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Abstract. We consider a neuronal network model with both axonal connec-
tions (in the form of synaptic coupling) and delayed non-local feedback connec-
tions. The kernel in the feedback channel is assumed to be a standard non-local
one, while for the kernel in the synaptic coupling, four types are considered.
The main concern is the existence of travelling wave front. By employing the
speed index function, we are able to obtain the existence of a travelling wave
front for each of these four types within certain range of model parameters.
We are also able to describe how the feedback coupling strength and the mag-
nitude of the delay affect the wave speed. Some particular kernel functions for
these four cases are chosen to numerically demonstrate the theoretical results.

1. Introduction. Neurons are electrically excitable cells in the nervous system.
Chemically connected or functionally associated neurons form neural networks. Sig-
nals propagate through such a network in the following manner: When a neuron is
stimulated (by another neuron, or by a stimulus such as light), an action potential
forms. This action potential travels down the axon (by conductance of the axon)
to the synapse, the junction between neurons. The potential travels from the pre-
synaptic ending to post-synaptic receptors of another neuron via certain chemical
mechanism. The formation and propagation of certain patterns in synaptically con-
nected neural networks are closely related to the basic information processing in the
nervous system ([1, 2, 10]). The occurrence and propagation of such patterns have
been observed in experiments and by numeric simulations of the brain in, for exam-
ple, cortex neurons and in thalamus neurons (see, e.g., [6, 7, 9] and the references
there in), in the forms of travelling wave fronts and travelling pulses.

In order to better understand the mechanism of the formation and propagation
of activity patterns in neural networks, Hutt [3] recently proposed a model which
is a modification and generalization of some existing models (see, e.g., Coombes et.
al [1], Coombes and Owen [2], Zhang [10], and the references therein). This new
model incorporates both the intral-areal nonlocal axonal connections and nonlocal
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feedback connections with a time delay (see Figure 1 for a demonstration of these
two types of connections) and is given by the following integro-differential equation
(IDE):

ut + u = α

∫ ∞

−∞
K (x − y)H

(

u
(

y, t − 1
c |x − y|

)

− θ
)

dy

+ β

∫ ∞

−∞
J (x − y)H (u (y, t − τ) − θ) dy. (1)

Here, u(x, t) is the effective post-synaptic potential of the neuron population at
position x and time t. The first term on the right hand side of (1) represents
the synaptic input by axonal connections, while the second term accounts for the
delayed nonlocal feedback connections. Thus, the kernels K (x) and J (x) are con-
nectivity functions satisfying some conditions which will be specified later. Under
those conditions, the constants α and β are non-negative and represent the synap-
tic strengths of axonal and nonlocal feedback contributions, respectively. These
connectivity functions are similar to a probability density function; however, unlike
regular probability density functions, the kernels may be negative at some points to
allow for inhibitory behavior in coupling. The conversion from dendritic currents
to post-synaptic potential is given by the Heaviside step function H (u − θ) which
activates when u crosses the excitation threshold value θ > 0. The choice of the
Heaviside function makes it simpler to perform the analysis but it still reflects the
statistical properties of the firing rate of neurons which is sigmoidal in shape [3]. It
should be noted that H (x) is chosen to have a value of 1

2 at x = 0, the average of
its values on both sides of the discontinuity.

x yneural field

feedback loop interaction

axonal connections
(time delay of 1

c
|x − y|)

(constant time delay of τ)

Figure 1. Illustration of intra-areal axonal connections and non-
local feedback connections

Note that the β-interactions exhibits a constant time delay of τ while the α-
type has a delay that depends on both the spatial distance and the finite speed
c ∈ (0,∞) of the action potential. This is different from the wave speed µ of the post-
synaptic potential, which will be discussed in detail in later sections. Experiments
on measuring the propagation speeds of neuronal waves have yielded post-synaptic
potential speeds of µ = 0.06 m/s and axon potential speeds of c = 0.5 m/s [10].
Based on the experimental data, it is naturally expected and we will indeed assume
throughout this paper that 0 < µ < c.

In Hutt [3], the two kernel functions K(x) and J(x) are assumed to have the
following exponential forms:

K(x) =
ae

2
e−|x| − air

2
e−r|x|, J(x) =

1

2σ
e−|x|/σ (2)
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where σ gives the spatial feedback range, ae and ai are excitatory and inhibitory
weights, and r abbreviates the ratio of excitatory and inhibitory spatial ranges. The
above choice for K(x) and J(x) simplifies the Laplacian transform analysis for (1),
by which the author was able obtain some results on how the speed of travelling
wave front depends on feedback strength µ and the feedback delay τ .

