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a b s t r a c t

A general mathematical model is proposed to study the impact of group mixing in a heterogeneous host
population on the spread of a disease that confers temporary immunity upon recovery. The model con-
tains general distribution functions that account for the probabilities that individuals remain in the
recovered class after recovery. For this model, the basic reproduction number R0 is identified. It is shown
that if R0 < 1, then the disease dies out in the sense that the disease free equilibrium is globally asymp-
totically stable; whereas if R0 > 1, this equilibrium becomes unstable. In this latter case, depending on
the distribution functions and the group mixing strengths, the disease either persists at a constant ende-
mic level or exhibits sustained oscillatory behavior.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

We formulate a model for diseases that confer temporary
immunity upon recovery, for example, the common cold (primarily
caused by rhinoviruses), pertussis, human respiratory syncytial
virus, and some sexually transmitted diseases such as syphilis.
We assume that the disease does not cause death and that the time
scale is sufficiently fast so that vital dynamics can be ignored. Thus
the total population remains constant. The diagram for the flow in
the model is shown in Fig. 1.1. Here S, I, R are the numbers of
individuals in the susceptible, infectious, and recovered classes,
respectively, with S + I + R = N a constant, b > 0 is the disease trans-
mission coefficient, c > 0 is the rate at which infectious individuals
recover and move from the infectious class to the recovered class.
In addition, P(t) is the probability of remaining in the recovered
class t time units after recovery, that is

RðtÞ ¼
Z t

0
cIðuÞPðt � uÞ du

with the assumption that no individuals are in the recovered class
at t = 0. We assume throughout that P(t) satisfies the following bio-
logically reasonable properties:
ll rights reserved.
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(A) P : [0,1) ? [0,1] is nonincreasing, piecewise continuous
with possibly finitely many jumps and satisfies P(0+) = 1,
limt?1P(t) = 0 with

R1
0 PðuÞdu positive and finite.

Assuming that the force of infection is given by mass action and
that initially a small number of infectious individuals is introduced
into an otherwise susceptible population, thus S(0) > 0, I(0) > 0,
R(0) = 0 with S(0) + I(0) = N a constant, the equations governing
the SIRS model are

SðtÞ ¼ N � IðtÞ � RðtÞ;
I0ðtÞ ¼ bSðtÞIðtÞ � cIðtÞ;

RðtÞ ¼
Z t

0
cIðuÞPðt � uÞdu:

ð1:1Þ

Here and in the sequel, integrals are in the sense of Riemann–Stielt-
jes integrals and prime means the derivative with respect to time t.

For a constant period of temporary immunity x, P(t) is the step
function given by

PðtÞ ¼
1 t 2 ½0;x�;
0 t 2 ðx;1Þ;

�
ð1:2Þ

with x positive and finite. Then the model breaks into two parts:
for t 2 [0,x] it is governed by the following ordinary differential
equation (ODE) system

S0ðtÞ ¼ �bIðtÞSðtÞ;
I0ðtÞ ¼ bIðtÞSðtÞ � cIðtÞ;
R0ðtÞ ¼ cIðtÞ;

ð1:3Þ
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Fig. 1.1. Flow diagram of an SIRS model.
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where S(0) > 0, I(0) > 0, R(0) = 0; whereas for t > x, the disease
dynamics is described by the following system of delay differential
equations (DDEs)
S0ðtÞ ¼ �bIðtÞSðtÞ þ cIðt �xÞ;
I0ðtÞ ¼ bIðtÞSðtÞ � cIðtÞ;
R0ðtÞ ¼ cIðtÞ � cIðt �xÞ;

ð1:4Þ
with initial condition given by the solution of (1.3) in the interval
[0,x]. Obviously, the long term behavior of the model solutions is
determined by the second part. By Hopf bifurcation analysis, Heth-
cote et al. [3] showed that for some parameter values the system
(1.4) can have periodic solutions. A similar model but including
constant recruitment into the susceptible class and natural death
was analyzed by Brauer et al. [1, Sections 2, 3].

