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Abstract. Lyme disease is transmitted via blacklegged ticks, the spatial

spread of which is believed to be primarily via transport on white-tailed deer.
In this paper, we develop a mathematical model to describe the spatial spread

of blacklegged ticks due to deer dispersal. The model turns out to be a sys-
tem of differential equations with a spatially non-local term accounting for the

phenomenon that a questing female adult tick that attaches to a deer at one
location may later drop to the ground, fully fed, at another location having
been transported by the deer. We first justify the well-posedness of the model
and analyze the stability of its steady states. We then explore the existence of

traveling wave fronts connecting the extinction equilibrium with the positive
equilibrium for the system. We derive an algebraic equation that determines

a critical value c∗ which is at least a lower bound for the wave speed in the
sense that, if c < c∗, there is no traveling wave front of speed c connecting
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the extinction steady state to the positive steady state. Numerical simulations
of the wave equations suggest that c∗ is the minimum wave speed. We also

carry out some numerical simulations for the original spatial model system and

the results seem to confirm that the actual spread rate of the tick population
coincides with c∗. We also explore the dependence of c∗ on the dispersion

rate of the white tailed deer, by which one may evaluate the role of the deer’s

dispersion in the geographical spread of the ticks.

1. Introduction. Lyme disease accounts for over 90% of all reported vector-borne
disease in the United States. Its current invasive spread in the eastern U.S. con-
stitutes a major public health concern [1, 6]. In the eastern United States, Lyme
disease is caused by the bacterium Borrelia burgdorferi, with the blacklegged tick
Ixodes scapularis serving as the principal vector. B. burgdorferi -infected I. scapu-
laris are found at highest densities in endemic foci in the Northeast and upper
Midwestern United States. However, increasing incidence of human cases is re-
lated, in part, to the ongoing geographical spread of ticks into new areas such as
Michigan, Indiana, Ohio and Virginia (Hahn et. al. [9]).

Ticks are capable of moving only very short distances independently, so their
fast and large scale spatial spread cannot be attributed solely to their own mobility.
Rather, large-scale changes in tick distribution arise as a consequence of the move-
ment of ticks by the vertebrate hosts to which they attach while feeding (see, e.g.,
[4, 5, 10, 15]). Among such hosts are, in the order of the distances they can move,
white-footed mice Peromyscus leucopus, white-tailed deer Odocoileus virginianus,
and some migratory birds. Mice can be infected by this bacterium and therefore can
transmit the pathogen, and can also transport the tick nymphs. In [4], a reaction
diffusion system is proposed to model the advance of the natural infection cycle
mediated by the white-footed mouse. Although white-tailed deer diffusion is also
mentioned in the model, since the deer cannot be infected and accordingly do not
transmit the bacterium the focus of [4] is on the transmission dynamics, the role of
deer diffusion in the spatial spread of the pathogen is not discussed in detail in [4].
In relation to birds, in addition to the works [3, 18], there have been some works
that quantitatively model the role of bird migration in the tick’s range expansion,
see, e.g., [23].

This paper focuses on the role of white-tailed deer in spreading the ticks. Over
the past 50 years, white-tailed deer populations have undergone explosive popu-
lation growth due to reversion of agricultural lands to forest and restrictions on
hunting. This expanding deer population is believed to have facilitated blacklegged
tick expansion throughout the Northeast and Midwest [2]. To understand this, we
first point out an important difference between birds and deer in transporting I.
scapularis and B. burgdorferi. On the one hand, birds carrying the infected im-
mature stages of the tick are capable of traveling longer distances than deer. On
the other hand, if immature ticks dropping from birds are to establish a new pop-
ulation they must survive one or two moults and then find a mate, which will be
unlikely if they are dropped far from existing populations. In contrast, during fall
deer will be carrying numerous already-mated female ticks, each of which becomes
engorged with blood while on the deer and then falls to the ground ready to lay
approximately 2000 eggs that can form the basis of a new tick population at that
location. This observation seems to suggest that deer play a more important role
in the tick’s range expansion in regions inhabited by white-tailed deer.

In this study we use a spatial model to quantitatively investigate the role of white-
tailed deer dispersal in the spatial spread of I. scapularis (and hence B. burgdorferi).
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Our model combines age structure with the dispersal of deer leading to a system
with two time delays and spatial nonlocality resulting from the dispersal of the deer
when the adult ticks are attached to them enjoying blood meals. We will begin, in
the next section, with a detailed derivation of the model.

2. Model formulation. To assess the rate at which deer can transport black-
legged ticks into new areas, we develop a differential equation model with spatial
effects that describes the stage-structured tick population and its transport by deer.
Blacklegged ticks typically undergo a 2-year life cycle in which the larvae quest for
a host (typically a small mammal or bird), and if successful feed for several days,
drop back to the ground, and later moult into a nymph. The nymph then quests,
feeds and moults - again typically on a small mammal. The final adult life stage
(which is male or female) then quests and feeds (typically on a deer), falls to the
ground when fully engorged and then produces approximately 2000 eggs that hatch
into the next generation of larvae.

The mouse population (which feeds the immature ticks) and the deer population
(which feeds the adult ticks) are assumed to be homogeneous and constant over
time in both the tick-infested and tick-free regions. Mouse home ranges are much
smaller than those of deer, so the only significant movement of ticks is by deer
transporting adult females while they feed. Because of this, and for simplicity, we
assume that larvae and nymphs do not disperse. Since the average time a tick spends
attached to a deer is around one week, the relevant deer movements are assumed
to be those undertaken in the course of each deer’s normal home range activity,
rather than long-distance directional movements associated with natal dispersal or
seasonal migration.

Consider a spatial domain Ω ⊂ Rn, which at this point could be either finite or
infinite. Let L(x, t) and N(x, t) be the population densities of larvae and nymphs
at time t, location x ∈ Ω. Denote by Aq(x, t) and Af (x, t) the populations of
questing adults and female fed adults respectively. Taking into account the above
assumptions and scenarios, we propose the following mathematical model for t ≥ 0,
x ∈ Ω:

∂L(x, t)

∂t
= br4e−d4τ1Af (x, t− τ1)− d1L(x, t)− r1L(x, t),

∂N(x, t)

∂t
= r1g(L(x, t))− d2N(x, t)− r2N(x, t),

∂Aq(x, t)

∂t
= r2N(x, t)− d3Aq(x, t)− r3Aq(x, t),

∂Af (x, t)

∂t
=
r3

2

∫
Ω

k(x, y)e−d3τ2Aq(y, t− τ2) dy − r4Af (x, t)− d4Af (x, t),

(1)

where the parameters are defined in Table 1. The table also gives the values of the
parameters for the stage-structured components of the model which were all, except
for τ1, used in the non-spatial model for Ixodes scapularis life cycles in [7] which
were adopted from the earlier work [17]. In [17], τ1 was taken as the time delay for
pre-oviposition and was determined by 1300× c−1.42 where c is the temperature in
celsius, and hence, when c varies between 15o and 30o, τ1 will be between 27.80 and
10.40 days. For simulation convenience, we take τ1 = 20 days in this paper. In [7],
τ1 was given the range of 20-200 days.