When β = 0, (1) reduces to the exact form of the model equation in Zhang
[10], where synaptic coupling function K(x) is assumed to be continuous at x = 0,
almost everywhere smooth satisfying

∫ ∞

−∞
K(x) dx = 1, and |K(x)| ≤ L exp(−ρ|x|) for x ∈ (−∞,∞), (3)

where L and ρ are positive constants. Based on the connectivity feature, Zhang [10]
discussed the following three types of functions for K(x):

(A) Pure excitation: K(x) ≥ 0 for x ∈ (−∞,∞).
(B) Lateral inhibition: K(x) ≥ 0 for x ∈ (−M, N) and K(x) ≤ 0 elsewhere for

positive constants M and N such that

0
∫

−∞

|x|K (x) dx ≥ 0. (4)

This type of kernel functions are called Mexican hat kernels.
(C) Lateral excitation: K(x) ≤ 0 on (−M, N) and K(x) ≥ 0 elsewhere for some

positive constants M and N such that

α

2
+ α

N
∫

−∞

K (x) dx ≥ θ (5)

This type of kernel functions are referred to as upside down Mexican hat
kernels.

By analyzing the speed index function and the stability index function, Zhang [10]
obtained some very interesting and insightful results on the wave speed, and for
certain critical cases of some model parameters, he was even able to obtain some
concrete results on the stability of the travelling wave fronts.

The goal of this paper is to employ the idea of speed index functions (the main
idea in [10] and many existing works) to analyze the more general model equation
(1) with β > 0 and τ > 0, hoping to understand how the delayed feedback term
will affect, jointly with the synaptic coupling, the existence as well as the shape
of the travelling wave front of the model. We do not confine ourselves to the
exponential forms (2) for the kernels, or any other particular forms; instead, we
consider general kernels of types (A), (B) and (C). This is important since only
for very few functional areas such as the visual cortex, the cerebellum or the pre-
frontal cortex, the connectivity kernels are known. In response to the co-existence
of both synaptic connections and feedback connections, we introduce three speed
index functions: the α index function ϕα, the β index function ϕβ , and the total
index function ϕ. Note that corresponding to the pure excitation type kernel (Type
(A)), there are the pure inhibition type kernels:

(D) Pure inhibition: K(x) ≤ 0 for x ∈ (−∞,∞),

for which the model with β = 0 does not allow travelling wave fronts. as is men-
tioned in the introduction of [10]. We will also consider this type for the kernel
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K(x), and show that due to the occurrence of feedback connections, the model may
also support travelling front for the pure inhibition synaptic coupling. The depen-
dence of wave speed on some parameters will also be discussed, and some numerical
examples and their simulations will be given to demonstrate the analytical results.

We point out that the underlying spatial structure for neural systems originates
from dendritic arborization of neurons and from the spread of axonal connections,
and thus, 3-dimensional or 2-dimensional space would be more realistic. However,
to avoid the main idea from being hidden by more complicated calculation due to
adoption of higher dimensional space, we will follow Hutt [3], [10] and most of the
existing work to consider only 1-dimensional space. Also as in Hutt [3] and [10],
here we do not consider external input.

2. Preliminaries. In the rest of the paper, we assume that the kernel function
J(x) satisfies the following typical conditions: J(x) is non-negative and satisfies

∫ ∞

−∞
J(x) dx = 1, and |J(x)| ≤ L exp(−ρ|x|) for x ∈ (−∞,∞), (6)

where L and ρ are positive constants. For simplicity of notation but without loss
of generality, we further assume that

∫ 0

−∞
J (x) dx =

∞
∫

0

J (x) dx =
1

2
. (7)

A travelling wave solution of (1) is a solution of the form u(x, t) = U(x + µt),
where z = x + µt is the moving cordinate, U(z) is the profile of the travelling wave
and the constant µ is the speed of the travelling wave. If U− = limz→−∞ U(z) and
U+ = limz→∞ U(z) exist and U− 6= U+, then the travelling wave solution is called
a travelling wave front. If the two limits are identical (U− = U+), the wave solution
corresponds to a travelling pulse.

We are only interested in travelling wave front in this paper. Substituting the
wave form u(x, t) = U(x + µt) into (1), we obtain

µU ′ (z) + U (z) = α

∞
∫

−∞

K (z − y)H
(

U
(

y − µ

c
|z − y|

)

− θ
)

dy

+ β

∞
∫

−∞

J (z − y) H (U (y − µτ) − θ)dy. (8)

It is easy to see that if the two limits U− and U+ exist, they must be constant
solutions (equilibria) of (8), or equivalently, of (1).

