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Abstract. We propose and analyse a reaction-diffusion-advection predator-
prey model in which we assume that predators move randomly but prey avoid

predation by perceiving a repulsion along predator density gradient. Based
on recent experimental evidence that anti-predator behaviors alone lead to a

40% reduction on prey reproduction rate, we also incorporate the cost of anti-

predator responses into the local reaction terms in the model. Sufficient and
necessary conditions of spatial pattern formation are obtained for various func-

tional responses between prey and predators. By mathematical and numerical

analyses, we find that small prey sensitivity to predation risk may lead to
pattern formation if the Holling type II functional response or the Beddington-

DeAngelis functional response is adopted while large cost of anti-predator be-

haviors homogenises the system by excluding pattern formation. However,
the ratio-dependent functional response gives an opposite result where large

predator-taxis may lead to pattern formation but small cost of anti-predator

behaviors inhibits the emergence of spatial heterogeneous solutions.

1. Introduction. In ecological systems, spatially heterogeneous distributions of
many species have been observed, for example, patchiness of plankton in aquatic
systems [36]. Although such heterogeneity of species may be attributed to unevenly
distributed landscapes, it may also occur in an almost homogeneous environment
[36, 19]. One interesting question is that what are the mechanisms behind the spatial
heterogeneity of species in a homogeneous environment? Generally, movement or
dispersal of a species and its interactions with other species may lead to pattern
formation, and predator-prey type is such an interaction.

Pattern formation of predator-prey systems has been studied extensively (see
[23, 3, 33, 31, 21, 45, 39, 34] for example). In general, if both prey and predators
move randomly in habitats, prey-dependent only functional responses, including the
Holling type I, II, III functional responses, can’t generate spatially heterogeneous
distributions. In such systems, the density-dependent death rate of predators or
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the Allee effect in prey’s growth plays a critical role in determining spatial patterns
[23, 24, 29, 25, 38, 27, 20]. On the other hand, competition between predators
alone may allow pattern formation in predator-prey systems, which includes ratio-
dependent functional response, the Beddington-DeAngelis functional response, and
their generalizations [3, 33, 31]. Pattern formation of predator-prey models with
time delay in the functional response due to handing time of the predator is also
studied [47, 44, 9].

In addition to pure random movement of prey and predators, directed movement
of predators has attracted much attention in recent years and has inspired numer-
ous research about the so called prey-taxis problems (see [1, 8, 18, 37, 41, 43, 35]
for example). A common feature of the models in the aforementioned papers lies
in that the movement of predators is affected by the density gradient of prey, in
addition to random movement. In analogy to the well-known chemotaxis, predators
are attracted by prey-taxis and tend to move to habitats with higher prey density.
Such biased movement allows predators to forage prey more effectively. In [1, 37],
the global existence of weak solution and classical solution were proved respectively.
As an extension of [1, 37], the authors in [43] proved the global existence of clas-
sical solution with more general local reaction terms and established the uniform
persistence of the solutions as well. Global stability result of a predator-prey model
with prey-taxis is obtained in recent work [17], where a broad range of growth and
predation functions are considered. In [18], pattern formation was studied under
various functional responses between prey and predators. The authors concluded
that pattern formation may occur if the prey-taxis was small and certain functional
responses or growth functions were chosen [18].

Besides the fact that predators forage prey, prey may avoid predators actively as
well. Almost all species perceive predation risk to some extent and avoid predation
by showing various anti-predator behaviors [10, 11]. More importantly, such anti-
predator behaviors carry a cost on the reproduction success of prey [46]. Zanette
et al. [46] experimentally verified that anti-predator behaviors alone caused a 40%
reduction in the reproduction rate of song-sparrows when all direct predations were
eliminated (see [40] for a thorough discussion about the cost of fear). Recent work
of Ryan and Cantrell [30] modelled avoidance behaviors of prey in an intraguild
predation community with heterogeneous distribution of resources. Biktashev et al.
[8] also considered avoided prey but in a homogeneous environment and identified
several patterns numerically. However, the cost of anti-predator behaviors of prey
is ignored in the models of Ryan and Cantrell and Biktashev et al. [30, 8].

In this paper, we extend the model based on Wang et al. by explicitly incorpo-
rating spatial effects, where spatial structures are ignored in [40]. We study how
the anti-predator behaviors and the corresponding cost would affect the spatial dis-
tribution of prey and predators. In Section 2, the model formulation including the
so-called predator-taxis is proposed. In Section 3, the global existence of classical
solution is established. In Section 4, pattern formation is analyzed both theoreti-
cally and numerically for different functional responses. We end the paper in Section
5 by giving conclusions and discussions.

2. Model formulation. Let u(x, t) and v(x, t) represent the densities of prey and
predators at position x and time t respectively. As discussed in the introduction, we
assume that predators move randomly to forage prey but prey can perceive preda-
tion risk and act accordingly to avoid predators actively [10, 11]. As a consequence,
the dispersal of prey is a directed movement towards lower density of predators in
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addition to random movement. Ideally, the avoidance behavior of prey leads to a
repulsion of prey to lower gradient of predator density. Therefore, the flux of prey
is

Ju = −du∇u− γ(u, v)u∇v,
and the flux of predators is

Jv = −dv∇v,
where γ(u, v) ≥ 0 represents the repulsion effect of the predator-taxis. Hence, a
general reaction-diffusion-advection model with avoidance behaviors of prey is

ut = ∇ · (du∇u+ γ(u, v)u∇v) + f(u, v),

vt = dv∆v + g(u, v),
(1)

where f(u, v) and g(u, v) represent local interactions of predators and prey, du, dv
are random diffusion rates of prey and predators respectively, γ(u, v) is the sensi-
tivity of prey to predation risk (i.e. predator-taxis). Here, we assume that

γ(u, v) = β(u)α(v). (2)

Taking into account the volume filling effect [14, 28, 13] for γ(u, v), we adopt α(v) =
α as a constant and

β(u) =

{
1− u

M
, if 0 ≤ u ≤M,

0, if M < u,
(3)

where M measures the maximum number of prey that a unit volume can accommo-
date. If the number of prey goes beyond the volume M, prey can no longer squeeze
into nearby space and therefore the tendency of directed movement goes to 0. For
local reaction terms, we consider

f(u, v) = f0(k0 α, v) r0 u− d u− a u2 − u p(u, v) v,

g(u, v) = v [−m(v) + c u p(u, v)] ,
(4)

where

f0(k0 α, v) =
1

1 + k0 α v
(5)

satisfies the same hypotheses as f(k, v) in [40] with k0 as a nonnegative constant.
In fact, this function models the cost of anti-predator responses in the reproduction
rate of prey. The successful reproduction rate of prey decreases if the defense level
or equivalently predator-taxis sensitivity α increases. Similarly, higher predator
density also decreases the local reproduction rate of prey because it would be easier
for the prey to perceive predation risk and adopt corresponding avoidance behaviors
in the presence of more predators. Here k0 is a constant which reflects the magnitude
that anti-predator behaviors exert on the local reproduction of prey. In (4), d is the
natural death rate of prey, a represents the death due to intra-species competition,
p(u, v) denotes the functional response between predators and prey, and m(v) is
the death rate of predators. We consider either density-independent death rate or
density-dependent death rate of predators, i.e.

