c(1 − c)(a + b(c − 1)) > 0. Thus, when d1 = d2 = 0,
all roots of Eq. (2.6) have negative real parts if and only
if T0 = −(a11 + a22) > 0, i.e.,

a > b(1 − c2)+ c(c − 1).

Thus, in the absence of diffusion, the equilibrium E∗
is asymptotically stable for a > b(1 − c2)+ c(c − 1)
and unstable for a < b(1 − c2)+ c(c − 1).

Summarizing above discussions, we obtain the fol-
lowing theorem.
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Theorem 2.1 Assume that the condition (P0) holds
and let the straight lines Hk and aT (k, b) in the b − a
plane be defined by (2.13) and (2.9), respectively.

(i) If d1 = d2 = 0, then the positive equilibrium E∗
is asymptotically stable for a > b(1−c2)+c(c−
1) and unstable for a < b(1 − c2)+ c(c − 1);

(ii) System (1.4) undergoes the steady state bifur-
cation near the positive equilibrium E∗ at the
straight line a = aT (k, b);

(iii) System (1.4) undergoes Hopf bifurcations near
the positive equilibrium E∗ when b = bH (k, a).
A family of spatially homogeneous periodic solu-
tions occur on H0, and a family of spatially inho-
mogeneous periodic solutions occur on Hk, k =
1, 2, . . . .

Remark 2.1 At the intersection points of these Hopf
and Turing bifurcation lines, the bifurcations with codi-
mension higher than one occur, which is not considered
in Theorem 2.1.

2.2 Stability and Turing instability

In this subsection, we consider the influence of the dif-
fusion on the stability of the constant equilibrium E∗
and investigate the diffusion-induced spatially inhomo-
geneous steady state. In [38], Turing concluded that the
reaction–diffusion model may exhibit spatial patterns
under the following two conditions: (1) the equilib-
rium is linearly stable in the absence of diffusion; and
(2) the equilibrium becomes linearly unstable in the
presence of diffusion. Such an instability is called a
Turing instability or diffusion-driven instability. From
(2.7), it is easy to see that Tk > 0 if the equilibrium
E∗ is asymptotically stable in the absence of diffusion.
Therefore, if a > b(1− c2)+ c(c −1), then the Turing
instability occurs only provided that Jk < 0 for some
k ≥ 1, and the diffusion does not change the stability
of the constant equilibrium provided that Jk > 0 for all
k ∈ N0.

From (2.3) and (2.7), it is easy to verify that Jk ≥ 0
is equivalent to a ≥ aT (k, b), where aT (k, b) is defined
by (2.9), that is, aT (k, b) = s1(k)b + s2(k) where

s1(k) = d2(1 − c2)k2 + c(1 − c)2

d2k2 + c(1 − c)
> 0,

s2(k) = −d1d2k4 + d1c(1 − c)k2

d2k2 + c(1 − c)
≤ 0.

Note that

ds1(k)

dk
= 2d2dc2(1 − c2)(

d2k2 + c(1 − c)
)2 > 0

ds2(k)

dk
= −2d1d2

2 k5+4d1d2c(1−c)k3+2d1c2(1−c)2k(
d2k2+c(1−c)

)2

≤ 0.

Thus, with respect to k, the slope of the straight line a =
aT (k, b) is increasing and the intercept of the straight
line a = aT (k, b) with the a−axis is decreasing.

To determine the intersections of the two family
of straight lines given by a = aT (k, b) and a =
aH (, k, b), we solve aT (k + 1, b) − aT (k, b) = 0 for
b to obtain

bk = d1

d2
+ k2 + (k + 1)2

c(1 − c)
d1 + k2(k + 1)2

c2(1 − c)2
d1d2.

(2.14)

In the b − a plane, we call the curve determined by
Jk = 0 the Turing bifurcation curve (denoted by ). By
(2.14), defining a polygonal line

a =
{

aT (0, b), d1
d2
< b ≤ b0,

aT (k, b), bk−1 < b ≤ bk, k = 1, 2, . . . ,

then the Turing bifurcation curve  is formed by a
sequence of line segments k (k = 1, 2, . . . ), where

k : a = aT (k, b), for bk−1 < b ≤ bk . (2.15)

Notice that H0 intersects with 0 : a = b(1 − c) at
b = 1, and the slope of the line segment k is less than
the Hopf bifurcation lines Hk since

d2
(
1 − c2

)
k2 + c(1 − c)2

d2k2 + c(1 − c)

= d2k2 + c(1−c)
(1+c)

d2k2 + c(1 − c)

(
1 − c2

)
< (1 − c2).

So, if

b0 = d1

d2
+ d1

c(1 − c)
≥ 1, (2.16)

then the Turing bifurcation curve  always lies on the
right of the Hopf bifurcation line H0 (see Fig. 1A). By
(2.16), it is easy to verify that b0 ≥ 1 is equivalent to

d1 ≥ d∗
1 (c, d2) � c(1 − c)

d2 + c(1 − c)
d2.
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A B

Fig. 1 Stability region and bifurcation diagram for system (1.4).
The region where the positive equilibrium E∗ exists is divided
into subregions by the real lines Hi , i = 0, 1, 2, . . . and li ,

i = 1, 2, . . . , with Hi corresponding to Hopf bifurcations and
li corresponding Turing bifurcation. A: d1 ≥ d∗

1 (c, d2); B:
d1 < d∗

1 (c, d2)

This implies that the diffusion does not induce the Tur-
ing instability if d1 ≥ d∗

1 (c.d2).
If 0 < d1 < d∗

1 (c, d2), the turing bifurcation line
k and Hopf bifurcation line H0 intersect, and there is
only one point of intersection since the slope of k is
always less than that of H0. By (2.8) and (2.9), the two
lines H0 and a = aT (k, b) will intersect at

bH T (k) = − d1d2

c2(1 − c)2
k4 − d1 − d2

c(1 − c)
k2 + 1,

which, together with the fact that k is a nonnegative
integer, implies that bH T has a maximum at

k = k∗ =
[√

(d2 − d1)c(1 − c)

2d1d2

]
, (2.17)

where [·] is the integer part function. Thus, the line
segment k∗ and Hopf bifurcation line H0 intersect at
b = bH T (k∗).

To figure out the boundary of stability for the positive
equilibrium E∗, we calculate the rate of change of real
root when b increases through the straight line a =
aT (k, b). Solving Jk = 0 for b, we have

bT (k, a) = d2k2 + c(1 − c)

d2
(
1 − c2

)
k2 + c(1 − c)2

a

+ d1d2k4 + d1c(1 − c)k2

d2
(
1 − c2

)
k2 + c(1 − c)2

. (2.18)

Letting λ(b) be the real root of the equation�k(λ) = 0
such that λ (bT (k, a)) = 0, then it follows from (2.6)
and (2.18) that

d Reλ(b)

db

∣∣∣∣
b=bT (k, a)

= d2
(
1 − c2

)
k2 + c(1 − c)2

Tk

{
> 0, b < b∗

k ,

< 0, b > b∗
k ,

(2.19)

where b∗
k is defined by (2.10).