Note that U = 0 is always a constant solution of (8), which serves as U−. In
order for (8)to have another positive constant solution of (8) to serve as U+, we need
some conditions on the kernel function K(x) and some restrictions on the model
parameters. In the remainder of the paper, we always assume that K(x) satisfies
(3). In addition, for simplicity of notations and similar to (7) for J(x), we also
assume that

∫ 0

−∞
K (x) dx =

∞
∫

0

K (x) dx =
1

2
for K(x) in types (A)-(B)-(C), (9)
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and
∫ 0

−∞
K (x) dx =

∞
∫

0

K (x) dx =
−1

2
for K(x) in type (D). (10)

For kernel function K(x) of types (A), (B) and (C) satisfying (9), it is easily seen
that U = α+β is a constant solution of (8) if and only if θ < α+β. Note that U = θ

is also a constant solution of (8) when θ = α+β
2 , but since such an identity condition

is too sensitive and can hardly hold in reality, we do not consider such a case. In
Sections 3 and 4, we will establish the existence and uniqueness of a travelling
wave front of (1) with kernel function K(x) of types (A), (B) and (C) respectively,
satisfying (10), that connects the two equilibria U− = 0 and U+ = α + β.

For kernel function K(x) of types (D) satisfying (10), U = β − α give a positive
equilibrium for (8) provided that α < β. In Section 5, we will consider travelling
wave front of (1) that connects U− = 0 and U+ = β − α.

The parameters α, β, c, τ , and θ are to be collectively called the explicit param-
eters since they all appear explicitly in the model equation (1). For convenience
of analysis, we introduce some more parameters which are functions of the explicit
parameters as below. Firstly, let

δ = β

−cτ
∫

−∞

(

1 − e
x
c
+τ

)

J (x) dx (11)

and we call it feedback effect parameter. It is easy to see that this parameter is
always positive and Theorem 3.2 will show that when it is small enough (smaller
than θ), the equation (1) allows travelling wave solutions for specific cases. From
the definition of the δ we see that there are two ways to make it small. The first is
to make β small, and the second is to make J (x) decay to zero quickly as x goes
from −cτ → −∞.

Next, we define

ϕα (µ) = α

0
∫

−∞

e
c−µ
cµ

xK (x) dx (12)

ϕβ (µ) = β

−µτ
∫

−∞

e
x
µ

+τJ (x) dx + β

0
∫

−µτ

J (x) dx (13)

ϕ (µ) = ϕα (µ) + ϕβ (µ) , (14)

and call them α speed index function, β speed index function and total speed index
function respectively. We will see later that these functions play an important role
in determine the speed of travelling wave fronts for (1).

Finally, for µ ∈ (0, c), we define

∆ (µ) = β

−µτ
∫

−∞

(

1 − e
x
µ

+τ
)

J (x) dx

= β

0
∫

−∞

(

1 − e
x
µ

)

J (x − µτ) dx. (15)
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Considering ∆ := ∆(µ, τ) as a function of µ ∈ (0, c) and τ ≥ 0, we can easily verify
the following properties:

∂∆

∂µ
=

β

µ2

−µτ
∫

−∞

xe
x
µ

+τJ (x) dx ≤ 0 (16)

∂∆

∂τ
= −β

∫ −µτ

−∞
e

x
µ

+τJ (x) dx ≤ 0. (17)

Thus, ∆ is indeed decreasing in both µ ∈ (0, c) and τ ≥ 0. It is also obvious that

∆(0, τ) = β
2 and ∆(c, τ) = δ, which also implies that

δ < ∆(µ, τ) <
β

2
for µ ∈ (0, c), τ ≥ 0. (18)

It is also interesting to explore the relationship between ϕβ and ∆. Actually,
calculations lead to

ϕβ (µ) = β

−µτ
∫

−∞

e
x
µ

+τJ (x) dx + β

0
∫

−µτ

J (x) dx

= β

−µτ
∫

−∞

(

e
x
µ

+τ − 1
)

J (x) dx + β

0
∫

−∞

J (x) dx

= −∆(µ, τ) +
β

2
> 0 (19)

3. Travelling wave solutions for K (x) of types (A) and (B). We begin the
derivation of the travelling wave fronts by focusing first on those K (x) functions of
types (A) and (B). The explicit form of the wave profile function obtained in this
section will also be used for other types of K (x) discussed in later sections.

