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Abstract: In this paper, we revisit the notion of infection force from a new angle which can offer
a new perspective to motivate and justify some infection force functions. Our approach can not only
explain many existing infection force functions in the literature, it can also motivate new forms of
infection force functions, particularly infection forces depending on disease surveillance of the past. As
a demonstration, we propose an SIRS model with delay. We comprehensively investigate the disease
dynamics represented by this model, particularly focusing on the local bifurcation caused by the delay
and another parameter that reflects the weight of the past epidemics in the infection force. We confirm
Hopf bifurcations both theoretically and numerically. The results show that, depending on how recent
the disease surveillance data are, their assigned weight may have a different impact on disease control
measures.
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1. Introduction

Incidence rate in an infectious disease model plays a crucial role in the disease dynamics. It is the
rate (i.e., number of cases per unit time) of incidence of new infections coming from the susceptible
population. Expressing the incidence rate in the form f S with S being the susceptible population, then
the role of the incidence rate is represented by f , which is often referred to as the infection force. An
infection force can be dependent on I(t) or on both I(t) and S (t) where I(t) and S (t) are the populations
of the infectious and susceptible classes of the host. Actually, there have been many works in literature
that investigate the disease dynamics described by various types of ODE disease models (SI, SIS,
SIR, SIRS, etc.) adopting various infection force functions (or incidence rates), see, e.g., [1–13] and
the references therein. For example, in Liu et al. [6, 7] the incidence rate βI pS q were used for some
in SIRS and SEIRS models respectively, and it was later also used by Korobeinikov et al. [4]. This
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incidence rate corresponds to an infection force function of the form f = f (I, S ) = βI pS q−1. In Ruan
et al. [10], a saturated infection force f = f (I) = aI2/(b + I2) was adopted in an SIRS model. In
Korobeinikov et al. [5], general incidence rate of the form g(S , I,N), where N is the total population,
was discussed and the global properties of some infectious disease models with various nonlinear g
were explored. In Wang [11], some general nonlinear infection forces were discussed for an SIRS
ODE model with balanced demography, and these can include the form f = λI/(1 + pI + qI2) and
f = λI2/(1 + pI + qI2) which are infection forces discussed in, e.g., [8, 9, 12]. In Liu et al. [14] for
an SEIHR ODE model, an infection force of the form βIe−a1E−a2I−a3H was used where E(t) and H(t)
are the numbers of exposed and hospitalized hosts; and along the same line but for an SEI ODE model
with logistic demography for the host, an infection force of the form βIe−mI was used in reference [15].
Particularly in McCallum et al. [13], some valuable discussions on transmission functions are presented
from biological perspectives, and seven particular transmission functions were collected and compared,
including some of the above mentioned ones.

It has been found that some nonlinear infection force functions, particularly those non-monotone
ones, can lead to very complicated disease dynamics, as opposed to the linear infection force arising
from mass action incidence rate. For details in this regard, a reader is referred to, e.g., [4, 8–10, 12, 14,
15] and the references therein.

We note that aforementioned literatures on nonlinear infection force mainly focus on pure theoreti-
cal research in dynamical systems, and hence, have brief justifications from the viewpoint of infectivity,
and some are even ambiguous and out of reasonable biological explanations. Here we firstly present a
novel alternative perspective for considering infection force functions which can not only reconstruct
the infection force function mentioned above, but also help motivate our new model. The main idea
is that during an epidemic or pandemic, particularly for a newly emerged disease such as the SARS
in 2003 and Covid-19 broken out in 2020, due to various control measures including lockdowns, quar-
antines and isolations, ordered stay-home and even the effective use of personal protection equipments
(PPEs), only a proportion of the susceptible individuals will actually be possibly exposed to the in-
fectious hosts and hence be possibly infected. For convenience of later references, let us call this
proportion of susceptible individuals practically susceptible individuals. A susceptible host who takes
extreme precaution by either staying home or using full PPEs has zero or little chance to be infected.
The practically susceptible population can be expressed as S p = PS (t), where P ∈ [0, 1] is a measure-
ment of the proportion; alternatively, this P can also be explained as the probability that a susceptible
individual is a practically susceptible host. In general, such a proportion is non-pharmaceutical and
non-biological, and it depends on the level of precaution that is impacted by the level of severity of
the epidemics, mediated by, e.g., the control measures implemented by the government, regulations
and guidelines imposed by the public health agency, as well as media coverage. Let L(t) denote the
measurement of the level of severity, and accordingly P = P(L). As the severity level increases, peo-
ple will generally become more precious and more protective by either restricting their activities or
using PPEs; moreover, the government may implement more and more restrictive control measures,
which will make fewer and fewer people available for infection. These facts justify the following basic
assumption for the proportion function P(L):

(H1) P(L) is a monotonic non-increasing function, satisfying P(0) ≤ 1 and limL→∞ P(L) ≥ 0.

Below are just three prototypes of such a function satisfying (H1):
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(A) P1(L) = m1L+1
m2L+1 where m1,m2 are all positive constants satisfying m1

m2
< 1;

(B) P2(L) = m1L+b
cL2+m2L+b , where all parameters are positive constants and satisfy m1

m2
< 1;

(C) P3(L) = e−hL, where h > 0.

Note that although P j(L), j = 1, 2, 3 all satisfy (H1), their decay rates are different, with P1(L)
decaying slowest and P3(L) decaying the fastest. Also, P1(L) has a positive lower bound m1/m2 <

1, and this may accommodate the scenario of maintaining essential services open during a severe
epidemic, such as Covid-19.

Now let us consider the mass action infection mechanism which has the incidence rate at time t as
βI(t)S (t). This corresponds to a linear infection force f (t) = βI(t), where β is the transmission rate.
With the above observation of practically susceptible population, the incidence rate under the mass
action infection mechanism should be revised to βI(t)S p(t) = βI(t)[P(L(t))S (t)] = [βI(t)P(L(t))]S (t),
resulting in the infection force f (t) = βI(t)P(L(t)). This way, the infection force at time t is explicitly
related to the proportion function P(L(t)) which depends on the severity level L(t) at time t. When L(t)
is measured just by the number of infected individuals at time t, i.e., L(t) = I(t), those infection force
functions used in the aforementioned literatures can be easily obtained by properly chosen proportion
function P(I) for the practically susceptible population. In this case, the infection force f = f (I) =
IP(I) can be monotone, either increasing and unbounded, or increasing and saturated if P(I) decrease
slowly; it can also be non-monotone (one hump shape) if P(I) decreases fast enough, including those
used in references [4, 8–10, 12, 14, 15] where complicated dynamics have been observed. We point
out that Liu et al. [14] proposed and analyzed an SEIR-H model with E(t) and H(t) representing the
populations of exposed and hospitalized groups, and the infection force there is a result of adopting
L(t) = a1E(t) + a2I(t) + a3H(t) and P(L) = e−L(t).

Note that in practice, a more reasonable and meaningful measurement for the severity of an epi-
demic should contain information not only at the present time but also certain information over a
period of the past time. When determining their precaution and protection levels, people do look at
the numbers of infected cases both at the present time and in recent times. This suggests the following
form for L(t):

L(t) =
∫ t

t−τ
w(ξ)I(t − ξ) dξ (1.1)

where the constant τ > 0 specifies a length of time interval that one wants to look at and the weight
function w(ξ) reflects the variation of the impact of disease surveillance in the past interval [t − τ, t]
on the severity at the present time. Considering the fact that in reality, the data are typically collected
at discrete times (e.g., hourly, daily and weekly), w(ξ) is accordingly taken as w(ξ) =

∑n
j=0 k jδ(τ j),

leading to the following discrete form for L(t):

L(t) =
n∑

j=0

k jI(t − τ j), (1.2)

where k j ≥ 0, j = 0, 1, · · · , n are the discrete weights, satisfying the normal condition
∑n

j=0 k j = 1;
τ0 = 0 and 0 < τ1 < τ2 < · < τn are the positive numbers that may account for the past n time points
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at which the infected cases are reported/released. When the data in these past n time points and the
present time are all given the same weight, there holds k j = 1/(n + 1), j = 0, 1, · · · , n.