In this paper, we extend model (1.1) to the situation in which
the population is divided into n groups. Here the groups can be
formed in terms of, for example, education levels, ethnic back-
ground, gender (n = 2), age, depending on the disease under con-
sideration. We include heterogeneity by assuming that each
group can transmit to the others (as in Lloyd and May [5]), rather
than explicit spatial heterogeneity as in patch models (see, for
example, Brauer et al. [1, Sections 4, 5]). For such a heterogenous
host population consisting of n groups, the model (1.1) is extended
in a straightforward way to the following system
SiðtÞ ¼ Ni � IiðtÞ � RiðtÞ;

I0iðtÞ ¼
Xn

j¼1

bijIjðtÞSiðtÞ � ciIiðtÞ;

RiðtÞ ¼
Z t

0
ciIiðuÞPiðt � uÞdu; i ¼ 1;2; . . . ;n;

ð1:5Þ
with Sið0Þ > 0; Iið0ÞP 0; Rið0Þ ¼ 0;
Pn

i¼1Iið0Þ > 0 and Ni constant.
Here ci is assumed to be positive with 1

ci
being the average infectious

period for group i, and Pi(t) satisfies properties (A). The terms biiIiSi

refer to the infections within the same group i, while the terms
bijIjSi, j – i refer to the infections between group i and group j. The
nonnegative matrix of disease transmission coefficients B = (bij) is
assumed to be irreducible (i.e., every group has direct or indirect
disease transmission to every other group). In this case the system
is fully coupled and cannot be decomposed into two or more decou-
pled subsystems.

Our main goal is to investigate the impact of the inter-group
infections on the disease dynamics. To this end, the rest of this
paper is organized as follows. In Section 2, it is proved that the
model is well-posed, the basic reproduction number is identified
and it is shown that the disease free equilibrium is globally stable.
The existence of the endemic equilibrium is given in Section 3 for
two typical special forms of Pi(t). The case of two groups is studied
in detail with simulations in Section 4. A discussion is given in
Section 5.
2. Well-posedness and global stability of the disease free
equilibrium

The Volterra integro-differential equation system (1.5) satisfies
the hypotheses stated by Miller [6, p. 338] that are sufficient to en-
sure the existence, uniqueness and continuity of solutions. Let

Di ¼ fðSi; Ii;RiÞ 2 R3 : Si; Ii;Ri P 0; Si þ Ii þ Ri ¼ Nig:

Then system (1.5) is positively invariant in D ¼
Qn

i¼1Di.
System (1.5) always allows a disease free equilibrium (DFE) E0

that has Si = Ni, Ii = Ri = 0 for i = 1,2, . . . ,n. Substituting

SiðtÞ ¼ Ni � IiðtÞ � ci

Z t

0
IiðuÞPiðt � uÞ du;

i = 1,2, . . . ,n, into the Ii equations in (1.5) gives the equivalent
system

I0iðtÞ ¼
Xn

j¼1

bijIjðtÞ Ni � IiðtÞ � ci

Z t

0
IiðuÞPiðt � uÞdu

� �
� ciIiðtÞ:

ð2:1Þ

Then the stability of the DFE of (1.5) is equivalent to the stability of
the trivial solution of (2.1). The characteristic equation of (2.1) at
Ii = 0, i = 1,2, . . . ,n, is

detðF � V � IdzÞ ¼ 0;

where Id is the n � n identity matrix, F = (bijNi) and V = diag(ci). Since
this is a polynomial equation, the DFE is locally asymptotically sta-
ble (LAS) if the stability modulus of matrix F � V is negative, that is,
s(F � V) = max{Re(k): k is an eigenvalue of F � V} < 0. Then FV�1 is
the next generation matrix of the model (1.5) (see, e.g., [8]) and
the DFE is LAS if the basic reproduction number R0 ¼ qðFV�1Þ < 1
and unstable if R0 > 1, where q denotes the spectral radius. Note
that FV�1 is entrywise nonnegative, thus q(FV�1) is attained at the
largest real positive eigenvalue of FV�1. For the matrices F and V gi-
ven above,

R0 ¼ q
bijNi

cj

 ! !
: ð2:2Þ

Moreover, defining the basic reproduction number of each group by

RðiÞ0 ¼
biiNi

ci
for i ¼ 1;2; . . . ;n; ð2:3Þ

the monotonicity of q(FV�1) with respect to the entries gives

R0 P max RðiÞ0 ; i ¼ 1;2; . . . ;n
n o

:

This indicates that if one group in isolation has high prevalence (the
associated basic reproduction number is greater than one), then the
disease will become endemic in the whole population in the pres-
ence of inter-group transmission. A more interesting observation
is that due to group mixing, even if RðiÞ0 < 1 for all i = 1,2, . . . ,n, it
is still possible to have R0 > 1, as illustrated in Figs. 4.4 and 4.5
in Section 4 below.