m(v) = m1 or m(v) = m1 +m2 v. (6)

As indicated in [23, 24, 20], the density dependence of predator mortality plays a
critical role in pattern formation under certain situations.
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We assume that individuals live in an isolated bounded domain Ω ∈ Rn with
homogeneous environment and ∂Ω is smooth. Hence, no-flux boundary condition
is imposed

Ju · n = du
∂u

∂µ
+ γ(u, v)u

∂v

∂µ
= 0,

Jv · n = dv
∂v

∂µ
= 0,

(7)

where µ is the unit outward normal vector at ∂Ω. In fact, no-flux boundary condition
(7) is equivalent to Neumann boundary condition

∂u

∂µ
= 0,

∂v

∂µ
= 0, ∀x ∈ ∂Ω. (8)

Therefore, by (1), (2), (4) and (8), we obtain a spatial model with the avoidance
behaviors of prey and the cost of anti-predator behaviors, given by the following
system

∂u

∂t
= du ∆u+ α∇ · (β(u)u∇v) +

r0 u

1 + k0 α v
− d u− a u2 − u p(u, v) v,

∂v

∂t
= dv ∆v + v [−m(v) + c u p(u, v)] ,

∂u

∂µ
= 0,

∂v

∂µ
= 0, ∀x ∈ ∂Ω,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,

(9)

where u0(x), v0(x) are continuous functions.

3. Global existence of classical solution. First, we establish the global exis-
tence of classical solutions of (9). It is clear that the carrying capacity of prey in
(9) is K = (r0 − d)/a. By [28], we assume that

M >
r0 − d
a

, (10)

which is reasonable because K measures the maximum capacity of the environment
but M merely represents the maximum number that one unit volume can be filled
by prey. Notice that β(u) is not differentiable at u = M. In order to obtain classical
solutions, similar to [42], we make a smooth extension of β(u) by

β̄(u) =


> 1, u < 0,

β(u), 0 ≤ u ≤M,

< 0, M < u.

(11)

By proving the global existence of classical solutions of system

∂u

∂t
= du ∆u+ α∇ · (β̄(u)u∇v) +

r0 u

1 + k0 α v
− d u− a u2 − u p(u, v) v,

∂v

∂t
= dv ∆v + v [−m(v) + c u p(u, v)] ,

∂u

∂µ
= 0,

∂v

∂µ
= 0, ∀x ∈ ∂Ω,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0,

(12)

we obtain the global existence of classical solutions of (9) because β(u) = β̄(u)
if 0 ≤ u ≤ M and we will show that u ∈ [0, M ] later. Let ρ ∈ (n,+∞), then
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W 1,ρ
(
Ω̄, R2

)
is continuously embedded in C

(
Ω, R2

)
. We consider solutions of (12)

in

X :=

{
ω ∈W 1,ρ

(
Ω, R2

)
| ∂ω
∂µ

= 0 on ∂Ω

}
.

Then we have the following lemma.

Lemma 3.1. The following statements hold:

(i) System (12) has a unique solution (u(x, t), v(x, t)) ∈ X defined on Ω× (0, T )
satisfying (u, v) ∈ C((0, T ), X) ∩ C2,1

(
(0, T )× Ω̄, R2

)
, where T depends on

initial data (u0, v0) ∈ X.
(ii) Define X1 = {(u, v) ∈ R2| 0 ≤ u ≤ M, v ≥ 0} at G ⊂ R2 such that X1 ⊂ G.

If for every G ⊂ R2 containing X1, (u, v) is bounded away from the boundary
of G in L∞(Ω) norm for t ∈ (0, T ), then T = ∞, meaning that the solution
(u, v) exists globally.

Proof. Let ω = (u, v)T. Then system (12) can be written as
ωt = ∇ · (a(ω)∇ω) + F(ω) in Ω× (0,+∞),

Bω = 0 on ∂Ω× (0,+∞),

ω(·, 0) = (u0, v0)T in Ω,

(13)

where

a(ω) =

(
du α β̄(u)u

0 dv

)
, (14)

and

F(ω) =

(
r0 u

1 + k0 α v
− d u− a u2 − u p(u, v) v, v [−m(v) + c u p(u, v)]

)T

,

Bω =
∂ω

∂n
.

(15)

Because eigenvalues of a(ω) are all positive, then (13) is normally elliptic [4, 6].
Hence local existence in (i) follows from Theorem 7.3 in [4]. Because (13) is an
upper-triangular system, global existence of solution in (ii) follows from Theorem
5.2 in [5].

From (ii) of Lemma 3.1, to prove the global existence of solutions, it remains to
show that (u, v) are bounded away from the boundary of G in L∞ norm.

Theorem 3.2. Assume that 0 ≤ u0 ≤M, then the solution (u, v) satisfies u(x, t) ≥
0, v(x, t) ≥ 0, and it exists globally in time.

Proof. Define the operator

Lu = ut − du ∆u− α∇(β̄(u)u∇v)− r0 u

1 + k0 α v
+ d u+ a u2 + p(u, v)u v. (16)

Because 0 ≤ u0, u = 0 is a lower solution of the equation. Plug in u = M into (16)
to obtain

LM = − r0M

1 + k0 α v
+ dM + aM2 + p(M,v)M v

= M

(
d+ aM + p(M,v) v − r0

1 + k0 α v

)
.

(17)

If v ≥ 0, then we obtain

LM ≥M (d+ aM − r0) . (18)
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Because of the restriction (10), choosing sufficiently large M gives

LM ≥ 0. (19)

In addition, we have
∂M

∂µ
= 0, M ≥ u0. (20)

By (19) and (20), we know that u = M is an upper solution of the u equation.
Therefore, by comparison principle of parabolic equations [32], we have

0 ≤ u ≤M. (21)

Now we prove the L∞ norm of v is bounded. Here we show only the proof for
the case of m(v) = m1 because the proof of the case where m(v) = m1 + m2 v is
similar and is thus omitted. Choose v(0) = v0 ≥ 0. Then it is obvious that v = 0
is a lower solution of the v equation, which gives v ≥ 0. It remains to show that
‖v‖L∞(Ω) is bounded. Integrating the first equation of (12), we obtain∫

Ω

ut dx =

∫
Ω

∇ ·
(
du∇u+ α β̄(u)u∇v

)
dx+

∫
Ω

( r0 u

1 + k0 α v
− d u− a u2

− p(u, v)u v
)
dx

=

∫
∂Ω

(
du∇u+ α β̄(u)u∇v

)
· ndS +

∫
Ω

( r0 u

1 + k0 α v
− d u− a u2

− p(u, v)u v
)
dx

=

∫
Ω

(
r0 u

1 + k0 α v
− d u− a u2 − p(u, v)u v

)
dx. (22)

Similarly, integrating the second equation of (12) gives∫
Ω

vt dx =

∫
Ω

v [−m1 + c p(u, v)u] dx. (23)

Multiplying (22) by c and adding the resulting equation to (23) gives

d

dt

∫
Ω

(c u+ v) dx =

∫
Ω

(
r0 c u

1 + k0 α v
− c d u− c a u2 −m1 v

)
dx

= c

∫
Ω

(
r0

1 + k0 α v
+m1 − d− a u

)
u dx−m1

∫
Ω

(c u+ v) dx

≤ c

∫
Ω

(r0 +m1) u dx−m1

∫
Ω

(c u+ v) dx

≤ c |Ω|(r0 +m1)M −m1

∫
Ω

(c u+ v) dx. (24)

By (24), we obtain

d

dt
‖c u+ v‖L1 ≤ c |Ω|(r0 +m1)M −m1 ‖c u+ v‖L1 (25)

From (25), we obtain that

lim
t→∞

sup ‖c u+ v‖L1 ≤ c |Ω|(r0 +m1)M

m1
,

which shows that ‖c u+ v‖L1 is bounded. From (12), the growth of v is dependent
only on u, (i.e. predators are specialist predators), which falls into “food pyramid”
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condition in [2]. Hence by Theorem 3.1. in [2], the boundedness of ‖v‖L1 implies
that of ‖v‖L∞ and this completes the proof.

