
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2013.10.463
AND ENGINEERING
Volume 10, Number 2, April 2013 pp. 463–481

ON LATENCIES IN MALARIA INFECTIONS AND THEIR

IMPACT ON THE DISEASE DYNAMICS

Yanyu Xiao and Xingfu Zou

Department of Applied Mathematics

University of Western Ontario

London, Ontario, N6A 5B7, Canada

(Communicated by Jia Li)

Abstract. In this paper, we modify the classic Ross-Macdonald model for

malaria disease dynamics by incorporating latencies both for human beings

and female mosquitoes. One novelty of our model is that we introduce two
general probability functions (P1(t) and P2(t)) to reflect the fact that the

latencies differ from individuals to individuals. We justify the well-posedness

of the new model, identify the basic reproduction number R0 for the model
and analyze the dynamics of the model. We show that when R0 < 1, the

disease free equilibrium E0 is globally asymptotically stable, meaning that the

malaria disease will eventually die out; and if R0 > 1, E0 becomes unstable.
When R0 > 1, we consider two specific forms for P1(t) and P2(t): (i) P1(t)

and P2(t) are both exponential functions; (ii) P1(t) and P2(t) are both step

functions. For (i), the model reduces to an ODE system, and for (ii), the long
term disease dynamics are governed by a DDE system. In both cases, we are

able to show that when R0 > 1 then the disease will persist; moreover if there

is no recovery (γ1 = 0), then all admissible positive solutions will converge
to the unique endemic equilibrium. A significant impact of the latencies is

that they reduce the basic reproduction number, regardless of the forms of the
distributions.

1. Introduction. Malaria is an infectious disease that is widely spread in tropical
and subtropical regions for thousands of years and causes deaths in human beings. It
is due to infection by one or more of a family of protozoa called Plasmodium, mainly
consisting of four species: Plasmodium falciparum, Plasmodium vivax, Plasmodium
malariae and Plasmodium ovale. The pathogen can parasite in the blood cells and
other tissues of both human beings and mosquitoes. The infection between human
beings and mosquitoes is through biting by female mosquitoes to human beings.
Based on such a transmission mechanism, it was initially widely believed that the
disease could be wiped out only by eradicating all vector mosquitoes, which turned
out to be impossible in practice.

It was Ross [19] who firstly used a mathematical model to quantitatively inves-
tigated the spread of malaria. Ross’ model was later further extended and studies
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by Macdonald [16, 17, 18], leading to the following system which has been referred
to as the Ross-Macdonald model

dI1
dt = ae1I2(1− I1

N )− d1I1,

dI2
dt = ae2(M − I2) I1N − d2I2.

(1)

Here I1 and I2 represent the populations of the infectious classes of human beings
and female mosquitoes respectively, N and M are the total populations of human
beings and female mosquitoes respectively, which are assumed to be constants. The
constant a is the mosquito biting rate; e1 is the probability that a biting by an
infective mosquito to a susceptible person will cause infection to the person; and
e2 is the probability that a biting by an susceptible mosquito to a infective human
individual will cause infection to the mosquito. The parameters d1 and d2 are the
death rates of infectious human beings and mosquitoes respectively. By analyzing
this mathematical model, both Ross and Macdonald found that it is possible to
eradicate the disease without killing all vector mosquitoes. Indeed, by looking at
basic reproduction number for this model given by

R0 =
ae1M

d1N

ae2
d2

, (2)

one knows that any measure(s) that can bring R0 to a value less than 1 would even-
tually drive the disease to extinction, including controlling the mosquito population
M to a sufficiently lower level. Obviously, the approach of mathematically mod-
eling provides much insight into the spread of malaria, by which, effective means
to control the disease can be suggested. For example, in addition to decreasing M
to certain level (by spraying mosquito pesticides) which was Ross and Macdonald’s
finding, decreasing the biting rate (achievable by using mosquito nets) can also help
eradicate malaria.

The Ross-Macdonald model is mathematically tractable in the sense that long
term solution behavior of the model system (1) can be fully determined by the
combined parameter R0. Yet, it is biologically less accurate in the sense that many
biological factors are omitted. One of the important factors is the latency in the
transmission process. This can be seen from the life cycle of malaria parasite.
The life cycle of the Plasmodium begins from a blood meal of female mosquito
from human beings. After being bitten by an infected female mosquito, a person
receives an inoculum of plasmodium parasite (sporozoites). About half an hour
later, liver cells of the person are invaded by sporozoites. The reproduction of
parasites (merozoites) occurs in liver cells again and again, releasing more free
merozoites to infect more liver cells. The immature trophozoites, the name of the
merozoites at this stage, become mature developing either in the sexual or asexual
way. Those who undergo the asexual development will go to the erythrocytic cycle
producing more immature trophozolie, while others grows to gametocytes in the
sexual way waiting for going out to the body of a female mosquito via its biting.
Once they are ingested into a female mosquito, the parasite gametocytes taken up
in the blood will further differentiate into male or female gametes and then fuse
in the mosquito gut. This produces an ookinete that penetrates the gut lining
and produces an oocyst in the gut wall. When the oocyst ruptures, it releases
sporozoites that migrate through the mosquito’s body to the salivary glands, where
they are then ready to infect a new human host. See, e.g. [2, 22] for details on this
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topic. Both developments inside a mosquito and inside an human host described
above take some time.

Some modellers have noticed the missing of latencies in the Ross-Macdonald
model and have proposed replacements by delay differential equations, but most
of these works only have incorporated a single delay denoting the latency of the
parasite in mosquitoes, see, e.g., [2, 3, 14]. Recently Ruan et al [20] modified the
model (1) by adding two delays accounting for the latencies in mosquitoes and
humans respectively, resulting in the following delayed and rescaled system

dx(t)
dt = ame1y(t− τ1)[1− x(t− τ1)]e−d1τ1 − d1x(t),

dy(t)
dt = ae2[1− y(t− τ2)]x(t− τ2)e−d2τ2 − d2y(t),

(3)

where m = M/N , x = I1/N and y = I2/M , and the term e−d1τ1 (e−d2τ2 resp. ) ac-
counts for the probability that an infected human host (mosquito resp.) can survive
the latent period τ1 (τ2 resp.). Note that (3) is exactly the subsystem of the model
proposed in Anderson and May [1, p.399], consisting of the infectious components
only, which is decoupled from the full system there. However no analysis was done
in [1]. For this modified model, the basic reproduction number is adjusted to

R0 =
a2e1e2me

−d1τ1e−d2τ2

d1d2
. (4)

It is shown in [20] that when R0 < 1, then the disease free equilibrium (0, 0) is
stable; when R0 ≥ 1, then (0, 0) is unstable and there is an endemic equilibrium
(x∗, y∗) which is locally asymptotically stable provided that the two delays are small
and

a2e1e2m < ae2d1 + 2d1d2. (5)

This condition is a mathematically technical one, and it does not seem to have a
biological explanation. Numerical simulations indicate that solutions of (3) with
initial values from the region [0, 1] × [0, 1] can go outside this region, causing a
confusion since x(t) and y(t) are proportional variables. This confusion suggests
a careful revisit to the model. Moreover, the latencies of the malaria parasite in
mosquitoes may differ from individual to individual, and so do the latencies in
humans. This requires some mechanism in the model to reflect such variances of
the latencies.