Next we show that when R0 < 1, E0 is indeed globally asymp-
totically stable (GAS). To this end, notice from (1.5) as Si 6 Ni that

I0iðtÞ 6
Xn

j¼1

bijIjðtÞNi � ciIiðtÞ:

Since R0 < 1, the trivial solution of the linear system

I0iðtÞ ¼
Xn

j¼1

bijIjðtÞNi � ciIiðtÞ ð2:4Þ

is LAS and thus is GAS. Since (2.4) is a cooperative system, by a com-
parison theorem [7, Theorem 1.1.3,p.78], it follows that Ii(t) ? 0 as
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t ?1 for i = 1,2, . . . ,n. Thus for � > 0, there exists T1 > 0 such that
Ii(t) 6 � for t P T1, and we show that this implies that Ri(t) ? 0 as
t ?1. Recall that Pi(t) satisfies properties (A), thus Mi ¼R1

0 PiðuÞdu > 0 is finite. Then for the same � > 0, there exists T2 > 0
such that

R t
t�T1

PiðuÞdu < � for t P T2. Therefore it follows from
(1.5) that for t P T1 + T2,

RiðtÞ ¼
Z t

0
ciIiðuÞPiðt � uÞdu

¼
Z T1

0
ciIiðuÞPiðt � uÞduþ

Z t

T1

ciIiðuÞPiðt � uÞdu

6 ciNi

Z T1

0
Piðt � uÞduþ ci�

Z t

T1

Piðt � uÞdu

6 ciNi

Z t

t�T1

PiðuÞduþ ci�
Z 1

0
PiðuÞdu

6 ciNi�þ ciMi� ¼ ðNi þMiÞci�:

This shows that Ri(t) ? 0 as t ?1 and hence Si(t) ? Ni as t ?1.
Summarizing the above gives the following theorem.

Theorem 2.1. Consider the n-group model (1.5) with R0 defined in
(2.2). If R0 < 1, then the DFE is GAS; if R0 > 1, then the DFE is
unstable.
Remark 2.1. There is a special case in which each group has the
same total population, the same average infectious period, the
same transmission within its group and the same (usually smaller)
transmission between groups. Writing Ni = N, ci = c, bii = b, bij = db
with 0 < d 6 1 for i – j, givesR0 ¼ bNððn� 1Þdþ 1Þ=c, which is sim-
ilar to the formula found by Lloyd and May [5, Eq. (36)].
3. Special forms of Pi(t)

The basic reproduction number R0 given by (2.2) is indepen-
dent of Pi(t), and we now examine whether different forms of
Pi(t) yield different dynamic behavior when R0 > 1.

3.1. Pi(t) is negatively exponentially distributed

Assume that PiðtÞ ¼ e�ai t with ai > 0 for i = 1,2, . . . ,n, thus ai > 0
is the rate at which individuals of group i in the recovered class
lose immunity and return to the susceptible class, so 1/ai is the
average time of immunity. Then system (1.5) reduces to the ODE
system

S0iðtÞ ¼ �
Xn

j¼1

bijIjðtÞSiðtÞ þ aiRiðtÞ;

I0iðtÞ ¼
Xn

j¼1

bijIjðtÞSiðtÞ � ciIiðtÞ;

R0iðtÞ ¼ ciIiðtÞ � aiRiðtÞ; i ¼ 1;2; . . . ;n:

ð3:1Þ

The basic reproduction number is as in (2.2) and the DFE is GAS if
the basic reproduction number is less than one and is unstable if
it is greater than one. Next we are concerned with the existence
and stability of an EE of system (3.1), which is a solution to the fol-
lowing algebraic system

0 ¼ �
Xn

j¼1

bijIjSi þ aiRi; ð3:2Þ

0 ¼
Xn

j¼1

bijIjSi � ciIi; ð3:3Þ

0 ¼ ciIi � aiRi; i ¼ 1;2; . . . ;n: ð3:4Þ
An EE, denoted by E� ¼ S�1; I
�
1;R

�
1; . . . ; S�n; I

�
n;R

�
n

� �T , is thus a solution of
(3.2)–(3.4) with S�i > 0; I�i > 0; R�i > 0. It follows from (3.3) and
(3.4) that for i = 1,2, . . . ,n,

Xn

j¼1

bijI
�
j S�i ¼ ciI

�
i ;

ciI
�
i ¼ aiR

�
i :