From the above analysis, we obtain the following
results on the stability, Turing instability, and steady
state bifurcations.

Theorem 2.2 Assuming that the condition (P0) holds
and d1 ≥ d∗

1 (c, d2) > 0. Then, the diffusion does
not affect the stability of the positive equilibrium E∗,
i.e., the stability region D1 remains the same as in the
case of d1 = d2 = 0, where D1 is surrounded by the
boundary line for the positive equilibrium E∗, the Hopf
straight line H0 and the a−axis, i.e.,

D1 = {(b, a) : 0 < b ≤ 1, a > b(1 − c)}
∪
{
(b, a) : b > 1, a > b(1 − c2)+ c(c − 1)

}
.

Theorem 2.3 Assume that the condition (P0) holds,
0 < d1 < d∗

1 (c, d2), and let k and k∗ be defined by
(2.15) and (2.17), respectively.

(i) When (b, a) ∈ D11, the positive equilibrium E∗
is asymptotically stable for any d1, d2 ≥ 0, where
D11 is surrounded by the boundary line for the
positive equilibrium E∗, the Hopf straight line H0,
the Turing bifurcation polygonal line , and the
a−axis.

(ii) Turing instability occurs in the region D12, where
D12 is surrounded by the boundary line for the
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positive equilibrium E∗, the Hopf straight line H0,
and the Turing bifurcation polygonal line .

(iii) The Hopf bifurcation line H0 intersects with the
line segments k∗ and a codimension-2 Turing-
Hopf bifurcation occurs at the intersect point
(b, a) = (bH T (k∗), aH T (k∗)) , where

bH T (k
∗) = − d1d2

c2(1 − c)2
(
k∗)4

− d1 − d2

c(1 − c)

(
k∗)2 + 1,

aH T (k
∗) = (1 − c2)bH T (k

∗)+ c(c − 1).

Stability region and bifurcation diagram for system
(1.4) are illustrated in Fig. 1. When d1 ≥ d2c(1 −
c)/ (d2 + c(1 − c)), the existence region for the pos-
itive equilibrium E∗ is divided into three regions
D1, D2, and D3, as shown in Fig. 1A. In D1, the
positive equilibrium E∗ is asymptotically stable. This
stability region D1 is the same to the case in the
absence of diffusion. However, when d1 < d2c(1 −
c)/ (d2 + c(1 − c)) , the stability region D1 in the
absence of diffusion is split into two regions D11 and
D12, as shown in Fig. 1B. In D11, the positive equilib-
rium E∗ is still asymptotically stable in the presence of
diffusion. In D12, Turing instability occurs, and steady
state bifurcation occurs. In D2, only Hopf bifurcations
occur. In D3, there exist Hopf and steady state bifurca-
tions.

Remark 2.2 If k in (2.9) is assumed to be nonnegative
real number, then the envelope curve of these straight
lines a = aT (k, b) is defined by

a = b(1 − c2)+ d1

d2
c(1 − c)− 2c(1 − c)

√
d1

d2
b,

b >
d1

d2
,

which is the necessary condition for the occurrence of
Turing instability. This condition can also be obtained
by the results in [2,10,11]. The steady state bifurca-
tion straight lines k, k = 1, 2, . . . , are tangent to this
envelope curve.

3 Normal form on the center manifold and the
properties of Hopf and steady state bifurcations

From Theorem 2.1, we know that system (1.4) may
undergo Hopf bifurcations or steady state bifurcation

near the equilibrium E∗ when b is increasing across
the critical curves Hk or a = aT (k), respectively. Tak-
ing b as a parameter, denote the critical value b by b∗.
Then, b∗ = bH (k) defined by (2.11) for Hopf bifur-
cations and b∗ = bT (k) defined by (2.18) for steady
state bifurcation. In this section, we employ the simi-
lar method as in [21] to compute the normal form on
the center manifold corresponding to these bifurcations
and then determine the properties of these bifurcations.

For U1 = (u1, v1)
T ,U2 = (u2, v2)

T ∈ X, define
the inner product

[U1,U2] =
π∫

0

(u1u2 + v1v2) dx

such that X becomes a Hilbert space.
Introduce a new parameter μ ∈ R by setting μ =

b−b∗ such thatμ = 0 is the bifurcation value. Rewrite
the positive equilibrium as a parameter-dependent form
E∗
μ(u

∗(μ), v∗(μ)) with

u∗(μ) = (b∗ + μ) (a + (c − 1) (b∗ + μ))

a
,

v∗(μ) = (b∗ + μ)2 (1 − c)(a + (c − 1) (b∗ + μ))

ac
.

Setting ũ(·, t) = u(·, t)−u∗(μ), ṽ(·, t) = v(·, t)−
v∗(μ), Ũ (t) = (ũ(·, t), ṽ(·, t)) and then dropping the
tildes for simplification of notation, system (1.4) can
be written as the equation

dU

dt
= d�U + L0(U )+ f (U, μ), (3.1)

where

d�u =
(

d1�u

d2�v

)
, L0(U )=

((
b∗

(
1−c2

)−a
)

u−c2v

b∗(1−c)2u−c(1−c)v

)
,

f (U, μ) =
∑

i+ j+m≥2

1

i ! j !m! fi jmuiv jμm ,

fi jm =
(

f (1)i jm , f (2)i jm

)T
,

(3.2)

with f (n)i jm = ∂ i+ j+m f̃ (n)(0,0,0)
∂ui ∂v j ∂μm , n = 1, 2, and

f̃ (1)(u, v, μ) = a
(
u+u∗(μ)

) (
1− (u+u∗(μ))

(b∗+μ)
)

− (b∗+μ) (u+u∗(μ)) (v+v∗(μ))
(b∗+μ) (u+u∗(μ))+(v + v∗(μ))

,

f̃ (2)(u, v, μ) = (b∗+μ) (u+u∗(μ)) (v+v∗(μ))
(b∗+μ) (u+u∗(μ))+(v + v∗(μ))
− c

(
v+v∗(μ)

)
.
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By a direct computation, we have f011 = f002 = f003 =
f012 = f102 = (0, 0)T , which will be used in the
following computation.

The linearized system of Eq. (3.1) at the origin is

dU

dt
= L (U ). (3.3)

Denote by �k the finite set of all eigenvalues of the
linearized system (3.3) having zero real parts, with
which a stable invariant manifold is associated. Set
Bk = span

{[
ϕ(·), β i

k

]
β i

k | ϕ ∈ X, i = 1, 2
}
. Then it

is easy to verify that

L0(Bk) ⊂ span
{
β1

k , β
2
k

}
, k ∈ N0.

Assume that y(t) ∈ R
2 and

yT (t)

(
β1

k

β2
k

)
∈ Bk .