To demonstrate the above new perspective for infection force, we incorporate the above new frame-
work for infection force into the classic SIRS model to obtain the following model system for the
transmission dynamics of an infectious disease of SIRS type:

S ′(t) = Λ − dS (t) − f (t)S (t) + αR(t),
I′(t) = f (t)S (t) − (d + r + ϵ)I(t),
R′(t) = rI(t) − (d + α)R(t).

(1.3)

where, as discussed above, the infection force at time t is given by

f (t) = βI(t)P(L(t)), L(t) =
n∑

j=0

k jI(t − τ j), (1.4)

with the proportion function satisfying (H1). Although P(L) does not have to be smooth and even
continuous to reflect the situation when the control measures are often implemented in terms of time
intervals, for convenience of theoretical analysis, we assume P(L) is differentiable, in addition to (H1).
Notice that all parameters are positive in model (1.3); in addition to the transmission rate β, the others
respectively stand for

- Λ: the recruitment rate of the population;
- d: the natural death rate of the population;
- r: the recovery rate of infective individuals;
- ϵ: the disease-induced death rate;
- α: the rate of removed individuals who lose immunity and return to susceptible class.

We point out that in a very special case: ϵ = 0, α = 0 and n = 1, k0 = 0 and k1 = 1 (i.e., severity at
time t is measured by L(t) = I(t − τ)) and P(L) = e−hL, system (1.3) reduces to the delayed SIR model

S ′(t) = Λ − dS (t) − βe−hI(t−τ)I(t)S (t),
I′(t) = βe−hI(t−τ)I(t)S (t) − (d + r)I(t),
R′(t) = rI(t) − dR(t).

(1.5)

which was thoroughly discussed recently by Song et al. [16], including a local and global bifurcation
analysis by using the delay τ as the bifurcation parameter, which reveals onset and termination of Hopf
bifurcation from a positive equilibrium. The authors attribute the term e−hI(t−τ) as the impact of media.

In more recent work, in further studying the impact of media on the disease dynamics of an SEIS
model, Song et al. [17] introduced a variable M(t) to denote the average number of news items related
to the disease outbreak, and proposed the following SEIS-M model

S ′(t) = Λ − dS (t) − βe−hM(t−τ2)I(t)S (t) + γI,
E′(t) = βe−hM(t−τ2)I(t)S (t) − (d + σ)E(t),
I′(t) = σE(t) − (d + γ)I(t),
M′(t) = δI(t − τ1) − µM(t).

(1.6)
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Threshold dynamics and bifurcation from an endemic equilibrium were explored in reference [17].
Here the media coverage variable M(t) plays a similar role to that of the severity variable L(t) in our
model (1.3).

The models (1.3)-(1.4) and (1.5) have something in common: the infection forces contain time
delay. We would like to draw readers’ attention to another scenario for delay−dependent infection
forces but for vector-borne diseases. The key idea traces back to Cooke [18] where it was assumed that
the population of the infectious vectors at time t is proportional to the population of the infectious host
in the previous time t − τ with τ being the latency of disease in the vector. This suggests the incidence
rate for the host F(Iv(t))S h(t) = F(pIh(t−τ))S h(t), and accordingly, reduces a model system for vector-
borne disease to a system only containing the respective variables (susceptible and infectious, etc.) for
the host populations, but with delayed infection force function. Along this time, there have been many
works with the corresponding models typically demonstrating the global threshold dynamics between
the disease free equilibrium and endemic equilibrium, thanks to the powerful Lyapunov method. The
success of this method is mainly attributed to assuming that F only depends on the delayed term Ih(t−τ)
and F(·) is nondecreasing. For some details, see e.g., [19–25] and the references therein.

In the rest of this paper, we explore the dynamics of the SIRS model (1.3) with the infection force
given by (1.4). In Section 2, we address the well-posedness of model (1.3)-(1.4) with general P(L).
In Section 3, we identify the basic reproduction number R0 and discuss the equilibria of the model
system in the desired region. In Section 4, we consider a particular P(L(t)) = e−hL which leads to
the special infection force f (t) = βI(t)e−h(k0I(t)+k1I(t−τ)), resulting to the model system (4.1). For this
infection force, and in the case of R0 > 1 so that a unique endemic equilibrium E∗ exists, we analyze
the stability of E∗ and obtain conditions for Hopf bifurcation to occur. In Section 5, we compare our
results with those in reference [16] which is a special case of (4.1) (α = 0, ϵ = 0, k0 = 0, k1 = 1). Such
a comparison particularly reveals the difference of the disease dynamics between using multiple time
disease surveillance (i.e., I(t) and I(t−τ) ) and only using single time disease surveillance ( i.e., I(t−τ)
only). In Section 6, we present some numerical simulations to illustrate the theoretical results. Finally,
we conclude the paper by a brief summary together with some discussion, in Section 7.

2. Well-posedness of the model

As is customary, we denote by C = C
(
[−τ, 0],R3

)
the set of all continuous functions defined on

[−τ, 0], and by C+ = C
(
[−τ, 0],R3

+

)
the subset of all of non-negative functions in C. Then C is a

Banach space with the maximum norm and C+ is the positive cone of C which induces the natural
order in C.

By the fundamental theory of functional differential equations (see, e.g., Hale et al. [26]), for ϕ =
(ϕ1, ϕ2, ϕ3)T

∈ C, the model system (1.3) has a unique solution (S (t), I(t),R(t)) satisfying

(S (θ), I(θ),R(θ)) = (ϕ1(θ), ϕ2(θ), ϕ3(θ)) , θ ∈ [−τ, 0], (2.1)

which exists in a maximal interval of existence (0,Tm).
By the nature of the variables in the model (1.3)-(1.4), we are only interested in non-negative solu-

tions. Accordingly, we further require the initial functions to be in C+. For such non-negative initial
functions, we show below that the corresponding solution is also non-negative. Firstly, from the second
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equation in model (1.3)-(1.4), we have

I(t) = I(0)e
∫ t

0 [βP(L(θ))S (θ)−(d+r+ϵ)]dθ ≥ 0, for t ∈ (0,Tm).

Similarly, the third equation in (1.3) lead to

R(t) = R(0)e−αt + r
∫ t

0
I(θ)e−α(t−θ)dθ,

and thus, by R(0) ≥ 0 and the non-negativity of I(t) confirmed above, we conclude R(t) ≥ 0 for
t ∈ (0,Tm). To verify that S (t) > 0 for t > 0, we assume the contrary. Let t1 > 0 be the first time
such that S (t1) = 0, then by the first equation of (1.3) we have S ′ (t1) = Λ + αR(t1) > 0 and therefore,
S (t) < 0 for t ∈ (t1 − ϵ1, t1) where ϵ1 > 0 is sufficiently small. This contradicts S (t) > 0 for t ∈ [0, t1),
and the contradiction proves S (t) > 0 for all t ∈ (0,Tm).

Next we prove the boundedness of the solution. To this end, we consider N(t) = S (t) + I(t) + R(t).
Simple calculations lead to

N′(t) = Λ − dN − ϵI ≤ Λ − dN.

This implies that lim supt→∞ N(t) ≤ Λ/d, concluding the boundedness of N(t). This together with the
non-negativity of all components in the solution, implies that S (t), I(t) and R(t) are all bounded. By
the theory on the continuation of solutions for functional differential equations (see e.g., [26]), the
boundedness of the solution also implies that the Tm = ∞, i.e., the solution exists globally.

Combining the above, we have actually established the well-posedness of the model (1.3)- (1.4) as
stated in the following Theorem.

Theorem 2.1. For every ϕ = (ϕ1, ϕ2, ϕ3)T
∈ C+, the model system (1.3)-(1.4) has a unique solution

(S (t), I(t),R(t)) satisfying (2.1), which exists globally in (0,∞), is nonnegative and remains bounded.
Moreover, the region

D = {(S , I,R) | S ⩾ 0, I ⩾ 0,R ⩾ 0, 0 ⩽ S + I + R = N ⩽ Λ/d}

is both positively invariant and attractive for models (1.3)-(1.4).