The goal of this paper is to derive a more general and more realistic model
that incorporates not only the latencies of the malaria parasite in both mosquitoes
and humans, but also the variances of the latencies. In Section 2, following the
idea in [25], we will formulate a more general model with two probability functions
P1(t) and P2(t) describing the latency distributions for humans and for mosquitoes
respectively. In Section 3, we analyze our new model. Under some reasonable as-
sumptions, we address the well-posedness, identify the basic reproduction number
R0 for the model, and prove that the disease free equilibrium is globally asymp-
totically stable if R0 < 1. When R0 > 1, the disease dynamics is more difficult
to determine for general P1(t) and P2(t), hence we consider two specific cases for
P1(t) and P2(t). In Sub-Section 3.2, we consider the case that P1(t) and P2(t) are
both exponential functions, resulting in an ODE system; in Sub-Section 3.3, we take
P1(t) and P2(t) as step functions, leading to a system of delay differential equations
(DDE). In both cases, we are able to obtain results on the disease dynamics. In
Section 4, we summarize our main results and give some remarks discussing the
modelling issue.
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2. Model formulation for general latency distributions. Denote the size of
the population of human beings by N(t) and that of the female mosquitoes by
M(t). Let S1(t) and I1(t) be, respectively, the sub-populations of the suscepti-
ble and infectious classes of human hosts and S2(t) and I2(t) be the respective
sub-populations of the susceptible and infectious classes of female mosquitoes. As
mentioned in the introduction, there is a complicated development process within
a host as well as within a vector, causing a latency in each half of malaria life cycle.
This requires introducing a third class of sub-population: latent (or exposed) class,
consisting of those individuals who have been infected but are not infectious yet.
Denote by L1(t) and L2(t) the sub-populations of the latent host and the latent
female mosquito respectively.

We consider a simple demographic scenario by assuming constant natural birth
rates and death rates for both humans and the mosquitoes, denoted respectively
by b1, b2 and d1, d2. As in the introduction, we use the constant a to denote the
mosquito biting rate and let e1 be the probability that a biting by an infectious
mosquito to a susceptible person will cause infection to the person, and e2 be the
probability that a biting by a susceptible mosquito to an infectious human individual
will cause infection to the mosquito. The malaria parasite only causes deaths in
human beings but not in mosquitoes, and this suggests introducing a disease related
death rate for human beings, denoted by d. Infected human beings may recover,
either due to the functioning of the immune system or through a treatment including
taking anti-malaria drugs such as Chloroquine, Quinine and Amodiaquine. Let γ1
be the recovery rate which is assumed to be a constant.

Now we introduce the latency distributions by following the idea in [25]. Let
P1(t) denote the probability (without taking death into account) that a latent host
individual still remains in the latent class t time units after entering the latent class
(i.e., being infected). and similarly, let P2(t) be the probability that a latent vector
individual still remains in the latent class t time units after entering the latent class.
It is biologically reasonable to assume that P1(t) and P2(t) possess the following
properties:

(H) : For i = 1, 2, Pi : [0,∞) → [0, 1] are non-increasing, piecewise continuous
with possibly finitely many jumps and satisfy Pi(0

+) = 1, limt→∞ Pi(t) = 0
with

∫∞
0
Pi(u) du positive and finite.

Assume that initially S1(0) > 0, I1(0) ≥ 0, S2(0) > 0, I2(0) ≥ 0 and L1(0) =
L2(0) = 0. Then the equations governing the subpopulations are given by



dS1

dt = b1N(t)− ae1I2(t)S1(t)
N(t) + γ1I1(t)− d1S1(t),

L1(t) =
∫ t
0
ae1I2(ξ)S1(ξ)

N(ξ) e
−(d1+d)(t−ξ)P1(t− ξ) dξ,

I1(t) = N(t)− S1(t)− L1(t),

dS2

dt = −ae2S2
I1
N(t) + b2M(t)− d2S2(t),

L2(t) =
∫ t
0
ae2S2(ξ) I1(ξ)N(ξ)e

−d2(t−ξ)P2(t− ξ) dξ,

I2(t) = M(t)− S2(t)− L2(t).

(6)
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Figure 1. The transmission diagram of the host-vector SLIS model

Here, the integrals are in the Riemann-Stieltjes sense. This SLIS model can be
visually illustrated by the diagram in Figure 1.

Since the emphasis of this paper is the impact of latencies, we will follow the
existing models in [16, 17, 18, 19, 20] to assume constant total populations for both
human beings and female vector mosquitoes, i.e., N(t) = N and M(t) = M both
are constants. This can be achieved by, for example, assuming that

(A1) Disease related deaths can be ignored (i.e., setting d = 0);
(A2) The natural birth rates balance the natural death rates for both host and

vector (i.e., b1 = d1 and b2 = d2).

There may be other situations that can lead to constant populations, (e.g., a com-
pensation to the disease caused deaths by immigration for human host). However
for simplicity of discussion, we simply assume (A1) and (A2) in the rest of the pa-
per. We point out that in many situations, N(t) and M(t) vary only slightly, and
this also constitute a good scenario for approximating N(t) and M(t) by constants.
With these assumptions, one only needs to work on four out of the six variables. We
choose S1, I1, S2 and I2 for which the governing differential equations are derived
as below.

Differentiating the L1 and L2 equations (in the sense of Riemann-Stieltjes inte-
gral) leads to L′1(t) = ae1I2(t)S1(t)

N +
∫ t
0
ae1I2(ξ)S1(ξ)

N e−d1(t−ξ)DtP1(t− ξ) dξ − d1L1(t),

L′2(t) = ae2S2(t) I1(t)N +
∫ t
0
ae2S2(ξ) I1(ξ)N e−d2(t−ξ)DtP2(t− ξ) dξ − d2L2(t).