Then, on Bk , the linear partial differential Eq. (3.3) is
equivalent to the ODE on R

2

ẏ(t) =
(−d1k2 0

0 −d2k2

)
y(t)+ L0(y(t)), (3.4)

where for y(t) ∈ R
2, we use the same formal expres-

sion L0(y(t)) as in (3.2). Clearly, the linear ordinary
differential Eq. (3.4) has the same characteristic Eq.
(2.6) as the linear partial differential Eq. (3.3).

Let

Mk =
(−d1k2+b∗

(
1−c2

)−a −c2

b∗(1−c)2 −d2k2−c(1−c)

)
,

(3.5)

be the characteristic matrix of Eq. (3.4). Then�k is the
finite set of all eigenvalues of the matrix (3.5) having
zero real parts. The standard adjoint theory for ODEs
can be used to decompose C

2 by �k as

C
2 = Pk ⊕ Qk,

where Pk is the generalized eigenspace associated with
the eigenvalues in �k and

Qk =
{
ϕ ∈ C

2 : < ψ, ϕ >= 0 for all ψ ∈ P∗
k

}
,

where P∗
k is the dual space of Pk , and < ·, · > is the

scalar product of two complex vectors defined by〈
ψT , ϕ

〉
= ψTϕ, for ϕ,ψ ∈ C

2,

such that for dual bases �k and �k of Pk and P∗
k ,

respectively, < �k,�k >= Ip, where p = dim Pk .

Using the above decomposition, the phase space X
can be decomposed as

X = Xc ⊕ Xs, Xc = Imπ, Xs = Kerπ, (3.6)

where dimXc = p, and π : X → Xc is the projection
defined by

π(φ) =
(
�k

〈
�k,

([
φ, β1

k

]
[
φ, β2

k

]
)〉)T (

β1
k

β2
k

)
, φ ∈ X.

According to (3.6), U = (u, v)T ∈ X can be decom-
posed as(

u
v

)
= (�k z)T

(
β1

k

β2
k

)
+ w = �k zγk(x)+ w, (3.7)

where z = (z1, z2)
T ∈ R

p, w = (w1, w2)
T ∈ Xs .

Then, system (3.1) is equivalent to the following sys-
tem:⎧⎪⎨
⎪⎩

ż = Bk z +�k

([
f (z, w,μ), β1

k

]
[

f (z, w,μ), β2
k

]
)
,

ẇ = L (w)+ H(z, w,μ),

(3.8)

where Bk is a p × p real diagonal matrix with the point
spectrum σ(Bk) = �k ,

f (z, w,μ) = f (�k zγk(x)+ w,μ) (3.9)

and

H(z, w,μ) = f (z, w,μ)

−
(
�k

〈
�k,

([
f (z, w,μ), β1

k

]
[

f (z, w,μ), β2
k

]
)〉)T (

β1
k

β2
k

)
.

(3.10)

Consider the formal Taylor expansion

f (ϕ, μ) =
∑
j≥2

1

j ! f j (ϕ, μ),

where f j is the j th Fréchet derivative of f . Then (3.8)
is written as⎧⎨
⎩

ż = Bk z + ∑
j≥2

1
j ! f 1

j (z, w,μ),

ẇ = L (w)+ ∑
j≥2

1
j ! f 2

j (z, w,μ),
(3.11)

where

f 1
j (z, w,μ) = �k

([
f j (z, w,μ), β1

k

]
[

f j (z, w,μ), β2
k

]
)
,

f 2
j (z, w,μ) = Hj (z, w,μ).

(3.12)
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As for autonomous ODEs in the finite dimension
space [16], by a recursive transformation of variables

(z, w) = (̃z, w̃)+ 1

j !
(

U 1
j (̃z, μ),U

2
j (̃z, μ)

)
, j ≥ 2,

where U 1
j and U 2

j are homogeneous polynomials of
degree j in z̃ and μ, and for simplification of notation,
dropping the tilde after each transformation of variable,
then the normal form on the center manifold for 3.8 (or
(3.11)) is

ż = Bk z+ 1

2
g1

2(z, 0, μ)+ 1

3!g1
3(z, 0, μ)+o(μ|z|2).

(3.13)

where g1
2 and g1

3 are the second and third terms in (z, μ),
respectively, given by

g1
2(z, 0, μ) = ProjKer(M1

2 )
f 1
2 (z, 0, μ), g1

3(z, 0, μ)

= ProjKer(M1
3 )

f̃ 1
3 (z, 0, μ). (3.14)

Here, 1
3! f̃ 1

3 is the term of order 3 obtained after the
changes of variables in previous step given by

f̃ 1
3 (z, 0, μ) = f 1

3 (z, 0, μ)

+3

2

[(
Dz f 1

2

)
(z, 0, μ)U 1

2 (z, μ)

+
(

Dw f 1
2

)
(z, 0, μ)U 2

2 (z, μ)

−
(

DzU 1
2 (z, μ)

)
g1

2(z, 0, μ)
]
, (3.15)

and the operators M1
j and M2

j are defined by

M1
j : V p+1

j

(
C

2
)

→ V p+1
j

(
C

2
)
,M1

j

(
U 1

j

)
=

(
DzU 1

j (z, μ)Bk z
)

− BkU 1
j (z, μ),

M2
j : V p+1

j

(
Xs) → V p+1

j

(
Xs) ,M2

j

(
U 2

j

)
=

(
DzU 2

j (z, μ)Bk z
)

− L (U 2
j (z, μ)), (3.16)

where V p+1
j (Y ) denotes the space of homogeneous

polynomials of degree j in p + 1 variables z1, z2, . . . ,

z p, μ with coefficients in Y .

3.1 For Hopf bifurcations: direction and stability
of Hopf bifurcations

We assume that there exists a k ∈ N0 such that�k = 0
with b = b∗ = bH (k) has a pair of purely imaginary
roots ±iωk and the remaining roots of the characteristic
equation (2.6) have nonzero real parts, where

ωk

=
√

d1d2k4−(
d1c(c−1)+d2

(
b∗(1−c2)−a

))
k2+c(1−c)(a+b∗(c−1)).

For this Hopf bifurcation, we have�k ={iωk,−iωk},
p=2, Bk =diag{iωk,−iωk}, and z = (z1, z2)

T ∈ R
2.

In terms of Mk pk = iωk pk and MT
k qk = iωkqk ,

we can choose pk and qk as follows such that
〈
qT

k , pk
〉 =

1,

pk =
⎛
⎝ 1

− d1k2−b∗
(
1−c2

)+a+iωk

c2

⎞
⎠ ,

qk =
⎛
⎝ d2k2+c(1−c)+iωk

2iωk

− c2

2iωk

⎞
⎠ .