The structure of system (1) can be visualized with the help of the diagram in
Fig. 1.
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Parameters Meaning Value
b Birth rate of tick 3000

1/r1 average time that a questing larvae needs to feed
and moult 1/0.13

1/r2 average time that a questing nymph needs to feed
and moult 1/0.13

1/r3 average time that a questing adult needs to successfully
attach to a deer 1/0.03

r4 Proportion of fed adults that can lay eggs 0.03
d1 per-capita death rate of larvae 0.3
d2 per-capita death rate of nymphs 0.3
d3 per-capita death rate of questing adults 0.1
d4 per-capita death rate of fed adults 0.1
τ1 average time between last blood feeding and

hatch of laid eggs 20 days
τ2 average time tick is attached to a deer 10 days

Table 1. Explanation of parameters.

Figure 1. The life-stage components of the model: questing larvae
(L) find a host, feed and moult into questing nymphs (N), which
then find a new host, feed and moult into questing adults (Aq).
Adult females that find a deer host (Af ) feed, drop to the forest
floor, lay 2000 eggs and then die. Hatching eggs create the next
generation of questing larvae. The r parameters are the per-capita
transition rates between each compartment.

A very important aspect of model (1) is the term with the integral, which models
the transport of adult ticks by deer. Note that Aq and Af are respectively the
numbers of questing adults and female adults that are already fed and are no longer
attached to deer. There is no variable in system (1) representing the actual number
of adult ticks that are attached to the deer. Such a variable is unnecessary in
system (1), since it is already a closed system determining the variables L, N , Aq
and Af . However, a variable representing the ticks attached to deer is useful for
explaining the derivation of the integral term in (1), which is the rate at which
female adults drop off the deer after feeding. Next, we present a detailed derivation
of that integral term. We let udeer(x, t, a), where x ∈ Ω ⊂ Rn is a vector if n ≥ 2, be
the population density of ticks that are attached to deer. Here a is an age variable
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representing age since attaching to a deer (not age since the tick’s birth). We assume
that udeer(x, t, a) satisfies the standard McKendrick–von Foerster equation for an
age-structured population:(

∂

∂t
+

∂

∂a

)
udeer(x, t, a) = −d3udeer(x, t, a) +D∇2udeer(x, t, a),

for x ∈ Ω, a ∈ (0, τ2), t > 0,

(2)

where D > 0 is the diffusion coefficient of the deer, since the ticks under discussion
are attached to deer. The population of ticks attached to deer at (x, t) is Adeer(x, t),
given by

Adeer(x, t) =

∫ τ2

0

udeer(x, t, a) da. (3)

Differentiating (3) and using (2) gives

∂Adeer(x, t)

∂t
= udeer(x, t, 0)− udeer(x, t, τ2)− d3Adeer(x, t) +D∇2Adeer(x, t). (4)

The rate at which ticks drop off the deer after feeding is udeer(x, t, τ2), and we shall
show that this term equals the integral term in the fourth equation of (1). To aid
in the calculation of udeer(x, t, τ2), define

uξdeer(x, a) = udeer(x, a+ ξ, a)ed3a. (5)

Differentiating with respect to a, and using (2),

∂uξdeer(x, a)

∂a
= D∇2uξdeer(x, a), x ∈ Ω.

This is the heat equation, and its solution can be expressed in the form

uξdeer(x, a) =

∫
Ω

K(x, y, a)uξdeer(y, 0) dy (6)

where the Green’s function K(x, y, a), a non-negative function, satisfies

∂K(x, y, a)

∂a
= D∇2

xK(x, y, a), K(x, y, 0) = δ(x− y) (7)

and the boundary conditions to which the deer are subjected at ∂Ω. Here, δ is the
Dirac delta function and ∇2

x is the Laplacian operator computed with respect to
the first argument x ∈ Ω of K(x, y, a), with y treated as constant (recall x and y
are vectors unless Ω is a one-dimensional domain). Using (5) and (6), and setting
a = τ2, ξ = t− τ2,

udeer(x, t, τ2) = e−d3τ2
∫

Ω

K(x, y, τ2)udeer(y, t− τ2, 0) dy.

But udeer(x, t, 0) is the rate at which questing adults attach to deer. The term
representing this is the last term in the third equation of (1), and therefore

udeer(x, t, 0) = r3Aq(x, t).

Therefore

udeer(x, t, τ2) = e−d3τ2
∫

Ω

K(x, y, τ2)r3Aq(y, t− τ2) dy.

After the insertion of a factor 1
2 , since only the females will lay eggs, we complete

the derivation of the integral term in the fourth equation of (1) with

k(x, y) = K(x, y, τ2).
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The kernel k(x, y) accounts for the probability that a questing adult that attaches
to a deer at location y will be engorged after τ2 time units and drop to the ground at
location x. For some particular domains Ω and boundary conditions it is possible
to solve (7) to find K(x, y, a), and hence k(x, y) in (1), explicitly. For example,
if Ω = [0, l], with homogeneous Neumann (zero flux) boundary conditions, then
Kx(0, y, a) = Kx(l, y, a) = 0 and

k(x, y) = K(x, y, τ2) =
1

l

[
1 +

∞∑
n=1

{
cos

nπ

l
(x− y) + cos

nπ

l
(x+ y)

}
e−D(nπ/l)2τ2

]
.

If Ω = [0, l], with homogeneous Dirichlet boundary conditions, then

k(x, y) =
1

l

∞∑
n=1

{
cos

nπ

l
(x− y)− cos

nπ

l
(x+ y)

}
e−D(nπ/l)2τ2 .

We are interested mainly in the case when Ω = (−∞,∞), which may provide a
reasonable approximation for a long and narrow domain. For this case,

k(x, y) = Γ(x− y), where Γ(z) :=
1√

4Dτ2π
e−

z2

4Dτ2 (8)

which was derived in [12, 19].
We point out that, just recently, starting from a version of the McKendrick–von

Foerster equation without spatial effects but with temporal periodicity, Liu et al [14]
also derived a periodic model with age structure for a tick population. A threshold
dynamics result is obtained for the model in [14].