4. Pattern formation. Now we analyze the pattern formation of (9) with general
reaction terms defined in (4). Assume that (us, vs) is a spatially homogeneous steady
state of (9). Let

u(x, t) = us + ε ũ(x, t), v(x, t) = vs + ε ṽ(x, t), (26)

where ε � 1. By substituting (26) into (9) with general reaction terms, equating
first-order terms with respect to ε and neglecting higher-order terms, we obtain the
linearized system at (us, vs) :

∂u

∂t
= du ∆u+ αβ(us)us ∆v + fu(us, vs)u+ fv(us, vs) v,

∂v

∂t
= dv ∆v + gu(us, vs)u+ gv(us, vs) v,

(27)

where u(x, t), v(x, t) are still used instead of ũ(x, t), ṽ(x, t) for notational conve-
nience. The linearized system (27) can be written as the matrix form:

∂ω

∂t
= D∆ω +Aω, (28)

where

ω =

(
u

v

)
, D =

(
du αβ(us)us

0 dv

)
, A =

(
fu fv

gu gv

)
.

By (28), the characteristic polynomial of the linearized system at (us, vs) is

|λ I + k2D −A| = 0, (29)

where k ≥ 0 is the wave number [26]. Expanding the left side of (29), we obtain
that

λ2 + a
(
k2
)
λ+ b

(
k2
)

= 0, (30)

where

a
(
k2
)

= (du + dv) k
2 − (fu + gv) ,

b
(
k2
)

= du dv k
4 + (gu αβ(us)us − fu dv − gv du) k2 + fu gv − fv gu.

(31)

Here in (30), λ = λ (k) are eigenvalues which determine the stability of the steady
state (us, vs). For k = 0, the two roots of (30) satisfy

λ0
1 + λ0

2 = fu + gv, λ0
1 λ

0
2 = fu gv − fv gu. (32)

Assume that
fu + gv < 0, fu gv − fv gu > 0, (33)

meaning that the steady state (us, vs) is linearly stable when there is no spatial
effect. Now for k > 0, the two roots of (30) satisfy{

λk1 + λk2 = (fu + gv)− (du + dv) k
2,

λk1 λ
k
2 = du dv k

4 + (gu αβ(us)us − fu dv − gv du) k2 + fu gv − fv gu.
(34)

Because of du > 0, dv > 0 and assumption (33), we obtain that λk1 + λk2 < 0 for all
k = 1, 2 · · · from (34). Therefore, if λk1 λ

k
2 > 0 for all k > 0, then (us, vs) remains

stable. If λk1 λ
k
2 < 0 for some k > 0, then (us, vs) becomes unstable, and such

diffusion driven instability is often referred to as the Turing instability, which will



782 XIAOYING WANG AND XINGFU ZOU

lead to occurrence of spatially heterogeneous steady state, implying formation of
spatial patterns. Summarizing the above analysis, we have the following Theorem.

Theorem 4.1. Assume (33) holds, spatial homogeneous steady state (us, vs) of (9)
may lose stability only if

gu αβ(us)us − fu dv − gv du < 0, (35)

(gu αβ(us)us − fu dv − gv du)
2 − 4 du dv (fu gv − fv gu) > 0 (36)

hold.

Remark 1. Under the assumption (33), fu gv − fv gu > 0, and hence, by Theorem
4.1, pattern formation of (9) can not occur if

gu αβ(us)us > fu dv + gv du. (37)

4.1. Linear functional response. Following above general analysis of pattern
formation of spatial homogeneous equilibrium, we now proceed to further detailed
analysis when a particular functional response is chosen. First, we analyze possi-
ble pattern formation of (9) with the linear functional response, where p(u, v) = p
in (9). Either for the density-independent death rate or for the density-dependent
death rate of predators in (6), system (9) admits several spatial homogeneous steady
states. For (9), in addition to a trivial equilibrium E0(0, 0), a semi-trivial equilib-
rium E1((r0 − d)/a, 0) exists if r0 > d is satisfied. There exists a unique positive
equilibrium E(ū, v̄) for either predator death function in (6) if

r0 > d+
am1

c p
(38)

holds. However, formulas for E(ū, v̄) are different for each function, where ū =
m1

c p
, v̄ =

(
α c d k0 p+ aα k0m1 + c p2

)
−
√

∆1

−2 k0 αp2 c
,

∆1 = 4α c k0 p
2 (−c d p+ c p r0 − am1) + (−α c d k0 p− aα k0m1 − c p2)2

(39)

if m(v) = m1 while
v̄ =

(
c p2 + am2 + k0 α (d c p+ am1)

)
−
√

∆2

−2 k0 α (c p2 + am2)
, ū =

m1 +m2 v̄

c p
,

∆2 = 4 k0 α (c p2 + am2) (−c d p+ c p r0 − am1)

+ (−α c d k0 p− aα k0m1 − c p2 − am2)2

(40)

if m(v) = m1 +m2 v. Direct calculations show that pattern formation can not occur
around any constant steady state if the functional response is linear, which leads to
the following proposition.

Proposition 1. Either for m(v) = m1 or for m(v) = m1 +m2 v, pattern formation
can not occur around any of the constant steady states E0, E1, and E(ū, v̄).

Proof. Because the proofs for all steady states are similar, we show only the proof
of non-existence of pattern formation around E(ū, v̄) when m(v) = m1 here. Cal-
culations give

fu = −a ū < 0, fv = ū

(
− r0 k0 α

(1 + k0 α v̄)2
− p
)
< 0, gu = c p v̄, gv = 0. (41)
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This immediately verifies (33), implying that E(ū, v̄) is locally stable if it exists
when there is no spatial effect. Further substitution of (41) also shows that (37)
holds, and then there is no pattern formation around E(ū, v̄), by Remark 1.

In fact, under additional conditions, we can prove that the unique positive equi-
librium E(ū, v̄) is globally stable if m(v) = m1 +m2 v.

Theorem 4.2. Under existence condition (38) for E(ū, v̄), with density-dependent
death rate m(v) = m1 + m2 v for the predator, E(ū, v̄) is globally asymptotically
stable if 

c pM > m1, 4 du dv v̄ > c α2 ū v∗2,

min
{
a,
m2

c

}
>

r0 k0 α

2 (1 + k0 α v̄)

(42)

hold, where v∗ = (c pM −m1)/m2 and ū, v̄ are given in (40).