ð3:5Þ

Using Ni ¼ S�i þ I�i þ R�i and eliminating S�i and R�i , an EE can be found
by solving the following equations

ciI
�
i ¼ Ni �

ai þ ci

ai
I�i

� �Xn

j¼1

bijI
�
j ; i ¼ 1;2; . . . ;n: ð3:6Þ

If I� ¼ ðI�1; . . . ; I�nÞ
T is a positive solution of Eq. (3.6) with

I�i 2 ð0;
ai

aiþci
NiÞ, then an EE is determined by R�i ¼

ci
ai

I�i and
S�i ¼ Ni � I�i � R�i . The following theorem shows there exists a unique
EE provided R0 > 1.

Theorem 3.1. For the ODE epidemiological model (3.1), the basic
reproduction number R0 is given by (2.2). If R0 < 1, then the DFE is
GAS and if R0 > 1, then the DFE is unstable and there exists a unique
EE.
Proof. We need only to show the existence and uniqueness of an
EE under the condition R0 > 1. Set yi ¼

aiþci
ai

I�i for i = 1,2, . . . ,n. Then
(3.6) becomes

aici

ai þ ci
yi ¼ ðNi � yiÞ

Xn

j¼1

bijaj

aj þ cj
yj; i ¼ 1;2; . . . ;n:

Consider a related system of differential equations

y0 ¼ Ayþ f ðyÞ; ð3:7Þ

where y = (y1,y2, . . . ,yn)T, A = F1 � V1 with

F1 ¼
bijajNi

aj þ cj

 !
; V1 ¼ diag

aici

ai þ ci

� �

and

f ðyÞ ¼ �
Xn

j¼1

b1jaj

aj þ cj
yjy1; . . . ;�

Xn

j¼1

bnjaj

aj þ cj
yjyn

 !T

:

Note that I* is a positive solution of (3.6) if and only if y is a positive
equilibrium of system (3.7). By [4, Theorem 3.1], system (3.7) has a
unique positive equilibrium provided that s(A) > 0. From the proof
of Theorem 2 in [8], s(A) > 0 is equivalent to R0 ¼ qðF1V�1

1 Þ > 1,
completing the proof. h

In the special case of Remark 2.1, if R0 > 1, then in each group
S�i ¼ N

R0
; I�i ¼ a

aþc ð1� 1
R0
ÞN; R�i ¼

cI�i
a and solutions approach the EE.

3.2. Pi(t) is a step function

Assume that the disease has the same constant period of tem-
porary immunity x in all groups. That is, Pi(t), i = 1,2, . . . ,n, are
identically given by (1.2). Then for t 2 [0,x], the model becomes

S0iðtÞ ¼ �
Xn

j¼1

bijIjðtÞSiðtÞ;

I0iðtÞ ¼
Xn

j¼1

bijIjðtÞSiðtÞ � ciIiðtÞ;

RiðtÞ ¼
Z t

0
ciIiðxÞdx;

ð3:8Þ
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with Si(0) > 0, Ii(0) > 0, Ri(0) = 0, i = 1,2, . . . ,n; whereas for t 2 (x,1),

S0iðtÞ ¼
Xn

j¼1

bijIjðtÞSiðtÞ þ ciIiðt �xÞ;

I0iðtÞ ¼
Xn

j¼1

bijIjðtÞSiðtÞ � ciIiðtÞ;

RiðtÞ ¼
Z t

t�x
ciIiðxÞdx:

ð3:9Þ

From Theorem 2.1 and applying [4, Theorem 3.1] as in the proof of
Theorem 3.1 gives the following result.

Theorem 3.2. Consider the n-group model (3.8) and (3.9) with R0

defined by (2.2). If R0 < 1, then the DFE is the unique equilibrium and
is GAS; whereas if R0 > 1, then the DFE is unstable and there is a
unique EE denoted by Eþ ¼ Sþ1 ; I

