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For some ectotherms such as Ixodes scapularis, a vector of Lyme disease, changes in temperature are believed to affect the
interstadial development time and hence give rise to a time-periodic delay due to seasonality in the population dynamics
described by a stage-structured population growth model. Here, we develop a formulation linking the chronological delay
with multiple stage-specific interstadial delays. We also present a definition for the basic reproductive ratio for such a sys-
tem, develop a simple algorithm to compute it, and show that the results regarding the stability of the zero solution are
consistent with those from computing the dominant Floquet multiplier. Numerical simulations also show that the thresh-
old value for the population persistence or extinction depends not only on the mean but also on the amplitude and phase
of the periodic development delays. Copyright © 2015 John Wiley & Sons, Ltd.
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1. Introduction

For some ectothermic insects such as deer ticks (Ixodes scapularis), the interstadial development time is temperature dependent, with
higher temperatures typically resulting in shorter development times [1–5]. Motivated by this physiological characteristics of such pop-
ulations, we formulate an appropriate mechanistic model that describes the evolution of the population in each biologically distinctive
stage under seasonally varying periodic environment from general structured population dynamics models [6]. To parametrize the
model and to link model simulations to observed data, we formulate the model as a system of delay differential equations for which
each state variable corresponds to the population size at a given biological stage. This formulation permits rigorous mathematical anal-
ysis and calculation of key threshold indices that determine if a population will survive or go extinct. This, as will be shown, requires
the exploration of the iterative relationship between development times and the minimum and maximum ages of the population in
each state.

A systematic approach has been developed in the pioneering work of Nisbet and Gurney [7] to derive population models for insects
with dynamically varying instar duration. Here we develop a formulation to link the insect chronological age with the insect stage-
specific age that corresponds to the physiological mass in the work of Nisbet and Gurney [7] and Metz and Diekmann [8]. We obtain a
system of delay differential equations with time-periodic lags, which are explicitly given using a specific chronological age and stage-
specific age relationship (Eq. (9)). This facilitates some qualitative study of the model system, in particular, for the formal definition and
some computation of a basic reproductive ratio, denoted by R0.

This ratio, one of the most important and useful quantities in the field of ecology and infectious disease epidemiology, has been
considered and studied extensively in deterministic models. In epidemiology, the value of R0 characterizes the potential growth of
the population of infected individuals after one infected individual is introduced into a completely susceptible population. In general,
R0 > 1 (R0 < 1) indicates that the size of infected population will increase (decrease) and the disease will become endemic (die out)
(see [9–13] for detailed definitions and some applications). In ecology, R0 accounts for the average number of reproductive offspring
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produced by a single reproductive member in its life span. As such, the population will grow if R0 > 1, while the population cannot
establish in the ecosystem if R0 < 1 [14–16]. The value of R0 plays a threshold role in determining the stability of the corresponding
linearized system at the infection-free or population-extinction steady state. A natural way to define R0 for a model system is to con-
sider the linearization of the model system at this steady state. The matrix describing the linear system is broken down into either the
F � V (or T C †) decomposition [10–12] in an autonomous ODE system, or the F.t/ � V.t/ decomposition in a periodic ODE system
[13]. Here F (or T , F.t/) is the transmission matrix in epidemiology (or the new-borne matrix in ecology) describing the new infections
or new-borne females, and V (or �†, V.t/) is the progressive matrix describing the change of each state due to death, development
and removal. For an autonumous ODE system, R0 is defined as the spectral radius of the so-called the next generation matrix, FV�1 (or
�T†�1) and the value is computed as the dominant eigenvalue of FV�1. For a periodic nonlinear ODE system, R0 is defined as the
spectral radius of a next generation operator L constructed from the matrices F.t/ and V.t/ [13, 17]. There are some numerical algo-
rithms for calculating R0 [13, 18], and there have already been quite a few applications using periodic ordinary differential equations
[14, 16, 18–23] and delay differential equations with discrete and time-constant delay [24, 25]. There is also a way to define this thresh-
old value for stochastic differential equations [26–28], which determines the probability of a primary outbreak. Wangombe et al. [27]
has also studied this for a stochastic model of tick-borne diseases.

Here, we use some of these methodologies to formally define the basic reproductive ratio of the kind of system of delay differential
equations with periodic delay we are considering, and to propose and validate a numerical algorithm for computing R0. More specif-
ically, we follow the idea of [17] for a definition of the basic reproductive ratio in a periodic environment, using the renewal equation
satisfied by the birth rate y.t/ [13, 17, 29, 30]:

y.t/ D

Z 1
0

K.t, r/y.t � r/ dr, (1)

where the kernel K.t, r/ is!-periodic with respect to t and the basic reproductive ratio was defined to be the spectral radius of the next
generation integral operator

L : u.t/ 7!

Z 1
0

K.t, r/u.t � r/ dx (2)

acting on the function space consisting of !-periodic continuous functions.
This paper is organized as follows: In Section 2, we derive a stage-structured model of delay differential equations with periodic delay

and verify the well-posedness of the system. Section 3 gives the detailed derivation of the basic reproductive ratio of the model and
proposes a numerical algorithm for calculating R0. In Section 4, we present numerical simulations to illustrate the algorithm and some
insights about the dependence of R0 on model parameters. We also compare the proposed R0 values with those of the dominant
Floquet multiplier. We show that our results are consistent with the those obtained by using the existing algorithms for the dominant
Floquet multiplier. A brief discussion is given in the last section.

2. Model Formulation

Here, we develop a general dynamic population model where the interstadial development time of the population from one life stage
to the next has considerable variation due to temperature change. Due to seasonality, these development times should really be time-
dependent, and a periodic function may offer a reasonable approximation. In our formulation, a key assumption is that the transition
times between consecutive stages lead to periodic delays. Here, we subdivide the life cycle of a given population into n stages and
assume that each stage embodies a specific point of the life of the individual. We denote the size of subpopulations at the jth stage by
xj (2 � j � n). These stages are in order of increasing maturity (e.g. egg, various larvae, nymphs and adult stages) by xj . We reserve x1

to represent the size of the mature subpopulation who are able to produce offspring (egg-laying females). We also assume that ı is the
fixed sex ratio for such population.

2.1. Overall assumptions

In order to appropriately formulate the mathematical model, we make the following assumptions:

(H1) Let �i.t/ represent the time period that a newly developed tick state xiC1 at time t is evolved from the previous tick state
xi at time t � �i.t/. Assume that temperature varies periodically with period ! D 365 days and that �i.t/ (i D 2, : : : , n) is a
nonnegative periodic function of t with the same period. We also require that 1 � � 0i .t/ � 0, which excludes the possibility of
the ith stage of the tick going back to the previous .i � 1/th stage except by birth.

(H2) There is a good reason to assume that stage-wise mortality rate depends on the size of subpopulation at that particular stage
due to host grooming behavior or host resistance [2]. Thus, we assume that the mortality rate �.t, a/ at time t and age a is
density dependent and age dependent, given by the following piecewise function:

�.t, a/ D

�
�1.x1.t//, a 2 ŒAn.t/,1/,
�i.xi.t//, a 2 ŒAi�1.t/, Ai.t/�, i D 2, : : : , n,

(3)

where Ai�1.t/ and Ai.t/ are the time-dependent minimum and maximum ages of those individuals who are developing within
the specific ith stage (this will be defined later) and �i is a nondecreasing function with �i.0/ > 0.
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(H3) The birth function of eggs is given by the Ricker function

b.x1.t// D px1.t/e
�sT x1.t/, (4)

where p is the maximal number of eggs that an egg-laying female can lay per unit time and sT measures the strength of
density dependence. The assumption reflects the ecological consideration that the reproduction is linear in x1 only for small
densities, decreases as a consequence of intraspecific competition, and then drops significantly at very large densities due to
the available resources being utilized by the adults only for their own physiological maintenance.