3. Disease free equilibrium and basic reproduction number

It is easy to see that the model (1.3) has the disease free equilibrium E0 = (S 0, 0, 0), where S 0 =

Λ/d. To explore the stability of E0 and identify the basic reproduction number of the model system
(1.3)-(1.4), we linearize the model at E0 to obtain

S ′(t) = −dS (t) − βP(0)S 0I(t) + αR(t)
I′(t) = [βP(0)S 0 − (d + r + ϵ)]I(t)
R′(t) = rI(t) − (d + α)R(t).

(3.1)

This is a linear ODE system (although the model (1.3)-(1.4) is a DDE system) with the coefficient
matrix 

−d −βP(0)S 0 α

0 βP(0)S 0 − (d + r + ϵ) 0
0 r −(d + α)

 , (3.2)
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which has two negative eigenvalues are −d < 0, −(d + α) < 0, with the third eigenvalue βP(0)S 0 −

(d + r + ϵ),−(d + α) being negative if and only if βP(0)S 0 < (d + r + ϵ). Thus E0 is asymptotically
stable if βP(0)S 0 < (d + r + ϵ) and unstable if βP(0)S 0 > (d + r + ϵ).

Actually, we can prove that E0 is globally asymptotically stable when βP(0)S 0 < (d+r+ϵ). Indeed,
when proving the boundedness of solutions, we have seen that

lim sup
t→∞

S (t) ≤ lim sup
t→∞

N(t) ≤ Λ/d = S 0.

Choose a δ > 0 sufficiently small such that βP(0)(S 0 + δ) < (d+ r+ ϵ). Then, there is a T > 0 such that

lim sup
t→∞

S (t) ≤ S 0 + δ, for t ≥ T.

By the conditions on P(L), the second equation in (1.3) has the following linear ODE as an comparison
equation from large t from above

I′(t) = [βP(0)(S 0 + δ) − (d + r + ϵ)]I(t), for t ≥ T. (3.3)

Note that all solutions converge to 0 as t → ∞ (since βP(0)(S 0 + δ) < (d + r + ϵ)). By a comparison
argument, the I(t) component of the solution to the model (1.3)-(1.4) also tends to 0 as t → ∞. This
implies that the third equation in (1.3)-(1.4) has a limit equation R′(t) = −(d + α)R(t) which has the
global convergence dynamics: R(t)→ 0 as t → ∞; and the first equation in (1.3)-(1.4) has also a limit
equation: S ′(t) = Λ − dS (t) which also have the global convergence dynamics: S (t) → Λ/d = S 0

as t → ∞. Now, by the theory of asymptotically autonomous systems (see, e.g., Castillo-Chavez et
al. [27]), every solution with non-negative initial functions satisfies converges to (S 0, 0, 0) = E0 as
t → ∞ when βP(0)S 0 < (d + r + ϵ).

The basic reproduction number of the model can be obtained from (3.1) by using the next generation
approach. However, here it is more straightforward by tracking the duration of infection which is
1/(d+ r+ ϵ), and transmission rate near the disease free equilibrium which is βP(0)S 0. Such a tracking
immediately leads to the following formula for the basic reproduction number R0:

R0 =
1

d + r + ϵ
· [βP(0)S 0] =

βP(0)S 0

d + r + ϵ
.

Note that βP(0)S 0 < (d + r + ϵ) is equivalent to R0 < 1.
When R0 > 1 ( βP(0)S 0 > (d + r + ϵ) ), E0 becomes unstable and one would expect an endemic

equilibrium. Note that because of the normality condition for the weights k j, j = 0, 1, · · · , n in (1.2),
possible endemic equilibrium E∗ = (S ∗, I∗,R∗) is determined by the following equations

Λ − dS +
( rα
d + α

− (d + r + ϵ)
)

I = 0,

βP(I)S = d + r + ϵ,

R =
rI
α + d

.

(3.4)

The first two equations in (3.4) can be rewritten as

S =
Λ

d
+

1
d

( rα
d + α

− (d + r + ϵ)
)

I =: F(I) and S =
d + r + ϵ
βP(I)

=: G(I).
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F(I) is decreasing since rα
d+α − (d + r + ϵ) < −(d + ϵ) < 0; while G(I) is increasing because P(L) is

decreasing. Hence, (3.4) has a positive solution (unique) if and only if G(0) < F(0), that is,

d + r + ϵ
βP(0)

<
Λ

d
, (3.5)

which is equivalent to R0 > 1. Thus, we have proved that the model (1.3)-(1.4) has a unique endemic
equilibrium E∗ = (S ∗, I∗,R∗) if and only if R0 > 1.

Summarizing the above analysis, we have actually proved the following Theorem.

Theorem 3.1. The disease-free equilibrium E0 for the model (1.3)-(1.4) is globally asymptotically
stable if R0 < 1; and if R0 > 1, E0 becomes unstable and there occurs a unique endemic equilibrium
E∗ = (S ∗, I∗,R∗) determined by (3.4).

4. Stability of the endemic equilibrium for a particular P(L(t))

In the preceding section, we have shown that when R0 > 1, the model (1.3)-(1.4) has a unique
endemic equilibrium E∗ = (S ∗, I∗,R∗). This section is devoted to the stability of E∗. Unfortunately,
for general P(L(t)), it does not seem to be possible to obtain any meaningful results on stability of E∗.
Thus, in this section we consider the following particular severity measurement L(t) = k0I(t)+k1I(t−τ),
which only looks at the weighed total infected cases at the present time t and a previous time t − τ,
and the exponential decay function for P(L): P(L) = e−hL. The above particular choices result in the
infection force f (t) = βI(t)e−h(k0I(t)+k1I(t−τ)) and accordingly reduce the model (1.3)-(1.4) to the following
more concrete model system:

S ′(t) = Λ − dS (t) − βI(t)e−h(k0I(t)+k1I(t−τ))S (t) + αR(t),
I′(t) = βI(t)e−h(k0I(t)+k1I(t−τ))S (t) − (d + r + ϵ)I(t),
R′(t) = rI(t) − (d + α)R(t).

(4.1)

Now the basic reproduction number reduces to R0 =
βΛ

d(d+r+ϵ) . Note that when k0 = 0 and α = 0, (4.1)
further reduces to (1.5).

Assume R0 > 1 so that the unique endemic equilibrium E∗ = (S ∗, I∗,R∗) exists. The linearization of
(4.1) at E∗ is given by

S ′(t) = −
(
d + m

I∗

S ∗

)
S (t) − m(1 − hk0I∗) I(t) + αR(t) + mhk1I∗ I(t − τ)

I′(t) = m
I∗

S ∗
S (t) − mhk0I∗ I(t) − mhk1I∗ I(t − τ)

R′(t) = rI(t) − (d + α)R(t).

(4.2)

where m = d + r + ϵ. From (4.2), we can derive the characteristic equation (CE) as

F1(λ, τ) := Q2(λ)e−λτ + Q3(λ) = 0, (4.3)
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where
Q2(λ) = (d + λ) (d + α + λ) mI∗hk1,

Q3(λ) = λ3 + r2λ
2 + r1λ + r0,

r2 = (mhk0I∗ + α + 2d) +
mI∗

S ∗
> 0,

r1 = d(d + α) + mhk0I∗ (α + 2d) + m (α + d + m)
I∗

S ∗
> 0,

r0 = dmhk0I∗ (α + d) + m ((α + d) m − αr)
I∗

S ∗
> 0.

When τ = 0, the transcendental equation (4.3) reduces to the following polynomial:

F1(λ, 0) = Q2(λ) + Q3(λ) = λ3 + a2λ
2 + a1λ + a0 = 0, (4.4)

where
a2 =

(hmI∗ + α + 2d) S ∗ + mI∗

S ∗
> 0,

a1 =
(mh (2d + α) I∗ + (d + α) d) S ∗ + mI∗ (α + d + m)

S ∗
> 0,

a0 =
mI∗ ((d + α) m + hd (d + α) S ∗ − αr)

S ∗
> 0.