(7)
Here and hereafter, Dt means the derivative with respect to variable t. In the L1

equation above, each term has its own biological meaning: the first term is the
rate of new infections, the second term accounts for the rate at which the infected
individuals move to the infectious class from the exposed class, and the third term
is due to natural death. The terms in the L2 equations are explained in the same
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way. Passing to the I1 and I2 equations and keeping the S1 and S2 equations (6)
lead to the following reduced system

dS1

dt = d1N − ae1I2(t)S1(t)
N + γ1I1(t)− d1S1(t),

dI1
dt = −

∫ t
0
ae1I2(ξ)S1(ξ)

N e−d1(t−ξ)DtP1(t− ξ) dξ − (d1 + γ1)I1(t),

dS2

dt = d2M − ae2S2(t) I1(t)N − d2S2,

dI2
dt = −

∫ t
0
ae2S2(ξ) I1(ξ)N e−d2(t−ξ)DtP2(t− ξ) dξ − d2I2(t)

(8)

Rescaling (8) by
S1(t)
N → S1(t), L1(t)

N → L1(t), I1(t)
N → I1(t),

S2(t)
M → S2(t), L2(t)

M → L2(t), I2(t)
M → I2(t)

gives

dS1

dt = d1 − ae1mI2(t)S1(t) + γ1I1(t)− d1S1(t),

dI1
dt = −

∫ t
0
ae1mI2(ξ)S1(ξ)e−d1(t−ξ)DtP1(t− ξ) dξ − (d1 + γ1)I1(t),

dS2

dt = d2 − ae2S2(t)I1(t)− d2S2,

dI2
dt = −

∫ t
0
ae2S2(ξ)I1(ξ)e−d2(t−ξ)DtP2(t− ξ) dξ − d2I2(t)

(9)

with the following obvious constraints:

S1(t) + L1(t) + I1(t) = 1, S2(t) + L2(t) + I2(t) = 1, (10)

where m = M
N represents the average mosquito number per person.

3. Mathmatical analysis of the model. By the theory for integro-differential
equations in [15], one knows that for any given initial values Si(0) ≥ 0 and Ii(0) ≥ 0,
i = 1, 2, system (9) has a unique solution with (S1(t), I1(t), S2(t), I2(t)) satisfying
the initial conditions. From the biological significance, we only need to consider
system (9) in the set

Ω :=
{

(S1, I1, S2, I2) ∈ R4 : S1 > 0, I1 ≥ 0, S1 + I1 ≤ 1, S2 > 0, I2 ≥ 0,

S2 + I2 ≤ 1.} .
Indeed, one can easily show that the set Ω is positively invariant in the sense stated
in the following lemma.

Lemma 3.1. If (S1(0), I1(0), S2(0), I2(0)) ∈ Ω satisfies S1(0) + I1(0) = 1 and
S2(0) + I2(0) = 1, then system (9) has a unique solution (S1(t), I1(t), S2(t), I2(t))
satisfying the initial conditions, which remains in Ω for all t ≥ 0. Moreover, if
I1(0) + I2(0) > 0, then I1(t) > 0 and I2(t) > 0 for t > 0.

The proof of this Lemma is by a quite standard argument, namely, by using the
variation-of-constant formula to individual equations as well as by way of contra-
diction, which is similar to that of Lemma 2.1 in [25]. We omit it to save space.

Let

P̂i := lim
t→∞

∫ t

0

e−diuPi(u) du, i = 1, 2.
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Clearly, P̂1 (resp. P̂2) is the average time that an infected human being (resp.
female mosquito) remains in the latent class before becoming infectious or dying
(see [25]). By the properties of Pi(u), one knows that

0 < P̂i < lim
t→∞

∫ t

0

e−diu du = 1/di, i = 1, 2.

Actually, P̂1d1 (resp. P̂2d2) is the probability that an infected host (resp. mosquito)
will die during the latent period. Hence, Q1 (resp. Q2) represents the proportion
of the exposed hosts (resp. vectors) that could survive the latent period, where

Qi := − limt→∞
∫ t
0
e−di(t−ξ)DtPi(t− ξ) dξ

= 1− diP̂i ∈ (0, 1), i = 1, 2.

Using Qi, i = 1, 2, the basic reproduction number for the model (9) can then be
defined as

R0 = m
ae1

γ1 + d1
·Q1 ·

ae2
d2
·Q2, (11)

accounting for the average number of secondary infections that a single infectious
human being (female mosquito), once introduced into fully susceptible populations
of mosquitoes and humans, is expected to cause to the humans (female mosquitoes)
during the infection period. Here, due to the transmission nature of this vector-host
disease, R0 consists of two parts: m ae1

γ1+d1
·Q1 accounts for how many new infectious

mosquitoes an infectious human being can result in during his infection period and
ae2
d2
· Q2 explains how many new infectious human beings an infectious mosquito

can lead to during its infection period.
Model system (9) has a disease free equilibrium E0, given by E0 = (1, 0, 1, 0). In

terms of the biological meaning of the basic reproduction number, R0 = 1 should be
a threshold value for the stability/instability of E0 for the model (9), as is confirmed
in the following Theorem.

Theorem 3.2. If R0 < 1, then E0 is globally asymptotically stable in Ω; if R0 > 1,
then E0 becomes unstable.

Proof of Theorem 3.2. The linearization of (9) at E0 is

X ′(t) = AX(t) +

∫ t

0

C(t− ξ)X(ξ)dξ, (12)

where

A =


−d1 γ1 0 −ae1m

0 −(d1 + γ1) 0 0
0 −ae2 −d2 0
0 0 0 −d2

 ,

C(t) =


0 0 0 0
0 0 0 −ae1me−d1tDtP1(t)
0 0 0 0
0 −ae2e−d2tDtP2(t) 0 0

 .

Denote by X̄(z) the Laplace transform of X(t). Applying the Laplace transform to
(12) yields

[z Id −A− C̄(z)]X̄(z) = X(0),
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where Id is the 4×4 identity matrix and C̄(z) is the Laplace transform of C(t), i.e.,

C̄(z) =


0 0 0 0
0 0 0 −B1(z)
0 0 0 0
0 −B2(z) 0 0

 ,

with

B1(z) = lim
t→∞

∫ t

0

ae1me
−(d1+z)(t−ξ)DtP1(t− ξ) dξ

=

∫ ∞
0

ae1me
−(d1+z)ξDξP1(ξ) dξ,

B2(z) = lim
t→∞

∫ t

0

ae2e
−(d2+z)(t−ξ)DtP2(t− ξ) dξ =

∫ ∞
0

ae2e
−(d2+z)ξDξP2(ξ) dξ.

Thus, the stability of E0 is determined by the roots of the characteristic equation
det[z Id −A− C̄(z)] = 0, that is,

det


z + d1 −γ1 0 ae1m

0 z + d1 + γ1 0 B1(z)
0 ae2 z + d2 0
0 B2(z) 0 z + d2

 = 0.