2.2. Model derivation

We now introduce the population chronological age variable a and denote by �.t, a/ the density of the female population at time t and
age a. Following the standard argument for population dynamics with age structure [6], we start with8̂<

:̂
�
@
@t C

@
@a

�
�.t, a/ D ��.t, a/�.t, a/,

�.0, a/ D �.a/, a � 0,
�.t, 0/ D b.x1.t//, t � 0,

(5)

where �.a/ is the initial age distribution of the population. Integrating (5) along characteristics yields

�.t, a/ D

(
�.0, a � t/e�

R t
0�.r,a�tCr/ dr , 0 � t � a,

�.t � a, 0/e�
R a

0 �.t�aCr,r/ dr , a < t.
(6)

In order to evaluate the rate of change of the specific stage xi at time t, we introduce a new variable �i.t, ai/ for the density of the
female population in the ith stage at time t and stage-specific age ai . In other words, ai is the stage-specific age and a is the population
chronological age. Therefore, the total size of female individuals in the ith-stage at time t (xi.t/) is given by linking the stage-specific age
(ai) and chronological age (a) as follows:(

x1.t/ D
R1

0 �1.t, a1/ da1 D
R1

An.t/
ı�.t, a/ da

xi.t/ D
R �i.t/

0 �i.t, ai/ dai D
R Ai.t/

Ai�1.t/
�.t, a/ da, i D 2, : : : , n.

(7)

Recall that Ai�1.t/ and Ai.t/ are the minimum and maximum ages of those individuals who are developing in the specific ith stage.
To proceed, we need to know the relationship between chronological age a and stage-specific age ai at time t. Note that the popu-

lation density �.t, a/ at time t and age a is developed from the density of the population �.t � a, 0/ at time t � a and age 0. We depict
this as

�.t � a, 0/ �! �.t, a/.

It is obvious that a D a2, A1.t/ D 0 and A2.t/ D �2.t/. Now �3.t, a3/ are developed from themselves at time t � a3 and age zero, while
�3.t � a3, 0/ are developed from the population at time t � a3 � �2.t � a3/with the population chronological age zero. Hence,

�.t � a3 � �2.t � a3/, 0/ �! �3.t � a3, 0/ �! �3.t, a3/.

Therefore, the stage-specific age a3 and the chronological age a are related by

t � a3 � �2.t � a3/ D t � a. (8)

In particular, a3 D 0 is equivalent to a D �2.t/.D A2.t// and a3 D �3.t/ is the equal of a D �3.t/C �2.t � �3.t//. Then we obtain

A3.t/ D �3.t/C �2.t � �3.t//.

Similarly, for each i D 2, : : : , n, we obtain an expression determining the time-dependent minimum and maximum age of the
population in each specific stage:

Ai.t/ D
iX

jD2

�j

0
@t �

iX
kDjC1

�k

0
@t �

iX
lDkC1

�l .t � � � � �i�1.t � �i.t///

1
A
1
A . (9)

In order to obtain the equation for x0i .t/, we differentiate (7) along with the assumption (H2) and this gives rise to

x01.t/ D ı

�Z 1
An.t/
f.@t C @a/�.t, a/ � @a�.t, a/g da � �.t, An.t//A

0
n.t/

�

D ı

�
��.t,1/C �.t, An.t// �

Z 1
An.t/

�.t, a/�.t, a/ da � �.t, An.t//A
0
n.t/

�

D ı�.t, An.t//.1 � A0n.t// �

Z 1
An.t/

�.t, a/ı�.t, a/ da

D ı�.t, An.t//.1 � A0n.t// � �1.x1.t//x1.t/,

(10)

Copyright © 2015 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2015, 38 3464–3481

3
4

6
6



X. WU ET AL.

where we have made the biologically realistic assumption �.t,1/ D 0.
For i D 2, : : : , n, we obtain

x0i .t/ D

Z Ai.t/

Ai�1.t/
f.@t C @a/�.t, a/ � @a�.t, a/g daC �.t, Ai.t//A

0
i .t/ � �.t, Ai�1.t//A

0
i�1.t/

D �.t, Ai�1.t//.1 � A0i�1.t// � �.t, Ai.t//.1 � A0i .t// �

Z Ai.t/

Ai�1.t/
�.t, a/�.t, a/ da

D �.t, Ai�1.t//.1 � A0i�1.t// � �.t, Ai.t//.1 � A0i .t// � �i.xi.t//xi.t/.

(11)

To eventually obtain a closed system for .x1.t/, : : : , xn.t//, we need to evaluate �.t, Ai.t//. This can be done by the method of
integration along characteristics. Set t D t0 C s, a D a0 C s, and V.s/ D �.t0 C s, a0 C s/. Then

dV.s/

ds
D

�
@

@t
�.t, a/C

@

@a
�.t, a/

�ˇ̌̌
ˇ tDt0Cs;

aDa0Cs

D ��.t0 C s, a0 C s/�.t, a/
ˇ̌̌

tDt0Cs;
aDa0Cs

D ��.t0 C s, a0 C s/V.s/.

(12)

Note that (12) is a linear first-order ordinary differential equation, we easily obtain

V.s2/ D V.s1/e
�
R s2

s1
�.t0Cr,a0Cr/dr . (13)

For t > Ai.t/, setting s2 D Ai.t/, s1 D 0, t0 D t � Ai.t/, and a0 D 0, we have

V.Ai.t// D �.t, Ai.t// D �.t � Ai.t/, 0/e�
R Ai.t/

0 �.t�Ai.t/Cr,r/ dr .

With some straightforward calculations, we obtain

�.t, A2.t// D �.t � A2.t/, 0/e�
R A2.t/

0 �.t�A2.t/Cr,r/ dr

D �.t � A2.t/, 0/e�
R A2.t/

0 �2.x2.t�A2.t/Cr// dr

D �.t � A2.t/, 0/e�
R t

t�A2.t/
�2.x2.r// dr

:D �.t � A2.t/, 0/˛2.t, t � A2.t//,

and

�.t, A3.t// D �.t � �3.t/, A3.t/ � �3.t//e
�
R A3.t/

A3.t/��3.t/
�.t�A3.t/Cr,r/ dr

D �.t � �3.t/, �2.t � �3.t//e
�
R t

t��3.t/
�3.x3.r// dr

D �.t � A3.t/, 0/e�
R �2.t��3.t//

0 �.t�A3.t/Cr,r/ dre�
R t

t��3.t/
�3.x3.r// dr

D �.t � A3.t/, 0/e�
R t

t��3.t/
�3.x3.r// dre�

R t��3.t/
t�A3.t/

�2.x2.r// dr

D �.t � A3.t/, 0/e�
R t

t��3.t/
�3.x3.r// dr˛2.t � �3.t/, t � A3.t//

:D �.t � A3.t/, 0/˛3.t, t � A3.t//

where ˛2.t, t � A2.t// D e�
R t

t�A2.t/
�2.x2.r// d and ˛3.t, t � A3.t// D e�

R t
t��3.t/

�3.x3.r// dr˛2.t � �3.t/, t � A3.t//.
Similarly, we have

�.t, Ai.t// D �.t � Ai.t/, 0/˛i.t, t � Ai.t//

D �.t � Ai.t/, 0/e�
R t

t��i.t/
�i.xi.r// dr˛i�1.t � �i.t/, t � Ai.t//,

where the iterative relationship of ˛i.t, t � Ai.t// is as follows (i D 2, : : : , n):

˛i.t, t � Ai.t// D e�
R t

t��i.t/
�i.xi.r// dr˛i�1.t � �i.t/, t � Ai.t//, (14)

with ˛1 D 1. Obviously, each ˛i.t, t � Ai.t// (i D 2, : : : , n) represents the density-dependent survival probability of an egg who was
born at time t � Ai.t/ and is able to live until time t when the egg eventually belongs to the stage xi with full maturation. In order for
the model to be biologically meaningful, we prove the following lemma that concludes that the ith stage of the population will not go
back to the previous .i � 1/th stage except by birth.
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Lemma 1
With the assumption (H1), at time t � 0 for all i D 2, : : : , n, we have

(i) Ai.t/ � Ai�1.t/ and Ai.t/ D �i.t/C Ai�1.t � �i.t//;
(ii) 1 � A0i .t/ � 0 and 1 � A0i .t/ D .1 � �

0
i .t//.1 � A0i�1.t � �i.t///.