Proof. As indicated in the proof of Lemma 3.1, the L∞ norm of v(x, t) is bounded
for either m(v) = m1 or m(v) = m1 +m2 v. In fact, if the death rate of predators is
the density-dependent one, then a constant upper solution for the v equation exists.
Define

Fv = vt − dv ∆v − v (−m1 −m2 v + c p u) . (43)

Then by substituting v = v∗ into (43), we obtain

Fv∗ = −v∗ (−m1 −m2 v
∗ + c p u) ≥ 0 (44)

because 0 ≤ u ≤ M. By the parabolic comparison principle [32], we obtain that
v = v∗ is an upper solution of v(x, t) if v0(x, t) ≤ v∗. Therefore, X := {(u, v) ∈
R2|0 ≤ u ≤ M, 0 ≤ v ≤ v∗} is positive invariant for (9). Choose a Lyapunov
functional as

V (u, v) =

∫
Ω

(∫ u

ū

u− ū
u

du+
1

c

∫ v

v̄

v − v̄
v

dv

)
dx. (45)

If (u, v) is the solution to system (9), then we obtain

dV (u, v)

dt
=

∫
Ω

(
u− ū
u

ut +
1

c

v − v̄
v

vt

)
dx

=

∫
Ω

u− ū
u

(
du ∆u+ α∇ · (β(u)u∇v) +

r0 u

1 + k0 α v
− d u− a u2

− p u v
)
dx (46)

+
1

c

∫
Ω

v − v̄
v

[dv ∆v + v(−m1 −m2 v + c p u)] dx.

Rearranging (46) by separating the reaction and dispersal terms gives

dV (u, v)

dt
= V1(u, v) + V2(u, v), (47)

where

V1(u, v) =

∫
Ω

u− ū
u

[du ∆u+ α∇ · (β(u)u∇v)] +
v − v̄
c v

dv ∆v dx,

V2(u, v) =

∫
Ω

(u− ū)

(
r0

1 + k0 α v
− d− a u− p v

)
(48)

+
v − v̄
c

(−m1 −m2 v + c p u) dx.
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By using Neumann boundary condition (8) and divergence theorem, we obtain that

V1(u, v) = −du
∫

Ω

∇
(
u− ū
u

)
· ∇u dx− dv

c

∫
Ω

∇v · ∇
(
v − v̄
v

)
dx

− α
∫

Ω

β(u)u∇v · ∇
(
u− ū
u

)
dx

≤ −du ū
∫

Ω

|∇u|2

u2
dx− dv v̄

c

∫
Ω

|∇v|2

v2
dx+ α ū

∫
Ω

β(u)

u
|∇u| |∇v| dx (49)

= −
∫

Ω

XTAX (50)

where

X =

(
|∇u|
|∇v|

)
, A =


du ū

u2
−α ū β(u)

2u

−α ū β(u)

2u

dv v̄

c v2

 .

It is clear that V1(u, v) < 0 if A is a positive definite matrix, which is equivalent
to show that the trace and determinant of A are positive. The trace of A, which is
trA = (du ū)/(u2) + (dv v̄)/(2 v2) is clearly positive. The determinant of A is

detA =
du dv ū v̄

c u2 v2
− α2 ū2 β2(u)

4u2
. (51)

From (51), we obtain that detA > 0 is equivalent to

4 du dv v̄ > c α2 ū v2 β2(u). (52)

Because 0 ≤ u ≤M, 0 ≤ v ≤ v∗, a sufficient condition for (52) to hold is

f1 := 4 du dv v̄ > c α2 ū v∗2. (53)

Therefore, we obtain that

V1(u, v) = −
∫

Ω

XTAX ≤ 0 (54)

if (53) is satisfied.
Now we estimate V2(u, v) as

V2(u, v) =

∫
Ω

(u− ū)

(
r0

1 + k0 α v
− a u− p v −

(
r0

1 + k0 α v̄
− a ū− p v̄

))
+
v − v̄
c

(m2 v̄ − c p ū−m2 v + c p u) dx

= −a
∫

Ω

(u− ū)2 dx− m2

c

∫
Ω

(v − v̄)2 dx

−
∫

Ω

r0 k0 α

1 + k0 α v̄

(u− ū)(v − v̄)

1 + k0 α v
dx (55)

≤ −a
∫

Ω

(u− ū)2 dx− m2

c

∫
Ω

(v − v̄)2 dx

+

∫
Ω

r0 k0 α

1 + k0 α v̄

1

1 + k0 α v
|(u− ū)||(v − v̄)| dx
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≤ −a
∫

Ω

(u− ū)2 dx− m2

c

∫
Ω

(v − v̄)2 dx

+
r0 k0 α

2 (1 + k0 α v̄)

∫
Ω

(
(u− ū)2 + (v − v̄)2

)
dx

= −
(
a− r0 k0 α

2 (1 + k0 α v̄)

)∫
Ω

(u− ū)2 dx

−
(
m2

c
− r0 k0 α

2 (1 + k0 α v̄)

)∫
Ω

(v − v̄)2 dx

≤ 0 (56)

if

f2 := min
{
a,
m2

c

}
>

r0 k0 α

2 (1 + k0 α v̄)
(57)

holds. From (55), under (57), the only possibility such that V̇ (u, v) = 0 is (u, v) =
(ū, v̄). Hence, by the LaSalle invariance principle [22], we obtain the global stability
of E(ū, v̄) if (42) holds.

By checking conditions in (42), we can not obtain an explicit formula for the
predator-taxis sensitivity α due to the complex expressions of α in E(ū, v̄). Hence,
we employ numerical simulations to explore the role that α plays in global stability
of E(ū, v̄) by testing the parameter dependence of α in (53) and (57). As shown in
Figure 1, we see that E(ū, v̄) is globally asymptotically stable if α is small. Similarly,
by examining the impact of k0 on the global stability of E(ū, v̄), we observe that
E(ū, v̄) is globally asymptotically stable if k0 is small, as indicated in Figure 2. In
biological interpretation, Figures 1 and 2 show that prey and predators will tend
to a steady state if prey are less sensitive to perceive predation risk or the cost of
anti-predator defense on the local reproduction rate of prey is small, regardless of
spatial effect, provided that the linear functional response is adopted.

4.2. The Holling-type II functional response. Now we analyze possible pat-
tern formation of system (9) with the Holling type II functional response [15, 16]
i.e.,

p(u, v) =
p

1 + q u
. (58)

For general death function of predators defined in (6), a trivial equilibrium E0(0, 0)
always exists and a semi-trivial equilibrium E1((r0 − d)/a, 0) exists if r0 > d holds.
If the death function of predators is density-independent, i.e. m(v) = m1, a unique
positive equilibrium E(ū, v̄) exists if

c p > m1 q and r0 − d >
am1

c p−m1 q
(59)

hold, where

ū =
m1

c p−m1 q
, v̄ =

−a2 −
√
a2

2 − 4 a1 a3

2 a1
,

a1 = −k0 α (c p−m1 q)
2,

a2 = −α c2 d k0 p+ α c d k0m1 q − aα c k0m1 − c2 p2 + 2 cm1 p q −m2
1 q

2, (60)

a3 = −c (c d p− c p r0 − dm1 q +m1 q r0 + am1).
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Figure 1. Conditions of global stability of E(ū, v̄) when α varies
with m(v) = m1 + m2 v and p(u, v) = p. Parameters are: r0 =
5, a = 1, d = 0.2, p = 0.5, c = 0.5, m1 = 0.3m2 = 1, M =
10, du = 1, dv = 2, k0 = 1.