Straightforward calculation also shows that

a2a1 − a0 =
1

S ∗2
[(hmI∗ + α + d) (2d + α) (hmI∗ + d) S ∗2

+
(
(2α + 3d + m) mhI∗ + dm + 3d2 + 4αd + α (α + r)

)
mI∗S ∗ + m2I∗2 (α + d + m)] > 0.

By the Routh−Hurwitz criterion, all roots of the above cubic equation F1(λ, 0) = 0 have negative real
parts, implying that E∗ = (S ∗, I∗,R∗) is locally asymptotically stable when τ = 0.

Next, we explore the possibility for (4.3) to have a root with positive real part when τ is increased.
This can occur only when a root of (4.3) crosses the purely imaginary axis in the complex plane from
the left half to the right half when τ increases from zero. Noting that

F1(0, τ) = d(α + d)mI∗hk1 + r0 > 0

for all τ ≥ 0, the aforementioned crossing cannot happen at the origin of the complex plane. Thus, a
crossing can only possibly occur in pairs of purely imaginary roots when τ is increased to some critical
values.

To investigate this possibility, we plug λ = iω ( without loss of generality, we assume ω > 0) into
(4.3). Separating the real part and imaginary part of in the resulting equation F1(iω, τ) = 0 leads to[

A1(ω2) cos (ωτ) + ωA2 sin (ωτ)
]

mI∗hk1 = B1(ω2),[
ωA2 cos (ωτ) − A1(ω2) sin (ωτ)

]
mI∗hk1 = ωB2(ω2),

(4.5)

where
A1(x) = dα + d2 − x, A2 = α + 2d,

B1(x) = r2x − r0, B2(x) = x − r1.
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By eliminating the trigonometric functions, we obtain (4.5) the following equation:

B2
1(ω2) + ω2B2

2(ω2) − (mI∗hk1)2
[
A2

1(ω2) + ω2A2
2

]
= 0. (4.6)

Denoting x = ω2, we obtain

F2(x) = B2
1(x) + xB2

2(x) − (mI∗hk1)2
[
A2

1(x) + xA2
2)
]

= x3 + q2(k1)x2 + q1(k1)x + q0(k1) = 0,
(4.7)

where
q2(k1) = −(mI∗hk1)2 + r2

2 − 2r1,

q1(k1) = −(mI∗hk1)2(α2 + 2dα + 2d2) − 2r0r2 + r1
2,

q0(k1) = r0
2 − (mdI∗hk1)2(α + d)2.

(4.8)

Thus, if F2(x) = 0 has no positive root, then E∗ remains asymptotically stable for all τ > 0. If F2(x) = 0
has a positive root x > 0, then from (4.5), ω =

√
x would satisfy

cos(ωτ) =
A2B2(ω2)ω2 + A1(ω2)B1(ω2)

mI∗hk1

(
A2

2ω
2 + A2

1(ω2)
) =: G,

sin(ωτ) = −
ω

(
A1(ω2)B2(ω2) − A2B1(ω2)

)
mI∗hk1

(
A2

2ω
2 + A2

1(ω2)
) =: N,

(4.9)

which yields a sequence {τn}, n = 0, 1, 2, 3..., of critical values for the delay parameter τ, given by

τn = τ0 +
2nπ
ω
, τ0 =

{ arccos G
ω
, N ≥ 0;

2π−arccos G
ω

, N < 0.
(4.10)

To verify the transversality at these critical values, we first establish the following lemma and the
detailed proof is shown in the Appendix.

Lemma 4.1. sign
(
Re

(
dλ
dτ

)∣∣∣∣
τ=τn

)
= sign

(
dF2(x)

dx

∣∣∣
x=ω2

)
, where τn is given by (4.10).

We have seen that when τ = 0, E∗ is asymptotically stable. Thus, the first critical value τ0 is of
the most significance, as it is the smallest possible value for τ at which E∗ may lose its stability when
τ passes it. In other words, we need to be mainly concerned with the case when there is a pair of
eigenvalues crossing from the left complex plane to the right complex plane when τ is increased to
pass τ0. Lemma 4.1 shows that only when the positive root x of F2(x) satisfied F′2(x) > 0, can such
a crossing occur due to the increase of τ > 0. Noticing that F2(x) is a cubic polynomial, it can have
at most two positive roots at which F′2(x) > 0. The crossing direction at ±i

√
x when x is the largest

positive root of F2(x) = 0 (as τ passes a critical value given in (4.10)) is always from left to right; at
±i
√

x when x is the second largest positive root of F2(x) = 0 (if any) is from right to left. Thus, we
have the following cases.

(C1) If F2(x) = 0 has no positive root, then all roots of (4.3) have negative real parts.

(C2) If there is only one positive root x1, then the crossing at ±
√

x1 rightward when τ increases to pass
τ0; in this case, all roots of (4.3) have negative real parts for τ < τ0, and (4.3) has a pair of root
with positive real parts when τ > τ0. Here τ0 is defined by (4.10) with ω =

√
x1 ).
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(C3) If there are two positive roots x1 > x− > 0 at which F′2(x1) > 0 and F′2(x−) < 0 respectively.
The crossing direction at ±i

√
x1 when τ passes τ = τn,+

1 is rightward, but at ±i
√

x− the crossing
direction as τ passes τ = τn,−, n = 0, 1, 2... is leftward. Unlike case (C2), in this case, it is possible
for the branch of the root λ(τ) that enters the right half of the complex plane through ±i

√
x1 as τ

passes τ0,+
1 , to return to the left half of the complex plane when τ further increases to τ0,− (defined

by (4.10) with ω− =
√

x− ).

(C4) If there are three positive roots: x1 > x− > x2 at which F′2(xi) > 0, i = 1, 2 and F′2(x−) < 0
respectively, then the crossings at ±i

√
x1 and ±i

√
x2 when τ increases to pass τ = τn,+

1 and
τ = τn,+

2 (defined by (4.10) with ω1 =
√

x1 and ω2 =
√

x2 respectively) are both rightward,
but the crossing at ±i

√
x− is leftward when τ increases to pass τ = τn,− (defined by (4.10) with

ω− =
√

x− ).

Combining the above summarization with the Hopf Bifurcation Theorem for delay differential equa-
tions, we accordingly proved the following theorem.

Theorem 4.1. Assuming R0 > 1 so that E∗ exists. Then there can be four cases.

(i) If F2(x) = 0 has no positive root, then E∗ is locally asymptotically stable for all τ ≥ 0.

(ii) If F2(x) = 0 has only one positive root x1 at which F′2(x1) > 0, then E∗ is locally asymptotically
stable for τ ∈ [0, τ0) and unstable for τ > τ0, where τ0 is given in (4.10) with ω =

√
x1. Moreover,

system (4.1) undergoes Hopf bifurcation around E∗ at τ = τ0.

(iii) If F2(x) = 0 has two positive roots x1 and x− at which F′2(x1) > 0 and F′2(x−) < 0 respectively,
then E∗ is locally asymptotically stable for τ ∈ [0, τ0,+

1 ) and becomes unstable when τ passes
through τ = τ0,+

1 , where τ0,+
1 is given in (4.10) with ω =

√
x1. Moreover, system (4.1) undergoes

Hopf bifurcation around E∗ at τ = τ0,+
1 .