Define �k = (pk, p̄k) ,�k = col
(
qT

k , q̄T
k

)
and

then〈�k,�k〉 = �k�k = I2, where I2 is the 2 × 2
identity matrix. Then, by (3.7), we use the following
decomposition in this subsection:(

u
v

)
= (z1 pk + z2 p̄k) γk(x)+ w, z1, z2 ∈ R,

w = (w1, w2)
T ∈ Xs . (3.17)

By (3.16) and noticing that Bk = diag{iωk,−iωk},
the operators M1

j are defined by

M1
j

(
zm1

1 zm2
2 μmen

)
= iωk

(
m1 − m2 + (−1)n

)
zm1

1 zm2
2 μmen,

m1 + m2 + m = j,

for m1,m2,m ∈ N0, n = 1, 2, j = 2, 3, and e1 =
(1, 0)T , e2 = (0, 1)T . Hence,

Im(M1
2 )

c = Ker(M1
2 ) = span

{(
z1μ

0

)
,

(
0

z2μ

)}
,

and

Im(M1
3 )

c = Ker(M1
3 )

= span

{(
z2

1z2

0

)
,

(
z1μ

2

0

) (
0

z1z2
2

) (
0

z2μ
2

)}
.

3.1.1 Calculation of g1
2(z, 0, μ)

By (3.2) and a direct computation, we have f101 =(
1 − c2, (1 − c)2

)T
. So,

1

2
f2(U, μ) =

(
1 − c2

(1 − c)2

)
μu + 1

2
f200u2

+ f110uv + 1

2
f020v

2. (3.18)
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which, together with (3.17), leads to

1

2
f2(z, 0, μ)

= 1

2
f2 (�k zγk(x), 0)

=
(

1 − c2

(1 − c)2

)
(pk1z1μ+ p̄k1z2μ) γk(x)

+1

2

(
Ak20z2

1 + Ak11z1z2 + Ak02z2
2

)
γ 2

k (x),

(3.19)

where

Ak20 = f200 p2
k1 + 2 f110 pk1 pk2 + f020 p2

k2,

Ak02 = Āk20,

Ak11 = 2 f200 |pk1|2 + 4 f110Re {pk1 p̄k2}
+2 f020 |pk2|2 .

(3.20)

Thus, from (3.12) and (3.19), we obtain

1

2
g1

2(z, 0, μ)= 1

2
ProjKer(M1

2 )
f 1
2 (z, 0, μ)=

(
Bk1z1μ

B̄k1z2μ

)
,

(3.21)

where

Bk1 =
((

1 − c2
)

qk1 + (1 − c)2qk2

)
pk1. (3.22)

3.1.2 Calculation of g1
3(z, 0, μ)

Notice that the terms o(|z|μ2) are irrelevant to deter-
mine the generic Hopf bifurcation. So, it is sufficient
for determining the dynamics of generic Hopf bifur-
cation to obtain g1

3(z, 0, 0). Since g1
2(z, 0, 0) = 0, it

follows from (3.15) that the third term g1
3(z, 0, 0) can

be determined as follows:
1

3!g1
3(z, 0, 0) = 1

3!ProjS f̃ 1
3 (z, 0, 0),

where

S = span

{(
z2

1z2

0

)
,

(
0

z1z2
2

)}

and

f̃ 1
3 (z, 0, 0) = f 1

3 (z, 0, 0)+ 3

2

[
(Dz f 1

2 )(z, 0, 0)U 1
2 (z, 0)

+(Dw f 1
2 )(z, 0, 0)U 2

2 (z, 0)
]
. (3.23)

Here,

U 1
2 (z, 0) = (M1

2 )
−1ProjIm(M1

2 )
f 1
2 (z, 0, 0) (3.24)

and U 2
2 (z, 0) is determined by the equation(

M2
2 U 2

2

)
(z, 0) = f 2

2 (z, 0, 0). (3.25)

Next we compute the third-order term g1
3(z, 0, 0) =

ProjS f̃ 1
3 (z, 0, 0) step by step in terms of (3.23).

Step 1. The calculation of ProjS f 1
3 (z, 0, 0).By (3.2)

and (3.12) and notice that
π∫

0

γ 4
k (x)dx =

{ 1
π
, k = 0,

3
2π , k �= 0,

it is easy to verify that

1

3!ProjS f 1
3 (z, 0, 0) =

(
Bk21z2

1z2

B̄k21z1z2
2

)
, (3.26)

where

Bk21 =
{ 1

2π bk21, k = 0,

3
4π bk21, k �= 0,

(3.27)

with

bk21 = qT
k

(
f300 pk1 |pk1|2 + f030 pk2 |pk2|2

+ f210

(
p2

k1 p̄k2 + 2pk2 |pk1|2
)

+ f120

(
p2

k2 p̄k1 + 2pk1 |pk2|2
))
. (3.28)

Step 2. The calculation of ProjS

[ (
Dz f 1

2

)
(z, 0, 0)

U 1
2 (z, 0)

]
. It follows from (3.12) and (3.19) that

f 1
2 (z, 0, 0) = �k

(
Ak20z2

1 + Ak11z1z2 + Ak02z2
2

)

×
π∫

0

γ 3
k (x)dx,

A straightforward calculation shows that

U 1
2 (z, 0) = (M1

2 )
−1 f 1

2 (z, 0, 0)

=
∫ π

0 γ 3
k (x)dx
iωk

(
qT

k

(
Ak20z2

1− Ak11z1z2− 1
3 Ak02z2

2

)
q̄T

k

( 1
3 Ak20z2

1+ Ak11z1z2− Ak02z2
2

)
)
,

and then

1

3!ProjS[(Dz f 1
2 )U

1
2 ](z, 0, 0) =

(
Ck21z2

1z2

C̄k21z1z2
2

)
, (3.29)

with

Ck21 =
{ 1

6π ck21, k = 0,

0, k �= 0,
(3.30)
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where

ck21 = i

ωk

((
qT

k Ak20

) (
qT

k Ak11

)
−

∣∣∣qT
k Ak11

∣∣∣2
−2

3

∣∣∣qT
k Ak02

∣∣∣2) . (3.31)

Step 3. The calculation of ProjS

[ (
Dw f 1

2

)
(z, 0, 0)

U 2
2 (z, 0)

]
. Let

U 2
2 (z, 0) : h =

∑
j≥0

(hkj (z))
T

(
β1

j

β2
j

)
∈ Xs, (3.32)

with

hkj (z) =
⎛
⎝ h(1)k j (z)

h(2)k j (z)

⎞
⎠=

⎛
⎝ h(1)k j20

h(2)k j20

⎞
⎠ z2

1+
⎛
⎝ h(1)k j11

h(2)k j11

⎞
⎠ z1z2

+
⎛
⎝ h(1)k j02

h(2)k j02

⎞
⎠ z2

2.