Theorem 3.1. Assume that K (x) is of Type (A) or (B). If δ < θ < (α + β)/2,
then there exists a unique wave speed µ0 = µ0 (α, β, c, τ, θ) ∈ (0, c) and a solution
to (1) given by u (x, t) = U (z) where z = x+µ0t where U (z) is the unique solution
to the following integral-differential equation

µ0U
′ (z) + U (z) = α

∞
∫

−∞

K (z − y)H
(

U
(

y − µ0

c
|z − y|

)

− θ
)

dy

+ β

∞
∫

−∞

J (z − y)H (U (y − µ0τ ) − θ)dy (20)

satisfying the phase conditions

U(z) < θ for z < 0; U(z) = θ for z = 0; U(z) > θ for z > 0; (21)

and the boundary conditions

lim
z→−∞

U (z) = 0, lim
z→+∞

U (z) = α + β, lim
z→±∞

U ′ (z) = 0. (22)
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Indeed, the solution is given by

U (z) = α

cz
c+µ0 sgn(z)

∫

−∞

K (x) dx − α

z
∫

−∞

e
x−z
µ0 K

(

cx
c+µ0 sgn(x)

) c

c + µ0 sgn (x)
dx

+ β

z
∫

−∞

(

1 − e
x−z
µ0

)

J (x − µ0τ) dx. (23)

To prove this theorem, we first show that for µ0 ∈ (0, c) and with the phase
conditions (21), the equation (20) can be simplified.

Let

η = y − µ0

c
|z − y|

Then,

z − η = z − y +
µ0

c
|z − y| = (z − y)

(

c + µ0 sgn (z − y)

c

)

and thus

sgn (z − η) = sgn (z − y) · sgn

(

c + µ0 sgn (z − y)

c

)

=sgn (z − y) .

From the above, we also obtain

z − y =
c

c + µ0 sgn (z − y)
(z − η)

=
c

c + µ0 sgn (z − η)
(z − η) .

Using these and the (21), we can simplify the first term in the right-hand-side of
(20) as follows:

α

∞
∫

−∞

K (z − y)H
(

U
(

y − µ0

c
|z − y|

)

− θ
)

dy

= α

∞
∫

−∞

c
c+µ0 sgn(z−η)K

(

c
c+µ0 sgn(z−η) (z − η)

)

H (U (η) − θ) dη

= α

∞
∫

0

c
c+µ0 sgn(z−η)K

(

c
c+µ0 sgn(z−η) (z − η)

)

dη

= α

cz
c+µ0 sgn(z)

∫

−∞

K (x) dx (24)

Similarly, the second integral on the right hand side of (20) can also be simplified
to

β

∞
∫

−∞

J (z − y)H (U (y − µ0τ ) − θ)dy = β

+∞
∫

µ0τ

J (z − y) dy = β

z−µ0τ
∫

−∞

J (x) dx

(25)
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Using (24) and (25), (20) can be rewritten as

µ0U
′ + U = α

cz
c+µ0 sgn(z)

∫

−∞

K (x) dx + β

z−µ0τ
∫

−∞

J (x) dx (26)

Now, multiplying this simplified equation by the integration factor ez/µ0 yields

µ0

(

Ue
z

µ0

)′
= αe

z
µ0

cz
c+µ0 sgn(z)

∫

−∞

K (x) dx + βe
z

µ0

z−µ0τ
∫

−∞

J (x) dx

Integrating the above equation from −∞ to z gives

µ0U (z) e
z

µ0 =

z
∫

−∞

αe
ξ

µ0

cξ

c+µ0 sgn(ξ)
∫

−∞

K (x) dx dξ +

z
∫

−∞

βe
ξ

µ0

ξ−µ0τ
∫

−∞

J (x) dx dξ (27)

The right-hand-side can be simplified using integration by parts. The first term can
be simplified by writing it as

∫ z

−∞ f (ξ) g′ (ξ) dξ where

f (ξ) =

cξ

c+µ0 sgn(ξ)
∫

−∞
K (x) dx and g′ (ξ) dξ = αe

ξ
µ0 dξ

Thus

f ′ (ξ) dξ = K
(

cξ
c+µ0 sgn(ξ)

)

(c+µ0 sgn(ξ))c−cξ sg n′(ξ)

(c+µ0 sgn(ξ))2
dξ

= K
(

cξ
c+µ0 sgn(ξ)

)

c
c+µ0 sgn(ξ)dξ

and

g (ξ) = αµ0e
ξ

µ0

Then by integration by parts, the first term in (27) becomes

z
∫

−∞

αe
ξ

µ0

cξ
c+µ0 sgn(ξ)

∫

−∞

K (x) dx dξ

= αµ0e
ξ

µ0

cξ
c+µ0 sgn(ξ)