(iv) If F2(x) = 0 has three positive roots: x1 > x− > x2 at which F′2(xi) > 0, i = 1, 2 and F′2(x−) < 0
respectively, then E∗ is asymptotically stable for τ ∈

[
0, τ0

)
and becomes unstable when τ passes

through τ = τ0, where τ0 = min
{
τ0,+

1 , τ
0,+
2

}
with

τ0,+
i =

{ arccos Gi
ωi
, Ni ≥ 0,

2π−arccos Gi
ωi

, Ni < 0;

and 
Gi =

A2B2(xi)xi + A1(xi)B1(xi)

mI∗hk1

(
A2

2xi + A2
1(xi)

)
Ni = −

√
xi [A1(xi)B2(xi) − A2B1(xi)]

mI∗hk1

(
A2

2xi + A2
1(xi)

) ,

i = 1, 2. (4.11)

Moreover, system (4.1) undergoes Hopf bifurcation at τ = τ0,+
1 and τ = τ0,+

2 .

We point out that for cases (ii)–(iv) in the above theorem, E∗ loses its stability when τ increases to
τ0 or τ0,+

1 ; however addition, for case (iii) and (iv), E∗ may regain its stability at some τ > τ0,−. We will
numerically demonstrate this later.
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Theorem 4.1 is a general conclusion, stated in terms of the delay τ. To better understand the role of
allocation of the weights k0 and k1 in detail, we can do further specific analysis on positive roots of the
cubic equation F2(x) = 0 below, in terms of k0 and k1. To this end, we denote

∆(k1) = 12q0(k1)[q2(k1)]3 − 3[q1(k1)]2[q2(k1)]2 − 54q0(k1)q1(k1)q2(k1)
+ 12[q1(k1)]3 + 81[q0(k1)]2,

(4.12)

where q j(k1), j = 0, 1, 2, are give in (4.8). It can be readily seen that q0(k1), q1(k1) and q2(k1) are
decreasing in k1 and each of them has a unique positive root k̃1i, i = 0, 1, 2. From (4.8), plugging the
formulas for r j, j = 0, 1, 2, and after some tedious calculations (omitted here), these roots are given
by

k̃10 =
1
2
+

md + (d + ϵ)α
2S ∗dh(d + α)

, k̃11 =
q1(0)

q1(0) − q1(1)
, k̃12 =

q2(0)
q2(0) − q2(1)

with q1(0), q1(1), q2(0) and q2(1) explicitly given by

q1(0) = −
2mI∗ ((hdS ∗ + m)(α + d) − αr) ((hmI∗ + α + 2d)S ∗ + I∗m)

S ∗2

+
((hmI∗(α + 2d) + d(α + d))S ∗ + (α + d + m)I∗m)2

S ∗2
,

q1(1) =
(d(α + d)S ∗ + (α + d + m)mI∗)2

S ∗2
− (mhI∗)2(α2 + 2dα + 2d2)

−
2mI∗(m(α + d) − αr)((α + 2d)S ∗ + I∗m)

S ∗2
,

q2(0) =
(hmI∗S ∗)2 + 2 (hI∗ − 1) m2S ∗I∗ + Λ2

S ∗2
+ (α + d)2,

q2(1) =
−(hmI∗S ∗)2 − 2m2S ∗I∗ + Λ2

S ∗2
+ (α + d)2.

It can be readily seen that q0(k1), q1(k1) and q2(k1) are decreasing in k1. In addition, qi(k̃1i) = 0
(i = 0, 1, 2). Here tedious calculations for the above formulas are omitted.

By the definition of k̃1i, i = 0, 1, 2, we immediately have the following.

Lemma 4.2. qi(k1) > 0 iff k1 < k̃1i, where i = 0, 1, 2.

According to reference [17] (Lemma A.2 and A.3) or references [28, 29], as well as Lemma 4.2
above, we obtain the following results.

Corollary 4.1. Assume that R0 > 1.

(I) Case (ii) in Theorem 4.1 occurs if and only if one of the following conditions is satisfied

1) ∆(k1) ≥ 0 and k̃10 < k1;

2) ∆(k1) < 0, k̃10 < k1 < min{k̃11, k̃12};

3) ∆(k1) < 0, max{k̃11, k̃10} < k1;

4) k̃10 < k1 = k̃11 or k̃11 < k1 = k̃10;
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(II) Case (iii) in Theorem 4.1 occurs if and only if one of the following conditions is satisfied

1) ∆(k1) < 0, k̃12 < k1 < min{k̃10, k̃11};

2) ∆(k1) < 0, k̃11 < k1 < k̃10;

(III) Case (iv) occurs if and only if there holds (v): ∆(k1) < 0, max{k̃10, k̃12} < k1 < k̃11;

(IV) Case (i) occurs if and only if none of (I)–(III) is satisfied. Moreover, Case (i) holds if k1 ≤

min{k̃10, k̃11, k̃12} (i.e. qi(k1) ≥ 0, i = 0, 1, 2).

Particularly, if k1 > max{k̃10, k̃11} holds, then one of cases (I)-1) and (I)-3) must occur. Based on
this observation, we obtain

Corollary 4.2. If k1 > max{k̃10, k̃11} (i.e. qi(k1) < 0, i = 0, 1), then Case (ii) in Theorem 4.1 occurs.

From Corollaries 4.1 and 4.2, a necessary condition for Case (ii) of Theorem 4.1 is k̃10 ≤ k1, and a
necessary condition for Case (iii) of Theorem 4.1 is k̃10 > k1. Interestingly, according to (IV) in Corol-
lary 4.1, there will be no bifurcation at all provided that the weight k1 is small (k1 ≤ min{k̃10, k̃11, k̃12}).
In other words, restricting the weight to the previous surveillance I(t − τ) to be sufficiently small can
avoid Hopf bifurcation (sustained oscillation). From Corollary 4.2, on the other hand, a relatively
large weight k1 will allow τ to destroy the stability of E∗ at some critical value. In Section 6, we will
numerically illustrate the impact of k1 = 1 − k0 in terms of these two corollaries.

5. Special case α = 0, ϵ = 0: a comparison to related work

In order to compare our results with those in paper [16], let us also consider the infection force
f (t) = βI(t)e−h(k0I(t)+k1I(t−τ)) and let α = 0, ϵ = 0 in the model (4.1), reducing the model (4.1) to the
following model system 

Ṡ = Λ − βIe−h(k0I(t)+k1I(t−τ))S − dS ,
İ = βIe−h(k0I(t)+k1I(t−τ))S − (d + r)I,
Ṙ = rI − dR.

(5.1)

The case k0 = 0 (hence k1 = 1) leads to the model (1) in reference [16] (i.e., Eq.(1.5) in the
introduction of this paper), which has been thoroughly analyzed. Note that k0 = 0 means that only
infected cases in the previous time t − τ are used to measure the severity L. Here in this section, we
allow k0 ∈ (0, 1] (hence k1 ∈ [0, 1) and hence, the severity L is measured by the weighted total number
of infected cases at the present time t and the past time t − τ. This seems to be a more realistic and
reasonable choice as it allows public health agents to put different weight on the disease information at
different time; in the mean time, this also constitutes a good demonstration of flexibility of our model
framework in accommodating a wide range of scenarios. By analyzing (5.1) in more details, we can
reveal impact of the weights k0 and k1, together with the time delay τ (see a discussion in Section 7).

The equilibria structure and the basic reproduction number R0 for (5.1) remain the same as in ref-
erence [16] for (1.5), due to the complementary constraint k0 + k1 = 1. The first two equations of (5.1)
form a decoupled sub-system: {

Ṡ = Λ − βIe−h(k0I(t)+k1I(t−τ))S − dS
İ = βIe−h(k0I(t)+k1I(t−τ))S − (d + r)I.

(5.2)
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Let m = d + r. The CE at E∗ for (5.2) becomes

F1(λ, τ) = Q2(λ)e−λτ + Q3(λ), (5.3)

in which
Q2(λ) = mI∗hk1(λ + d), Q3(λ) = λ2 + r1λ + r0,

with

r1 = k0hmI∗ +
Λ

S ∗
, r0 = mI∗dhk0 +

m2I∗

S ∗
.

To be consistent with Section 4, we use the notations here:

A1 = d, A2 = 1, B1(x) = x − r0, B2 = −r1

and

G =
dω2 − r1ω

2 − dr0(
d2 + ω2) hk1mI∗

, N = −
ω(−dr1 − ω

2 + r0)
hk1mI∗(d2 + ω2)

.