From (3.12), we have
(Dw f 1

2 )(z, 0, 0)(h)

= �k

⎛
⎜⎜⎜⎜⎝

[
D f2 (�k zγk(x), 0)

(
hT

kk

(
β1

k

β2
k

))
, β1

k

]
[

D f2 (�k zγk(x), 0)

(
hT

kk

(
β1

k

β2
k

))
, β2

k

]
⎞
⎟⎟⎟⎟⎠

+�k

⎛
⎜⎜⎜⎜⎝

[
D f2 (�k zγk(x), 0)

(∑
j �=k

hT
k j

(
β1

j

β2
j

))
, β1

k

]
[

D f2 (�k zγk(x), 0)

(∑
j �=k

hT
k j

(
β1

j

β2
j

))
, β2

k

]
⎞
⎟⎟⎟⎟⎠.

By (3.18) and a direct computation, we obtain⎛
⎜⎜⎜⎜⎜⎝

[
D f2 (�k zγk(x), 0)

(
hT

k j

(
β1

j

β2
j

))
, β1

k

]
[

D f2 (�k zγk(x), 0)

(
hT

k j

(
β1

j

β2
j

))
, β2

k

]
⎞
⎟⎟⎟⎟⎟⎠

= 2ck j

{
f200 (z1 pk1 + z2 p̄k1) h(1)k j

+ f110

(
(z1 pk2 + z2 p̄k2) h(1)k j

+ (z1 pk1+z2 p̄k1) h(2)k j

)
+ f020 (z1 pk2+z2 p̄k2) h(2)k j

}
,

where

ck j =
π∫

0

γ 2
k (x)γ j (x)dx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1√
π
, j = k = 0,

1√
π
, j = 0, k �= 0,

1√
2π
, j = 2k �= 0,

0, otherwise.

(3.33)

So,

1

3!ProjS(Dw f 1
2 )(z, 0, 0)(h) =

(
Dk21z2

1z2

D̄k21z1z2
2

)
(3.34)

with

Dk21 =
⎧⎨
⎩

1
3
√
π

E(0,0), k = 0,

1
3
√
π

E(k,0) + 1
3
√

2π
E(k,2k), k �= 0,

where, for j = 0, 2k,

E(k, j) = qT
k

(
( f200 pk1 + f110 pk2) h(1)k j11

+ ( f110 pk1 + f020 pk2) h(2)k j11

+ ( f200 p̄k1 + f110 p̄k2) h(1)k j20

+ ( f110 p̄k1 + f020 p̄k2) h(2)k j20

)
. (3.35)

Clearly, to obtain Dk21 we still need to compute
hkj20 and hkj11. It follows from (3.16) that

M2
2

(
(hkj (z))

T

(
β1

j

β2
j

))

=
(

Dz

(
(hkj (z))

T

(
β1

j

β2
j

))
Bk z

)

−L

(
(hkj (z))

T

(
β1

j

β2
j

))
,

which leads to⎛
⎜⎜⎜⎜⎝

[
M2

2

(
(hkj (z))T

(
β1

j

β2
j

))
, β1

j

]
[

M2
2

(
(hkj (z))T

(
β1

j

β2
j

))
, β2

j

]
⎞
⎟⎟⎟⎟⎠

= 2iωk
(
hkj20z2

1 − hkj02z2
2

)
+ j2

(
d1 0

0 d2

)
hkj (z)− L0hkj (z).

(3.36)

In addition, by (3.10) and (3.12) we have

H(z, w,μ)

= f (z, w,μ)−
〈

qT
k ,

([
f (z, w,μ), β1

k

]
[

f (z, w,μ), β2
k

]
)〉

pkγk(x)

−
〈

q̄T
k ,

([
f (z, w,μ), β1

k

]
[

f (z, w,μ), β2
k

]
)〉

p̄kγk(x),
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which, together with (3.12) and (3.19), yields⎛
⎝

[
f 2
2 (z, 0, 0), β1

j

]
[

f 2
2 (z, 0, 0), β2

j

]
⎞
⎠ =

⎛
⎝

[
H2(z, 0, 0), β1

j

]
[

H2(z, 0, 0), β2
j

]
⎞
⎠

=
∑

m1+m2=2

(
ck j Akm1m2

− ζk j

(
qT

k Akm1m2 pk + q̄T
k Akm1m2 p̄k

))
zm1

1 zm2
2 .

(3.37)

where ζk j =
π∫
0
γ 3

k (x)dx
π∫
0
γk(x)γ j (x)dx .

From (3.25), we have⎛
⎜⎜⎜⎜⎝

[
M2

2

(
(hkj (z))T

(
β1

j

β2
j

))
, β1

j

]
[

M2
2

(
(hkj (z))T

(
β1

j

β2
j

))
, β2

j

]
⎞
⎟⎟⎟⎟⎠=

⎛
⎝

[
f 2
2 , β

1
j

]
[

f 2
2 , β

2
j

]
⎞
⎠ .

So, by (3.36), (3.37) and matching the coefficients
of z2

1 and z1z2, we have

z2
1 : 2iωkhk j20 + j2

(
d1 0
0 d2

)
hkj20−L0

(
hkj20

)
= (

ck j Ak20 − ζk j
(
qT

k Ak20 pk + q̄T
k Ak20 p̄k

))
,

z1z2 : j2
(

d1 0
0 d2

)
hkj11 − L0

(
hkj11

)
= (

ck j Ak11 − ζk j
(
qT

k Ak11 pk + q̄T
k Ak11 p̄k

))
,

Solving these equations yields

k = 0, j = 0 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h0020 = 1√
π
(2iω0 I2 − M0)

−1(
A020 − qT

0 A020 p0 − q̄T
0 A020 p̄0

)
,

h0011 = − 1√
π
M−1

0(
A011 − qT

0 A011 p0 − q̄T
0 A011 p̄0

)
,

and

k �=0, j =0, 2k :
⎧⎨
⎩

hkj20 =ck j
(
2iωk I2−M j

)−1
Ak20,

hkj11 = −ck jM−1
j Ak11.

Summarizing Steps 1–3 and by (3.26), (3.29) and
(3.34), we obtain

1

3!g1
3(z, 0, 0) = 1

3!ProjS f̃ 1
3 (x, 0, 0) =

(
Bk2z2

1z2

B̄k2z1z2
2

)

with

Bk2 = Bk21 + 3

2
(Ck21 + Dk21)

=
⎧⎨
⎩

1
2π b021 + 1

4π c021 + 1
2
√
π

E(0,0), k = 0,

3
4π bk21 + 1

2
√
π

Ek,0 + 1
2
√

2π
E(k,2k), k �= 0,

(3.38)

where bk21, ck21, and E(k, j) are defined by (3.28),
(3.31), and (3.35), respectively.

Thus, the normal form (3.13) on the center manifold
for the critical values b = bH (k) of Hopf bifurcations
has the form

ż = Bk z +
(

Bk1z1μ

B̄k1z2μ

)
+

(
Bk2z2

1z2

B̄k2z1z2
2

)

+ O(|z|μ2 + |z4|),
which can be written in real coordinates w through the
change of variables z1 = w1 − iw2, z2 = w1 + iw2.
Transforming to polar coordinatesw1 = ρ cos ξ ,w2 =
ρ sin ξ , this normal form becomes

ρ̇ = νk1μρ + νk2ρ
3 + O(μ2ρ + |(μ, ρ)|4),

ξ̇ = −ωk + O(|(μ, ρ)|) (3.39)

with

νk1 = Re {Bk1} = 1 − c2

2
> 0, νk2 = Re {Bk2} .