∫

−∞

K (x) dx

∣

∣

∣

∣

∣

∣

∣

∣

z

ξ=−∞

− αµ0

z
∫

ξ=−∞

e
ξ

µ0 K
(

cξ
c+µ0 sgn(ξ)

)

c
c+µ0 sgn(ξ)dξ

= αµ0e
z

µ0

cz
c+µ0 sgn(z)

∫

−∞

K (x) dx − αµ0

z
∫

−∞

e
x

µ0 K
(

cx
c+µ0 sgn(x)

)

c
c+µ0 sgn(x)dx (28)



WAVE FRONTS WITH NON-LOCAL FEEDBACK CONNECTIONS 429

Similarly, the second term in (27) can be simplified to

z
∫

−∞

βe
ξ

µ0

ξ−µ0τ
∫

−∞

J (x) dx dξ = βµ0e
z

µ0

z−µ0τ
∫

−∞

J (x) dx − βµ0

z
∫

−∞

e
x

µ0 J (x − µ0τ) dx

= βµ0

z
∫

−∞

(

e
z

µ0 − e
x

µ0

)

J (x − µ0τ) dx (29)

Thus, going back to (27) and using (28)-(29), we obtain the solution of (26)

U (z) = α

cz
c+µ0 sgn(z)

∫

−∞

K (x) dx − α

z
∫

−∞

e
x−z
µ0 K

(

cx
c+µ0 sgn(x)

)

c
c+µ0 sgn(x)dx

+ β

z
∫

−∞

(

1 − e
x−z
µ0

)

J (x − µ0τ) dx

which is (23) and of course, satisfies (20) and (21).
We point out that when β = 0, the above solution formula reduces to the result

in Zhang [10].
In the rest of this section, we will show that there is a unique µ0 ∈ (0, c) for

which the function U(z) given by (23) satisfies the phase conditions (21) and the
boundary conditions (22). We begin with U (0) = θ in the phase conditions.

Setting U (0) = θ in (23) leads to

α

0
∫

−∞

K (x) dx − α

0
∫

−∞

e
x

µ0 K
(

cx
c+µ0 sgn(x)

)

c
c+µ0 sgn(x)dx

+ β

0
∫

−∞

(

1 − e
x

µ0

)

J (x − µ0τ) dx = θ

⇐⇒ α

2
− α

0
∫

−∞

e
c−µ0
cµ0

xK (x) dx + β

−µ0τ
∫

−∞

(

1 − e
x

µ0
+τ

)

J (x) dx = θ

⇐⇒ α

2
− α

0
∫

−∞

e
c−µ0
cµ0

xK (x) dx +
β

2
− β

0
∫

−µ0τ

J (x) dx − β

−µ0τ
∫

−∞

e
x

µ0
+τJ (x) dx = θ

⇐⇒ α + β

2
− ϕ (µ0) = θ. (30)

The Lemma below shows that if δ < θ < (α + β)/2, then there is a unique µ0 in
(0, c) such that (30) holds.

Lemma 3.2. Let K(x) be of Type (A) or Type (B). Assume that δ < θ < (α+β)/2.
Then there exists a unique µ0 ∈ (0, c) such that

ϕ (µ0) =
α + β

2
− θ. (31)
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Proof. From the definition of the ϕ (µ), we can see that the function is continuous
for µ ∈ (0, c). Note that

lim
µ→0+

ϕ (µ) = 0 <
α + β

2
− θ; (32)

lim
µ→c−

ϕ (µ) =
α

2
+ β

−cτ
∫

−∞

e
x
c
+τJ (x) dx + β

0
∫

−cτ

J (x) dx

=
α

2
+ β

0
∫

−∞

J (x) dx − β

−cτ
∫

−∞

J (x) dx + β

−cτ
∫

−∞

e
x
c
+τJ (x) dx

=
α + β

2
− β

−cτ
∫

−∞

(

1 − e
x
c
+τ

)

J (x) dx

=
α + β

2
− δ

>
α + β

2
− θ , (since δ < θ) (33)

By the intermediate value theorem for continuous functions, there is a µ0 ∈ (0, c)

such that ϕ(µ0) = α+β
2 − θ.

To prove the uniqueness, we only need to show that ϕ(µ) is actually an increasing
function. To see this, we first compute ϕ′

α and ϕ′
β as below:

ϕ′
α (µ) = α

0
∫

−∞

−x

µ2
e

c−µ
cµ

xK (x) dx (34)

ϕ′
β (µ) = β

−µτ
∫

−∞

−x

µ2
e

x
µ

+τJ (x) dx (35)

Due to the condition that J (x) ≥ 0 for all x we know that ϕ′
β (µ) ≥ 0 for all x. As

for the behavior of ϕα, this has to be analyzed on a case-to-case basis depending
on the type of K (x).