0 2 4 6 8 10
−5

−4

−3

−2

−1

0

1

2

3

4

k
0

f 1
,f

2

Global stability conditions of E(ū, v̄) with varying k0
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Figure 2. Conditions of global stability of E(ū, v̄) when k0 varies
with m(v) = m1 + m2 v and p(u, v) = p. Parameters are: r0 =
5, a = 1, d = 0.2, p = 0.5, c = 0.5, m1 = 0.3m2 = 1, M =
10, du = 1, dv = 2, α = 0.5.
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Calculations indicate that pattern formation can not occur around any of these
steady states E0, E1, and E(ū, v̄) if m(v) = m1, which is shown in the following
proposition.

Proposition 2. Choose the functional response in (58) for (9). If the death
function of predators is density-independent, then pattern formation can not oc-
cur around all the steady states E0, E1, and E(ū, v̄) of system (9).

Proof. Here we only show the proof for the unique positive equilibrium E(ū, v̄)
because the proofs for E0, E1 are similar and are thus omitted. Direct calculations
lead to

fu = ū

(
p q v̄

(1 + q ū)2
− a
)
, fv = − r0 k0 α ū

(1 + k0 α v̄)2
− p ū

1 + q ū
,

gu =
c p v̄

(1 + q ū)2
, gv = −m1 +

c p ū

1 + q ū
.

(61)

By substituting ū, v̄ in (60) into (61), we obtain that fv < 0, gu > 0, gv = 0.
Then (33) can be simplified to fu < 0, and hence, (37) holds and therefore, pattern
formation is impossible to occur around E(ū, v̄).

Now we proceed to analyze the case where the death function of predators is
the density-dependent one in (6). Similar analyses to that in Proposition 2 show
that there is no pattern formation around E0 and E1. For the positive equilibrium
E(ū, v̄) when m(v) = m1 + m2 v, explicit formula of E(ū, v̄) can not be obtained
due to the complexity. However, under the extra conditions in (59), the existence
of at least one positive equilibrium E(ū, v̄) of (9) is guaranteed, as stated in the
following lemma.

Lemma 4.3. If m(v) = m1+m2 v, then there exists at least one positive equilibrium
E(ū, v̄) for (9) if (59) holds.

Proof. From (9), the positive equilibrium E(ū, v̄) satisfies

ū =
m1 +m2 v̄

(c p−m1 q)−m2 q v̄
. (62)

By (62), the positivity of ū requires that v̄ < v̄max, where v̄max is defined by

v̄max =
(c p−m1 q)

m2 q
. (63)

In addition, v̄ is determined by

L(v̄) := a1 v̄
4 + a2 v̄

3 + a3 v̄
2 + a4 v̄ + a5 = 0, (64)

where

a1 = −αk0m
2
2 q

2, a2 = m2 q (2α c k0 p− 2αk0m1 q −m2 q),

a3 = −(c2 p2 + ((−dm2 − 2m1 p) q + am2) c+ q2m2
1) k0 α+ 2 q m2 (c p−m1 q),

a4 = (−αd k0 p− p2) c2 + (((αd k0 + 2 p)m1 +m2 (d− r0)) q (65)

− a (αk0m1 +m2)) c− q2m2
1,

a5 = −c ((−d q + q r0 + a)m1 + c p (d− r0)).

By substituting v̄ = 0 into (64), we obtain

L(v̄ = 0) = a5 > 0⇔ (c p−m1 q)(r0 − d) > am1, (66)
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which is equivalent to (59). Moreover, substituting v̄ = v̄max into (64) gives

L(v̄ = v̄max) = −a c
2 p (α c k0 p− αk0m1 q +m2 q)

m2 q2
< 0 (67)

if (59) holds. Therefore, by the intermediate value theorem, there exists at least
one v̄ ∈ [0, v̄max] such that L(v̄) = 0. Hence, the existence of at least one positive
equilibrium E(ū, v̄) is guaranteed if (59) holds.

When E(ū, v̄) exists under m(v) = m1 +m2 v, we employ numerical simulations
to examine how α would change the stability of E(ū, v̄) when spatial effects exist and
generate possible spatial heterogenous patterns. Figure 3 indicates that if α is large,
the population of both prey and predators tend to a spatial homogeneous steady
state. However, if α is small, spatial heterogenous pattern appears, as indicated
in Figure 4. Biologically, weak prey sensitivity to predation risk is an underlying
mechanism for generating spatial patterns in the predator-prey system. Notice that
anti-predator behaviors of prey also lead to a cost on the local reproduction of
prey. However, the magnitudes of impact that anti-predator behaviors exert on the
dispersal of prey and on the local reproduction of prey may be different. Therefore,
we also test the role that k0 plays in predator-prey system. By increasing the value
of k0 to k0 = 20 while holding other parameters in Figure 4 unchanged, we obtain a
figure similar to Figure 3 (omitted). Further check by substituting parameters into
(35) and (36) gives a contradiction, which confirms the non-existence of pattern
formation. Therefore, we conclude that large cost of anti-predator response of prey
in its reproduction has a stabilizing effect by excluding the appearance of pattern
formation and ensures the stability of the positive spatial homogeneous steady state.

4.3. Ratio-dependent functional response. In this section, we analyze (9) with
the ratio-dependent functional response, i.e.

p(u, v) =
b1

b2 v + u
(68)

again with the predator death rate functions given in (6). For either death func-
tion of predators, system (9) with (68) admits a spatial homogeneous semi-trivial
equilibrium E1 ((r0 − d)/a, 0) , which exists if r0 > d. Direct calculations show that
pattern formation can not occur around E1. The proof is similar to the proof in
Proposition 2 and is omitted here.

4.3.1. With density independent death rate for the predator. Consider the case with
m(v) = m1 first for simplicity. A unique positive equilibrium E(ū, v̄) exists when
m(v) = m1 if

c b1 > m1 and r0 − d >
c b1 −m1

c b2
, (69)

where 

ū =
m1 b2 v̄

c b1 −m1
, v̄ =

−a2 −
√
a2

2 − 4 a1 a3

2 a1
,

a1 = −k0 αam1 b
2
2 c,

a2 = −k0 α (m1 − c b1)2 − c b2 (am1 b2 + k0 αd (c b1 −m1)) ,

a3 = −(c b1 −m1) ((c b1 −m1) + c b2 (d− r0)) .