þ
1 ;R

þ
1 ; . . . ; Sþn ; I

þ
n ;R

þ
n

� �T
where

ðIþ1 ; . . . ; Iþn Þ
T is the unique positive solution to

ciI
þ
i ¼ Ni � ð1þ cixÞI

þ
i

� �Xn

j¼1

bijI
þ
j ; i ¼ 1; . . . ;n

and

Rþi ¼ cixIþi ; Sþi ¼ Ni � ð1þ cixÞI
þ
i ; i ¼ 1; . . . ;n:
Remark 3.1. In the special case of Remark 2.1, if R0 > 1, then for
each group Sþi ¼ N=R0; Iþi ¼ ð1� 1=R0ÞN=ð1þ cxÞ, and
Rþi ¼ cxIþi . Linear stability of this special case is the same as for
the one group model with b replaced by b((n � 1)d + 1). Thus the
results of [3, Section 3] on Hopf bifurcation apply and periodic
solutions are possible for some parameter values. These can arise
as the group mixing strengths, specified by d, increase.
Remark 3.2. The limiting case of x = 0 corresponds to a model for
a disease that confers no immunity, i.e., the SIRS model reduces to
an SIS model. In this case, the result of [4, Theorem 3.1] shows that,
if R0 > 1, then the unique EE is globally asymptotically stable.

Because of the high dimension of the system, it is not easy to
determine the stability of the EE in the case of x > 0. In the next
section, we explore this topic and the disease dynamics for the
model with two groups.

4. The case of two groups

In this section, we consider the case with n = 2. It is easy to com-
pute the matrices F and V from Section 2 as

F ¼
b11N1 b12N1

b21N2 b22N2

� �
and V ¼

c1 0
0 c2

� �

and thus

R0 ¼
1
2
Rð1Þ0 þR

ð2Þ
0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð1Þ0 �R

ð2Þ
0

� 	2
þ 4b12b21

N1N2

c1c2

s !
; ð4:1Þ
with RðiÞ0 as in (2.3) for i = 1, 2.

4.1. Two groups with negatively exponentially distributed function
Pi(t)

For two groups with Pi(t) being negatively exponentially distrib-
uted, (3.1) becomes
S01ðtÞ ¼ �ðb11I1ðtÞ þ b12I2ðtÞÞS1ðtÞ þ a1R1ðtÞ;
I01ðtÞ ¼ ðb11I1ðtÞ þ b12I2ðtÞÞS1ðtÞ � c1I1ðtÞ;
R01ðtÞ ¼ c1I1ðtÞ � a1R1ðtÞ;
S02ðtÞ ¼ �ðb21I1ðtÞ þ b22I2ðtÞÞS2ðtÞ þ a2R2ðtÞ;
I02ðtÞ ¼ ðb21I1ðtÞ þ b22I2ðtÞÞS2ðtÞ � c2I2ðtÞ;
R02ðtÞ ¼ c2I2ðtÞ � a2R2ðtÞ:

Since (bij) is assumed irreducible, b12 and b21 are positive. If R0 > 1,
then by Theorem 3.1, there exists a unique EE, denoted by
ðS�1; I

�
1;R

�
1; S

�
2; I
�
2;R

�
2Þ

T .
Using the fact that Ni = Si + Ii + Ri is constant for i = 1, 2, we only

need to consider the following reduced system

I01ðtÞ ¼ ½b11I1ðtÞ þ b12I2ðtÞ�ðN1 � I1ðtÞ � R1ðtÞÞ � c1I1ðtÞ;
I02ðtÞ ¼ ½b21I1ðtÞ þ b22I2ðtÞ�ðN2 � I2ðtÞ � R2ðtÞÞ � c2I2ðtÞ;
R01ðtÞ ¼ c1I1ðtÞ � a1R1ðtÞ;
R02ðtÞ ¼ c2I2ðtÞ � a2R2ðtÞ:

ð4:2Þ

Linearizing about the EE gives a fourth degree characteristic polyno-
mial, (A.1) in the Appendix. Calculations given in the Appendix
show that by the Routh–Hurwitz Theorem, see for example [2],
the EE is LAS since all eigenvalues of the characteristic Eq. (A.1) have
negative real parts. Summarizing the above analysis gives the fol-
lowing result.

Theorem 4.1. For the ODE epidemiological model (4.2), the basic
reproduction number R0 is given by (4.1). If R0 < 1, then the DFE is
GAS; if R0 > 1, then the DFE becomes unstable and there exists a
unique EE that is LAS.

Numerical simulations, see for example Fig. 4.2, indicate that if
R0 > 1, then the EE is in fact GAS.