To prevent the tick population from increasing to unrealistic levels, density de-
pendence is incorporated into model (1) through a simple nonlinear relationship
between questing larvae and questing nymphs. The biological basis for this rela-
tionship is that there should be an upper limit to the number of larvae that the
mouse population is able to feed – an equivalent relationship was assumed in [21].
This leads us to propose the following expression for the function g(L) in (1):

g(L) =


Ncap
Lcap

L for L ∈ [0, Lcap],

Ncap for L ∈ [Lcap,∞).

(9)

The function g(L) in (9) is not differentiable at L = Lcap. For mathematical
convenience, we adopt the following alternative:

g(L) =
Ncapk2L

k1 + k2L
=

NcapL

k1/k2 + L
=
NcapL

h+ L
, (10)

which is smooth and yet captures the main features of the function given by (9).
In the remainder of this paper, we always use (10) for g(L), with the parameter h
adjusting g′(0) = Ncap/h.

For the majority of this paper we have in mind model (1) for x ∈ (−∞,∞), with
the nonlinear function given by (10) and the kernel k(x, y) by (8). In Section 3
we justify the well-posedness of the model by verifying the positivity and bound-
edness of all solution variables, identify the tick’s basic reproduction number R0,
addressing the stability of the extinction steady state and discussing the existence
and stability of a positive constant steady state when R0 > 1. In Section 4 we
focus on traveling wave front solutions that connect the extinction equilibrium with
the positive equilibrium. The minimum wave speed of such traveling wave fronts
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is closely related to the spatial spread rate of the tick population and therefore
is of great significance. By analyzing the characteristic equation of the lineariza-
tion of the model at the extinction equilibrium, we find a critical value c∗ which
is proved to be a lower bound of the minimal wave speed in the sense that there
is no traveling wave front with speed c < c∗. Dependence of c∗ on the dispersion
rate D and productive rate b is also numerically explored. In Section 5, guided by
the results from Section 4, we numerically explore the existence of traveling wave
fronts and investigate the spread rate. We present some simulation results which
suggest that c∗ is not only the minimum wave speed but also the spread rate for the
tick population. Therefore, the dependence of c∗ on the dispersion rate D, which
is numerically explored in Section 4, may help evaluate the role of the white tailed
deer in the geographical spread of the ticks. We conclude the paper with Section 6,
in which we summarize the main results and discuss some possible future research
projects related to this work. Since the model contains a spatial non-local term
and two time delays, finding numerical solutions to the traveling wave equations is
challenging. For the readers’ convenience, we include an appendix summarizing the
details of the numerical methods used.

3. Analysis of the model.

3.1. Well-posedness. Associated to (1) are the following biologically and mathe-
matically meaningful initial conditions:

L(x, 0), N(x, 0) are continuous for x ∈ Ω with L(x, 0) ≥ 0, N(x, 0) ≥ 0;

Aq(x, s) is continuous for (x, s) ∈ Ω× [−τ2, 0] with Aq(x, s) ≥ 0;

Af (x, s) is continuous for (x, s) ∈ Ω× [−τ1, 0] with Af (x, s) ≥ 0.

(11)

Using the method of steps, one can easily see that the initial value problem (1)–
(11) has a unique solution for t ∈ [0, t∞) for some t∞ > 0. Furthermore, using the
method of variation of parameters in (1), one obtains

L(x, t) = L(x, 0)e−(d1+r1)t + br4e
−d4τ1

∫ t

0

Af (x, s− τ1)e(d1+r1)(s−t) ds,

N(x, t) = N(x, 0)e−(d2+r2)t + r1Ncap

∫ t

0

L(x, s)

h+ L(x, s)
e(d2+r2)(s−t) ds,

Aq(x, t) = Aq(x, 0)e−(d3+r3)t + r2

∫ t

0

N(x, s)e(d3+r3)(s−t) ds,

Af (x, t) = Af (x, 0)e−(d4+r4)t

+
r3

2
e−d3τ2

∫ t

0

∫
Ω

k(x, y)Aq(y, s− τ2)e(d4+r4)(s−t) dy ds.

(12)

Let τ = min{τ1, τ2}. By the initial condition (11), we have L(0, x) ≥ 0, N(0, x) ≥ 0,
Aq(θ, x) ≥ 0 for θ ∈ [−τ2, 0], and Af (θ, x) ≥ 0 for θ ∈ [−τ1, 0]. Thus all the second
terms on the right hand sides of the above equations are nonnegative for t ∈ (0, τ ].
If L(0, x) > 0, then from the first equation we have L(t, x) > 0 for t ∈ [0, τ ], and
a recursive argument yields that L(t, x) > 0 actually for all t > 0. This will also
consecutively lead to N(t, x) > 0, Aq(t, x) > 0 and Af (t, x) > 0 for t > 0. Moreover,
we can see that the positivity of any one of the four components at t = 0 is sufficient
to ignite the positivity of all components of the corresponding solution for t > 0.

Next, we prove an important property of the kernel k(x, y) in (1).
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Proposition 1. If Ω = (−∞,∞), or if Ω ⊂ Rn is finite and homogeneous Neumann
boundary conditions are applied, then∫

Ω

k(x, y) dx = 1, for all y ∈ Ω.

If Ω is finite with homogeneous Dirichlet boundary conditions, then∫
Ω

k(x, y) dx < 1, for all y ∈ Ω.

Proof. When Ω = (−∞,∞), the conclusion is a result of (8) and the property of
normal distribution. Now assume Ω ⊂ Rn is bounded and consider the quantity∫

Ω
K(x, y, a) dx. Recall that K satisfies (7). In the case of homogeneous Neumann

boundary conditions, ∇xK(x, y, a) · n = 0 on ∂Ω and therefore

∂

∂a

∫
Ω

K(x, y, a) dx = D

∫
Ω

∇2
xK(x, y, a) dx = D

∫
∂Ω

∇xK(x, y, a) · n dS = 0

where n is the outward pointing unit normal to ∂Ω and dS is a surface element.
Hence, if y ∈ Ω,∫

Ω

k(x, y) dx =

∫
Ω

K(x, y, τ2) dx =

∫
Ω

K(x, y, 0) dx =

∫
Ω

δ(x− y) dx = 1.

In the case of homogeneous Dirichlet boundary conditions we have K(x, y, a) =
0 for x ∈ ∂Ω, yet we know K(x, y, a) > 0 inside Ω, for all a > 0. Therefore
∇xK(x, y, a) · n ≤ 0 on ∂Ω in this case and so

∫
Ω
K(x, y, a) dx decreases with a.

Therefore, this time we have < replacing = in the middle element of the above,
with the consequence that

∫
Ω
k(x, y) dx < 1. The proof is complete.