For Type (A), since K (x) ≥ 0 for all x and and by the assumption (9), we must
have K (x) > 0 for some nonempty open interval I ⊆ (−∞, 0). Thus the integrand
−(x/µ2)e(c−µ)x/cµK (x) dx ≥ 0 for all negative x and is greater than zero on I.
Thus we must have ϕ′

α (µ) > 0 for all µ ∈ (0, c).
For Type (B), recall that K (x) ≤ 0 for all x ∈ (−∞,−M) ∪ (N, +∞) and

K (x) ≥ 0 elsewhere. Thus for x ∈ (−M, 0)

−xe
c−µ
cµ

xK (x) ≥ −xe−
c−µ
cµ

MK (x) ≥ 0;

and for x ∈ (−∞,−M)

0 ≥ −xe
c−µ
cµ

xK (x) ≥ −xe−
c−µ
cµ

MK (x) .

By the above, one always have

ϕ′
α (µ) ≥ α

0
∫

−∞

− x

µ2
e−

c−µ
cµ

MK (x) dx =
α

µ2
e−

c−µ
cµ

M

0
∫

−∞

|x|K (x) dx > 0
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The last step is due to the requirement on Type (A) kernel function listed in Section
1.

Combining the above, we have shown that ϕ′
α(µ) > 0, and hence ϕ′(µ) > 0,

for K(x) of either type of (A) or (B). This proves the uniqueness of µ0 and thus,
completes the proof of Lemma 3.2

Lemma 3.3. Let µ0 be given in Lemma 3.2. Then the function U (z) given in (23)
satisfies the boundary conditions (22).

Proof. It is straightforward to see that lim
z→−∞

U (z) = 0 because all integral terms

go to zero. The derivative of U can be found by following the rules of differentiation
under an integral sign.

U ′ (z) =
α

µ0

z
∫

−∞

e
x−z
µ0

c
c+µ0 sgn(z)K

(

cx
c+µ0 sgn(z)

)

dx+ β
µ0

z
∫

−∞

e
x−z
µ0 J (x − µ0τ) dx (36)

It is also straightforward to see that lim
z→±∞

U ′ (z) = 0. The remaining limit is

lim
z→+∞

U (z) and this is readily simplified to

lim
z→+∞

U (z) = α − 0 + β

+∞
∫

−∞

(1 − 0)J (x − µ0τ) dx

= α + β

+∞
∫

−∞

J (x − µ0τ) dx

= α + β

Therefore, we have verified that the U (z) given by (23) satisfies all boundary con-
ditions in (22).

Remark 1. We focused on the travelling waves with µ > 0 that go from U (−∞) =
0 to U (∞) = α + β, accounting transition from the rest steady state U = 0 to the
positive steady state U = α+β. When β = 0, Zhang proved that due to symmetry,
a travelling wave solution can also be found with µ0 < 0 and reversed phase and
boundary conditions. For β > 0 however this is not always the case because J (x)
may have conditions that are not symmetric with respect to space.

The next lemma verifies all phase conditions in (21).

Lemma 3.4. Let the kernel function K (x) be of Type (A) or (B), and µ0 be the
positive number given in Lemma 3.2. Then the function U (z) given in (23) satisfies
the phase conditions (21).

Proof. Lemma 3.2 has confirmed U (0) = θ. The other two phase conditions require
more work to prove. We first separate the terms involving α from those involving
β in the expression for U (z) by letting

U (z) = αUα (z) + βUβ (z) (37)
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where

Uα =

cz
c+µ0 sgn(z)

∫

−∞

K (x) dx −
z

∫

−∞

e
x−z
µ0 K

(

cx
c+µ0 sgn(x)

)

c
c+µ0 sgn(x)dx (38)

Uβ =

z
∫

−∞

(

1 − e
x−z
µ0

)

J (x − µ0τ) dx. (39)

It follows from (36) that

U ′
α (z) =

1

µ0

z
∫

−∞

e
x−z
µ0

c
c+µ0 sgn(z)K

(

cx
c+µ0 sgn(z)

)

dx (40)

U ′
β (z) =

1

µ0

z
∫

−∞

e
x−z
µ0 J (x − µ0τ) dx (41)

For K(x) of Type (A), Since K (x) , J (x) ≥ 0 for all x and they both have to
integrate to 1

2 on (−∞, 0) then there must be a nonempty open interval I ⊆ (−∞, 0)
such that K (x) or J (x) or both are positive on I. Pick the leftmost point z∗ such
that z∗ is a left endpoint of such an interval I (allow for z∗ = −∞). Since both
kernels are always non-negative then U ′ = αU ′

α + βU ′
β starts off at zero at −∞

and stays at zero until it hits z∗. Past this point U ′ > 0. Thus U behaves in the
following manner: it starts of at zero and stays there until z∗ after which it starts
strictly increasing and approaching α + β as z → ∞ (Lemma 3.3). This strictly
increasing nature of U (z) guarantees all of the remaining phase conditions.