Proof
Since t� �3.t/ < t, t� �2.t/ is an nondecreasing function, we have t� �3.t/� �2.t� �3.t// � t� �2.t/. This is equivalent to A3.t/ � A2.t/.
Again t � �4.t/ < t, t � �3.t/ is a nondecreasing function, we have t � �4.t/ � �3.t � �4.t// � t � �3.t/. Since t � �2.t/ is nondecreasing,
we have

t � �4.t/ � �3.t � �4.t// � �2.t � �4.t/ � �3.t � �4.t/// � t � �3.t/ � �2.t � �3.t//.

That is, A4.t/ � A3.t/. By the same argument, we obtain Ai.t/ � Ai�1.t/, i D 2, : : : , n. From Eq. (9), we can easily obtain Ai.t/ D
�i.t/C Ai�1.t � �i.t// and 1 � A0i .t/ D .1 � �

0
i .t//.1 � A0i�1.t � �i.t/// � 0.

Then when t > An.t/, the closed form of the model becomes

x01 D ı˛n.t, t � An.t//b.x1.t � An.t///.1 � A0n.t// � �1.x1.t//x1.t/,

x02 D b.x1.t// � ˛2.t, t � A2.t//b.x1.t � A2.t///.1 � A02.t// � �2.x2.t//x2.t/,

x0i D ˛i�1.t, t � Ai�1.t//b.x1.t � Ai�1.t///.1 � A0i�1.t//

� ˛i.t, t � Ai.t//b.x1.t � Ai.t///.1 � A0i .t// � �i.xi.t//xi.t/, i D 3, : : : , n,

(15)

where the birth function b.x/ and death function �.x/ are specified in assumptions (H2) and (H3), ˛i.t, t � Ai.t// refers to Eq. (14) and
relation Ai.t/ refers to Lemma (1).

Note that each equation of x0i .t/ except x01.t/ has the following form:

x0i .t/C death rate D inflow rate � outflow rate :D fin.t/ � fout.t/. (16)

‘Inflow rate’ indicates that at time t all individuals enter the specific stage (xi) with zero stage-specific age at a rate fin.t/, and ‘outflow
rate’ represents that all individuals leave the specific stage (xi) at full specific-stage maturity age at a rate fout.t/. Moreover,

fout.t/ D ˛i.t, t � Ai.t//b.x1.t � Ai.t///.1 � A0i .t//

D e�
R t

t��i.t/
�i.xi.r// dr˛i�1.t � �i.t/, t � �i.t/ � Ai�1.t � �i.t///

� b.x1.t � �i.t/ � Ai�1.t � �i.t////.1 � �
0
i .t//.1 � A0i�1.t � �i.t///

D .1 � � 0i .t//e
�
R t

t��i.t/
�i.xi.r// drfin.t � �i.t//.

Namely, fin.t/ is related to fout.t/ by the following form:

fout.t/ D .1 � �
0
i .t//�.t, t � �i.t//fin.t � �i.t//, (17)

where .1 � � 0i .t// is the ‘maturation ratio’ of the population at the specific stage xi tracking entering and leaving of the stage, and

�.t, t � �i.t// :D e�
R t

t��i.t/
�i.xi.r// dr the survival probabilities from the moment entering the stage to the moment leaving the stage.

We also emphasize that all inflow rates and outflow rates are time dependent, and our model does not exclude the situation in which
individuals may undergo no development in a low temperature condition or enter diapause induced by environmental condition such
as photoperiod change provided that the ‘maturation ratio’ (1 � � 0i .t/) is zero.

2.3. Nonnegativity and boundedness

We consider solutions to system (15) with a focus on the long-term dynamics where t � An.t/. The initial data for system (15) cannot
be arbitrary. For biological reasons the initial data must satisfy several constraints and we only consider solutions that satisfy these
constraints. Define �m D min

t2Œ0,!�
An.t/, �M D max

t2Œ0,!�
An.t/. It is easy to see that each exponential function ˛i.t, t� Ai.t// is always positive

and b.x1.t// is nonnegative provided that x1.t/ is nonnegative.

Theorem 1
Let the initial data xi.�/ � 0 for��M � � < 0 for each stage, and

xi.0/ D

Z 0

��i.0/
e�

R 0
s �i.xi.r// dr˛i�1.s, s � Ai�1.s//b.x1.s � Ai�1.s///.1 � A0i�1.s// ds

D

Z 0

��i.0/
e�

R 0
s �i.xi.r// drfin.s/ ds, i D 2, : : : , n.

(18)
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Then each component xi.t/ of the solution of the system (15) remains nonnegative for all t � 0, i D 1, : : : , n. Furthermore, each
component of the solution is also bounded for all t > 0.

Proof
First we show that x1.t/ � 0 for all t � ��M when x1.�/ � 0 for ��M � � � 0. We prove Theorem 1 by showing that xi.t, "/ is the
solution of the modified system obtained from system (15) by adding " to the right-hand side with " being arbitrarily small. To show
that x1.t, "/ � 0 for all t > 0, we suppose that x1.t, "/ < 0 for some t > 0. Let t� D infft : t > 0 and x1.t, "/ < 0g. Then t� � 0,
x1.t�, "/ D 0 and x01.t

�, "/ � 0. But, from the first equation of the modified system

x01.t
�, "/ D ı˛n.t

�, t� � An.t
�//b.x1.t

� � An.t
�/, "//.1 � A0n.t

�//

� �1.x1.t
�, "//x1.t

�, "/C ",

D ı˛n.t
�, t� � An.t

�//b.x1.t
� � An.t

�/, "//.1 � A0n.t
�//C ".

Moreover, An.t�/ > 0 ensures t� � An.t�/ < t�, implying that x1.t� � An.t�/, "/ � 0 by the definition of t�. This, in turn, implies that
x01.t
�, "/ � " > 0, giving rise to a contradiction. Therefore, x1.t, "/ � 0 for each t > 0. This is true for arbitrarily small " > 0. Letting

"! 0 gives x1.t/ � 0 as a solution of system (15).
Next we show the nonnegativity of xi.t/ for all t � 0, i D 2, : : : , n. Moving the term �i.xi.t//xi.t/ to the left side of the equations of

system (15) and multiplying both sides by e
R t

0�i.xi.r// dr yields

�
e
R t

0�i.xi.r// drxi.t/
�0

D e
R t

0�i.xi.r// dr .fin.t/ � fout.t//

D e
R t

0�i.xi.r// dr
�

fin.t/ � .1 � �
0
i .t//e

R t
t��i.t/

�i.xi.r// drfin.t � �i.t//
�

D

�Z t

t��i.t/
e�

R s
0�i.xi.r// dr˛i�1.s, s � Ai�1.s//b.x1.s � Ai�1.s///.1 � A0i�1.s// ds

�0
.