It is well known [29,42] that the sign of νk1νk2 deter-
mines the direction of the bifurcation (supercritical if
νk1νk2 < 0, subcritical if νk1νk2 > 0), and the sign of
νk2 determines the stability of the nontrivial periodic
orbits (stable if νk2 < 0, unstable if νk2 > 0). Since
νk1 > 0, then the direction and stability of the Hopf
bifurcation at b = bk

H can be determined by the sign of
νk2.

Theorem 3.1 Assume that there exists a k ∈ N0 such
that�k = 0 with b = b∗ = bH (k) has a pair of purely
imaginary roots ±iωk , and the remaining roots of the
characteristic equation (2.6) have nonzero real parts.
Let bH (k) and Bk2 be defined by (2.11) and (3.38),
respectively.

(i) If Re {Bk2} < 0, then the Hopf bifurcation at the
critical value bH (k) is supercritical, and the bifur-
cating periodic solution is asymptotically stable on
the center manifold.

(ii) If Re {Bk2} > 0, then the Hopf bifurcation at the
critical value bH (k) is subcritical, and the bifur-
cating periodic solution is unstable on the center
manifold.

3.2 For the steady state bifurcation: pitchfork
bifurcation and stability

In this subsection, we assume that there exists a positive
integer k ≥ 1 such that �k = 0 with b = b∗ = bT (k)
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has a simple zero root λ = 0 and the remaining roots
of the characteristic Eq. (2.6) have nonzero real parts.

For this singularity, we have that �k = {0} , p =
1, Bk = 0, �k = pk, �k = qT

k with

pk =
⎛
⎝ 1

− d1k2−b∗
(
1−c2

)+a
c2

⎞
⎠ , qk =

⎛
⎝ d2k2+c(1−c)

Tk

− c2

Tk

⎞
⎠ .

Then, by (3.7), we use the following decomposition in
this subsection:(

u
v

)
= pk zγk(x)+ w, z ∈ R, w = (w1, w2)

T ∈ Xs .

(3.40)

It follows from (3.18) and (3.40) that

1

2
f2(z, 0, μ) = 1

2
f2 (pk zγk(x), μ)

=
(

1 − c2

(1 − c)2

)
pk1γk(x)zμ

+1

2
Ak20γ

2
k (x)z

2, (3.41)

where Ak20 has the same form as in (3.20). Since Bk =
0, it is easy to see from (3.16) that Im(M1

j ) is the zero

subspace of V 2
j (R), and then we have

Im(M1
2 )

c = span
{

z2, zμ,μ2
}
, Im(M1

3 )
c

= span
{

z3, z2μ, zμ2, μ3
}
. (3.42)

From (3.12), (3.41), and (3.42), the second-order term
g1

2 of the normal form is given by

1

2
g1

2(z, 0, μ) = 1

2
Proj

Im(M1
2 )

c f 1
2 (z, 0, μ)

= Sk11zμ+ Sk21z2, (3.43)

where

Sk11 =
((

1 − c2
)

qk1 + (1 − c)2qk2

)
pk1

= (1 − c) (c(1 − c)+ d2(1 + c))

Tk
> 0 (3.44)

and

Sk21 =
π∫

0

γ 3
k (x)dxqT

k Ak20 = 0.

In what follows, we compute the third terms of the nor-
mal form for determining the steady state bifurcation.
Since B = 0, it is easy to see that (Ker(M1

3 ))
c = 0 and

then U 1
2 = 0. By (3.43), we know that g1

2(z, 0, 0) =
2Sk21z2 = 0.

Fig. 2 Bifurcation diagram for system (1.4) with d1 =
0.02, d2 = 0.2, c = 0.6, in the b−a plane. The positive equilib-
rium E∗ is asymptotically stable in D11 and unstable otherwise.
In D12, Turing instability occurs. In D2, only Hopf bifurcations
occur. In D3, there exist Hopf and steady state bifurcations

Fig. 3 Bifurcation diagram for system (1.4) in the b − k plane
for fixed a = 0.2: bifurcation occurs at b = b∗ = 0.4321 when
k = 1, and at b = b∗ = 0.4789 when k = 2. Parameters d1, d2,
and c are the same as in Fig. 2: d1 = 0.02, d2 = 0.2, c = 0.6

It follows from (3.23) and (3.42) that

1

3!g1
3(z, 0, μ) = 1

3!ProjS f̃ 1
3 (z, 0, 0)+ O(μ|(z, μ)|2),

where S = span
{
z3
}
.

Let

U 2
2 (z, 0) : h =

∑
j≥0

⎛
⎝
⎛
⎝ h(1)k j

h(2)k j

⎞
⎠ z2

⎞
⎠

T (
β1

j

β2
j

)
∈ Xs,

(3.45)
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Fig. 4 Pitchfork bifurcation of positive constant equilibrium:
d1 = 0.02, d2 = 0.2, c = 0.6, a = 0.2, b = 0.46. The pos-
itive constant equilibrium E∗(0.0368, 0.0113) is unstable, and
two stable spatially inhomogeneous steady states of cos x-like

shape emerge and are stable. a–b The initial values are u(x, 0) =
0.1−0.1 cos x, v(x, 0) = 0.01−0.01 cos x; c–d The initial val-
ues are u(x, 0) = 0.1 + 0.1 cos x, v(x, 0) = 0.01 + 0.01 cos x

where h(1)k j , h(2)k j ∈ R. By (3.2), (3.12), and (3.15), we
have

1

3!ProjS f̃ 1
3 (z, 0, 0) = Sk30z3,

where

Sk30 = 1

4π
sk + 1

2
√
π

s(k,0) + 1

2
√

2π
s(k,2k), (3.46)

with

sk = qT
k

(
f300 p3

k1 + f030 p3
k2 + 3 f210 p2

k1 pk2

+3 f120 pk1 p2
k2

)
,

s(k, j) = qT
k

(
( f200 pk1 + f110 pk2) h(1)k j + ( f020 pk2

+ f110 pk1) h(2)k j

)
, j = 0, 2k. (3.47)

Clearly, to obtain Sk30, we have to determine hkj .
Using the similar arguments as for Hopf bifurcation, it
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Fig. 5 Bifurcation diagram for system (1.4) in the b − k plane
for a = 0.5. Other parameters d1, d2 and c are same as in Fig. 2

is easy to show that hkj satisfy

− M j hk j = ck j Ak20, k �= 0, j = 0, 2k. (3.48)

Using the basic assumption of this subsection, we know
that det

(M j
) �= 0 for k �= 0, j = 0, 2k. Therefore,

by (3.48), we obtain

hkj = −ck jM−1
j Ak20, k �= 0, j = 0, 2k. (3.49)

Now, the coefficient Sk30 can be explicitly determined
by (3.46), (3.47) and (3.49). Thus, if Sk30 �= 0, then
the normal form truncated to third terms is given by

ż = Sk11zμ+ Sk30z3, (3.50)

where Sk11 and Sk30 are defined by (3.44) and (3.46),
respectively. Therefore, by the center manifold theorem
due to Carr [15] and the bifurcation theorem [16,29],
the dynamics of system (1.4) near the bifurcation value
is topologically equivalent to that of normal form near
the sufficiently small neighborhood of μ = 0. Notice
that Sk11 > 0. So, by the normal form (3.50) and the
results of [41], we have the following results on the
steady state bifurcation.