For K(x) of Type (B), the proof for this case is much more involved. Recall that
K (x) ≤ 0 for all x ∈ (−∞,−M) ∪ (N, +∞) and ≥ 0 everywhere else. Substitute
the case z = 0 in equation (40) and using substitution and splitting of the integral
derive

µ0e
z

µ0 U ′
α (0) =

−M
∫

−∞

e
c−µ0
cµ0

xK (x) dx +

0
∫

−M

e
c−µ0
cµ0

xK (x) dx. (42)

From
0
∫

−∞
K (x) dx = 1

2 , one obtains

0 ≤ −
−M
∫

−∞

K (x) dx <

0
∫

−M

K (x) dx

and

0 ≤ −
−M
∫

−∞

e
c−µ0
cµ0

xK (x) dx ≤ −
−M
∫

−∞

e−
c−µ0
cµ0

MK (x) dx

<

0
∫

−M

e−
c−µ0
cµ0

MK (x) dx ≤
0

∫

−M

e
c−µ0
cµ0

xK (x) dx

Using this in (42), we find that U ′
α (0) > 0. Now, since K (x) ≤ 0 for all x ∈

(−∞,−M) then U ′
α (z) < 0 for all z ∈ (−∞,−M). Thus U ′

α must change sign
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from negative to positive at some point z∗ in (−M, 0). This can only happen once
because of the form K (x). Also because of the form of K (x), U ′

α > 0 on (z∗, N).
Past N , ϕ′

α may change signs again but only once.
From (41) it is obvious that U ′

β ≥ 0. Now express Uα (0) using speed index
functions

αUα (0) =
α

2
− ϕα (µ0) > 0 since 0 ≤ ϕα (µ) ≤ α

2
(43)

Recall that U (0) = αUα (0) + βUβ (0) = θ. Thus βUβ (0) < θ and since U ′
β ≥ 0

then βUβ (z) < θ for all z < 0 and particularly, for all z < z∗.
The results above show that U = αUα +βUβ cannot cross θ before z∗ ∈ (−M, 0)

because αUα started from zero and is decreasing while βUβ by itself is less than
θ. On the interval (z∗, N) both U ′

α > 0 and U ′
β > 0 so U ′ > 0 and U is strictly

increasing (and crosses θ at 0). Past N , U ′
α may change signs once and U ′

β > 0.

This means U ′ may change signs a maximum of once also. In the case that it does
not change signs then the proof is finished. In the case that it does change signs, we
apply the +∞ boundary conditions in Lemma 3.3. Since U → α + β then U ′ < 0
implies that U crossed above α+β and then approaches it from above. In this case,
U cannot cross θ again either and this completes the proof of the this lemma.

Combining the derivation of (23) and Lemmas 3.2, 3.3 and 3.4, we have proved
Theorem 3.1.

4. Travelling wave solutions for K (x) of type (C). Here it is shown that for
K (x) of Type (C), with the same conditions as in Theorem 3.1 if the existence
and uniqueness of the µ0 wave speed can be guaranteed then the model also yields
travelling wave solutions.

Theorem 4.1. Assume that K (x) is of Type (C) and θ < (α+β)/2. If there exists

a unique µ0 ∈ (0, c) such that ϕ (µ0) = α+β
2 − θ then there exists a solution to (1)

given by u (x, t) = U (z) where z = x + µ0τ and U (z) is the solution to the ODE
(20) with phase conditions (21). The solution is given by (23) and also satisfies the
boundary conditions (22).

Proof. In the proof of Theorem 3.1, the only parts that depended on the type of
K (x) is that pertaining to µ0 and the phase conditions. The uniqueness of µ0 is
a requirement of Theorem 4.1 and it also guarantees that U (0) = θ. Thus all that
remains is to prove that U < θ on (−∞, 0) and U > θ on (0, +∞) as required in
(21).