(19)

Combining the initial data constraints (18), Eq. (19) yields

xi.t/ D

Z t

t��i.t/
e�

R t
s�i.xi.r// dr˛i�1.s, s � Ai�1.s//b.x1.s � Ai�1.s///.1 � A0i�1.s// ds, (20)

which is nonnegative because of the nonnegativity of x1.t/. The expression (20) is ecologically reasonable since it accounts for the total
number of individuals in the specific stage xi at time t who come from eggs laid at time s � Ai�1.s/ and successfully moult to the stage
at time s and still stay in the stage until time moment t. Here b.x1.s � Ai�1.s/// represents the number of eggs who were born at time
s � Ai�1.s/, ˛i�1.s, s � Ai�1.s// is proportion of eggs who were born at time s � Ai�1.s/ and develops into xi stage at time moment
s, e�

R t
s�i.xi.r// dr is the survival probability at xi stage from time moment s to time moment t and .1 � A0i�1.s// is the ‘maturation ratio’

comparing to newborn eggs at time s when eggs already develop into stage xi with zero stage-specific age. The variable �i.t/ is the
required maturation time during stage xi at time t. Eq. (20) indicates each component of the system (15) is nonnegative for all t � 0.

The boundedness of the solution of system (15) is easy to show. Denote by N.t/ D
Pn

iD2 xi.t/C
1
ı

x1.t/ the total number of individuals
at all stages. It is easy to see that the birth function is bounded when the size of egg-laying females is nonnegative since

b.x1.t// �
pe�1

sT
:D bmax.

Putting all equations of system (15) together yields

N0.t/ D b.x1.t// �

 
nX

iD2

�i.xi.t//xi.t/C
1

ı
�1.x1.t//x1.t/

!
� bmax � �N.t/, (21)

where

� D minj2f1,:::,ng�j.0/.

From (21), it follows that

lim sup
t!1

N.t/ � bmax=�, (22)

which implies the boundedness of all solutions of system (15) subject to the initial condition constraints. This completes the proof.
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3. Basic reproductive ratio (R0)

3.1. Definition of R0

System (15) has a population-extinction (trivial) equilibrium. Linearizing system (15) at the population-extinction equilibrium yields

x01 D ı Ǫn.t/px1.t � An.t///.1 � A0n.t// � �1.0/x1.t/,

x02 D px1.t/ � Ǫ2.t/px1.t � A2.t//.1 � A02.t// � �2.0/x2.t/,

x0i D Ǫ i�1.t/px1.t � Ai�1.t//.1 � A0i�1.t// � Ǫ i.t/px1.t � Ai.t//.1 � A0i .t// � �i.0/xi.t/ .i D 3, : : : , n/,

(23)

where Ǫ i.t/ is the survival probability near the population-extinction equilibrium given by the following iteration relation

Ǫ2.t/ D e��2.0/�2.t/, Ǫ i.t/ D e��i.0/�i.t/ Ǫ i�1.t � �i.t//, i D 3, : : : , n. (24)

Note that Ǫ i is a !�periodic function, i.e., Ǫ i.tC !/ D Ǫ i.t/.
System (23) has a one-dimensional decoupled subsystem

x01.t/ D ıp Ǫn.t/.1 � A0n.t//x1.t � An.t// � �1.0/x1.t/
:D a.t/x1.t � An.t// � �1.0/x1.t/,

(25)

where

a.t/ D ıp Ǫn.t/.1 � A0n.t//. (26)

The rate of change of egg-laying females at time t depends on the number of egg-laying females at time t � An.t/. To proceed further,
we need the following assumption:

(H4) h.t/ :D t � An.t/ is a strictly increasing function of t.

We next identify R0. To this end, we examine the number of newly generated egg-laying females per unit time at time t. With the
assumption (H4), at time t, the cohort of egg-laying female (with its size denoted by x1.t/) will produce some newborns who will
eventually become egg-laying females at the future time h�1.t/ :D Qt, where h.Qt/ D Qt � An.Qt/ is a strictly increasing function of Qt. We
note that

d

dt
x1.Qt/ D

d

dQt
x1.Qt/

dQt

dt
D Œa.Qt/x1.h.Qt// � �1.0/x1.Qt/�

1

1 � A0n.Qt/

D Œa.h�1.t//x1.t/ � �1.0/x1.h
�1.t//�

1

1 � A0n.h
�1.t//

.

(27)

That is, the number of newly generated egg-laying females per unit time at time t is given by y.t/ D c.t/x1.t/with c.t/ :D a.h�1.t//=.1�
A0n.h
�1.t///. Note that

.e�1.0/tx1.t//
0 D e�1.0/t.�1.0/x1.t/C x01.t//

D e�1.0/t.�1.0/x1.t/C a.t/x1.t � An.t// � �1.0/x1.t//

D e�1.0/ta.t/x1.t � An.t//.

(28)

Integrating of (28) from�1 to t yields

x1.t/ D

Z t

�1

e��1.0/.t�s/a.s/x1.s � An.s//ds. (29)

Multiplying (29) by c.t/ gives (note c.s � An.s// D
a.s/

1�A0n.s/
)

y.t/ D c.t/

Z t

�1

e��1.0/.t�s/ a.s/

c.s � An.s//
y.s � An.s// ds

D

Z t

�1

c.t/.1 � A0n.s//e
��1.0/.t�s/y.s � An.s// ds

D

Z 1
An.t/

c.t/e��1.0/.t�h�1.t�r//y.t � r/ dr

D

Z 1
0

K.t, r/y.t � r/ dr,

(30)
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where

K.t, r/ D

�
ıp Ǫn.h�1.t//e��1.0/.t�h�1.t�r// , r � An.t/,

0 , r < An.t/.
(31)

In particular, K.t, r/ is a periodic function with respect to time t, i.e., K.t, r/ D K.t C !, r/. Moreover, the kernel K.t, r/ has a biological
interpretation. At time t, only the cohort of egg-laying females who are still alive before time t � An.t/ is capable of reproducing eggs
which will mature to new generation of egg-laying females.

In Jagers and Nerman [29] and Thieme [30], the solution y.t/ of (30) of the form e�tu.t/ is considered, where u.t/ is a periodic function
with period ! and satisfies

u.t/ D

Z 1
0

K.t, r/e��ru.t � r/ dr. (32)

Define the !�periodic continuous eigenfunction space by C! :D fu : R ! R, u.t C !/ D u.t/g which is equipped with maximum
norm k � k, and define an integral operator L : C! ! C! by

.Lu/.t/ D

Z 1
0

K.t, r/u.t � r/ dr. (33)

Lemma 2
The operator L is strongly positive, continuous and compact on C! .

Proof
It is clear that L is strongly positive in the sense that .Lu/.t/ > 0 if u.t/ � 0 but u.t/ ¤ 0 for all t 2 R. According to the assumption
(H4), there exist a positive number � > 0 such that

h�1.t � An.t// � h�1.t � r/ � �.t � An.t/ � tC r/ D �.r � An.t//. (34)

In terms of (24) and (34), we have

k.Lu/.t/k D k

Z 1
An.t/

ıp Ǫn.h
�1.t//e��1.0/.t�h�1.t�r//u.t � r/ drk

D k

Z 1
An.t/

ıp Ǫn.h
�1.t//e��1.0/.h�1.t�An.t//�h�1.t�r//u.t � r/ drk

� k

Z 1
An.t/

ıpe��1.0/�.r�An.t// drk kuk

D ıpe��1.0/�An.t/
1

�1.0/�
e��1.0/�An.t/kuk

D
ıp

�1.0/�
kuk.