4.2. Two groups with Pi(t) a step function

When Pi(t) is a step function, it has been shown in [3] that Hopf
bifurcation can occur when n = 1, implying that the disease can ap-
pear periodically. It is natural to expect that the cyclic behavior is
also possible when n P 2. Here we are interested in whether or not
the group mixing affects this type of cyclic behavior. The two group
model with a common constant period of immunity x is given by
(3.8) and (3.9) with n = 2. Since R1 and R2 do not appear in the S and
I equations, we can consider the reduced system for t 2 (x,1)

S01ðtÞ ¼ �½b11I1ðtÞ þ b12I2ðtÞ�S1ðtÞ þ c1I1ðt �xÞ;
I01ðtÞ ¼ ½b11I1ðtÞ þ b12I2ðtÞ�S1ðtÞ � c1I1ðtÞ;
S02ðtÞ ¼ �½b21I1ðtÞ þ b22I2ðtÞ�S2ðtÞ þ c2I2ðt �xÞ;
I02ðtÞ ¼ ½b21I1ðtÞ þ b22I2ðtÞ�S2ðtÞ � c2I2ðtÞ:

ð4:3Þ

By Theorem 3.2, Remark 3.2, and the continuous dependence of
eigenvalues of the characteristic equation on the parameter x, we
have the following result.

Theorem 4.2. For the DDE epidemiological model (4.3), if R0 < 1,
then the DFE is GAS; if R0 > 1, then the DFE is unstable and there
exists a unique EE, which is LAS for small x.

The stability of the EE in the case of x > 0 is not easy to deter-
mine, because it involves analyzing a quasi-polynomial of degree 4
in which the coefficients depend on the delay x and the EE is not
explicitly known. In the rest of this section, we numerically inves-
tigate the impact of the cross transmission on the disease dynam-
ics in both groups. To this end, we vary bij for i, j = 1, 2 and fix the
other parameters. We take x = 60 days (on average, a recovered
individual has 60 days of temporary immunity upon recovery),
c1 = 0.1 per day (average infectious period in group one is 10 days),
c2 = 0.05 per day (average infectious period in group two is



Fig. 4.2. Initial conditions: S1(0) = 950, I1(0) = 50, R1(0) = 0 and S2(0) = 1495, I2(0) = 5, R2(0) = 0; parameters: b11 ¼ 5� 10�4; b22 ¼ 1:0� 10�4; b12 ¼ 5� 10�5;

b21 ¼ 5� 10�4; c1 ¼ 0:1; c2 ¼ 0:05; a1 ¼ a2 ¼ 1=60; R0 � 6:92: the EE is LAS.

Fig. 4.4. b11 ¼ 1:5� 10�5; b22 ¼ 1:0� 10�5; b12 ¼ 3� 10�4; b21 ¼ 1� 10�4; Rð1Þ0 ¼
0:15 < 1; Rð2Þ0 ¼ 0:3 < 1; R0 � 3:23: EE is stable.
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20 days). We set as initial conditions S1(0) = 950, I1(0) = 50,
R1(0) = 0 and S2(0) = 1495, I2(0) = 5, R2(0) = 0. Thus group one has
a population of N1 = 1,000; whereas group two has a population
of N2 = 1,500. Note that we assume individuals in different groups
have different infectious periods, simulations show that the
dynamics is very similar if we assume the same infectious period
with c1 = c2.

We first choose b11 = 1.5 � 10�5 and b22 = 1.0 � 10�5, resulting
inRð1Þ0 ¼ 0:15 < 1 andRð2Þ0 ¼ 0:3 < 1. Thus, in the absence of trans-
mission between groups (b12 = 0 = b21), the disease dies out in both
groups, as demonstrated in Fig. 4.3. But disease may becomes
endemic in both groups if there is cross transmission between
the two groups. Fig. 4.4 corresponds to b12 = 3 � 10�4 and b21 =
1 � 10�4 giving R0 � 3:23; while Fig. 4.5 represents the simula-
tions for b12 = 3 � 10�4 and b21 = 5 � 10�4 leading to R0 � 6:93.
Notice that both Figs. 4.4 and 4.5 illustrate endemic disease, but
the former shows convergence to the EE, whereas the latter shows
convergence to a periodic solution implying that the disease will
develop a periodic pattern in the long run. These simulation results
show that the cross transmission not only can help an otherwise
dying out disease to persist in both groups, but also can play a role
in determining the patterns of persistence.