Next, we show that the solution is bounded for x ∈ Ω and t ∈ [0, t∞). Firstly,
applying the boundedness of g(L) to the second equation of (1), we obtain

∂N(x, t)

∂t
≤ r1Ncap − (d2 + r2)N(x, t).

This implies that

lim sup
t→∞

N(x, t) ≤ r1Ncap
d2 + r2

, for all x ∈ Ω,

proving boundedness of N(x, t). Applying the same argument to the other three
equations of (1), in the order ofN → Aq → Af → L, we conclude that L(x, t), Aq(x,
t) and Af (x, t) are all bounded for x ∈ Ω and t ∈ [0, t∞).

3.2. Extinction steady state and its stability. Irrespective of the domain Ω
or boundary conditions, system (1) always has the extinction steady state (trivial
steady state) E0 = (0, 0, 0, 0). Linearizing (1) at E0 leads to

∂u1(x, t)

∂t
= br4e

−d4τ1u4(x, t− τ1)− (d1 + r1)u1(x, t),

∂u2(x, t)

∂t
=
r1Ncap
h

u1(x, t)− (d2 + r2)u2(x, t),

∂u3(x, t)

∂t
= r2u2(x, t)− (d3 + r3)u3(x, t),

∂u4(x, t)

∂t
=
r3

2

∫
Ω

k(x, y)e−d3τ2u3(y, t− τ2) dy − (d4 + r4)u4(x, t).

(13)
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Consider the case Ω = (−∞,∞), or a bounded Ω ⊂ Rn with homogeneous Neumann
boundary conditions. Tracking the average time and recruitment during each stage
in (13), one obtains the basic reproduction number R0 of the model:

R0 =
br4e

−d4τ1

d1 + r1
· (r1/h)Ncap

d2 + r2
· r2

d3 + r3
· (r3/2)e−d3τ2

d4 + r4

=
Ncapb

2h
e−(d3τ2+d4τ1)

4∏
i=1

ri
di + ri

. (14)

From the biological interpretation of R0, we anticipate that E0 will be locally asymp-
totically stable if R0 < 1 and unstable if R0 > 1. We prove this by analyzing the
linear stability of the extinction steady state of (13).

Substituting the ansatz ui(x, t) = eλtψi(x) into (13), we obtain the following
eigenvalue problem:

λψ1(x) = br4e
−d4τ1e−λτ1ψ4(x)− (d1 + r1)ψ1(x),

λψ2(x) =
r1Ncap
h

ψ1(x)− (d2 + r2)ψ2(x),

λψ3(x) = r2ψ2(x)− (d3 + r3)ψ3(x),

λψ4(x) =
r3

2
e−d3τ2e−λτ2

∫
Ω

k(x, y)ψ3(y) dy − (d4 + r4)ψ4(x).

(15)

We shall show that the dominant eigenvalue λ∗ of the linearised system is a real
number. The sign of λ∗ determines the stability of the extinction equilibrium E0:
when λ∗ < 0, E0 is asymptotically stable; and when λ∗ > 0, E0 is unstable. If
the domain Ω = (−∞,∞), or if Ω is finite with homogeneous Neumann boundary
conditions, then the sign of λ∗ depends solely on the value of R0. The stability
result for these cases can be formulated as follows.

Proposition 2. If Ω = (−∞,∞), or if Ω ⊂ Rn is finite and homogeneous Neumann
boundary conditions are applied, then the extinction steady state E0 = (0, 0, 0, 0) of
system (1) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1, where
R0 is given by (14).

Proof. Let λ ∈ C be any eigenvalue, with ψi, i = 1, . . . , 4 as introduced above. The
first equation of (15) gives

ψ4(x) =
λ+ d1 + r1

br4e−d4τ1e−λτ1
ψ1(x). (16)

Similarly, from the second and third equations of (15),

ψ1(x) =
(λ+ d2 + r2)h

r1Ncap
ψ2(x), (17)

and

ψ2(x) =
λ+ d3 + r3

r2
ψ3(x). (18)
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The fourth equation of (15) then yields

e−λτ1e−λτ2
∫

Ω

k(x, y)ψ3(y) dy

=
2h(λ+ d4 + r4)(λ+ d1 + r1)(λ+ d2 + r2)(λ+ d3 + r3)

bNcape−d4τ1e−d3τ2r1r2r3r4
ψ3(x),

=
2h
∏4
i=1(λ+ di + ri)

bNcape−(d3τ2+d4τ1)
∏4
i=1 ri

ψ3(x)

so that

e−λτ1e−λτ2
∫

Ω

k(x, y)ψ3(y) dy =

∏4
i=1(λ+ di + ri)

R0

∏4
i=1(di + ri)

ψ3(x). (19)

Integrating with respect to x over Ω, changing the order of the double integral that
arises, and using the first statement of Proposition 1, we obtain the characteristic
equation for λ to be

f1(λ) = f2(λ) (20)

where

f1(x) = R0e
−(τ1+τ2)x

4∏
i=1

(di + ri), (21)

f2(x) =

4∏
i=1

(x+ di + ri). (22)

Noting that f1(x) is deceasing with f1(−∞) =∞ and f1(∞) = 0, and f2(x) is a W
shaped function and is increasing after its largest root −xm = −min{di + ri; i =
1, 2, 3, 4}, we know that (20) has a unique real root λ∗ on (−xm,∞) and it is the
dominant real root since f1(x) < f2(x) for x > λ∗. We claim that λ∗ is indeed the
dominant root (the root of greatest real part) of the characteristic equation (20).
To this end, we let λ be any root in C and show that Reλ ≤ λ∗. Indeed, taking the
absolute value of (20) gives

R0e
−(τ1+τ2)(Reλ)

4∏
i=1

(di + ri) =

4∏
i=1

|λ+ di + ri|

≥
4∏
i=1

|Reλ+ di + ri|,

that is, f1(Reλ) ≥ f2(Reλ), implying that Reλ ≤ λ∗. This claim means that the
dominant root in C of the characteristic equation is precisely the dominant real root
λ∗.

Finally, by the aforementioned properties of f1(x) and f2(x), it is obvious that
λ∗ < 0 when f1(0) < f2(0) (i.e. R0 < 1) and λ∗ > 0 when f1(0) > f2(0) (i.e.
R0 > 1). Thus, all eigenvalues of (13) have negative real parts when R0 < 1, and
there exists a real positive eigenvalue when R0 > 1. Now, by Theorems 2.16 and
2.17 in Thieme [20], we conclude the stability (under R0 < 1) and instability (under
R0 > 1), completing the proof.