(35)

It is easy to see from (35) that operator L is bounded and, thereby, continuous on C! . Since

.Lu/.t/ D

Z 1
An.t/

ıp Ǫn.h
�1.t//e��1.0/.t�h�1.t�r//u.t � r/ dr

D

Z t

�1

ıp Ǫn.h
�1.t//e��1.0/.t�h�1.s�An.s///u.s � An.s//.1 � A0n.s// ds

and
d

dt
Ǫn.t/ D Ǫn.t/g1.t/,

d

dt
h�1.t/ D

1

1 � A0n.h
�1.t//

:D g2.t/ > 0

for some !-periodic functions g1.t/ and g2.t/ because Ǫn.t/ is an exponential !-periodic function (refer to (24)). Then we have

d

dt
.Lu/.t/ D ıp Ǫn.h

�1.t//.1 � A0n.t//u.t � An.t//C .g1.h
�1.t//g2.t/ � �1.0//.Lu/.t/

:D F.t/u.t � An.t//C G.t/.Lu/.t/,

where F.t/ D ıp Ǫn.h�1.t//.1�A0n.t// > 0 is positive and periodic, and G.t/ D g1.h�1.t//g2.t/��1.0/ is periodic. It the follows that for
any b > 0 such that kuk � b, there exists a positive B D B.b/ > 0 such that j d

dt .Lu/.t/j � B for all t 2 Œ0,!� and u 2 C! with kuk � b.
Thus, the Ascoli–Arzela theorem implies that L is compact on C! .

On page 77 of [10], L is called the ‘next generation operator’. Following Bacaër [18], Bacaër and Guernaoui [17], and Wang and Zhao
[13], we define the basic reproductive ratio as the spectral radius of the linear integral operator acting on the same function space of
!-periodic continuous functions, i.e.

R0 D �.L/. (36)
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Theorem 2
When R0 < 1, then zero solution of system (15) is locally asymptotically stable; when R0 > 1, zero solution of system (15) is unstable.

Proof
By Lemma 2 and the Krein–Rutman theorem of strongly positive and compact linear operator, we can conclude that the spectral radius
of L is a simple positive eigenvalue of L with an positive eigenvector in C! , and all other eigenvalue in absolute value is strictly less
than the spectral radius of L, so that R0 > 0. As shown the statement in the page 427 of [17], we obtain 	 > 0 if R0 > 1 and 	 < 0 if
R0 < 1, which means zero solution is local asymptotically stable if R0 < 1 and it is unstable if R0 > 1.

3.2. Calculation of R0

There are algorithms developed to calculate R0 numerically [18]. Here we propose an algorithm by using the most intuitive discretiza-
tion and integration. This will link the calculation of R0 to the calculation of the spectral radius of a Leslie matrix. Changing the variable
� D t � r of (33), we obtain

.Lu/.t/ D

Z 1
0

K.t, r/u.t � r/ dr

D ıp Ǫn.h
�1.t//e��1.0/t

Z 1
An.t/

e�1.0/h�1.t�r/u.t � r/ dr

:D Np.t/

Z t�An.t/

�1

e�1.0/h�1.�/u.�/ d�

D Np.t/

"Z t�An.t/

0
e�1.0/h�1.�/u.�/d� C

Z 0

�1

e�1.0/h�1.�/u.�/ d�

#
,

(37)

where

Np.t/ D ıp Ǫn.h
�1.t//e��1.0/t .

Since u.t/ is !-periodic, we have

Z 0

�1

e�1.0/h�1.�/u.�/ d� D
1X

mD0

Z �m!

�.mC1/!
e�1.0/h�1.�/u.�/ d�

D

Z !
0

1X
mD0

e�1.0/h�1.��.mC1/!/u.�/ d� .

So Eq. (37) is equivalent to

.Lu/.t/ D Np.t/

"Z t�An.t/

0
e�1.0/h�1.�/u.�/ d� C

Z !
0

1X
mD0

e�1.0/h�1.��.mC1/!/u.�/ d�

#

D Np.t/

"Z t�An.t/

0
e�1.0/h�1.�/u.�/ d� C

Z t�An.t/

0

1X
mD0

e�1.0/h�1.��.mC1/!/u.�/ d�

C

Z !
t�An.t/

1X
mD0

e�1.0/h�1.��.mC1/!/u.�/ d�

#

D Np.t/

"Z t�An.t/

0

1X
mD0

e�1.0/h�1.��m!/u.�/ d� C

Z !
t�An.t/

1X
mD0

e�1.0/h�1.��!�m!/u.�/ d�

#

:D Np.t/

"Z t�An.t/

0
H.�/u.�/ d� C

Z !
t�An.t/

H.� � !/u.�/ d�

#
,

(38)

with

H.�/ D
1X

mD0

e�1.0/h�1.��m!/.

In Eq. (38), the integral is over an interval of one period Œ0,!� and u.t/ is an !-periodic function. To compute R0 numerically, we
partition the interval Œ0,!� into N (a large integer) subintervals of equal length. Set ti D .i� 1/!=N for i D 1, 2, : : : , N. Then at the point
ti , Eq. (38) becomes

.Lu/.ti/ D Np.ti/

"Z ti�An.ti/

0
H.�/u.�/ d� C

Z !
ti�An.ti/

H.� � !/u.�/ d�

#
. (39)
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For each ti 2 Œ0,!/, there is a unique integer ki such that ti C ki! � An.ti/ 2 Œ0,!/. Denote li :D Œ tiCki!�An.ti/
!
N

C 1� 2 f1, 2, : : : , Ng, i.e.

the nearest integer less than or equal to tiCki!�An.ti/
!
N

C 1. Replacing ti C ki! by ti in equation (39), we obtain

.Lu/.ti/ D Np.ti C ki!/

"Z tiCki!�An.ti/

0
H.�/u.�/ d� C

Z !
tiCki!�An.ti/

H.� � !/u.�/ d�

#

D Np.ti C ki!/

"Z tli

0
H.�/u.�/ d� C

Z tiCki!�An.ti/

tli

H.�/u.�/ d�

C

Z tliC1

tiCki!�An.ti/

H.� � !/u.�/ d� C

Z !
tliC1

H.� � !/u.�/ d�

#
.

(40)

In the case where tli D ti C ki! � An.ti/, Eq. (40) becomes

.Lu/.ti/ D Np.ti C ki!/

2
4 liX

jD2

H.tj/u.tj/
!

N
C

NC1X
jDliC1

H.tj � !/u.tj/
!

N

3
5

D Np.ti C ki!/

2
4 liX

jD2

H.tj/u.tj/
!

N
C

NX
jDliC1

H.tj � !/u.tj/
!

N
C H.tNC1 � !/u.tNC1/

!

N

3
5

D Np.ti C ki!/

2
4 liX

jD2

H.tj/u.tj/
!

N
C

NX
jDliC1

H.tj � !/u.tj/
!

N
C H.t1/u.t1/

!

N

3
5

D Np.ti C ki!/

2
4 liX

jD1

H.tj/u.tj/
!

N
C

NX
jDliC1

H.tj � !/u.tj/
!

N

3
5 .

In the case where tli < ti C ki! � An.ti/, Eq. (40) becomes

.Lu/.ti/ D Np.ti C ki!/

2
4li�1X

jD1

H.tj/u.tj/
!