Theorem 3.2 Assume that there exists a positive inte-
ger k such that �k = 0 with b = bT (k) has a simple
zero root λ = 0, and the remaining roots of the char-
acteristic equation (2.6) have nonzero real parts. Let
bT (k) and Sk30 be defined by (2.18) and (3.46), respec-
tively. Then we have the following results on the steady
state bifurcation:

(i) if Sk30 < 0, then system (1.4) undergoes a super-
critical pitchfork bifurcation near the constant
equilibrium E∗ at the critical value b = bT (k);

(ii) if Sk30 > 0, then system (1.4) undergoes a subcriti-
cal pitchfork bifurcation near the constant equilib-
rium E∗ at the critical value b = bT (k);

4 Numerical simulations

The formulas obtained in Sects. 2 and 3 are complicated
but can be numerically evaluated. In this section, we
present some numerical results for these formulas and
numerical simulations for the models system. These
numeric results confirm our analytic results.

For numerical purpose, we take d1 = 0.02, d2 =
0.2, c = 0.6 so that

d1 < (d2c(1 − c)) / (d2 + c(1 − c)) .

By (P0), the positive equilibrium E∗ exists provided
that a > 0.4b. It follows from (2.9), (2.13), and (2.15)
that

H0 : a = 16

25
b − 6

25
, b > 1;

1 : a = 28

55
b − 1

50
,

11

60
< b ≤ 143

180
;

2 : a = 38

65
b − 2

25
,

143

180
< b ≤ 221

60
;

3 : a = 52

85
b − 9

50
,

221

60
< b ≤ 731

60
,

and the straight line H0 intersects with 2 at the point
T H

( 26
9 ,

362
225

)
. Figure 2 shows the stability region and

these bifurcation lines in the b − a plane.
In the sequel, we will fix a and take b as a parameter

and observe how the dynamics of system (1.4) changes
as b varies.

Depending on whether system (1.4) first undergoes
Hopf bifurcation or steady state bifurcation, we distin-
guish the following two cases.

4.1 Pitchfork bifurcations and spatially
inhomogeneous steady states

For a ∈ (0.0733, 1.6089), system (1.4) first under-
goes steady state bifurcation as b increases. The
interval (0.0733, 1.6089) further breaks down into
(0.0733, 0.3844) and (0.3844), 1.6089), correspond-
ing to steady state bifurcations with different spatial
patterns.
4.1-(i). Spatially inhomogeneous steady states with
cos x-like shape.
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Fig. 6 Numerical simulation of system (1.4) for d1 =
0.02, d2 = 0.2, a = 0.5, b = 1.02, c = 0.6. The positive
equilibrium E∗(0.1877, 0.1276) is unstable and two spatially
inhomogeneous stable steady states like cos 2x shape emerge.

a–b: The initial values are u(x, 0) = 0.3 − 0.1 cos x, v(x, 0) =
0.1 − 0.1 cos x ; c–d The initial values are u(x, 0) = 0.3 +
0.1 cos x, v(x, 0) = 0.1 + 0.1 cos x

When a ∈ (0.0733, 0.3844), steady state bifurca-
tion occurs when b increasingly crosses the Turing
bifurcation line 1. Taking a = 0.2 as an example, Fig.
3 illustrates the bifurcation diagram in the b − k plane.
The positive equilibrium E∗ is asymptotically stable for
0 < b < 0.4321 and unstable for 0.4321 < b < 0.5. It
follows from Fig. 3 that when b increases from 0 to 0.5,
system (1.4) undergoes steady state bifurcation at the
O1 when k = 1 or at O2 when k = 2, and there is no

Hopf bifurcation. At b = 0.4321, J1 = 0, and Jk > 0
for k > 1; thus, the characteristic equation�1 = 0 has
a zero root λ = 0, and all other roots of �k = 0 with
k > 1 have negative real parts. By (3.50) and taking
advantage of Matlab, we can calculate the normal form
truncated to the third- order term at the critical value
b = 0.4321 of steady state as

ż = 0.5842zμ+ 0.2359z3.
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Fig. 7 Numerical simulation of system (1.4) for d1 =
0.02, d2 = 0.2, a = 0.5, b = 1.6, c = 0.6. The posi-
tive equilibrium E∗(0.0835, 0.0640) is unstable and a spatial

homogeneous Hopf bifurcation occurs. This Hopf bifurcating
periodic solution is unstable. The initial values are u(x, 0) =
0.1 − 0.1 cos(2x), v(x, 0) = 0.08 − 0.08 cos(2x)

Fig. 8 Numerical simulation of system (1.4). The parameters d1, d2, a, b, c are the same as Fig. 7. But here we take the spatial
homogeneous initial values u(x, 0) = 0.1, v(x, 0) = 0.08

By Theorem 3.2, we conclude that system (1.4)
undergoes a subcritical pitchfork bifurcation at b =
0.4321, meaning that there is a sufficiently small pos-
itive number ε∗ such that for any b ∈ (0.4321 −
ε∗, 0.4321), there exist two unstable spatially inhomo-
geneous steady states with cos x-like shape. We would
like to point out that for b greater than and sufficiently
close to the critical value 0.4321, numerical simula-
tion shows that there exist two spatially inhomogeneous

steady states of cos x-like shape, which are stable now,
as shown in Fig. 4 for b = 0.46.
4.1-(ii). Spatially inhomogeneous stable steady states
with like cos 2x shape.

When a ∈ (0.3844, 1.6089), steady state bifurca-
tion occurs when b increasingly crosses the Turing
bifurcation line 2. Taking a = 0.5, Fig. 5 illustrates
the bifurcation diagram in the b − k plane. At the point
Ok, k = 1, 2, 3, Jk = 0, and system (1.4) under-
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Fig. 9 Bifurcation diagram for system (1.4) in the b − k plane
for fixed a = 2.5 such that b first increases across H0. Other
parameters d1, d2, and c are same as in Fig. 2

goes steady state bifurcation. It follows from Fig. 5 and
(2.19) that when b < 0.9921, all roots of the character-
istic Eq. (2.6) for any k ∈ N0 have negative real parts,
and thus, the positive equilibrium E∗ is asymptotically
stable. When b = 0.9921, the equation �2 = 0 has a
zero root λ = 0 and a negative real root, while all roots
of �k = 0 with k �= 2 all have negative real parts.
When b > 0.9921, the characteristic equation �2 = 0
has at least one positive real root, and the positive equi-
librium E∗ becomes unstable.