Next, we choose b11 = 5 � 10�4 giving Rð1Þ0 ¼ 5 > 1, and
b22 = 1.0 � 10�4 giving Rð2Þ0 ¼ 3 > 1. Then, in the absence of cross
transmission (b12 = 0 = b21), I1(t) demonstrates periodic behavior
(see Fig. 4.6 and [3, Fig. 2]) and I2(t) tends to a positive constant
corresponding to the EE for this group (see Fig. 4.7). Interestingly,
by simulations, we find that some appropriately chosen positive
values of b12 and b21 may make the EE stable, while some other po-
Fig. 4.3. b11 ¼ 1:5� 10�5; b22 ¼ 1:0� 10�5; b12 ¼ b21 ¼ 0; Rð1Þ0 ¼ 0:15; Rð2Þ0 ¼ 0:3:
DFE is stable in isolated two groups.

Fig. 4.5. b11 ¼ 1:5� 10�5; b22 ¼ 1:0� 10�5; b12 ¼ 3� 10�4; b21 ¼ 5� 10�4; Rð1Þ0 ¼
0:15 < 1; Rð2Þ0 ¼ 0:3 < 1; R0 � 6:93: oscillations appear in two groups.
sitive values of b12 and b21 may drive the EE unstable and lead to
the periodic disease dynamics in both groups. For example,
b12 = 4 � 10�4 and b21 = 5 � 10�5 (giving R0 � 6:65) result in a sta-
ble EE as is shown in Fig. 4.8; and b12 = 5 � 10�5, b21 = 5 � 10�4

(giving R0 � 6:92) result in an unstable EE and cause sustained
oscillations in both groups, as is shown in Fig. 4.9.

5. Discussion

Based on the work [3,5], we have proposed a general model, gi-
ven by (1.5), for diseases that confer temporary immunity upon



Fig. 4.6. b11 ¼ 5� 10�4; Rð1Þ0 ¼ 5: oscillations appear in isolated group one (tran-
sient oscillations are omitted).

Fig. 4.7. b22 ¼ 1:0� 10�4; Rð2Þ0 ¼ 3: stable EE appears in isolated group two.

Fig. 4.8. b11 ¼ 5� 10�4; b22 ¼ 1:0� 10�4; b12 ¼ 4� 10�4; b21 ¼ 5� 10�5; R0 �
6:65: stable EE appears in two groups.

Fig. 4.9. b11 ¼ 5� 10�4; b22 ¼ 1:0� 10�4; b12 ¼ 5� 10�5; b21 ¼ 5� 10�4; R0 �
6:92: oscillations appear in two groups.
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recovery and that spread in a heterogeneous host population. The
model contains general distribution functions Pi(t), i = 1,2, . . . ,n,
which account for the probabilities that recovered individuals re-
main in the recovered class t time units after recovery. For this
model, we have identified the basic reproduction number R0,
and have shown that if R0 < 1, then the disease dies out in the
sense that the DFE is GAS; and ifR0 > 1, the DFE becomes unstable.

When Pi(t), i = 1,2, . . . ,n, are negatively exponentially distrib-
uted functions, we have shown that the model allows a unique
EE when R0 > 1. Stability of the EE is a difficult mathematical
problem, and we obtained some results only for the two group
case, for which we have shown that the EE is LAS. In this case,
although the cross transmission rates do affect the value of the
basic reproduction number R0, they do not cause sustained
oscillations; see Fig. 4.2.

When Pi(t), i = 1,2, . . . ,n, are the same step function, we have
also proved that there is a unique EE when R0 > 1. The stability
of the EE is much more difficult, even in the two group case. This
forces us to seek numerical simulations, and the simulation results
show a variety of possibilities. A comparison of Figs. 4.2 and 4.9,
which have the same mean period of temporary immunity, the
same disease parameters andR0, shows that the choice of distribu-
tion functions Pi(t) influences the qualitative nature of the time
evolution of the disease. The strengths of group mixing not only af-
fect R0 and hence determine whether or not the disease becomes
endemic, they also affect the patterns of disease persistence: they
can prevent oscillations and they can also enhance oscillations, as
observed in the simulations shown in Figs. 4.3–4.9. A similar vari-
ety of possibilities was found numerically by Brauer et al. [1, Sec-
tion 5] in a two patch model. Theoretically identifying the ranges
of the cross transmission rates for the above phenomena is an
important but challenging mathematical problem.