Expanding the determinant leads to

(z + d1)(z + d2)h(z) = 0, (13)

where
h(z) = (z + d2)(z + γ1 + d1)−B1(z)B2(z). (14)

Since z = −d1 and z = −d2 are two negative real roots of (13), the stability of E0

is fully determined by the roots of h(z) = 0, which is equivalent to

z2 + (d1 + γ1 + d2)z + d2(d1 + γ1) = B1(z)B2(z). (15)

Assume that R0 < 1. Then∣∣z2 + (d1 + γ1 + d2)z + d2(d1 + γ1)
∣∣2 = |B1(z)B2(z)|2

≤ (a2e1e2mQ1Q2)2 = [d2(γ1 + d1)R0]2 (16)

< [d2(γ1 + d1)]2.

Let z = x+ iy. If x ≥ 0, then we have∣∣z2 + (d1 + γ1 + d2)z + d2(d1 + γ1)
∣∣2

=
∣∣x2 − y2 + (d1 + γ1 + d2)x+ d2(d1 + γ1) + i[2xy + (d1 + γ1 + d2)y]

∣∣2
≥ y4 + y2[2x2 + 2x(d1 + γ1 + d2) + d21 + γ21 + d22 + 2d1γ1] + [d2(d1 + γ1)]2

≥ [d2(d1 + γ1)]2, (17)

which contradicts (16). Therefore, the real part x must be negative, implying that
E0 is locally asymptotically stable if R0 < 1.

Next, assume that R0 > 1. To show that E0 is unstable, it suffices to show that
h(z) = 0 admits a positive real root. Considering z = x > 0 and let

T (x) = x2 + (d1 + γ1 + d2)x+ d2(d1 + γ1), B(x) = B1(x)B2(z). (18)

Note that T (x) is increasing in x ≥ 0 and

T (0) = d2(γ1 + d1) and T (∞) =∞.
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On the other side,

B(x) =

(
lim
t→∞

∫ t

0

ae1me
−(d1+x)(t−ξ)DtP1(t− ξ) dξ

)
×(

lim
t→∞

∫ t

0

ae2e
−(d2+x)(t−ξ)DtP2(t− ξ) dξ

)
= lim

t→∞

∫ t

0

∫ t

0

a2e1e2me
−(d1+x)(t−ξ)−(d2+x)(t−η)DtP1(t− ξ)DtP2(t− η)

dξ dη

is decreasing for x > 0, and B(0) = a2e1e2mQ1Q2. Now R0 > 1 is equivalent to
T (0) < B(0) which implies that the equation T (x) = B(x) has a positive real root,
that is, h(z) = 0 has a positive real root. Therefore, E0 is unstable if R0 > 1.

Next, we show that E0 is also globally attractive when R0 < 1. To this end, we
use the notations

x∞ = lim sup
t→∞

x(t) and x∞ = lim inf
t→∞

x(t)

for a function defined for all large t. Let (S1(t), I1(t), S2(t), I2(t)) be a solution of
(9) in Ω. By Lemma 3.1, we know that S∞1 , I∞1 , S∞2 and I∞2 all exist and satisfy
0 ≤ S∞1 ≤ 1, 0 ≤ I∞1 ≤ 1, 0 ≤ S∞2 ≤ 1 and 0 ≤ I∞2 ≤ 1. By the Fluctuation Lemma
[11], there is a sequence tn with tn →∞ as n→∞ such that

I1(tn)→ I∞1 , and I ′1(tn)→ 0 as n→∞. (19)

Rewrite the differential equation for I1(t) in (9) as

I ′1(t) + (γ1 + d1)I1(t) = −
∫ t

0

ae1mS1(ξ)I2(ξ)e−d1(t−ξ)DtP1(t− ξ) dξ. (20)

Evaluating this equation at t = tn and letting n→∞ on both sides of the resulting
equation, we obtain

(γ1 + d1)I∞1 ≤ lim sup
n→∞

(
−
∫ tn

0

ae1mS1(ξ)I2(ξ)e−d1(tn−ξ)DtP1(tn − ξ) dξ

)
. (21)

By the Lebesgue - Fatou Lemma (see [23], P468), it follows that

(γ1 + d1)I∞1 ≤ ae1mS∞1 I∞2 Q1. (22)

Similarly, we can establish the following:

d2I
∞
2 ≤ ae2S∞2 I∞1 Q2. (23)

The two inequalities (22) and (23) imply that either I∞1 and I∞2 are both positive
or both zero. We show that the former is impossible if R0 < 1. Otherwise, (22)
and (23) would yield

(γ1 + d1) ≤ a2e1e2mS
∞
1 S∞2 Q1Q2

d2
, (24)

which equivalents to
1

R0
≤ S∞1 S∞2 .

This would lead to 1 < S∞1 S∞2 under R0 < 1, a contradiction to “S∞1 ≤ 1 and
S∞2 ≤ 1”. Therefore, I∞1 = 0 and I∞2 = 0, implying

I1(t)→ 0, I2(t)→ 0 as t→∞. (25)
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Applying (25) and the theory of asymptotically autonomous systems (see, e.g., [4])
to the Si(t) equations in (9), we conclude that

S1(t)→ 1 and S2(t)→ 1 as t→∞. (26)

Thus, E0 is globally attractive, and hence, globally asymptotically stable in Ω
provided that R0 < 1. The proof of the theorem is completed.

When R0 > 1, for general functions P1(t) and P2(t), the dynamics of model
(9) is difficult to determine. For example, even the important concept of endemic
equilibrium remains a problem: for some choices of P1(t) and P2(t), model (9)
may allow an endemic equilibrium while for others choices, it may not support an
endemic equilibrium. To proceed further, we consider two special cases of P1(t) and
P2(t), for which we are able to obtain some further information about the dynamics
of (9).

3.1. Special Case I—An ODE system. In this section, we adopt Pi(t) =
e−εit, i = 1, 2 where ε1 and ε2 are positive constants. This means that the proba-
bilities of infected hosts and vector remaining in the latent classes follow negatively
exponentially distributions with mean exposed times being 1/ε1 and 1/ε2 respec-
tively. In this case, model (9) reduces to the following system of ordinary differential
equations: 

dS1(t)
dt = −ae1mS1(t)I2(t) + d1 + γ1I1(t)− d1S1(t)

dI1(t)
dt = ε1 [1− I1(t)− S1(t)]− (d1 + γ1)I1(t),

dS2(t)
dt = −ae2S2I1(t) + d2 − d2S2(t),

dI2(t)
dt = ε2 [1− I2(t)− S2(t)]− d2I2(t).