Remark. The above argument fails in the case of homogeneous Dirichlet boundary
conditions applied to a finite domain Ω, since in that case

∫
Ω
k(x, y) dx is not equal

to 1. However, we may still assert that if R0 < 1 the extinction steady state
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is locally asymptotically stable. The reason is that for the Dirichlet problem the
second statement of Proposition 1 is applicable. Taking the absolute value of (19),∏4

i=1 |λ+ di + ri|
R0

∏4
i=1(di + ri)

|ψ3(x)| = e−(Reλ)(τ1+τ2)

∣∣∣∣∫
Ω

k(x, y)ψ3(y) dy

∣∣∣∣
≤ e−(Reλ)(τ1+τ2)

∫
Ω

k(x, y)|ψ3(y)| dy.

Integrating over x ∈ Ω and changing the order of integration, but this time using
the second statement of Proposition 1, we obtain∏4

i=1 |Reλ+ di + ri|
R0

∏4
i=1(di + ri)

≤
∏4
i=1 |λ+ di + ri|

R0

∏4
i=1(di + ri)

≤ e−(Reλ)(τ1+τ2)

which implies that f2(Reλ) ≤ f1(Reλ) and therefore that Reλ belongs to an inter-
val of values for which the graph of the quartic curve y = f2(x) lies below that of
the exponential y = f1(x). However, in the situation when R0 < 1, such intervals
include only negative real numbers and it follows that Reλ < 0. The difference with
the Dirichlet problem is that R0 > 1 does not necessarily imply that the dominant
eigenvalue λ∗ > 0, although an argument can be made that we do have λ∗ > 0
when R0 > 1 if the domain Ω is sufficiently large. The reason is that as the domain
increases in size without bound,

∫
Ω
k(x, y) dx approaches 1. This can be shown

using a scaling argument to be found in the proof of Proposition 5.1 of Gourley and
Ruan [8]. In fact, if Ω is bounded and homogeneous Dirichlet boundary conditions
are applied on ∂Ω, R0 as defined in (14) is no longer the basic reproduction number,
though it is still an important parameter relevant to the stability of the extinction
steady state. For the Dirichlet problem the basic reproduction number is the right
hand side of (14) multiplied by K̂, where K̂ is the spectral radius of the linear
operator F : X0 → X0 defined by

(Fφ)(x) =

∫
Ω

k(x, y)φ(y) dy, x ∈ Ω (23)

where X0 = {φ ∈ C(Ω,R);φ|∂Ω = 0}.

3.3. Persistence steady state and its stability. In the case Ω = (−∞,∞), or
Ω ⊂ Rn with homogeneous Neumann boundary conditions on ∂Ω, we have seen
from Subsection 3.2 that, when R0 > 1 (equivalently, λ∗ > 0), the extinction
steady state E0 becomes unstable. In this case, straightforward calculations show
that there exists a positive steady state E+ = (L+, N+, A+

q , A
+
f ) given by

L+ = h(R0 − 1), N+ =
d3 + r3

r2
A+
q , A+

q =
d4 + r4
r3
2 e
−d3τ2

A+
f , A+

f =
d1 + r1

br4e−d4τ1
L+.

When this persistence (positive) steady state exists, it is locally asymptotically sta-
ble. The arguments are similar to those just described for studying the linear stabil-
ity of the extinction steady state. Linearizing system (1) at E+ = (L+, N+, A+

q , A
+
f ),
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we obtain

∂v1(x, t)

∂t
= br4e

−d4τ1v4(x, t− τ1)− (d1 + r1)u1(x, t),

∂v2(x, t)

∂t
=
r1Ncap
hR2

0

v1(x, t)− (d2 + r2)v2(x, t),

∂v3(x, t)

∂t
= r2v2(x, t)− (d3 + r3)v3(x, t),

∂v4(x, t)

∂t
=
r3

2

∫
Ω

k(x, y)e−d3τ2v3(y, t− τ2) dy − (d4 + r4)v4(x, t).

(24)

This linear system is the same as (13) except that h is replaced by ĥ = hR2
0. Thus, a

composed parameter R̂0 obtained by replacing h with hR2
0, that is R̂0 = 1

R2
0
R0 = 1

R0
,

determines the stability of E+: if R0 > 1 (i.e., R̂0 < 1) then E+ is not only
biologically meaningful but also locally asymptotically stable.

4. Traveling wave solutions and the spreading speed. In this section, we
consider Ω = (−∞,∞) and explore the existence of traveling wave solutions of (1),
which are solutions of the form

L(x, t) = ϕ1(x+ ct), N(x, t) = ϕ2(x+ ct), Aq(x, t) = ϕ3(x+ ct), Af (x, t) = ϕ4(x+ ct).

Here, ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) ∈ C2(R,R4) is called the profile of the traveling wave,
s := x + ct is the moving variable, and c > 0 is the wave speed. Substituting this
form of solution into system (1), we find that ϕ = (ϕ1, ϕ2, ϕ3, ϕ4) satisfies

cϕ′1(s) = br4e
−d4τ1ϕ4(s− cτ1)− (d1 + r1)ϕ1(s),

cϕ′2(s) = r1g(ϕ1(s))− (d2 + r2)ϕ2(s),

cϕ′3(s) = r2ϕ2(s)− (d3 + r3)ϕ3(s),

cϕ′4(s) =
r3

2

∫ +∞

−∞
Γ(z)e−d3τ2ϕ3(s− z − cτ2) dz − (d4 + r4)ϕ4(s),

(25)

where Γ(y) is the Gaussian kernel given in Section 2. When R0 > 1, E0 =
(0, 0, 0, 0) and E+ = (ϕ+

1 , ϕ
+
2 , ϕ

+
3 , ϕ

+
4 ) are equilibria of (25), where ϕ+

1 = L+, ϕ+
2 =

N+, ϕ+
3 = A+

q and ϕ+
4 = A+

f .

We are interested in traveling wave fronts that connect E0 and E+, and therefore
we apply the following asymptotic boundary conditions to (25):

lim
s→−∞

ϕi = 0, lim
s→+∞

ϕi(s) = ϕ+
i , i = 1, 2, 3, 4. (26)

Linearizing system (25) at the trivial equilibrium E0 yields the following linear
system:

cϕ′1(s) = br4e
−d4τ1ϕ4(s− cτ1)− (d1 + r1)ϕ1(s),

cϕ′2(s) =
r1Ncap
h

ϕ1(s)− (d2 + r2)ϕ2(s),

cϕ′3(s) = r2ϕ2(s)− (d3 + r3)ϕ3(s),

cϕ′4(s) =
r3

2

∫ +∞

−∞
Γ(z)e−d3τ2ϕ3(s− z − cτ2) dz − (d4 + r4)ϕ4(s).