Lemma 4.1 also holds for this model, but now function F2(x) becomes a quadratic function (instead of
a cubic function):

F2(x) = x2 + q2(k1)x + q0(k1) (5.4)

where
q2(k1) = −(mI∗k1h)2 + r1

2 − 2r0, q0(k1) = r2
0 − (k1hmI∗d)2. (5.5)

Let
∆(k1) = [q2(k1)]2 − 4q0(k1). (5.6)

When q0(k1) < 0, F2(x) has a unique positive root: x1 = −
q2(k1)

2 +
√
∆(k1)
2 at which F′2(x1) > 0. Thus,

E∗ loses its stability for all τ > τ0 to a periodic solution through Hopf bifurcation.

When q0(k1) > 0, q2(k1) < 0 and ∆(k1) > 0, there are two positive roots x1 = −
q2(k1)

2 +
√
∆(k1)
2 and

x− = −
q2(k1)

2 −
√
∆(k1)
2 such that F′2(x1) > 0 and F′2(x−) < 0. Then (5.3) has two pairs of simple purely

imaginary roots ±iω+, ±iω− at τn,+, τn,−, n = 0, 1, 2..., where ω+ =
√

x1, ω− =
√

x− and τn,+, τn,− are
defined by the same form in (4.10) with ω given by ω+ =

√
x1, ω− =

√
x− respectively. According to

Lemma 4.1, we have

Re
(
dλ
dτ

)−1
∣∣∣∣∣∣∣
τ=τn,+

> 0 > Re
(
dλ
dτ

)−1
∣∣∣∣∣∣∣
τ=τn,−

. (5.7)

Hence, at each τ = τn,+, a pair of roots crosses the imaginary axis at ±iω+ into the right half-plane,
and at each τ = τn,−, a pair of roots crosses at ±iω− back into the left half-plane. These observations
together with the fact that all roots of (5.3) are on the left half of the complex plane when τ = 0, imply
that τ0,+ < τ0,−. However, the orders of other numbers in the two sequences τ = τn,+ and τ = τn,− do
not seem to have a pattern and seem to be complicated.

For example, for the first couple of critical values in the two sequences, the following two cases are
possible:

(A) τ0,+ < τ0,− < τ1,+. In this case, all roots of (5.3) have negative real parts when τ ∈ [0, τ0,+); one
pair of roots of (5.3) have positive real parts when τ ∈ (τ0,+, τ0,−) and that pair will return to the
left complex plane again when τ ∈ (τ0,−, τ1,+).
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(B) τ0,+ < τ1,+ < τ0,−. In this case, all roots of (5.3) have negative real parts when τ ∈ [0, τ0,+); one
pair of roots of (5.3) have positive real parts when τ ∈ (τ0,+, τ1,+) and there will be two pairs of
roots on the right complex plane when τ ∈ (τ1,+, τ0,−).

Summarizing the above, we have the following:

Theorem 5.1. Assuming R0 > 1, then

(i) If q0(k1) < 0, or q0(k1) = 0 but q2(k1) < 0, the endemic equilibrium E∗ of system (5.1) is locally
asymptotically stable for τ ∈ [0, τ0) and unstable for all τ > τ0; moreover, system (5.1) undergoes
Hopf bifurcation when τ passes τ = τn, n = 0, 1, 2 . . . , where τn, n = 0, 1, 2, · · · are defined by
(4.10) with ω =

√
x1.

(ii) If q0(k1) > 0, q2(k1) < 0 and ∆(k1) > 0, then there are two sequences {τn,+} and {τn,−}, still defined
by ((4.10)) but with ω being

√
x1 and

√
x− respectively, such that E∗ is locally asymptotically

stable when τ ∈ [0, τ0,+), and it loses its stability when τ increases to pass τ0,+ through Hopf
bifurcation. It is possible for E∗ to regain its stability for some τ > τ0,−. Moreover, system (5.1)
undergoes Hopf bifurcation at each τ̄ ∈ {τn,+} ∪ {τn,−}.

(iii) For other cases of q0(k1) and q2(k1), E∗ is asymptotically stable for all τ ≥ 0.

To obtain more details on how the weight parameter k1 affects the conditions in Theorem 5.1, we
need to explore the signs of q0(k1) and q2(k1) given by (5.5). Both q0(k1) and q2(k1) are decreasing in
k1 and each has a unique root k̃1i > 0 which can be expressed in terms of the model parameters by

k̃10 =
1
2
+

m
2S ∗dh

, k̃12 =
q2(0)

q2(0) − q2(1)
,

where

q2(0) =
(hmI∗S ∗)2 + 2 (hI∗ − 1) m2S ∗I∗ + Λ2

S ∗2
,

q2(1) =
−(hmI∗S ∗)2 − 2m2S ∗I∗ + Λ2

S ∗2
,

q2(0) − q2(1) =
2h(−dS ∗ + Λ)2(hS ∗ + 1)

S ∗
> 0,

q0(0) − q0(1) =
2dh(−dS ∗ + Λ)2(dhS ∗ + m)

S ∗
> 0.

Thus, a version of Lemma 4.2 also holds here: qi(k1) > 0 iff k1 < k̃1i, i = 0, 2. Moreover, if
k̃12 ≤ k̃10, then there exists

k1c = k̃12 +
2
√

(q2(1) − q2(0))2(q0(1) − q0(0))(k̃12 − k̃10) + (q0(1) − q0(0))2 + 2(q0(1) − q0(0))

(q2(1) − q2(0))2 ≥ k̃12,

k2c = k̃12 −
2
√

(q2(1) − q2(0))2(q0(1) − q0(0))(k̃12 − k̃10) + (q0(1) − q0(0))2 + 2(q0(1) − q0(0))

(q2(1) − q2(0))2 < k̃12,

such that ∆(kic) = 0 (i = 1, 2), and ∆(k1) > 0 when k1 > k1c or k1 < k2c.
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By symmetry, using the same arguments for Theorem 4.1 and Corollary 4.1, we have the following
more specific results for Theorem 5.1, in terms of k1:

Since Lemma 4.2 also holds, then we get more specific results as follows:

Corollary 5.1. Assuming R0 > 1, then

(i) If k1 > k̃10 or k̃12 < k1 = k̃10, the conclusion of Theorem 5.1-(i) holds.

(ii) If k̃12 < k1 < k̃10 and ∆(k1) > 0 (i.e., k̃12 < k1c < k1 < k̃10), then the conclusion of Theorem 5.1-(ii)
holds.

(iii) For other range of k1, particularly when k1 ≤ min{k̃12, k̃10}, the conclusion of Theorem 5.1-(iii)
holds.

As the above results show, when k1 is small to a certain extent (i.e., k1 ≤ min{k̃12, k̃10}), the stability
of E∗ can be ensured whatever τ > 0. When k1 is large to a certain extent (i.e., k1 > k̃10), the system
(5.1) will undergo Hopf bifurcations at a sequence {τn} as τ increases. We point out that when k1 = 1
(k0 = 0), the condition 1 = k1 > k̃10 in (i) of Corollary 5.1 reduces to m

2S ∗dh < 1 which is equivalent to
dh
β

exp(Λh
m − 1) < 1 by the properties of the Lambert W function [30], and thus, is consistent with the

conclusion of Case1: (H1) in reference [16]. Corollary 5.1-(ii) corresponds to the conclusion of Case2:
(H2) in reference [16]. Because of the existence of two sequences of critical values {τn,+} and {τn,−}

which may allow different order patterns (see, e.g., (A) and (B) ), the above analysis indicates that the
stability switches as τ increase for this case can be more complicated than stated in Proposition 4 in
reference [16]; for example, there may be multiple switches between the stability and instability of E∗

as τ increases, and this will be demonstrated numerically in the next section.