(27)

The two survival factors Q1 and Q2 are now given by Qi = εi
εi+di

, i = 1, 2, and
accordingly, the basic reproduction number becomes

R0 =
ae1m

γ1 + d1
· ae2
d2
· ε1
ε1 + d1

· ε2
ε2 + d2

. (28)

When R0 > 1, in addition to the disease free equilibrium E0 which is unstable,
(27) also admits an endemic equilibrium E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 ), where

S∗1 =
C0

C1
, I∗1 =

ε1d2(R0 − 1)

C1
S∗2 = C2, I∗2 =

R0 − 1

C3
, (29)

where

C0 = d2d1 + d2γ1 + d2ε1 + ε1ae2,

C1 = ε1ae2
(d1+ε1)(d1+γ1)(ε2+d2)

(ε1ε2γ1 + ε1ε2d1 + ε2d
2
1 + ε2γ1d1 + ε1γ1d2

+ε2d1d2 + d21d2 + γ1d1d2 + ε1ε2e1am+ ε2d1e1am+ ε2γ1e1am),

C2 = d2
ε2e1am(d1d2+γ1d2+ε1d2+ε1e2a)

(
ε1ε2γ1 + ε1ε2d1 + ε2d

2
1 + ε2γ1d1

+ε1γ1d2 + ε1d1d2 + d21d2 + γ1d1d2 + ε1ε2e1am+ ε2d1e1am+ ε2γ1e1am
)
,

C3 = ame1
ε1d2(d1+ε1)(d1+γ1)(ε2+d2)

(ε2d1d2 + d1d
2
2 + γ1d

2
2 + ε2γ1d2

ε1d2ae2 + ε1ε2d2 + ε1d
2
2 + ε1ε2ae2)
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are all positive constants. The following theorem shows that if γ1 = 0, the global
dynamics of system (27) is completely determined in terms of R0, which acts as a
threshold in the global sense.

Theorem 3.3. Consider (27). If R0 > 1, then the endemic equilibrium E∗ is
globally asymptotically stable among all positive solutions in Ω, provided that γ1 = 0.

Proof of Theorem 3.3. To prove the global stability of E∗, we consider the full
model system associated with (27) by adding the latent classes:



S′1(t) = −β12I2(t)S1(t) + d1 + γ1I1(t)− d1S1(t),

L′1(t) = β12I2(t)S1(t)− (ε1 + d1)L1(t),

I ′1(t) = ε1L1(t)− (d1 + γ1)I1(t),

S′2(t) = −β21S2(t)I1(t) + d2 − d2S2(t),

L′2(t) = β21S2(t)I1(t)− (d2 + ε2)L2(t),

I ′2(t) = ε2L2(t)− d2I2(t),

(30)

where, for the convenience of notation, we have introduced the new parameters
β12 = ae1m and β21 = ae2. We will employ a Lyapunov function similar to those
used in recent works [12, 13, 7, 8]. To this end, we set v1 = β21S

∗
2I
∗
1 and v2 =

β12S
∗
1I
∗
2 and let

V (t) = v1(S1 − S∗1 − S∗1 ln S1

S∗1
+ L1 − L∗1 − L∗1 ln L1

L∗1
)

+v2(S2 − S∗2 − S∗2 ln S2

S∗2
+ L2 − L∗2 − L∗2 ln L2

L∗2
)

+v1
ε1+d1
ε1

(
I1 − I∗1 − I∗1 ln I1

I∗1

)
+ v2

ε2+d2
ε2

(
I2 − I∗2 − I∗2 ln I2

I∗2

) (31)

where S∗i and I∗i , i = 1, 2, are given in (29), and L∗1 = (d1 + γ1)I∗1/ε1 and L∗2 =
d2I
∗
2/ε2 or equivalently, L∗i = 1− S∗i − I∗i , i = 1, 2. Differentiating V (t) along any
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positive solution of (30) gives

V ′(t) = v1

[(
1− S∗1

S1

)
S′1 +

(
1− L∗1

L1

)
L′1

]
+ v2

[(
1− S∗2

S2

)
S′2 +

(
1− L∗2

L2

)
L′2

]
+v1

ε1+d1
ε1

(
1− I∗1

I1

)
I ′1 + v2

ε2+d2
ε2

(
1− I∗2

I2

)
I ′2

= v1

{
d1S

∗
1

(
2− S1

S∗1
− S∗1

S1

)
+ β12S

∗
1I2 + [2β12S

∗
1I
∗
2 − γ1I∗1 + γ1I1

−β12I∗2
(S∗1 )

2

S1
+ γ1I

∗
1
S∗1
S1
− γ1I1 S

∗
1

S1
− β12I2S1

L∗1
L1
− (ε1 + d1)L1

]
+ ε1+d1

ε1

[
ε1L1 − (d1 + γ1)I1 − ε1L1

I∗1
I1

+ (d1 + γ1)I∗1

]}
+v2

{
d2S

∗
2

(
2− S2

S∗2
− S∗2

S2

)
+ β21S

∗
2I1 +

[
2β21S

∗
2I1 − β21I∗1

(S∗2 )
2

S2

−β21S2I1
L∗2
L2
− (ε2 + d2)L2

]
+ ε2+d2

ε2

[
ε2L2 − d2I2 − ε2L2

I∗2
I2

+ d2I
∗
2

]}
= v1d1S

∗
1

(
2− S1

S∗1
− S∗1

S1

)
+ v2d2S

∗
2

(
2− S2

S∗2
− S∗2

S2

)
+v1

[
β12S

∗
1I2 −

(ε1+d1)(d1+γ1)
ε1

I1

]
+ v2

[
β21S

∗
2I1 −

d2(ε2+d2)
ε2

I2

]
+v1

[
3β12S

∗
1I
∗
2 − β12I∗2

(S∗1 )
2

S1
− β12I2S1

L∗1
L1
− β12S∗1I∗2 L1

L∗1

I∗1
I1

]
+v1γ1

(
I1 − I∗1 + I∗1

S∗1
S1
− I1 S

∗
1

S1

)
+v2

[
3β21S

∗
2I
∗
1 − β21I∗1

(S∗2 )
2

S2
− β21S2I1

L∗2
L2
− β21S∗2I∗1 L2

L∗2

I∗2
I2

]
.

The third and fourth terms on the right side of last equality cancel out:

v1

[
β12S

∗
1I2 −

(d1+ε1)(d1+γ1)
ε1

I1

]
+ v2

[
β21S

∗
2I1 −

d2(ε2+d2)
ε2

I2

]
= v1v2

[
I2
I∗2
− I1

I∗1

]
+ v2v1

[
I1
I∗1
− I2

I∗2

]
= 0

The sum of the fifth and seventh terms can be rewritten as

v1v2

(
6− S∗1

S1
− S1

S∗1

I2
I∗2

L∗1
L1
− S∗2
S2
− S2

S∗2

I1
I∗1

L∗2
L2
− L1

L∗1

I∗1
I1
− L2

L∗2

I∗2
I2

)
.

The sixth term vanishes since γ1 = 0 is assumed. Thus, V ′(t) can be simplified as

V ′(t) = v1d1S
∗
1

(
2− S1

S∗1
− S∗1

S1

)
+ v2d2S

∗
2

(
2− S2

S∗2
− S∗2

S2

)
+v1v2

(
6− S∗1

S1
− S1

S∗1

I2
I∗2

L∗1
L1
− S∗2

S2
− S2

S∗2

I1
I∗1

L∗2
L2
− L1

L∗1

I∗1
I1
− L2

L∗2

I∗2
I2

)
.