N
C

Z tiCki!�An.ti/

tli

H.�/u.�/ d�

C

Z tliC1

tiCki!�An.ti/

H.� � !/u.�/ d� C
NX

jDliC1

H.tj � !/u.tj/
!

N

3
5

D Np.ti C ki!/

2
4li�1X

jD1

H.tj/u.tj/
!

N
C H.tli /u.tli /

!

N
C

NX
jDliC1

H.tj � !/u.tj/
!

N

3
5

D Np.ti C ki!/

2
4 liX

jD1

H.tj/u.tj/
!

N
C

NX
jDliC1

H.tj � !/u.tj/
!

N

3
5 .

Let Wi D u.ti/. Then the problem of estimating R0 in (36) reduces to the calculation of the spectral radius of a given Leslie matrix.
Namely, we have the matrix eigenvalue problem of the form QR0W D XW, where W D .W1, W2, : : : , WN/

T , and QR0 is the spectral radius
of a N � N positive matrix X. In this matrix, the .i, j/ element is given by

xij D

8̂̂<
ˆ̂:
ıp Ǫn.h�1.ti//

!
N

1P
mD0

e��1.0/.ti�h�1.tj�ki!�m!//, 1 � j � li ,

ıp Ǫn.h�1.ti//
!
N

1P
mD0

e��1.0/.ti�h�1.tj�ki!�.mC1/!//, li C 1 � j � N.
(41)

Remark 1
Since h.t/ D t�An.t/ is assumed to be a strictly increasing function with respect to t, we have the existence of h�1, and it can be easily
verified that h�1.tCm!/ D h�1.t/Cm!, m 2 Z .
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3.3. Leslie Matrix (X) in a periodic time delay environment

In the formula (41), it is useful to rewrite X in the following form:

X D

0
BBB@

r1s1,1 r1s1,2 � � � r1s1,l1 r1s1,l1C1 � � � r1s1,N

r2s2,1 r2s2,2 � � � r2s2,l2 r2s2,l2C1 � � � r2s2,N

...
...

...
...

...
rNsN,1 rNsN,2 � � � rNsN,lN rNsN,lNC1 � � � rNsN,N

1
CCCA .

The above matrix X has the following biological interpretations:

(a) ri D ıp Ǫn.h�1.ti//
!
N .i D 1, : : : , N/ is the number of newly generated egg-laying females per !N -unit time at future time h�1.ti/

produced by an egg-laying female at time ti ;
(b) li D Œ tiCki!�An.ti/

!
N

C 1� 2 f1, 2, : : : , Ng .i D 1, : : : , N/, the nearest integer is less than or equal to tiCki!�An.ti/
!
N

C 1, where ki is the

unique integer such that ti C ki! � An.ti/ 2 Œ0,!/;
(c) si,j which is given below

si,j D

(
e��1.0/.ti�h�1.tj�ki!// 1

1�e��1.0/!
, 1 � j � li ,

e��1.0/.ti�h�1.tj�ki!�!// 1
1�e��1.0/!

, li C 1 � j � N
(42)

represents the accumulated survival probability of all egg-laying females at time ti who developed from eggs at time tj�ki!�m!
or tj � ki! � ! �m! and will become egg-laying females at the future time h�1.tj � ki! �m!/ or h�1.tj � ki! � ! �m!/, and
have survived until the time ti . This can be observed easily since tli � ti C ki! � An.ti/ and tli D tj C .li � j/!=N implies

tj � ki! D tli � .li � j/
!

N
� ki! � ti C ki! � An.ti/ � ki! � .li � j/

!

N

D ti � An.ti/ � .li � j/
!

N
� ti � An.ti/, j D 1, : : : , li ;

and
tj � ki! � ! D tli � .li � j/

!

N
� ki! � !

� ti C ki! � An.ti/ � ki! � .li � j/
!

N
� !

D ti � An.ti/ � .li � jC N/
!

N
< ti � An.ti/, j D li C 1, : : : , N.

(d) xij D risi,j (i D 1, 2, : : : , N; j D 1, : : : , li , li C 1, : : : , N) is the number of newly generated egg-laying females per !N -unit time at time
group i caused from all previous generation individuals of egg-laying females of time group j.

Comparing with the classical Leslie matrix, the females rate population was divided into N groups in terms of the rat’s age and each
cell .i, j/th of the Leslie matrix accounts for how many individuals of female rats will be in the age group i at the next time step from
each individuals of group j [31]. Here, in a periodic environment, we divide the population of egg-laying females into N groups in terms
of time in a period Œ0,!�, thereby each cell .i, j/th of our matrix X indicates how many egg-laying females will be in the group i at next
generation step from all individuals of group j at previous generation. Therefore, our X is just a result of applying the classical demo-
graphic Leslie matrix in a constant environment to the periodic environment. A crucial difference here is that the previous generation
of egg-laying females is time-dependent.

4. Numerical simulations

In this section, we present some numerical simulation results using our proposed numerical algorithm for R0. We also use these results
to examine the impact of the amplitude and the initial phase of the periodic delay, as well as the implications of temperature variation
on the basic reproductive ratio R0.

In what follows, we let ŒR0�be the basic reproductive ratio of the corresponding time-averaged autonomous delay differential system
of (25). Such a system is obtained by replacing the periodic delay �i.t/with its corresponding time-averaged delay N�i D

1
!

R!
0 �i.t/ dt D

�i0 for the original system of (25). This allows us to compare the basic reproductive ratio R0 in the periodic environment with ŒR0�

in the time-averaged constant environment. We also compare the value of R0 and ŒR0� with the corresponding dominant Floquet
multiplier and apply our developed method to calculate basic reproductive ratio of Ixodes scapularis tick population under variable
temperature conditions.

4.1. The impact of amplitude and phase of periodic delay on R0

In this subsection, we demonstrate our numerical algorithm by considering two examples, one with two stages and another with four
stages. The results can be conveniently used to examining the effect of the amplitude and the initial phase of the periodic delay on R0.
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Example 1. We consider Nicholson blowflies equation that was proposed in [32] by Gurney et al. In the model, larvae become adults
� days after birth. The whole model system reads8<

:
u0i .t/ D pum.t/e�aum.t/ � e���.t/.1 � � 0.t//pum.t � �.t//e�aum.t��.t// � 
ui.t/,

u0m.t/ D ıe���.t/.1 � � 0.t//pum.t � �.t//e�aum.t��.t// � dum.t/,
(43)

where ui is the number of immature blowflies, um is the number of matured females blowflies, p is the number of eggs laid per capita
adult females blowflies, a measures the strength of density-dependence for fecundity, ı is the sex ratio, and 
 and d are mortality rates
for immature and matured blowflies, respectively. We assume � is a periodic function given by

�.t/ D �0

�
1C � cos

�
2�
365 .tC �/

		
. (44)

Corresponding to the first equation in (23) is the linearization of the second equation in (43) at trivial solution, that is

u0m.t/ D ıe���.t/.1 � � 0.t//pum.t � �.t// � dum.t/ (45)

which will be used to define and calculate R0 as shown in Section 3.
We first discuss the convergence of our proposed numerical method. We fix �0 D 15, 
 D 0.1, d D 0.133, p D 8, ı D 0.5 similar to

those in [33], and set � D 0.1, � D 0, ! D 365. We show in Table I the approximation of R0 that indicates the fast convergence of our
proposed algorithm. We now conduct some numerical simulations to gain insights on the relationship between our basic reproductive
ratio and the amplitude and phase of the periodic delay. Figure 1 shows that increasing the amplitude of the periodic delay increases
the basic reproductive ratio R0 and that using the corresponding time-averaged delay differential system tends to underestimate the
ratio (ŒR0� < R0). Figure 2 shows that the basic reproduction ratio R0 remains at a constant value with varying �. Therefore, R0 is
independent of the phase difference in the two stage-structured scenario.