(27)

The characteristic equation associated with (27) is

P (λ, c) = 0 (28)
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where

P (λ, c) =

∣∣∣∣∣∣∣∣
cλ+ d1 + r1 0 0 −br4e−d4τ1e−cτ1λ

− r1Ncap
h

cλ+ d2 + r2 0 0
0 −r2 cλ+ d3 + r3 0

0 0 − r3
2
e−d3τ2e−cτ2λk̄(λ) cλ+ d4 + r4

∣∣∣∣∣∣∣∣ ,
where

k̄(λ) =

∫ +∞

−∞
Γ(y)e−λy dy =

1√
4Dτ2π

∫ +∞

−∞
e−

y2

4Dτ2 e−λy dy = eDτ2λ
2

.

Evaluating the determinant on the left hand side of (28), we obtain

4∏
i=1

[cλ+ (di + ri)]−
r1r2r3r4bNcap

2h
e−(d4τ1+d3τ2)eDτ2λ

2−c(τ1+τ2)λ = 0;

that is
4∏
i=1

[cλ+ (di + ri)]−R0

[
4∏
i=1

(di + ri)

]
eDτ2λ

2−c(τ1+τ2)λ = 0. (29)

Generically, the behaviour of solutions of (25)–(26) at −∞ is qualitatively reflected
by the behaviour of solutions of (27) at −∞. Note that, generically, only positive
real roots of the characteristic equation (29) can lead to positive solutions of (1)
that tend to 0 as s → −∞, because a negative real root of (29) corresponds to
an unbounded solution and complex roots correspond to a solution that oscillates
about 0 and therefore assumes negative values. Therefore, in order for (25)–(26) to
have a positive solution (corresponding to a traveling wave front connecting E0 and
E+), it is necessary that (29) should have at least one real positive root.

Set

H1(λ, c) =

4∏
i=1

[cλ+ (di + ri)],

H2(λ, c) = R0

[
4∏
i=1

(di + ri)

]
eDτ2λ

2−c(τ1+τ2)λ.

Then (29) can be rewritten as H1(λ, c) = H2(λ, c). From elementary calculus, one
knows that H1(λ, c) is of W shape but is increasing for λ > 0, and H2(λ, c) is of U
shape with the minimum attained at a positive value of λ. It can be shown that
there exists a c∗ > 0 such that, when c < c∗, H2(λ, c) > H1(λ, c) and (29) has no
real positive roots; when c = c∗, (29) has one real positive root λ∗; and when c > c∗,
(29) has two real positive roots λ2 > λ1 > 0. Indeed c∗ is given by

c∗ = min
c>0
{c : H1(λ, c) = H2(λ, c) has positive real roots with respect to λ}

and is determined by the tangential conditions:

H1(λ, c) = H2(λ, c), and
∂H1

∂λ
(λ, c) =

∂H2

∂λ
(λ, c), λ > 0. (30)

There is no explicit formula for c∗, but c∗ can be numerically computed for given
values of the model parameters. To demonstrate this, we choose the baseline pa-
rameter values as: b = 3000, r1 = 0.13, r2 = 0.13, r3 = 0.03, r4 = 0.03, d1 = 0.3,
d2 = 0.3, d3 = 0.1, d4 = 0.1, τ1 = 20, τ2 = 10 as given in Table 1, and Ncap = 5000,
h = 100 and D = 1. Then, straightforward calculation by (14) gives R0 = 18.18,
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Figure 2. H1(λ, c) and H2(λ, c) for different c. (a) c = 0.55; (b)
c = c∗ = 0.6176844021, (λ = 0.7081234538); (c) c = 0.7. Here,
the model parameters are taken as b = 3000, r1 = 0.13, r2 = 0.13,
r3 = 0.03, r4 = 0.03, d1 = 0.3, d2 = 0.3, d3 = 0.1, d4 = 0.1,
τ1 = 20, τ2 = 10, Ncap = 5000, h = 100 and D = 1.
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Figure 3. Dependence of c∗ on b and D respectively: (a) with
D = 1; (b) with b = 3000. Other parameters are taken as: r1 =
0.13, r2 = 0.13, r3 = 0.03, r4 = 0.03, d1 = 0.3, d2 = 0.3, d3 = 0.1,
d4 = 0.1, τ1 = 20, τ2 = 10, Ncap = 5000 and h = 100.

and (30) gives c∗ = 0.24. For these parameter values, H1(λ, c) and H2(λ2, c) are
illustrated in Fig. 2.

Based on (30), we may also numerically explore the dependence of c∗ on some
model parameters. As examples, we present some results on its dependence on the
production rate b of ticks and the diffusion rate D of white tailed deer in Fig. 3.
Note that, if equation (29) is rewritten in terms of λ̃, where cλ = λ̃, it becomes
evident that what matters is the value of D/c2 and therefore that c∗ scales with√
D. The numerically computed relationship between c∗ and D, shown in the second

panel of Fig. 3, is very consistent with this observation. It highlights the need for
the experimental determination of the value of D, the diffusion coefficient of the
deer, because once we know D, and the proportionality constant in the relationship
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Figure 4. There is no biologically relevant traveling wave front
solution with speed c = 0.1 < c∗ = 0.24: φ1 may take negative
values.

between c∗ and
√
D, we also know the spread rate c∗ that our model predicts.

Diffusion coefficients can in practice be estimated using recapture data or radio
tracking.

From the above we have seen that, for c < c∗, (29) has no real positive root
and hence (1) cannot have a traveling wave front with speed c connecting E0 and
E+. It is expected that c∗ is indeed the minimum wave speed in the sense that, for
every c > c∗, system (1) has such a connecting traveling wave front with speed c.
The proof of the existence of a traveling wave front with speed c > c∗ involves the
construction of suitable upper and lower solutions to the wave profile equation (25).
The argument is very lengthy and the details are subtle, and we leave it for a more
mathematical paper (in preparation). In that paper, we will also prove that c∗ is
not only the minimal wave speed but also the asymptotic rate of spread for (1)
when R0 > 1.

5. Numerical simulation. Although we defer to another paper the proof that
c∗ is both the minimal wave speed and the speed of spread for (1) when R0 > 1,
we will in this section provide some numerical simulation results that support these
claims. We start by numerically demonstrating the existence of traveling wave front
solutions of system (1). For this purpose, we choose the baseline parameters as in
Fig. 2. For these parameter values, c∗ is numerically computed as c∗ = 0.24. We
use a numerical method described in [12] which is summarized in the appendix. For
convenience, we choose the same baseline parameters as in Fig. 2, giving R0 = 18.18,
and the positive steady state

(L+, N+, A+
q , A

+
f ) = (1.72× 103, 1.43× 103, 1.43× 103, 60.63).