(32)
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By the relation of arithmetic mean and geometric mean, we conclude that V ′(t) ≤ 0
with the equality holding if and only if

S1

S∗1
=
L1

L∗1
=
I1
I∗1

=
S2

S∗2
=
L2

L∗2
=
I2
I∗2

= 1.

By the Lyapunov-LaSalle Theorem, Ê∗ is globally asymptotically stable for (30).
Back to (27), we conclude that E∗ is globally asymptotically stable for (27) among
all positive solutions in Ω, completing the proof.

3.2. Special Case II—A DDE system. Consider step functions for P1(t) and
P2(t):

P1(t) =

{
1, t ≤ τ1,
0, t > τ1.

and P2(t) =

{
1, t ≤ τ2,
0, t > τ2.

(33)

where τ1 ≥ 0 and τ2 ≥ 0 are constants. Although the latent period differs from
individual to individual, choosing τ1 and τ2 as the respective average latencies for
infected humans and infected female mosquitoes would make the above P1(t) and
P2(t) reasonable approximations for the real situation.

With this pair of P1(t) and P2(t), the long term (e.g., for t ≥ max{τ1, τ2}) disease
dynamics are governed by the following system of delay differential equations derived
from (9):

dS1(t)
dt = −ae1mS1(t)I2(t) + d1 − d1S1(t) + γ1I1(t),

dI1(t)
dt = ae1me

−d1τ1S1(t− τ1)I2(t− τ1)− d1I1(t)− γ1I1(t),

dS2(t)
dt = −ae2S2(t)I1(t) + d2 − d2S2(t),

dI2(t)
dt = ae2e

−d2τ2S2(t− τ2)I1(t− τ2)− d2I2(t),

(34)

with

L′1(t) = ae1mS1(t)I2(t)− ae1me−d1τ1S1(t− τ1)I2(t− τ1)− d1L1(t),

L′2(t) = ae2S2(t)I1(t)− ae2e−d2τ2S2(t− τ2)I1(t− τ2)− d2L2(t).
(35)

Accordingly, Qi can be calculated as Qi = e−diτi , i = 1, 2, resulting in the following
explicit formula for the basic reproduction number:

R0 =
ae1m

(d1 + γ1)

ae2
d2

e−d1τ1e−d2τ2 . (36)

For (34), when R0 > 1, the components of the unique endemic equilibrium
E∗ = (S∗1 , I

∗
1 , S

∗
2 , I
∗
2 ) can be more explicitly expressed by

S∗1 = (d1+γ1)D1

ae−d1τ1e2D2
, I∗1 = d1(R0−1)

ae2(d1+γ1)d2D2
,

S∗2 = d2D2

ae1me−d2τ2D1
, I∗2 = d1(R0−1)

ae1m(d1+γ1)d2D1
,

where

D1 = γ1d2(1− e−d1τ1) + d1ae2e
−d1τ1 + d1d2,

D2 = ae1mγ1e
−d2τ2(1− e−d1τ1) + ae1me

−d2τ2d1 + d1γ1 + d21.
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Theorem 3.2 has confirmed that the disease free equilibrium E0 = (1, 0, 1, 0) is
globally asymptotically stable if R0 < 1 and it is unstable when R0 > 1. In the
rest of this section, we explore the dynamics of (34) when R0 > 1.

For the DDE model system (34), the phase space is X = C([−τ1, 0], R2) ×
C([−τ2, 0], R2)). The fundamental theory for such a DDE system can be found
in Hale [9]. For biological reasons, we consider the subset

X1
+ = {Φ = (φ1, φ2, φ3, φ4) ∈ X :

0 ≤ φ1(θ) ≤ 1, 0 ≤ φ2(θ) ≤ 1 for, θ ∈ [−τ1, 0]
0 ≤ φ3(θ) ≤ 1, 0 ≤ φ4(θ) ≤ 1 for, θ ∈ [−τ2, 0]

}
.

Let X0
+ = {Φ = (φ1, φ2, φ3, φ4) ∈ X1

+ : either φ2 or φ4 is not identical to 0}.
Then for any Φ ∈ X0

+, the corresponding solution (S1(t), I1(t), S2(t), I2(t)) satisfies
0 < S1(t) ≤ 1, 0 < I1(t) ≤ 1, 0 < S2(t) ≤ 1 and 0 < I2(t) ≤ 1 for t > 0. We first
show that if R0 > 1, then the disease is weakly persistent in the sense stated in the
following lemma.

Lemma 3.4. Assume R0 > 1. Then for any initial function Φ = (φ1, φ2, φ3, φ4) ∈
X0

+, the corresponding solution (S1(t), I1(t), S2(t), I2(t)) satisfies

I∞1 > 0, I∞2 > 0, S1∞ < 1, S2∞ < 1.

Proof of Theorem 3.4. By way of contradiction, we assume that the statement is
false. We first show that the following equalities would all hold:

lim
t→∞

I1(t) = 0, lim
t→∞

I2(t) = 0, lim
t→∞

S1(t) = 1, lim
t→∞

S2(t) = 1. (37)

Indeed, if I∞1 = 0, then I1(t)→ 0 as t→∞. Applying the theory of asymptotically
autonomous systems (see, e.g., [4]) to the S2 and I2 equations in (34), we conclude
that S2(t) → 1 and I2(t) → 0, which further leads to, by the S1 equation in (34),
S1(t) → 1. Similarly, I∞1 = 0 also leads to (37). If S1∞ = 1, then S1(t) → 1 as
t→∞. By 0 ≤ I1(t) = I−S1(t)−L1(t) ≤ 1−S1(t), we know that I1(t)→ 0 which
in turn implies I2(t) → 0 and S2(t) → 1 as t → ∞. Similarly, S2∞ = 1 also leads
to (37).

Now, for any δ ∈ (0, 1), by (37), there is T > 0 such that

I1(t, φ2) < δ, I2(t, φ4) < δ, S1(t, φ1) > 1− δ, S2(t, φ3) > 1− δ, for t ≥ T. (38)

By (38) and the I1 and I2 equations in (34), we have
dI1(t)
dt ≥ ae1me−d1τ1I2(t− τ1)(1− δ)− (d1 + γ1)I1(t),

dI2(t)
dt ≥ ae2e−d2τ2I1(t− τ2)(1− δ)− d2I2(t)

for t ≥ T. (39)

This suggests the following linear comparison system for I1(t) and I2(t):
du1(t)

dt = ae1me
−d1τ1u2(t− τ1)(1− δ)− (d1 + γ1)u1(t),

du2(t)
dt = ae2e

−d2τ2u1(t− τ2)(1− δ)− d2u2(t).