(70)

Assume E(ū, v̄) exists and we analyze necessary conditions for pattern formation
around E(ū, v̄). First consider a special case where prey avoid predation towards
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(a) u(x, t)

(b) v(x, t)

Figure 3. Spatial homogeneous steady states of u, v with the
Holling type II functional response and density-dependent death
function of predators when α is large. Parameters are: r0 =
.8696, d = .1827, a = .6338, p = 6.395, q = 4.333, m1 = 0.72e −
2, m2 = .9816, c = .2645, du = 0.2119e − 1, dv = 1.531, α =
12, k0 = 0.1e− 1, M = 10, L = 4.

lower gradient of predator density but there is no cost on the reproduction success
of prey (i.e. k0 = 0 in (9)). When k0 = 0, ū, v̄ are simplified to

ū =
c b2 (r0 − d)− (c b1 −m1)

b2 a c
, v̄ =

(c b1 −m1) (c b2 (r0 − d)− (c b1 −m1))

am1 c b22
, (71)
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(a) u(x, t)

(b) v(x, t)

Figure 4. Spatial heterogeneous steady states of u, v with the
Holling type II functional response and density-dependent death
function of predators when α is small. Parameters are: r0 =
.8696, d = .1827, a = .6338, p = 6.395, q = 4.333, m1 = 0.72e −
2, m2 = .9816, c = .2645, du = 0.2119e − 1, dv = 1.531, α =
8, k0 = 0.1e− 1, M = 10, L = 4.

which do not involve α. In this case, substituting (71) into (35) and (36) gives the
following proposition.
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Proposition 3. When (69) holds and k0 = 0, pattern formation around E(ū, v̄)
may occur if

r0 − d >
(c b1 −m1)(c b1 +m1 − c b2m1)

b1 b2 c2
, (72)

α <
fu dv + gv du − 2

√
du dv (fu gv − fv gu)

gu β(ū) ū
(73)

hold.

Proof. Direct calculations show that at E(ū, v̄), we have

fu = ū

(
−a+

b1 v̄

(b2 v̄ + ū)2

)
, fv = ū

(
− b1
b2 v̄ + ū

+
b1 b2 v̄

(b2 v̄ + ū)2

)
,

gu =
c b1 b2 v̄

2

(b2 v̄ + ū)2
, gv = − c b1 b2 ū v̄

(b2 v̄ + ū)2
.

(74)

Substituting (74) into (35) and (36) gives
α <

fu dv + gv du
gu β(ū)ū

,

α <
fu dv + gv du − 2

√
du dv (fu gv − fv gu)

gu β(ū) ū
,

(75)

which leads to (73). Moreover, (33) needs to be satisfied to guarantee the local
stability of E(ū, v̄) without spatial effect. From (74), it is clear that λ0

1 λ
0
2 > 0 is

always satisfied if E(ū, v̄) exists and λ0
1 + λ0

2 < 0 gives (72).

Proposition 3 implies that when there is no cost of anti-predator defense on the
reproduction success of prey, small predator-taxis sensitivity α may lead to pattern
formation around E(ū, v̄). Taking α as a bifurcation parameter, then bifurcation
from the spatial homogeneous steady state E(ū, v̄) to a spatial heterogeneous steady
state occurs at

αc =
fu dv + gv du − 2

√
du dv (fu gv − fv gu)

gu β(ū) ū
. (76)

By choosing parameter values as shown in Figure 5 and substituting them into (76),
we obtain the critical value of bifurcation αc = 9.874. Figure 5 shows that if α > αc,
local stability of ū, v̄ remains even if spatial effects exist. Notice that for model (9),
a bounded domain Ω is considered. Therefore, conditions (72) and (73) only give
necessary conditions of pattern formation around E(ū, v̄). To proceed with more
detailed analysis, consider a one-dimensional domain [0, L] with no-flux boundary
condition, where the wave number k can be expressed explicitly as k = (nπ)/L
with n = 0, ±1, ±2 · · · . From (31), the instability of E(ū, v̄) may only occur if
b(k2) changes from positive to negative for some k > 0 such that

k2
1 < k2 < k2

2 (77)

where

k2
1 =
− (gu αβ(ū)ū− fu dv − gv du)−

√
∆

2 du dv
,

k2
2 =
− (gu αβ(ū)ū− fu dv − gv du) +

√
∆

2 du dv
,

∆ = (gu αβ(ū) ū− fu dv − gv du)
2 − 4 du dv (fu gv − fv gu) .

(78)
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Equivalently, (77) in terms of modes n becomes

n2
1 < n2 < n2

2, (79)

where n1 = (k1 L)/π, n2 = (k2 L)/π. For a bounded domain, the wave number is
discrete [26]. Therefore, the critical value of bifurcation αc = 9.874 we obtained
above may not be the actual bifurcation value because an integer n satisfying (79)
may not exist. However, by choosing parameters in Figure 6, we obtain that n1 =
0.6177, n2 = 8.0317, which admits at least one integer n such that (79) is satisfied.
Hence, for this parameter set, conditions (72) and (73) are in fact sufficient and
necessary conditions for pattern formation. With parameters in Figure 6, positive
equilibrium E(ū, v̄) loses stability for some spatial modes and heterogeneous spatial
patterns emerge.

Now we analyze the case where k0 6= 0, i.e. there exists cost on the reproduction
rate of prey due to anti-predator behaviors of prey. Noticing from (70) that ū and
v̄ contain α if k0 6= 0. Still regarding α as a bifurcation parameter in the following
analysis but with k0 6= 0, an explicit formula of α can not be obtained due to the
complexity of (70). Therefore, we employ numerical simulations to explore the role
that α plays in pattern formation when k0 6= 0. By choosing parameters in Figure 7,
conditions in (33) are satisfied. Furthermore, the solid line in Figure 7 corresponds
to (35) and the dashed line in Figure 7 represents (36). It is clear that α should
satisfy {

α > α1 = 0.2979,

α > α2 = 0.5277 or α < α3 = 0.1833
(80)

to ensure the pattern formation of E(ū, v̄). Hence, we obtain that α > α2 is a
necessary condition for diffusion-taxis-driven instability of E(ū, v̄) by (80). We
conjecture that α > α2 is also a sufficient condition. Indeed, numerical simulations
support this conjecture, implying that α = α2 is the bifurcation value for pattern
formation. Figure 8 confirms that if α is relatively small, the density of prey and
predators tend to a spatial homogeneous steady state eventually. However, if we
increase the value of α until it passes the critical bifurcation value α = α2, then
spatial heterogeneous steady state emerge, as shown in Figure 9.

By comparing the two cases where k0 = 0 and k0 6= 0, we find some interesting
distinctions between the two cases. If k0 = 0, then prey avoid predators by mov-
ing towards lower predator density locations but there is no cost of anti-predator
behaviors on the local reproduction success of prey. In this circumstance, small
predator-taxis leads to instability of spatial homogeneous steady state of predator-
prey system, which eventually form spatial heterogeneous patterns. Similar results
have been obtained in [18], in which the opposite scenario where prey move ran-
domly but predators chase prey by moving towards higher prey density gradient in
addition to random diffusion was studied. In [18], by considering the same ratio
dependent functional response between prey and predators, the authors concluded
that spatial pattern formation may occur if the prey-taxis was small. However,
in contrast to the case where k0 = 0 or the similar conclusion in [18], if k0 6= 0,
(i.e. the cost of anti-predator response is incorporated), analyses above show that
large predator-taxis may result in spatial pattern formation. Biologically, when the
cost of anti-predator behaviors exists, strong anti-predator behaviors of prey have
a destabilizing effect by destroying the stability of the uniformly distributed equi-
librium, and giving rise to spatial non-homogeneous patterns. On the other hand,
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weak anti-predator behaviors of prey have a stabilizing effect in predator-prey sys-
tem by excluding the emergence of spatial pattern formation. Notice that stronger
anti-predator behaviors of prey also carry larger cost on the reproduction success of
prey. In order to examine the impact that the cost of avoidance behaviors of prey
exerts on spatial distribution of prey and predators, we also conduct simulations
by varying the value of k0. Decreasing the value of k0 while holding other param-
eters in Figure 9 unchanged gives Figure 10, which shows that solutions tend to
a homogeneous steady state. Further computation confirms that small k0 leads to
the violation of conditions (35) and (36), which excludes the possibility of pattern
formation. In biological interpretation, small cost of anti-predator behaviors has a
stabilizing effect by converting a spatial heterogeneous steady state into a spatial
homogeneous one if the functional response between predators and prey is ratio
dependent.