Example 2. We consider Aedes aegypti mosquito population consisting of four stages: egg, larva, pupa and adult females. We
set ı.D 0.5/ as the sex ratio and p.D 200=365/ the average number of eggs laid per capita adult females per day. Mortalities of
eggs, larvae, pupae and adults are set as �2 D 0.01, �3 D 0.025, �4 D 0.025 and �1 D 0.09, respectively, taking from liter-
ature [34]. Average time delays from egg-to-larva, larva-to-pupa and pupa-to-adult are set as �20 D 5, �30 D 10, �40 D 2 from
http://www.denguevirusnet.com/life-cycle-of-aedes-aegypti.html. As Aedes aegypti is affected by the temperature [34], we assume
relevant time delays �2.t/, �3.t/ and �4.t/ take the forms

�2.t/ D �20

�
1C �2 cos

�
2�
365 .tC �2/

		
;

�3.t/ D �30

�
1C �3 cos

�
2�
365 .tC �3/

		
;

�4.t/ D �40

�
1C �4 cos

�
2�
365 .tC �4/

		
.

(46)

Table I. Estimate R0. N is number of points equally discretizing
the interval Œ0,!/, which represents 1 year.

N 100 365� 2 365� 4 365� 6 365� 8 365� 10

R0 6.834 6.742 6.746 6.747 6.747 6.747

Figure 1. The graph of R0 versus � with � in Œ0, 1�. Solid lines indicates the R0 values and dashed line is the corresponding time-averaged ŒR0�. Baseline
parameter values: �0 D 15, � D 0, � D 0.1, d D 0.133, p D 8, ı D 0.5,! D 365.
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Figure 2. The graph of R0 versus � with � in Œ0, 365�. Baseline parameter values: �0 D 15, � D 0.1, � D 0.1, d D 0.133, p D 8, ı D 0.5,! D 365.

Linearizing system at mosquito-extinction equilibrium derived from first principle [6] yields

x01.t/ D ıp˛.t/x1.t � A4.t//.1 � A04.t// � �1x1.t/, (47)

where x1 is the number of adult females mosquitoes. ˛.t/ and A4.t/ have the following forms

˛.t/ D e��4�4.t/e��3�3.t��4.t//e��2.�2.t��4.t/��3.t��4.t////,

A4.t/ D �4.t/C �3.t � �4.t//C �2.t � �4.t/ � �3.t � �4.t///.

Figures 3 and 4 report the simulations involving multiple periodic delays. Figure 3 shows that the increase of the amplitude �2,
�3 and �4 simultaneously can change the basic reproductive ratio R0 of system (47) from below the time-averaged basic reproduc-
tive ratio ŒR0� to above. Hence, using the time-averaged delay differential system can either underestimate or overestimate the basic
reproductive ratio of the corresponding period system of DDEs.

In Figure 4, we change the phase �3 over the interval Œ0, 730� while keeping �2.t/, �4.t/ and �3 unchanged. We notice the 1 year
periodicity of R0 as a function of �3. Moreover, an increase of phase of �2 yields the shift of R0 to the right. For instance, the dashed
curve corresponding to �2 D 100 is just translation 100 to the right of the solid curve of R0 which corresponds to �2 D 0. Therefore,
difference in peak timings of the multiple periodic delays can change the value of the basic reproductive ratio R0, hence influence the
state of survival and extinction of the population.

Figure 3. The graph of R0 (solid line) and time-averaged ŒR0� (dashed line) versus amplitudes �2.D �3 D �4/ 2 Œ0.02, 0.2�. Baseline parameter values: �20 D 5,
�30 D 10, �40 D 2, �2 D �3 D �4 D 270, ı D 0.5, p D 200=365,�2 D 0.01,�3 D �4 D 0.025,�1 D 0.09,! D 365.
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Figure 4. The graph of basic reproductive ratio R0 versus �3 2 Œ0, 730�. Baseline parameter values: �20 D 5, � D 1, �30 D 10, �3 D 1, �40 D 2, �4 D 0. Solid line
represents R0 versus �3 when �2 D 0; Dashed line represents R0 versus �3 when �2 D 100; Dotted line represents R0 versus �3 when �2 D 200; Dash-dotted
line represents R0 versus �3 when �2 D 300.

Figure 5. Plot of R0 (black) and the dominant Floquet Multiplier (grey) versus �0 2 Œ30, 40� for Example 1. Solid lines indicate results for periodic delay (" D 0.5)
and dashed lines are for constant delay (�.t/ D �0). Baseline parameter values: � D 0, � D 0.1, d D 0.133, p D 8, ı D 0.5,! D 365.

4.2. Comparison of R0 with the dominant Floquet multiplier

Floquet multipliers are used in the theory of dynamical systems to determine the stability of periodic solutions. These can be calculated
for DDE systems with time-dependent delay by adapting the method described in Luzyanina and Engelborghs [35] and Engelborghs
et al. [36]. This is done by discretizing the time integration operator over the period and calculating the eigenvalues of the resulting
matrix. For nonautonomous systems such as DDEs with time-dependent delays, if the the dominant Floquet multiplier has magnitude
larger than one then the periodic solution is unstable. If the magnitude is less than one then the periodic solution is stable.

We consider the constant zero solution in our examples as a periodic solution with the same period! as the period of the coefficients
and delay function. In this way, the stability of the zero solution could be investigated using Floquet multipliers as well as R0. We expect
that as a model parameter is varied, R0 and the magnitude of the dominant Floquet multiplier of a DDE system will cross one at the
same parameter value. Numerical experiments are consistent with this expectation and the plots are shown in Figure 5 for Example 1,
as well as in Figure 6 for Example 2.
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Figure 6. Plot of R0 (black) and the magnitude of the dominant Floquet multiplier (grey) versus �1 2 Œ0.1, 0.4�. Solid lines indicate results for the periodic
delay case ("2 D "3 D "4 D 0.5) and dashed lines are for the constant delay case (�i.t/ D �0i). Baseline parameter values: �20 D 5, �30 D 10, �40 D 2,
�2 D �3 D �4 D 270, ı D 0.5, p D 200=365,�2 D 0.01,�3 D �4 D 0.025 and! D 365.

4.3. The impact of temperature variation on R0

Now we apply our algorithm to calculate the basic reproductive ratio of Ixodes scapularis tick population composed of 12 stages under
temperature varying environmental condition. There are seven temperature-dependent time delays �i.t/ (i D 2, 4, 6, 7, 9, 10, 12) and
all others as constants. We take parameter values suggested in Ogden et al. [2]. Rodent abundance for immature ticks R D 200, deer
abundance for adults D D 20, �3 D 21, �5 D 3, �8 D 5, �11 D 10, �1 D 0.005, �2 D 0.002, �3 D 0.006, �4 D 0.006, �5 D

0.65C0.049 ln.1.01=R/,�6 D 0.003,�7 D 0.006,�8 D 0.55C0.049 ln.1.01=R/,�9 D 0.002,�10 D 0.006,�11 D 0.5C0.049 ln.1.01=D/,
�12 D 0.0001. The 1971–2000 normal temperature data are used for three weather stations Ontario, Canada: Port Stanley, Hanover and
Wiarton Airport. In order to obtain the periodic time delays �i.t/ (i D 2, 4, 6, 7, 9, 10, 12), we firstly obtain the seven period temperature-
dependent development rates, denoted by di.t/ (i D 2, 4, 6, 7, 9, 10, 12) using the methodology developed in Wu et al. [16] by utilizing
the following formulaes given at each day of the year