By using Matlab, we can calculate the normal form
(3.50) at the critical value b = 0.9921 truncated to the
third-order term as

ż = 0.6172zμ− 0.6374z3,

which implies that system (1.4) undergoes a super-
critical pitchfork bifurcation at b = 0.9921. Taking
b = 1.02, Fig. 6 shows that the positive equilibrium
E∗(0.1877, 0.1276) is unstable, and two spatially inho-
mogeneous stable steady states of cos 2x-like shape
emerge. Although the steady state bifurcations occur
at O1 and O3, they must be unstable since�2 = 0 has
a positive real root for b > 0.9921.

From Fig. 5, we also can see that system (1.4)
undergoes a spatially homogeneous Hopf bifurcation at
b = 1.1563. By (3.39) and using the software Matlab,
we can compute the following normal form truncated
to the third-order term:

ρ̇ = 0.3200μρ − 0.0257ρ3,

which implies, (by Theorem 3.2 ), that the Hopf bifur-
cation at b = 1.1563 is supercritical and stable on the
center manifold. However, since �k = 0 (k = 1, 2, 3)
have positive real roots at b = 1.1563, these bifurcated
spatially homogeneous periodic solutions are unstable
in the whole phase space. Figures 7 and 8 illustrate
this unstable Hopf bifurcation for spatially dependent
initial values and constant initial values, respectively.

Fig. 10 Numerical simulation of system (1.4) for d1 =
0.02, d2 = 0.2, a = 2.5, b = 4.3, c = 0.6. The positive equi-
librium E∗(1.3416, 3.8459) is unstable, and there exists a spa-

tially homogenous stable periodic orbit. The initial values are
u(x, 0) = 2.5 − 0.5 cos 2x, v(x, 0) = 4 − 0.5 cos 2x
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Fig. 11 Numerical simulation of system (1.4) for d1 =
0.02, d2 = 0.2, a = 2.5, b = 4.39, c = 0.6. The positive
equilibrium E∗(1.3065, 3.8236) is unstable, and an unstable

steady state solution like cos 3x shape emerges. Finally, the
system evolves into the zero solution. The initial values are
u(x, 0) = 1.3065 − 0.1 cos 3x, v(x, 0) = 3.8236 − 0.1 cos 3x

Fig. 12 Numerical simulation of system (1.4) for d1 =
0.02, d2 = 0.2, a = 2.5, b = 4.5, c = 0.6. The positive
equilibrium E∗(1.26, 3.78) is unstable, and an unstable steady

state solution like cos 4x shape emerges. Finally, the system
evolves into the zero solution. The initial values are u(x, 0) =
1.26 + 0.4 cos 4x, v(x, 0) = 3.78 + 0.4 cos 4x

4.2 Hopf bifurcations and spatially homogeneous
and inhomogeneous periodic solutions

When a > 1.6089, the first bifurcation when b
increases is a Hopf bifurcation. To demonstrate this
numerically, we take a = 2.5. Figure 9 illustrates the

bifurcation diagram in the b−k plane. There exist Hopf
bifurcations on H0 and H1 as well as eight steady state
bifurcation points Ok, k = 1, 2, . . . , 8. As b increases,
system (1.4) first undergoes Hopf bifurcation on H0

and then steady state bifurcation at O3, Hopf bifurca-
tion on H1, and so on. The positive equilibrium E∗ is
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Fig. 13 Numerical simulation of system (1.4) for d1 =
0.02, d2 = 0.2, a = 2.5, b = 4.7, c = 0.6. The positive equi-
librium E∗(1.1656, 3.6522) is unstable, and the system finally

evolves into the zero solution. The initial values are u(x, 0) =
1.1656 − 0.5 cos x, v(x, 0) = 3.6522 − 0.2 cos x

asymptotically stable for 0 < b < 4.2813 and unstable
for b > 4.2813. For the Hopf bifurcation on H0, by
(3.39) and using the software Matlab, we can obtain
the following normal form truncated to the third-order
term:

ρ̇ = 0.3200μρ − 0.0127ρ3.

So, the Hopf bifurcation on H0 is supercritical and sta-
ble. Taking b = 4.3 as example which is larger than
the first Hopf bifurcation value b = 4.2813 and less
than Turing bifurcation value b = 4.3803, a spatially
homogenous stable periodic orbit bifurcates from the
positive equilibrium E∗, as is shown in Fig. 10. When
b increases to pass the value 4.3803 (see O3 in Fig.
10), a steady state bifurcation occurs. Since the char-
acteristic equation (2.6) has at least a pair of roots with
positive real parts for b > 4.2813, these steady state
bifurcations must be unstable in the full phase space.
Figures 11 and 12 illustrate the dynamics of system
(1.4) for b = 4.39 close to O3 and b = 4.5 close to O4,
respectively. Figures 11 and 12 show the existence of
unstable nonconstant steady state with cos 3x-like and
cos 4x-like shapes, respectively. Due to the interaction
between Hopf and steady state bifurcations, the oscil-
latory dynamics in time only stay for a short period of
time. At b = 4.625, system (1.4) undergoes Hopf bifur-
cation on H1. This Hopf bifurcation leads to spatially

inhomogeneous periodic solution with cos x-like shape
in space, which is unstable since the existence of posi-
tive real roots and roots with positive real parts. Figure
13 illustrates the dynamics of the system at b = 4.7.

5 Conclusion

In this paper, we have studied a ratio-dependent
predator–prey model with diffusion. We have obtained
sufficient and necessary conditions for the stability and
Turing instability of the positive constant equilibrium.
We have also rigorously proved that if the diffusion
coefficient of prey is greater (d1 ≥ d2c(1 − c)/[d2 +
c(1 − c)] > 0), there is no diffusion-driven instabil-
ity, and if it is smaller (0 < d1 < d2c(1 − c)/[d2 +
c(1 − c)]), a diffusion-driven instability will occur at
some critical values. For fixed normalized death rate
c of predator, we have identified the boundaries of the
regions in the parameter b − a plane for the stability
and Turing instability, as well as curves for Hopf and
steady state bifurcations. The spatial structure associ-
ated with Turing instability can also be explicitly deter-
mined. The a−axis can be divided into a sequence of
intervals. Each interval corresponds to certain spatial
structure.

With the help of normal forms on the center man-
ifold, the formulas determining the direction and sta-
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bility of Hopf bifurcations and the patterns of steady
state bifurcations are derived. The calculation of nor-
mal forms for the steady state bifurcation shows that
there exists a pitchfork bifurcation with two spatially
inhomogeneous steady states. Numerical simulations
illustrate the spatially stable homogeneous and unsta-
ble inhomogeneous periodic solutions and the coex-
istence of two spatially inhomogeneous steady states
through the pitchfork bifurcation.
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