6. Numeric exploration of multiple switches of stability

From the results in Sections 4 and 5, we have seen that within certain ranges of the parameter k1,
there may be one, two or even three sequences of critical values for the delay parameter τ at which Hopf
bifurcations occur. Among these critical values (if any), the smallest τ0,+ is most important because the
endemic equilibrium E∗ is deemed to lose its stability when τ increases to it. However, the effect of the
remaining critical values (if any) depends on the order they appear. Particularly when the F2 function
in Section 4 or 5 has more than one positive root, it is generally very difficult (if not impossible) to
determine whether there is a pattern for the order of those critical values in the two or three sequences
of critical values for τ related to the two or three positive roots of F2. Below we provide some numeric
examples to show that such orders can be different depending on the values of the model parameter.
Our numerical diagrams are constructed mainly by using the DDE Biftool package [31–33].

We begin with (5.1). For convenience of comparison with the results in reference [16], we choose
the same values of the parameters for (5.1) as used in reference [16] as below:

Λ = 0.2, β = 1, h = 3, d = 0.2, r = 0.1. (6.1)

By numerical computations, we obtain E∗ ≈ (0.62946, 0.24703, 0.12351) and R0 = 3.3, together with
the three threshold values of k1: k̃12 ≈ 0.8735925, k1c ≈ 0.89673437 and k2c < 0. Then k1 > k1c ( resp.
k1 ∈ [0, k1c)) implies ∆(k1) > 0 (resp. ∆(k1) < 0).
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The related conclusions corresponding to Corollary 5.1 are illustrated in the k1− τ plane in Figure 1
and are restated below:

a) When k1 < k1c, no Hopf bifurcation occurs when τ increases, and E∗ remains stable for all τ ≥ 0
(Figure 1(a));

b) For k1c < k1 < k̃10 (see the zoom-in figure in Figure 1(b)), there are two sequences of critical values
beginning with τ0,+ and τ0,−, respectively. The stability of E∗ switches as τ increases from zero: E∗

first loses stability at τ0,+ and regains the stability at τ0,−;
c) For k̃10 < k1 ≤ 1, there is only one sequence of critical values beginning with τ0,+; E∗ loses stability

at τ = τ0,+ and remains unstable for all τ > τ0,+ (see the zoom-in figure Figure 1(b));
d) When τ < 11.7575, E∗ remains stable regardless of k1 ∈ [0, 1] ( see Figure 1(a)).

Especially, when k1 = 0.8968 ∈ (k1c, k̃10), we can calculate the first few critical values to obtain the
following alternating order:

τ0,+ = 59.83 < τ0,− = 92.93 < τ1,+ = 186.782 < τ1,− = 285.958 < τ2,+ = 313.73 (6.2)

with ω+ = 0.0597, ω− = 0.0326. Accordingly, when τ increases from τ = 0 to pass τ2,+, the stabil-
ity/instability E∗ switches at least five times: losing stability at τi,+, i = 0, 1, 2, and regain stability at
τi,−, i = 0, 1. See Figure 2.

When k1 = 1, bifurcation also occurs at τn with τ0 ≈ 11.7575 and no re-stabilization of E∗ occurs
when τ > τ0, which is in line with the conclusion and Figure 1 in reference [16].

If we fix τ at a given value, we can also use our results to numerically demonstrate the impact of
k1. This corresponds to a scenario that current data and the data of fixed time ago, are available and we
want to explore how the weight allocation weight (k0, k1) will affect the disease dynamics.

Next, we look at the more general (4.1). Fix the other parameters in (4.1) as below

Λ = 0.2, β = 1, h = 3, d = 0.2, r = 0.05, ϵ = 0.1, α = 0.06. (6.3)

Then by numeric computation we obtain E∗ ≈ (0.65043, 0.20657, 0.03972), R0 = 2.86, k̃10 ≈ 0.93364,
k̃11 ≈ 0.88864, k̃12 ≈ 1.27804 and ∆(kc) = 0 with kc = 0.929195195. Note that k1 > kc (resp.
k1 ∈ [0, kc) ) implies ∆(k1) < 0 ( resp. ∆(k1) > 0 ). By Corollary 4.1, we have the following conclusions
for (4.1) which are similar to a)–d) above for (5.1):

(a When 0 < k1 < kc, no Hopf bifurcation occurs when τ increases, and E∗ remains stable for all τ ≥ 0;
(b When kc < k1 < k̃10, there are two sequences of critical values for τ starting with τ0,+ and τ0,−,

respectively. There are multiple switches of the stability/instability of E∗ as τ increases from zero:
E∗ first loses stability at τ0,+ and regains the stability at τ0,−; and then loses stability again at τ1,+;

(c When k̃10 < k1 ≤ 1, there is only one sequence of critical values for τ starting with τ0,+, and E∗ loses
stability at τ = τ0,+ remains unstable for all τ > τ0,+;

(d If τ < 12.45 = τ0,+(1), then E∗ remains stable for all k1 ∈ [0, 1].

The first bifurcation branch in terms of k1 (i.e., τ0,+ and τ0,−) is demonstrated in Figure 3, which
visually reflects the above conclusions (a–(d.

Although the first bifurcation branches in Figure 3 and the zoom-in Figure 1(a) are quantitatively the
same, the order of subsequential branches can be different. To see this, we choose k1 = 0.931 ∈ (kc, k̃10).
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(a) (b)

Figure 1. The Hopf bifurcation curves τ0(k1) in the k1 − τ parameter space, with (b) being a
zoom-in of (a) near k1 = 0.90.
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Figure 2. (a) Real part of characteristic roots along increasing τ for k1 = 0.8968. There is one
curve passing through ℜλ = 0 at least five times at Hopf points τ0,+ = 59.83, τ0,− = 92.93,
τ1,+ = 186.78, τ1,− = 285.96 and τ2,+ = 313.73. (b) The bifurcation diagram with respect to
τ with fixed k1 = 0.8968.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4856–4880.



4874

Then there are two positive roots of F2(x) = 0: x1 = 0.0099 with F′2(x1) > 0 and x− = 0.0021 with
F′2(x−) < 0; and by numerical calculations, we obtain ω1 = 0.0997, ω− = 0.0453, and accordingly

τ0,+
1 = 27.93 < τ0,− = 66.05 < τ1,+

1 = 90.94 < τ2,+
1 = 153.95 < τ1,− = 204.67 < τ3,+

1 = 216.96, (6.4)

which differs from the alternating order in (6.2). The switches of stability/instability of E∗ is shown
in Figure 4(a), which has different pattern of zeros from that in Figure 2(a). For the above parameter
values, Figure 6(a),(b) illustrate the solutions of (4.1) with initial value (0.7, 0.2, 0.04): for τ = 15 <
τ0,+

1 , the solution tends to E∗; when τ = 30 ∈ (τ0,+
1 , τ

0,−), the solution converges to a periodic orbit
surrounding E∗.

If fixing k1 = 0.94 ∈ [k̃10, 1], then F2(x) = 0 has a unique positive root x1 = 0.0163 > 0 at which
F′2(x1) > 0. For this case, there is only one sequence of critical values {τn} with τ0 = 20.82, τ1 = 69.97,
τ2 = 119.13 and τ3 = 168.28, shown in Figure 4(b). Noticing that 0.94 and 0.931 are very close, this
indicates that the occurrence of Hopf bifurcation from the endemic equilibrium E∗ with respect to the
two parameters and the path of bifurcation can be sensitive and complicated. This phenomenon was
not explored in reference [16] since the model in reference [16] has k1 = 1.

Figure 3. The Hopf bifurcation curve τ0(k1) in the k1 -τ plane.