We also point out here that in [3], the authors analyzed pattern formation of
a predator-prey system where both prey and predators disperse randomly. By
using numerical simulations, and considering the same ratio-dependent functional
response, the authors concluded that the most possible Turing pattern occurred at
places where the growth rate of prey and the death rate of predators were similar
[3]. As a special case of (9), we also analyze the model

∂u

∂t
= du ∆u+

r0 u

1 + k0 α v
− d u− a u2 − b1 u v

b2 v + u
,

∂v

∂t
= dv ∆v + v

(
−m1 +

c b1 u

b2 v + u

)
.

(81)

As shown in (81), different from model (9), prey have no directed movement but
disperse randomly in the habitat. However, in local reaction between prey and
predators, the cost of anti-predator behaviors still exists and the reproduction suc-
cess of prey is reduced as a result. For notational convenience, let k1 = k0 α, which
represents the level of anti-predator behaviors. Higher level of anti-predator de-
fense of prey (i.e. larger value of k1) leads to lower reproduction rate of prey. Again
similar to the analysis above when k0 6= 0, we conduct numerical simulations to
analyze the role that k1 exerts in pattern formation. By plotting (35) and (36) with
respect to varying k1, a figure which is very similar to Figure 7 is obtained, indicat-
ing that large k1 may lead to pattern formation. Further numerical simulations of
(u(x, t), v(x, t)) over time and space confirm that spatial heterogeneous patterns are
formed if k1 is large, which are similar to Figures 6(a) and 6(b) respectively and are
thus omitted. The above analyses of (81) indicate that small cost of anti-predator
behaviors has a stabilizing effect on predator-prey system by excluding the possibil-
ity of Turing bifurcation when both prey and predators move randomly. Different
from [3], by incorporating the cost of fear into modelling, Turing instability may
or may not occur when birth rate of prey r0 and death rate of predators m1 are
similar, depending on the value of k1 indeed.

4.3.2. With density dependent death rate for the predator. Now we proceed to the
case where the death function of predators is density dependent, where m(v) =
m1 +m2 v. The existence of positive equilibrium is shown in the following lemma.

Lemma 4.4. If m(v) = m1 + m2 v, then at least one positive equilibrium E(ū, v̄)
exists if (69) holds.
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Proof. From (9), it is obvious that ū satisfies

ū =
b2 v̄ (m2 v̄ +m1)

(b1 c−m1)−m2 v̄
. (82)

Obviously, the existence of ū requires that

v̄ <
b1 c−m1

m2
:= v̄max, (83)

where b1 c > m1 holds by (69). Moreover, v̄ is determined by

F (v̄) := a1 v̄
3 + a2 v̄

2 + a3 v̄ + a4 = 0, (84)

where

a1 = −αk0m2 (a b22 c+m2),

a2 = −m2
2 + (((b2 d+ 2 b1) c− 2m1) k0 α− a b22 c)m2 − aα b22 c k0m1,

a3 = −α b1 k0 (b2 d+ b1) c2 + (k0m1 (b2 d+ 2 b1)α− a b22m1 (85)

+m2 (d− r0) b2 + 2 b1m2) c− αk0m
2
1 − 2m1m2,

a4 = −(b1 c−m1) (b2 c d− b2 c r0 + b1 c−m1).

From (85), a4 > 0 is equivalent to

(r0 − d) b2 c > b1 c−m1, (86)

which is implied by (69). Furthermore, substituting v̄ = v̄max into (84) gives

F (v̄max) = −a b1 b
2
2 c

2 (b1 c−m1) (α b1 c k0 − αk0m1 +m2)

m2
2

< 0 (87)

if b1 c > m1 is satisfied. Therefore, by the intermediate value theorem, there exists
at least one positive equilibrium E(ū, v̄) if (69) holds.

When E(ū, v̄) exists with m(v) = m1 + m2 v, we analyze possible pattern for-
mation and conduct numerical simulations, following the same procedures as in the
previous case where m(v) = m1. Both theoretical and numerical results are similar
to the previous case, in which strong anti-predator behaviors (i.e. large α) induces
a spatial heterogeneous steady state, while weak anti-predators behaviors stabilize
the system by converting solutions to spatial homogeneous ones. Moreover, small
cost of anti-predator behaviors on prey reproduction (i.e. small k0) may also ex-
clude the occurrence of pattern formation. The difference between the two cases
where m(v) = m1 and m(v) = m1 + m2 v lies in that for m(v) = m1 + m2 v, large
k0 induces spatial homogeneous but time-periodic solutions (Hopf bifurcation), as
shown in Figure 11. However, if m(v) = m1, increasing the value of k0 can not
give time-periodically solutions but remain spatial heterogeneous solutions. By fur-
ther substituting parameters in Figure 11 into (33), we find that large k0 leads
to fu + gv > 0, which implies that time-periodic solutions emerge due to Hopf
bifurcation.

4.4. Beddington-DeAngelis functional response. In this section, we analyze
possible pattern formation when p(u, v) in (9) is chosen as the Beddington-DeAngelis
functional response [7, 12], i.e.,

p(u, v) =
p

1 + q1 u+ q2 v
. (88)
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(a) u(x, t)

(b) v(x, t)

Figure 5. Spatial homogeneous steady states of u, v when k0 = 0,
α is large, m(v) = m1, and p(u, v) = b1/(b2 v + u). Parameters
are: r0 = 6.1885, d = 4.0730, a = 0.8481, b1 = 4.5677, b2 =
1.4380, m1 = 1.6615, c = 0.9130, α = 12, du = 0.0113, dv =
4.7804, M = 10, k0 = 0, L = 5.0212.

For either death function m(v) of predators in (6), a trivial equilibrium E0(0, 0)
always exists and a semi-trivial equilibrium E1((r0−d)/a, 0) exists if r0 > d. Math-
ematical analyses show that pattern formation can not occur around E0 or E1.
Because the result is similar to the results in previous sections and the analyses
follow standard procedures, we omit the proof here. Due to the complexity of the
Beddington-DeAngelis functional response (88), pattern formation around positive
equilibrium is explored by numerical simulations. As shown in Figure 12 and Figure
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(a) u(x, t)

(b) v(x, t)

Figure 6. Spatial heterogenous steady states of u, v when k0 = 0,
α is small, m(v) = m1, and p(u, v) = b1/(b2 v + u). Parameters
are: r0 = 6.1885, d = 4.0730, a = 0.8481, b1 = 4.5677, b2 =
1.4380, m1 = 1.6615, c = 0.9130, α = 5.1571, du = 0.0113, dv =
4.7804, M = 10, k0 = 0, L = 5.0212.