1=.34234.T.t//�2.27/ .pre-eclosion period/;

0.0013R0.515� i.T.t// .time delay for host finding for larvae/;

1=.101181.T.t//�2.55/ .larva-to-nymph/;
0.0013R0.515� i.T.t// .time delay for host finding for nymphs/;

1=.1596.T.t//�1.21/ .nymph-to-adult/;

0.086D0.515�a.T.t// .time delay for host finding for adults/;

1=.1300.T.t//�1.42/ .pre-oviposition period/,

where T.t/ is temperature at time t (unit ıC); � i.T.t// and �a.T.t// are temperature-dependent host activity proportions for immature
and mature ticks (private communication). Note that the development rate of nymph-to-adult is affected by both temperature-
dependent climate condition and temperature-independent diapause as mentioned in Ogden et al. [2]; for more, detail see the
literature in Wu et al. [16]. Once the development rates are determined, the time-dependent delays (�i.t/) can be determined via
backward calculation by the following relation: Z t

t��i.t/
di.s/ ds D 1. (48)

Therefore, the iterative time delays Ai.t/ are finally determined in terms of relation (9). The graphs of �i.t/ and Ai.t/ are presented in
Figures 7 and 8, respectively. Comparing to the ODE system of Ixodes scapularis tick population [16], the reproduction rate p for the DDE
model should significantly higher than that in ODE model. Setting

p D 3000 �
12Y

iD2

e�i N�i

1C �i N�i

where N�i is average time delay between successive stages, and using our developed algorithm, we estimate the basic reproductive ratio
R0 to be 0.3371, 1.6200 and 2.8806 in Wiarton Airpot, Hanover and Port Stanley, respectively. This shows that increasing temperature
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Figure 7. The graphs of interstadial development delay �i.t/ (i D 2, 6, 9, 12) under different temperature scenarios. Vectors representing mean monthly 1971–
2000 normal temperature in Port Stanley, Hanover and Wiarton Airport weather stations are given by [�5.5 �5.2 0 6.1 12.4 17.2 20 19.4 15.6 9.4 4.1 �2], [�7.1
�6.7�1.7 5.4 12 16.9 19.5 18.5 14.3 8.3 2.4�3.8], [�6.8�6.9�2.2 4.7 10.9 15.6 18.6 18.1 14 8.4 2.6�3.3], respectively.

Figure 8. The graphs of time delay Ai.t/ (i D 2, 6, 9, 12) under different temperature scenarios. Vectors representing mean monthly 1971� 2000 normal temper-
ature in Port Stanley, Hanover and Wiarton Airport weather stations are given by [�5.5�5.2 0 6.1 12.4 17.2 20 19.4 15.6 9.4 4.1�2], [�7.1�6.7�1.7 5.4 12 16.9
19.5 18.5 14.3 8.3 2.4�3.8], [�6.8�6.9�2.2 4.7 10.9 15.6 18.6 18.1 14 8.4 2.6�3.3], respectively.

conditions can shorten the development time between two successive stages and the time for finding hosts, and speed up maturation
to egg-laying females, thereby increasing R0. Thus, we can estimate the value of R0 subject to changing temperature conditions, and
this has significant implications for the survival of the tick population.
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5. Discussion

We derived a stage-structured population model to incorporate the variable development time in each stage of development (e.g. egg,
larva, nymph and adult). The resulting model is a system of delay differential equations with periodic delay. Each component of the
system represents a different life stage and the periodic delays represent the transition time between successive stages. Our model
with n D 1 (single stage) is consistent with the work of Schuhmacher and Thieme [37] in the special case with one exit maturation only.
Let r.t/ � � > 0 be the development rate of a single stage; then there exists a unique �i.t/ such that an individual must enter the stage
at time t � �i.t/ in order to reach maturation 1 and leave the stage at time t, i.e.

Z t

t��i.t/
r.s/ ds D 1.

Differentiating the above equation with respect to time t gives r.t/� r.t� �i.t//.1� � 0i .t// D 0; hence, we obtain r.t/
r.t��i.t//

D 1� � 0i .t/.
Our derived formula (17) within a single stage is exactly the same as Eq. (48) of [37]. However, we have developed a general model for
the temperature-driven variable development of the parasite with multiple stages.

In the context of retarded functional differential equations (RFDEs), it is often difficult to analyse the asymptotic stability of either
an equilibrium or a periodic solution due to the difficulty in dealing with the existence of infinitely many eigenvalues. There are inten-
sive studies in the asymptotic stability of an equilibrium or a periodic solution for a linear autonomous/periodic RFDEs. To carry out
numerical analysis of the eigenvalues, a commonly used approach is to reduce the infinite dimensional linear operator, as the solu-
tion operator for the linear autonomous RFDEs or monodromy operator in case of linear periodic RFDEs, to finite dimensional linear
operator by means of pseudospectral collocation. Then the eigenvalues of the latter situation can be calculated by the standard meth-
ods for the associated matrix eigenvalues (see [38, 39] and references therein). In this paper, we derived the basic reproductive ratio
R0 for the scalar linearized periodic RFDE (linearized at the trivial solution) decoupled from the linearization of the full system at the
population-extinction equilibrium. We have proposed a discretization-based method, where the periodic coefficients and the delays
are both approximated by constants over a short time interval. This method then reduces the problem of calculating the spectral radius
of a linear integral operator (defined as the basic reproductive ratio R0) to the calculation of the spectral radius of a finite dimensional
matrix (the dominant eigenvalue of X). Our numerical simulations indicate that this method is quite effective.

We compared our results with those from standard algorithms calculating the dominant Floquet multiplier [35,36] in Figures 5 and 6.
Although the two algorithms both involved the discretization of an operator, the calculations were very different and it is encouraging
to see that they are consistent in indicating which parameter regions the zero solution is stable or unstable. We would like to note that
the computation time required to calculate R0 using our method depends on the form of the delay term (it depends on how h�1 terms
are calculated) whereas the calculation of Floquet multipliers is more straightforward. However, if we are interested in the stability of
the zero solution as a parameter not involved in the delay term is varied (such as�1 in Figure 6), then it is possible to compute ri , ki , li as
well as the h�1

�
tj � ki!

	
terms only once as the parameter is varied thereby saving computation time relative to the recalculating the

Floquet multipliers each time.
We also performed simulations to gain insights on how the basic reproductive ratio R0 depends on the model parameters. With a

single periodic delay, we noticed that the basic reproductive ratio R0 may increase as the amplitude of the periodic delay is increased
(see Figure 1). We then focused on the issue of how amplitude/phase differences can influence the basic reproductive ratio R0 if
multiple time-periodic delays are involved in a periodic system. We observed that time-averaged parameters should be avoided if
seasonality is involved as this may lead to a bad estimate of the basic reproductive ratio and result in an inaccurate prediction of disease
risk (see Figure 3). In particular, Figure 4 shows that the change of peak timings of two periodic delays can change the value of the basic
reproductive ratio. The study in Ogden et al. [40] showed that seasonal activities of different tick instar changed due to the projected
increased temperatures, from the current pattern nymphal activities are ahead of larvae in a year’ to the one larvae become active
earlier than nymphs in a year’ in the future. The result in [40] as well as our simulations indicate that switch of peak timings of larvae
and nymphs may alter the basic reproductive ratio R0 for the tick population and hence impact the estimate of tick population growth
and associated tick-borne diseases such as Lyme disease.
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