7. Conclusions and discussion

In this paper, we have provided a framework from a new perspective to look at infection forces
in modelling infectious disease transmission dynamics. This new angle was motivated by the fear
effect in predator-prey interactions as well as by the effects of all those non-pharmaceutical control
measures implemented around the world during the ongoing Covid-19 pandemics. Such a framework
not only can accommodate various infection force functions in existing infectious disease models,
but can also suggest new forms of infection forces, particularly infection forces that depend on the
past disease surveillances. We have demonstrated this new framework by incorporating, into a classic
SIRS model, an infection force that depends on both the disease surveillance at current time t and the
disease surveillance at a past time t − τ, with each being given a weight (k0 and k1, respectively). The
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(a) (b)

Figure 4. Real part of roots of the characteristics Eq (4.3) at E∗ when increasing τ for fixed
k1: (a) Fixing k1 = 0.931, one curve hit ℜλ = 0 at τ0,+

1 = 27.93, τ0,− = 66.05, τ1,+
1 = 90.94,

τ2,+
1 = 153.95, τ1,− = 204.67 and τ3,+

1 = 216.96, respectively; (b) Fixing k1 = 0.94, four
curves hitℜλ = 0 at τ0 = 20.82, τ1 = 69.97, τ2 = 119.13 and τ3 = 168.28, respectively.
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Figure 5. The bifurcation diagram for a fixed k1, choosing the time delay τ as the bifurcation
parameter. (a) k1 = 0.931, there are Hopf bifurcation points: τ0,+

1 = 27.93, τ0,− = 66.05,
τ1,+

1 = 90.94 and τ2,+
1 = 153.95. (b) k1 = 0.94, there are Hopf bifurcation points: τ0 = 20.82

and τ1 = 69.97 τ2 = 119.13 and τ3 = 168.28. The stable and unstable parts are denoted by
solid green and dashed red lines, respectively; the curve describes the maximum value of the
periodic S (t).
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(a) (b)

Figure 6. The solutions of (4.1) with k1 = 0.931, (0.7, 0.2, 0.04) as the initial value,
and other parameters given by (6.4). (a) When τ = 15, the solution converges to E∗ =
(0.65043, 0.20657, 0.03972). (b) When τ = 30, the solution converges to a periodic solution
surrounding E∗.

resulting new model (4.1) is a system of delay differential equations, which includes some existing
models as special cases. Here the two new parameters τ and k1 (k0 = 1 − k1) can be considered as kind
of strategy parameters, reflecting the impact of the current and past disease surveillances on disease
control measures and human behaviours.

We have performed a standard analysis on the new model (4.1), including confirming well-
posedness of the model, identifying the basic reproduction number R0 for the model, establishing the
threshold dynamics for the model in terms of R0, and exploring the stability of and bifurcation from E∗

with respect to the two key parameters τ and k1. Our results show that although the basic reproduction
number of the new model (featured by τ and k1 compared to existing models) does not affect R0 and the
threshold between disease-free and endemic, they do affect the disease dynamics (long-time disease
patterns) when it becomes endemic. More specifically, we have found that there are ranges on τ and k1

for which the model demonstrates convergent (to E∗) endemic pattern and oscillatory endemic pattern
(due to Hopf bifurcations) respectively. Most interestingly, we have observed that the path of Hopf
bifurcations when τ increases can be different when other model parameters are at different values,
as illustrated by the first few critical values of τ in (6.2) and (6.4). Note that the model in the recent
work [16] is a special case of our reduced model (4.1) where k1 is fixed at 1 (hence k0 = 0). Hence,
even our reduced model (4.1) offers more flexibility in the use of disease surveillance data: depending
on how recent the datum is (e.g., the value of τ), its impact on the long term disease dynamics (through
k1 ) could be different. The results in Section 5, particularly the numerical results provided in Section 6
clearly show the role k1 ∈ [0, 1] can play and the difference it can make. These results on the impact of
k1 and τ on the long time dynamics of our models imply that the long-term effect of control measures
changes when the delay in reporting of infection increases; therefore, they actually have demonstrated
that timely reporting is important to management of a disease.

We point out that our results on Hopf bifurcations are only local. It is possible to carry out a global
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bifurcation analysis in the case that the equation F2(x) = 0 only has one positive root, generating only
one sequence of critical values for τ. We choose not to do such a global bifurcation in this already
lengthy paper since the main purpose is to demonstrate our new framework of modelling infection
forces in transmission dynamics when non-pharmaceutical effects are considered. When F2(x) = 0 has
more than one positive root, the dynamics are even richer since multiple switches of stability/instability
of endemic equilibrium may happen.

In reality, unavoidably there is a delay in the availability of disease surveillance at any given time.
This is because it takes time to diagnose/test and report cases and collect the data during an epidemic.
This fact forces one to use the past disease surveillances in measuring the severity of the epidemic,
and hence justifies the form (1.1) and (1.2) for the severity function L(t). Moreover, in addition to
the number of infected cases I(t), the rate of change of I(t) (i.e., I′(t)) will also have an impact on the
practically susceptible population (i.e., S p = PS ) through the proportion function P(L): positive I′(t)
would increase L (decrease P(L)) and negative I′(t) would decrease L (include P(L)). This idea was
explored in Xiao et al. [34] where the authors proposed a media-impact function of the form β0eM(t),
where

M(t) = max
{

0, p1I(t) + q1Iq(t) + p2
dI(t)

dt
+ q2

dIq(t)
dt

}
.

Incorporating such a dependence on I′(t) would significantly make the model more challenging to
analyze, as seen in reference [34]. A natural alternative way to measure the rate of change is to look at
an approximation of I′(t) by the difference ∆I(t) = I(t)− I(t −σ) which has recently been used in Li et
al. [35]. Note that the dependence of L(t) on ∆I(t) can be absorbed into the form of (1.2). Therefore,
the form (1.2) and the more general for (1.1) deserve more investigations in association with various
proportion functions P(L) (e.g., those in (A) and (B)) for infection disease models of various types.
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Appendix

This appendix includes the detailed proof of the Lemma 4.1 stated in the present paper.

Proof. Take derivative of (4.3) about τ:

dF1(λ, τ)
dτ

=
∂F1(λ, τ)
∂τ

+
∂F1(λ, τ)
∂λ

dλ
dτ
= 0, (A.1)

then (
dλ
dτ

)−1

= −

∂F1(λ,τ)
∂λ

∂F1(λ,τ)
∂τ

=
(Q′2(λ) − τQ2(λ))e−λτ + Q′3(λ)

λQ2(λ)e−λτ
. (A.2)

This together with F1(iω, τn) = 0 further leads to

dλ
dτ

∣∣∣∣∣−1

τ=τn
=

Q′2(iω)
iωQ2(iω)

−
τ

iω
−

Q′3(iω)
iωQ3(iω)

(A.3)

and

Re
(

dλ
dτ

∣∣∣∣∣−1

τ=τn

)
= Re

(
Q′2(iω)

iωQ2(iω)

)
− Re

(
Q′3(iω)

iωQ3(iω)

)
=

−α2 − 2αd − 2d2 − 2ω2(
d2 + ω2) (α2 + 2αd + d2 + ω2) − −3ω4 +

(
−2r2

2 + 4r1

)
ω2 + 2r0r2 − r1

2(
r2ω2 − r0

)2
+ ω2 (

ω2 − r1
)2

=
F′2(x)

B2
1(x) + xB2

2(x)

∣∣∣∣∣∣
x=ω2

.

(A.4)

Therefore,

sign
(

d Re (λ)
dτ

∣∣∣∣∣
τ=τn

)
= sign

(
Re

(
dλ
dτ

)∣∣∣∣∣∣
τ=τn

)
= sign

(
dF2(x)

dx

∣∣∣∣∣
x=ω2

)
.

□

© 2022 Authors, licensee AIMS Press. This is
an open access article distributed under the terms
of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4856–4880.

http://dx.doi.org/https://doi.org/10.1007/978-981-32-9832-3_12
http://dx.doi.org/https://doi.org/10.1038/srep07838
http://dx.doi.org/https://doi.org/10.1016/j.idm.2021.07.001
http://creativecommons.org/licenses/by/4.0

	Introduction
	Well-posedness of the model
	Disease free equilibrium and basic reproduction number
	 Stability of the endemic equilibrium for a particular P(L(t)) 
	Special case : a comparison to related work
	Numeric exploration of multiple switches of stability
	Conclusions and discussion
	Appendix