13 respectively, for the case where m(v) = m1, small α may induce pattern forma-
tion but large α inhibits the emergence of spatial heterogeneous patterns. The
simulation results hold for either k0 = 0 or k0 6= 0. Also, we obtain a figure which
is very similar to Figure 12 by increasing the value of k0 to k0 = 10 while holding
other parameters in Figure 13 unchanged. Biologically, it indicates that large cost of
anti-predator behaviors on the reproduction of prey has a stabilizing effect by con-
verting a spatially heterogeneous steady-state to spatially homogeneous one. The



A PREDATOR-PREY MODEL WITH FEAR EFFECT 797

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

α

co
n

1
,c

o
n

2

Conditions of pattern formaion with changing α

 

 
con1
con2
α

1

α
2

α
3

Figure 7. Conditions of diffusion-taxis-driven instability of
E(ū, v̄) with changing α when k0 6= 0, m(v) = m1, and p(u, v) =
b1/(b2 v + u). Parameters are: r0 = 1.7939, d = 0.2842, a =
0.4373, b1 = 2.9354, b2 = 3.2998, m1 = 0.5614, c = 0.6010, du =
0.0344, dv = 7.2808, k0 = 8.0318, M = 10.

same conclusions hold for the case where m(v) = m1 +m2 v, for which we conduct
simulations and do not observe difference from the previous density-independent
case.

5. Conclusions and discussions. In this paper, we propose a spatial predator-
prey model with avoidance behaviors in the prey as well as the corresponding cost
of anti-predator responses on the reproduction success of prey. The focus is on
the formation of spatial patterns. Various functional responses and both density-
independent and density-dependent death rates of predators are considered for the
model.

Mathematical analyses show that pattern formation cannot occur if the func-
tional response is linear, or it is the Holling type II but the death rate of the preda-
tors is density-independent. However, pattern formation may occur if the death
rate of predators is density-dependent with the Holling type II functional response.
Moreover, functional responses other than the prey-dependent only ones, includ-
ing ratio-dependent functional response and the Beddington-DeAngelis functional
response, may also allow the emergence of spatial heterogeneous patterns. Under
conditions for pattern formation, the common point for the case with the Holling
type II functional response and the case where the functional response is chosen
as the Beddington-DeAngelis type is that small prey sensitivity to predation risk
(i.e. small α) induces spatial heterogeneous steady states while large α excludes
pattern formation. In addition, large cost of anti-predator behaviors on the repro-
duction rate of prey (i.e. large k0) has a stabilizing effect by transferring spatial
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(a) u(x, t)

(b) v(x, t)

Figure 8. Spatial homogeneous steady states of u, v when k0 6= 0,
α is small, m(v) = m1, and p(u, v) = b1/(b2 v + u). Parameters
are: r0 = 1.7939, d = 0.2842, a = 0.4373, b1 = 2.9354, b2 =
3.2998, m1 = 0.5614, c = 0.6010, du = 0.0344, dv = 7.2808, k0 =
8.0318, M = 10, α = 0.3, L = 2.6602.

heterogeneous steady states into homogeneous ones. The case where the functional
response is a ratio-dependent one exhibits different mechanisms for pattern forma-
tion, compared with other cases. For a special case where the prey avoid predation
by moving toward habitats with lower predator density but the cost of such anti-
predator behaviors is ignored (i.e. k0 = 0), we obtain similar conclusions. However,
if the cost of anti-predator responses is incorporated, mathematical analyses give an
opposite result. To elaborate, large prey sensitivity to predation risk (i.e. large α)
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(a) u(x, t)

(b) v(x, t)

Figure 9. Spatial heterogenous steady states of u, v when k0 6= 0,
α is large, m(v) = m1, and p(u, v) = b1/(b2 v + u). Parameters
are: r0 = 1.7939, d = 0.2842, a = 0.4373, b1 = 2.9354, b2 =
3.2998, m1 = 0.5614, c = 0.6010, du = 0.0344, dv = 7.2808, k0 =
8.0318, M = 10, α = 0.7957, L = 2.6602.

may lead to a spatially heterogeneous steady state by destroying the local stability
of a positive constant equilibrium while small α excludes the possibility of pattern
formation. Moreover, different from other cases where large k0 stabilizes system,
in the case of ratio dependent functional response, small k0 inhibits the emergence
of pattern formation and stabilize a homogeneous equilibrium as well. By these
results obtained by both mathematical analyses and numerical simulations, we may
conclude that anti-predator behaviors of prey and the cost on prey’s reproduction
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(a) u(x, t)

(b) v(x, t)

Figure 10. Spatial homogeneous steady states of u, v when k0 is
small, α 6= 0, m(v) = m1, and p(u, v) = b1/(b2 v + u). Parame-
ters are: r0 = 1.7939, d = 0.2842, a = 0.4373, b1 = 2.9354, b2 =
3.2998, m1 = 0.5614, c = 0.6010, du = 0.0344, dv = 7.2808, k0 =
2, M = 10, α = 0.7957, L = 2.6602.

success have important impacts on pattern formation in spatial predator-prey sys-
tems. Avoidance behaviors of prey and the cost of fear may have either stabilizing
effect or destabilizing effect, when they interplay with different functional responses.

In this paper, we mainly focused on modelling avoidance behaviors and the cost
of anti-predator behaviors in the reproduction of prey in a spatial predator-prey
system. Therefore, predators are assumed to move randomly in their habitats. In
reality some predator species demonstrate prey-taxi when they forage for their preys
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(a) u(x, t)

(b) v(x, t)

Figure 11. Spatial homogeneous but temporal periodic solu-
tion u, v over time when m(v) = m1 + m2 v, k0 is large, and
p(u, v) = b1/(b2 v+u). Parameters are: r0 = 4.8712, d = .9235, a =
.9508, b1 = .3433, b2 = .6731, m1 = 0.228e − 1, m2 = .7908, c =
.2959, du = .1516, dv = 8.5545, k0 = 10, α = 7.4798, M = 10, L
= 10.

(see, e.g., [43]). It is interesting to see how the prey-taxis effect on the predators and
the predator-taxi effect on the prey (fear effect) will jointly affect the population
dynamics in the predator-prey system. A even more interesting question would
be how these two types of taxi effects will interplay with the cost of anti-predator
behaviors. We leave these as possible future work.
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(a) u(x, t)

(b) v(x, t)

Figure 12. Spatial homogeneous steady states of u, v when
m(v) = m1, k0 6= 0, α is large, and p(u, v) = p/(1+ q1 u+ q2 v). Pa-
rameters are: r0 = .3558, d = 0.832e − 1, a = 0.106e − 1, p =
.6313, q1 = .4418, q2 = .3188, m1 = .4901, c = .4780, du =
0.324e− 1, dv = 3.7446, M = 100, α = 0.1, k0 = 1, L = 7.
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(a) u(x, t)

(b) v(x, t)

Figure 13. Spatial heterogeneous steady states of u, v when
m(v) = m1, k0 6= 0, α is small, and p(u, v) = p/(1 + q1 u + q2 v).
Parameters are: r0 = .3558, d = 0.832e − 1, a = 0.106e − 1, p =
.6313, q1 = .4418, q2 = .3188, m1 = .4901, c = .4780, du =
0.324e− 1, dv = 3.7446, M = 100, α = 0.01, k0 = 1, L = 7.
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