(40)

Since (40) is monotone, the stability/instability of the trivial solution of (40) is the
same as that of the linear system obtained by dropping the two delays in (40) (see,
e.g. Smith [21]) which is determined by the following characteristic equation:

λ2 + (d1 + γ1 + d2)λ+ (d1 + λ1)d2
[
1− (1− δ)2R0

]
= 0. (41)
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Because R0 > 1, one can choose δ ∈ (0, 1) sufficiently small so that 1−(1−δ)2R0 <
0, and hence, (41) has a root with positive real part. This means that positive
solutions of (41) are unbounded. On the other hand, the comparison theorem
for delay differential equations (see, e.g., Smith [21]) implies that I1(t) ≥ u1(t)
and I2(t) ≥ u2(t) where (u1(t), u2(t)) is the positive solution of (41) with the
initial function (φ2, φ4) and hence is unbounded. This contradicts (37), and the
contradiction completes the proof of the lemma.

The following theorem claims that underR0 > 1, the disease is actually uniformly
strongly persistent.

Theorem 3.5. Assume that if R0 > 1. Then there exists an η > 0 such that
for any initial function Φ = (φ1, φ2, φ3, φ4) ∈ X0

+, the corresponding solution
(S1(t), I1(t), S2(t), I2(t)) satisfies

(i) d1
ae1m+d1

≤ S1∞ and d2
ae2+d2

≤ S2∞;

(ii) η ≤ I1∞ and η ≤ I2∞.

Proof of Theorem 3.5. Since 0 ≤ I1(t) ≤ 1 for t ≥ −τ2 and 0 ≤ I2(t) ≤ 1 for all
t ≥ −τ1, the S′1(t) and S′2(t) equations in system (34) lead to

S′1(t) ≥ d1 − ae1mS1(t)− d1S1(t) = d1 − (ae1m+ d1)S1(t),

S′2(t) ≥ d2 − ae2S2(t)− d2S2(t) = d2 − (ae2 + d2)S2(t).

By the standard comparison theorem (see, e.g., [21]), it follows that S1(t) ≥ w1(t),
and S2(t) ≥ w2(t), where (w1(t), w2(t)) is the solution of

w′1(t) = d1 − ae1mw1(t)− d1w1(t),

w′2(t) = d2 − ae2w2(t)− d2w2(t).

with w1(0) ≤ φ1(0), w2(0) ≤ φ3(0). Thus,

S1∞ ≥ w1∞ =
d1

ae1m+ d1
, and S2∞ ≥ w2∞ =

d2
ae2 + d2

. (42)

Next, applying the Fluctuation Lemma (see, e.g., [11]) to the S′1(t) and S′2(t)
equations in system (34) gives

I∞1 ≥ d2−d2S2∞
ae2S2∞

, I∞2 ≥ d1−d1S1∞
ae1mS1∞

. (43)

By Lemma 3.4 and the inequalities in (43), we know that ∂X1
+ = X1

+/X
0
+ is a

uniform weak repeller for X0
+. Applying Theorem 1.4 of [24] to the solution semiflow

Ψ(t,Φ) = (S1(t), I1(t), S2(t), I2(t)) of system (34) for t ≥ max(τ1, τ2) with Φ ∈ X0
+,

we conclude that ∂X1
+ is also a uniform strong repeller for X0

+, implying that the
disease is uniformly strongly persistent. This means that there exists an η > 0 such
that I1∞ ≥ η, I2∞ ≥ η, where η is independent of the initial function Φ ∈ X0

+. The
proof is completed.

The following theorem, parallel to Theorem 3.3 for (27), confirms the globally
asymptotically stability of the endemic equilibrium E∗ for (34) under the assump-
tion γ1 = 0.

Theorem 3.6. Consider (34). Assume that R0 > 1. Then the endemic equilibrium
E∗ is globally asymptotically stable in X0

+, provided that γ1 = 0.



478 YANYU XIAO AND XINGFU ZOU

Proof of Theorem 3.6. We use a Lyapunov functional to prove the theorem. Let

V = ae2e
−d2τ2S∗2I

∗
1

[
e−d1τ1S∗1

(
S1

S∗1
− 1− ln

S1

S∗1

)
+ I∗1

(
I1
I∗1
− 1− ln

I1
I∗1

)]
+ae1me

−d1τ1S∗1I
∗
2

[
e−d2τ2S∗2

(
S2

S∗2
− 1− ln

S2

S∗2

)
+ I∗2

(
I2
I∗2
− 1− ln

I2
I∗2

)]
+ae2e

−d2τ2S∗2I
∗
1ae1mS

∗
1I
∗
2e
−d1τ1 ×∫ 0

−τ1
(
S1(t+ s)I2(t+ s)

S∗1I
∗
2

− 1− ln
S1(t+ s)I2(t+ s)

S∗1I
∗
2

) ds

+ae1me
−d1τ1S∗1I

∗
2ae2S

∗
2I
∗
1e
−d2τ2 ×∫ 0

−τ2
(
S2(t+ s)I1(t+ s)

S∗2I
∗
1

− 1− ln
S2(t+ s)I1(t+ s)

S∗2I
∗
1

) ds.

The derivative of V along the trajectory of (34) is

V ′ = ae2S
∗
2I
∗
1e
−d2τ2

[
d1e
−d1τ1S∗1

(
2− S1

S∗1
− S∗1

S1

)
+e−d1τ1γ1

(
I1 − I∗1 + I∗1

S∗1
S1
− I1 S

∗
1

S1

)
− (γ1 + d1)I1

+ae1me
−d1τ1I∗2S

∗
1 + ae1mI2S

∗
1e
−d1τ1 − ae1me−d1τ1I∗2

(S∗1 )
2

S1

−ae1me−d1τ1I2(t− τ1)S1(t− τ1)
I∗1
I1

+ ae1me
−d1τ1I∗2S

∗
1

−ae1me−d1τ1 ln I2S1

I2(t−τ1)S1(t−τ1)

]
+ae1mS

∗
1I
∗
2e
−d1τ1

[
d2S

∗
2e
−d2τ2

(
2− S2

S∗2
− S∗2

S2

)
+ 2ae2S

∗
2I
∗
1e
−d2τ2

+ae2S
∗
2I1e

−d2τ2 − ae2S∗2I∗1e−d2τ2
S∗2
S2
− d2I2−

ae2e
−d2τ2I1(t− τ2)S2(t− τ2)

I∗2
I2

−ae2e−d2τ2 ln I1S2

I1(t−τ2)S2(t−τ2)

]
.