Fig. 4 shows that there is no traveling wave solution for c = 0.1 < c∗, since φ1, φ2, φ3

may take negative values. Fig. 5 shows the existence and profile of a traveling wave
front with c = 0.4 > c∗.
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Figure 5. There is a non-negative traveling wave front solution
with speed c = 0.4 > c∗ = 0.24.

Next, we numerically simulate solutions of the original initial value problem (1)
to observe the time evolution of solutions toward a traveling wave front. To estimate
the spreading rate, we use the same approach as was mentioned in [16]. The idea
is to assume some threshold population density û, below which we cannot numer-
ically detect the presence of the population. By tracking the propagation of such
a threshold density we can then estimate the spreading rate. In other words, if we
denote by x̂ the location where the population density reaches the threshold û, then
the asymptotic rate of spread is given by

c = lim
t→∞

dx̂(t)

dt
.

With the model parameter values given above, Fig. 6(a)-(b) and Fig. 7(a)-(b) show
the evolution of the (L,N) components and the (Aq, Af ) components of the solution
of (1). The shaded regions in Fig. 6(c)-(d) and Fig. 7(c)-(d) mark the regions in
space where the population size is larger than 0.1. The upper-lower boundaries of
these areas are straight lines that have slope approximately equal to ±c∗ = ±0.24,
coinciding with the minimal wave speed for the traveling wave fronts of (1) that
connect E0 and E+ when R0 > 1.

6. Conclusion and discussion. In this paper, based on the fact that blacklegged
ticks are only capable of moving very short distances by themselves and the general
belief that dispersal of ticks over appreciable distances is via transport on the white
tailed deer on which the adult ticks feed, we developed a spatial differential equation
model for a stage-structured tick population. In addition to well-posedness, we
identified a basic reproduction ratio R0 for the tick population and discussed the
stability of the extinction steady state E0 and the persistence steady state E+ in
terms of R0.

We also discussed traveling wave front solutions to the model that connect E0

and E+. Such solutions describe tick invasion as a wave of transition from the
extinction steady state to a persistence steady state of ticks. We obtained a lower
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Figure 6. (a): time evolution of L(x, t); (b): time evolution of
N(x, t); (c): contours of (a) with region where L(x, t) > 0.1 shown
in grey; (d): contours of (b) with region where N(x, t) > 0.1 shown
in grey.

Figure 7. (a): time evolution of Aq(x, t); (b): time evolution
of Af (x, t); (c): contours of (a) with region where Aq(x, t) > 0.1
shown in grey; (d): contours of (b) with region where Af (x, t) > 0.1
shown in grey.

bound c∗ for the speed of such propagating traveling wave fronts, in the sense that
the model cannot have traveling fronts with speed c < c∗. We also performed some
numerical simulations for the wave profile equation and the results suggest that c∗

is the minimal wave speed, meaning that for every c > c∗ there is a traveling wave
front of speed c connecting the extinction and persistence steady states E0 and E+.

We also numerically simulated the solutions of the original initial value prob-
lem (1). The results not only demonstrate the evolution of solutions toward a
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traveling wave front, but also suggest that c∗ is the asymptotic rate of spread of
the tick population. Note that c∗ is determined by two algebraic equations that
can be solved numerically, though not analytically. The dependence of c∗ on im-
portant model parameters can also be explored numerically. For example, since
we are concerned with how the dispersion of white tailed deer affects the spatial
spreading speed, we numerically explored the dependence of c∗ on the diffusion rate
D, as shown in Fig. 3(b), by which one can immediately estimate c∗ as long as
the diffusion rate D is known. This clearly demonstrates the role played by deer
dispersal. We point out that c∗ in this paper only accounts for the spread speed
caused by the white-tailed deer diffusion; however, as is shown in Caraco et al [4],
some smaller mammals, such as the white-footed mouse Peromyscus leucopus, can
also play a role in the range expansion of the tick Ixodes scapularis. Therefore, even
if the deer diffusion rate is available so that c∗ can actually be obtained, it may not
give the actual range expansion speed of the tick. In order to obtain a better or
more accurate estimate/prediction of geographical spread speed of the tick Ixodes
scapularis, it would be natural to derive a model that combines the roles of mice
and deer. Toward that goal, our model establishes a framework, and we leave it for
a future research project.

Theoretically confirming that c∗ is not only the minimal wave speed but also the
spreading rate of the model system is more challenging. In a forthcoming and more
mathematical paper [11], by reformatting our model into the framework of [22] and
applying some recent results for such a set-up, we achieve this goal.

In this paper, we have concentrated mainly on the case when the spatial domain
is Ω = (−∞,∞). In the real world, a two dimensional domain is clearly more
realistic and there are a variety of realistic possibilities including both bounded and
unbounded two-dimensional domains, and various boundary conditions. Both the
domain itself and the boundary conditions affect the kernel k(x, y) (see, e.g., [13]
and the examples given in Section 2 of this paper) and result in a variety of systems
giving rise to various mathematical and ecological issues of interest.

7. Appendix A: Numerical method. To solve the wave equations (25) with
asymptotic boundary condition (26) numerically, we truncate R = (−∞,∞) to
[−M,M ], where M is a very large number, and take the uniform partition: s1 =
−M , s2n+1 = M , sj = s1+(j−1)4, where4 = 2M/2n = M/n, j = 1, 2, . . . , 2n+1.
Then, for sj (j = 2, . . . , 2n),

cϕ′1(sj) = br4e
−d4τ1ϕ4(sj − cτ1)− (d1 + r1)ϕ1(sj),

cϕ′2(sj) = r1g(ϕ1(sj))− (d2 + r2)ϕ2(sj),

cϕ′3(sj) = r2ϕ2(sj)− (d3 + r3)ϕ3(sj),

cϕ′4(sj) =
r3

2
e−d3τ2

∫ +∞

−∞
k(sj − y − cτ2)ϕ3(y) dy − (d4 + r4)ϕ4(sj).

(31)

The asymptotic boundary conditions lims→−∞ ϕi(s) = 0 and lims→+∞ ϕi(s) = ϕ∗i
are then translated to

ϕi(−M) = 0, ϕi(M) = ϕ∗i ;

ϕi(s) = 0, s < −M ; ϕi(s) = ϕ∗i , s > M, i = 1, . . . , 4.
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It then follows that

f1(ϕ3, sj) :=

∫ +∞

−∞
k(y)ϕ3(sj − y − cτ2) dy

=

∫ +∞

−∞
k(sj − y − cτ2)ϕ3(y) dy

=

(∫ −M
−∞

+

∫ M

−M
+

∫ +∞

M

)
k(sj − y − cτ2)ϕ3(y) dy

=

∫ M

−M
k(sj − y − cτ2)ϕ3(y) dy + ϕ3(M)

∫ +∞

M

k(sj − y − cτ2) dy.