Figs. 4.2 and 4.9 have demonstrated that different distribution
functions may result in different outcomes. When the distribution
functions are taken as step functions, simulations in Section 4.2
show that the impacts of the cross transmission on the disease
dynamics can be complicated. We point out that such impacts de-
pend on the magnitude of the delay. To see this, we keep all param-
eter values the same as in the simulation for Fig. 4.9 but reduce the
value of x from 60 to 30. Then, as can be seen from Fig. 5.10, the
oscillations disappear. This shows that, besides the mixing pattern,
the length of temporary immunity can also cause oscillatory
behavior in disease dynamics. The simulation results in Figs. 4.9
and 5.10, together with Theorem 4.2, also suggest that when all
other parameters are fixed, there is a critical value for x = xc

(numerical simulations suggest that xc � 50 for parameter values
in Figs. 4.9 and 5.10) distinguishing stability (0 6x < xc) and
instability (x > xc) of the EE. The value of xc could be obtained
more accurately by Hopf bifurcation analysis, but would involve
lengthy computations.

From the results on this general model and in terms of the per-
spective of controlling a disease, weakening or even cutting the
mixing between groups is an effective measure. However, to reach
conclusions for public health recommendations, a more detailed,
specific model is required.



Fig. 5.10. x = 30, b11 ¼ 5� 10�4; b22 ¼ 1:0� 10�4; b12 ¼ 5� 10�5; b21 ¼ 5� 10�4; R0 � 6:92: oscillations disappear in both groups as x is decreased from 60 in Fig. 4.9 to 30.
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Appendix A

To investigate the linear stability of the EE of (4.2), Let
b1 ¼ b11I�1 þ b12I�2; b2 ¼ b21I�1 þ b22I�2, c1 ¼ b12S�1; c2 ¼ b21S�2 and a1 ¼
b11S�1 � c1 � b1, a2 ¼ b22S�2 � c2 � b2 and define p :¼ a1a2 � c1c2.
Using (3.5) with n = 2, it follows from ðb11I�1 þ b12I�2ÞS

�
1 ¼ c1I�1 that

b11S�1 � c1 ¼ �b12S�1
I�2
I�1
< 0. Similarly, b22S�2 � c2 ¼ �b21S�2

I�1
I�2
< 0. This

shows that a1 < 0, a2 < 0. Note that

p ¼ ðb11S�1 � c1 � b1Þðb22S�2 � c2 � b2Þ � b12S�1b21S�2
¼ �ðb11S�1 � c1Þb2 � ðb22S�2s� c2Þb1 þ b1b2 > 0:

Linearizing system (4.2) at the EE gives the characteristic equation

z4 þ Az3 þ Bz2 þ Czþ D ¼ 0; ðA:1Þ

where

A ¼ a1 þ a2 � ða1 þ a2Þ;
B ¼ pþ b1c1 þ b2c2 þ a1a2 � ða1 þ a2Þða1 þ a2Þ;
C ¼ ða1 þ a2Þp� a1a2ða1 þ a2Þ þ b1c1ða2 � a2Þ þ b2c2ða1 � a1Þ;
D ¼ b1b2c1c2 þ a1a2p� b1c1a2a2 � b2c2a1a1:

Note that p > 0 and ai < 0, ai > 0, ci > 0 for i = 1, 2, implying

A > 0; B > 0; C > 0; D > 0:

Direct calculations show that

AB� C ¼ � ða1 þ a2Þpþ b1c1ða1 � a1Þ þ b2c2ða2 � a2Þ
þ a1a2ða1 þ a2Þ � ða1 þ a2Þða1 þ a2ÞA > 0
and

ABC�A2D�C2 ¼ �ða1þa2Þða1þ a2Þp2

þp½b1c1ðða1þa2Þða1�a1Þ� ða2�a2Þða1þa2ÞÞ
þb2c2ðða1þa2Þða2�a2Þ� ða1�a1Þða1þa2ÞÞ
þ ða1þa2Þ2ða1þa2Þ2

�ða1þa2Þða2
1þa2

2Þða1þa2Þ�
þ ða1�a1Þða2� a2Þðb1c1�b2c2Þ

2

þða1þa2Þa1a2Aða1þa2Þ2

�ða1þa2Þa2
1a

2
2ða1þa2Þ

þb1c1½Aða1a1a2þa1a2
2�a2

2a1þa1a2
2Þ

�2a1a2ða1�a1Þða1þ a2Þ�
þb2c2½Aða2a1a2þa2a2

1�a2
1a2þa2

1a2Þ
�2a1a2ða2�a2Þða1þ a2Þ�> 0:
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