Setting c1 = ae2I
∗
1S
∗
2e
−d2τ2 and c2 = ae1mI

∗
2S
∗
1e
−d1τ1 , and reorganizing the above

formula, we obtain

V ′ =c1d1e
−d1τ1S∗1

(
2− S1

S∗1
− S∗1
S1

)
+ c2d2e

−d2τ2S∗2

(
2− S2

S∗2
− S∗2
S2

)

+ c1e
−d1τ1γ1

(
I1 − I∗1 + I∗1

S∗1
S1
− I1

S∗1
S1

)

+
(
a2e1e2me

−d1τ1−d2τ2I∗1S
∗
2I2S

∗
1 − ae1mI∗2S∗1e−d1τ1d2I2

)
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+
[
a2e1e2me

−d1τ1−d2τ2I1S
∗
2I
∗
2S
∗
1 − ae2I∗1S∗2e−d2τ2(d1 + γ1)I1

]
+ c1c2

[
4− S∗1

S1
− S∗2
S2
− I2(t− τ1)

I∗2

S1(t− τ1)

S∗1

I∗1
I1

−I1(t− τ2)

I∗1

S2(t− τ2)

S∗2

I∗2
I2
− ln

I2S1

I2(t− τ1)S1(t− τ1)
− ln

I1S2

I1(t− τ2)S2(t− τ2)

]
.

The third term vanishes due to the assumption γ1 = 0. Both the fourth and fifth
terms are also zero by the equations for the equilibrium E∗. Now the sixth (last)
term can be further rewritten as

c1c2

[(
1− S∗1

S1
+ ln

S∗1
S1

)
+

(
1− S∗2

S2
+ ln

S∗2
S2

)
+ (1− x+ lnx) + (1− y + ln y)

]
,

where

x =
I2(t− τ1)

I∗2

S1(t− τ1)

S∗1

I∗1
I1
, y =

I1(t− τ2)

I∗1

S2(t− τ2)

S∗2

I∗2
I2
.

Thus,

V ′ = c1d1e
−d1τ1S∗1

(
2− S1

S∗1
− S∗1
S1

)
+ c2d2S

∗
2e
−d2τ2

(
2− S2

S∗2
− S∗2
S2

)
+c1c2

[(
1− S∗1

S1
+ ln

S∗1
S1

)
+

(
1− S∗2

S2
+ ln

S∗2
S2

)
+ (1− x+ lnx) + (1− y + ln y)] . (44)

Now, by the relation between arithmetic and geometric means and the property of
the function g(u) = 1 − u + lnu, we conclude that V ′ ≤ 0 and V ′ = 0 if and only
if (S1, I1, S2, I2) is at E∗. It follows from the Lyapunov-LaSelle Theorem for DDEs
(see [9]) that E∗ is globally asymptotically stable in X0

+, completing the proof.

4. Conclusion and discussion. In this paper, we have modified the classic Ross-
Macdonald model for the disease dynamics of Malaria by incorporating latencies
both in human beings and in the female mosquitoes. The novelty of our model
is that we have introduced two general probability functions (P1(t) and P2(t)) to
reflect the fact that the latencies of the malaria parasite differ from individuals to
individuals in both humans and mosquitoes. We have justified the well-posedness
of the new model, identified the basic reproduction number R0 for the model and
analyzed the dynamics of the model. We have shown, very naturally and as in
most works on disease models, that when R0 < 1, the disease free equilibrium E0

is globally asymptotically stable, meaning that the disease will eventually die out;
and if R0 > 1, E0 becomes unstable. When R0 > 1, the dynamics of the model
become more difficult for general P1(t) and P2(t), and this forces us to consider
some specific functions. When P1(t) and P2(t) are both exponential functions, the
model reduces to a system of ordinary differential equations; when P1(t) and P2(t)
are both step functions, the long term disease dynamics are governed by a system of
delay differential equations. In both cases, we are able to show that when R0 > 1
then the disease will persist; moreover if there is no recovery (γ1 = 0), then all
admissible positive solutions will converge to the unique endemic equilibrium.

Our approach may provide a frame work for dynamics of other mosquito-borne
diseases. Taking Dengue as an example, since this disease is caused by dengue virus
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(unlike malaria protozoa), the recovered human beings will carry immunity and
hence will not return to the susceptible class, implying γ1 = 0 in the corresponding
model. Therefore, our approach (actually results) can be easily applied to the
corresponding model(s) for dengue disease.

From the formula of the basic reproduction number R0 for our model, we can see
that it is indeed smaller than the one obtained by ignoring the latencies (i.e., setting
Q1 = 1 and Q2 = 1). In other words, if the latencies are neglected in modelling the
disease dynamics, the basic reproduction number will be over calculated, regardless
of what forms of the latency probability functions P1(t) and P2(t) are adopted

We point out that there is a mathematical theory for disease model which defines
the basic reproduction number as the spectral radius of the so called next generation
operator. Here in this paper, our R0 is defined by the so called survival function
(see,e.g.,[10]). The difference lies in that “ the survival function gives the total
number of infections in the same class produced by a single infective of that class,
while the next generation operator gives the mean number of new infections per
infective in any class per generation. Value corresponding to the latter definition
thus depend on the number of infective classes in the infection cycle ” [10]. Taking
the the ODE model (27) as an example, using the next generation operator (matrix
in this case) approach from [5, 26], the basic reproduction number for (27) is defined
as

R0 =

√
ae1m

γ1 + d1
· ae2
d2
· ε1
ε1 + d1

· ε2
ε2 + d1

, (45)

which is the square root of the formula in (28). Note that many researchers have
used survival function scenario to define basic reproduction numbers for vector-
borne diseases, see e.g., [2, 10, 20] and the references therein. Note that because
the threshold value for the basic reproduction number is at 1, such a difference does
not cause any mathematical problem in exploring the threshold property of vector-
borne disease models. For a detailed discussion on this topic, we refer readers to
[5, 6, 10, 26].

We conclude the paper by a remark that the way we have incorporated latencies
in this paper may also help clarify the confusion for (1.3) mentioned in the intro-
duction. Indeed, by adding τ1 > 0 and τ2 > 0 into the model, latent classes in
both humans and mosquitoes are admitted and hence, the terms 1− x(t− τ1) and
1−y(t−τ2) should be replaced by 1−l1(t−τ1)−x(t−τ1) and 1−l2(t−τ2)−y(t−τ2)
respectively, where l1(t) is the proportion of the latent human beings and l2(t) is the
proportion of the latent mosquitoes with both satisfying equations corresponding
to (35). Since 1−x(t− τ1) is larger than 1− l1(t− τ1)−x(t− τ1) and 1−y(t− τ2) is
larger than 1− l2(t−τ2)−y(t−τ2), this may explain why the solutions of (1.3) with
initial values from [0, 1]× [0, 1] may go beyond this region. When only considering
a discrete latency in mosquitoes, a similar situation is also discussed in Aron and
May [2].
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