Applying the composite trapezium rule for integrals, we obtain

∫ M

−M
k(sj − y − cτ2)ϕ3(y) dy =

4
2

[ k(sj − s1 − cτ2)ϕ3(s1)

+ 2

2n∑
l=2

k(sj − sl − cτ2)ϕ3(sl) + k(sj − s2n+1 − cτ2)ϕ3(s2n+1) ],

(32)

and

∫ +∞

M

k(sj − y − cτ2) dy =

∫ sj−M−cτ2

−∞
k(y) dy

=
1

2

(
1−

∫ −sj+M+cτ2

sj−M−cτ2
k(y) dy

)

=
1

2

{
1− 4

2
[k(sj −M − cτ2) + k(−sj +M + cτ2)

+2

2[2n+m2−(j−1)]∑
l=2

k(sj −M − cτ2 + (l − 1)4)

 .

Then

f1(ϕ3, sj) = 4
2n∑
l=2

k(sj − sl − cτ2)ϕ3(sl) + f2(sj)
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where

f2(sj) =
4
2

[k(sj − s1 − cτ2)ϕ3(s1) + k(sj − s2n+1 − cτ2)ϕ3(s2n+1)]

+ϕ3(M)

∫ +∞

M

k(sj − y − cτ2) dy

=
4
2
k(sj −M − cτ2)ϕ∗3 + ϕ∗3

∫ +∞

M

k(sj − y − cτ2) dy

=
4
2
k(sj −M − cτ2)ϕ∗3

+
ϕ∗3
2

{
1− 4

2
[k(sj −M − cτ2) + k(−sj +M + cτ2)]

−4
2[2n+m2−(j−1)]∑

l=2

k(sj −M − cτ2 + (l − 1)4)


=

ϕ∗3
2

1−4
2[2n+m2−(j−1)]∑

l=2

k(sj −M − cτ2 + (l − 1)4)

 .

Let m1 = cτ1
4 and m2 = cτ2

4 . Then sj − cτ1 = sj−m1
. Using conventional numerical

differentiation, we see that



c
ϕ1(sj+1)− ϕ1(sj−1)

24
= br4e

−d4τ1ϕ4(sj−m1)− (d1 + r1)ϕ1(sj),

c
ϕ2(sj+1)− ϕ2(sj−1)

24
= r1g(ϕ1(sj))− (d2 + r2)ϕ2(sj),

c
ϕ3(sj+1)− ϕ3(sj−1)

24
= r2ϕ2(sj)− (d3 + r3)ϕ3(sj),

c
ϕ4(sj+1)− ϕ4(sj−1)

24
=
r3

2
e−d3τ2f1(ϕ3, sj)− (d4 + r4)ϕ4(sj),

(33)

for j = 2, . . . , 2n, or


cϕ1(sj+1)− cϕ1(sj−1)− 24br4e

−d4τ1ϕ4(sj−m1
) + 24(d1 + r1)ϕ1(sj) = 0,

cϕ2(sj+1)− cϕ2(sj−1)− 24r1g(ϕ1(sj)) + 24(d2 + r2)ϕ2(sj) = 0,

cϕ3(sj+1)− cϕ3(sj−1)− 24r2ϕ2(sj) + 24(d3 + r3)ϕ3(sj) = 0,

cϕ4(sj+1)− cϕ4(sj−1)−4r3e
−d3τ2f1(ϕ3, sj) + 24(d4 + r4)ϕ4(sj) = 0

(34)
for j = 2, . . . , 2n. The second equation in (34) is equivalent to the following equa-
tion:

cϕ2(sj+1)− cϕ2(sj−1)− 2

h
4r1Ncapϕ1(sj) + 24(d2 + r2)ϕ2(sj)

+
c

h
ϕ1(sj)ϕ2(sj+1)− c

h
ϕ1(sj)ϕ2(sj−1) +

2

h
4(d2 + r2)ϕ1(sj)ϕ2(sj) = 0.
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Thus, system (34) can be expressed as


M11 0 0 M14

M21 M22 0 0
0 M32 M33 0
0 0 M43 M44





ϕ1(s2)
...

ϕ1(s2n)
ϕ2(s2)

...
ϕ2(s2n)
ϕ3(s2)

...
ϕ3(s2n)
ϕ4(s2)

...
ϕ4(s2n)



+


C1

C2

C3

C4

 = 0, (35)

where

Mii =


24(di + ri) c 0
−c 24(di + ri) c

. . .

−c 24(di + ri) c
0 −c 24(di + ri)

 ,
i = 1, . . . , 4,

M14 =



0
...
0

−24br4e
−d4τ1

. . .

−24br4e
−d4τ1 0 . . . 0


,

M21 =

 −
2
h4r1Ncap 0

. . .

0 − 2
h4r1Ncap

 ,

M32 =

 −24r2 0
. . .

0 −24r2

 ,
M43 = −r342e−d3τ2M̂43 with

M̂43 =


k(s2 − s2 − cτ2) k(s2 − s3 − cτ2) . . . k(s2 − s2n − cτ2)
k(s3 − s2 − cτ2) k(s3 − s3 − cτ2) . . . k(s3 − s2n − cτ2)

...
k(s2n − s2 − cτ2) k(s2n − s3 − cτ2) . . . k(s2n − s2n − cτ2)

 ,
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C1 =


0
...
0
cϕ∗1

 , C3 =


0
...
0
cϕ∗3

 , C4 =


−4r3e

−d3τ2f2(s2)
−4r3e

−d3τ2f2(s3)
...

cϕ∗4 −4r3e
−d3τ2f2(s2n)

 ,

C2 =


1
hϕ1(s2)[cϕ2(s3) + 24(d2 + r2)ϕ2(s2)]

1
hϕ1(s3)[cϕ2(s4)− cϕ2(s2) + 24(d2 + r2)ϕ2(s3)]

...
1
hϕ1(s2n−1)[cϕ2(s2n)− cϕ2(s2n−2) + 24(d2 + r2)ϕ2(s2n−1)]
cϕ∗2 + 1

hϕ1(s2n)[cϕ∗2 − cϕ2(s2n−1) + 24(d2 + r2)ϕ2(s2n)]

 .
The algebraic system (35) can then be solved numerically using Matlab.
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