This proof will be performed in a similar manner to the proof in Lemma 3.4 for
Type (B) kernels. Firstly, separate the terms involving α from those involving β like
in (37)-(41). We re-arrange the expression for U ′

α from (40) here for convenience:

µ0e
z

µ0 U ′
α =

z
∫

−∞

e
x

µ0
c

c+µ0 sgn(z)K
(

cx
c+µ0 sgn(z)

)

dx

=

c+µ0 sgn(z)
cµ0

z
∫

−∞

e
c+µ0 sgn(z)

cµ0
x
K (x) dx. (44)

Recall that Type (C) kernels have the following properties: K (x) ≤ 0 if x ∈
(−M, N) and K (x) ≥ 0 if x ∈ (−∞,−M) ∪ (N, +∞). Thus, from the above ex-

pression we see that µ0e
z

µ0 U ′
α starts at zero at z = −∞ and monotonically increases
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up until z = − cµ0

c−µ0
M . Past this it decreases until it hits z = cµ0

c−µ0
N and then starts

increasing again. From all this we can infer that U ′
α (z) ≥ 0 for z ∈

(

−∞,− cµ0

c−µ0
M

)

and may change signs to negative on
(

− cµ0

c−µ0
M, cµ0

c−µ0
N

)

.

Now note that since K (x) has to integrate to 1
2 then it is easy to prove the for

z >> N we must have U ′
α > 0 (the proof is similar to that in Lemma 3.4. Thus if U ′

α

did go negative on
(

− cµ0

c−µ0
M, cµ0

c−µ0
N

)

then it has to turn positive again somewhere

on
(

cµ0

c−µ0
N, +∞

)

.

From the equation (44), we can evaluate

U ′
α (0) =

1

µ0

0
∫

−∞

e
(c−µ0)x

cµ0 K (x) dx =
1

α
ϕα (µ0) > 0 since ϕα ∈

(

0,
α

2

)

.

This means that Uα is monotonically increasing on (−∞, 0). From here we consider
two cases.

Case 1 : U ′
α

(

cµ0

c−µ0
N

)

≥ 0. Since at z > cµ0

c−µ0
N , µ0e

z
µ0 U ′

α is increasing (and

therefore cannot go negative) then U ′
α ≥ 0 for (0, +∞). Thus in this case U ′

α ≥ 0
for all x ∈ R. Since U ′

β ≥ 0 for all x as well, then U ′ > 0 also for all x and we have

a monotonically increasing wavefront. Given already that U(0) = θ, this proves the
phase conditions.

Case 2 : U ′
α

(

cµ0

c−µ0
N

)

< 0. For this case to happen, there must exist one and only

one z1 ∈
(

0, cµ0

c−µ0
N

)

such that U ′
α (z1) = 0 corresponding to a relative maximum

for Uα. Since U ′
α ≥ 0 for large enough z, there must exist a z2 ∈

(

cµ0

c−µ0
N, +∞

)

such that U ′
α (z2) = 0 corresponding to a relative minimum:

αUα (z2) =
α

2
+ α

N
∫

0

K (x) dx + α

cµ0
c−µ0

z2
∫

N

K (x) dx

>
α

2
+ α

N
∫

0

K (x) dx ≥ θ − δ from the requirements of type C kernels.

(45)

Now recall that

βUβ (0) =
β

2
− ϕβ (µ0)

= ∆ (µ0) ≥ δ from the properties of ∆ (µ) .

Since U (0) = αUα (0) + βUβ (0) = θ, αUα (0) = θ − ∆(µ0) ≤ θ − δ.
From (45) we find that αUα (z2) > αUα (0). Thus we now have a complete

description of the behavior of Uα. It is increasing on (−∞, z1) (where z1 > 0), and
decreasing on (z1, z2) and increasing again on (z2, +∞). It attains a local maximum
at z1 and a local minimum at z2 for which Uα (z2) > Uα (0). Thus if we consider
that U ′

β > 0 for all z then we find that U behaves in the following manner: it is

increasing from (−∞, z1). U (0) = θ and on (−∞, z1) it could not have crossed it
again. However U may be increasing or decreasing on the interval (z1, z2). Since
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Uβ is still increasing here then closest U may come back down to θ is at z2 if
Uβ (z2) = Uβ (0). However,

αUα (z2) > αUα (0) ,

αUα (z2) + βUβ (0) > αUα (0) + βUβ (0) = θ.

Thus U cannot possibly cross θ again in (z1, z2). On (z2, +∞), U is increasing
again.

The above completes the proof of Theorem 4.1.

Remark 2. A special case that can be considered for this section is that when δ < θ
(as required in Section 3). This requirement guarantees the existence of µ0 but not
its uniqueness. If we perform analysis similar to Lemma 3.2, we find that in this
case ϕα starts off decreasing, reaches a minimum and then goes on increasing. ϕβ

on the other hand is always increasing. Some choices for K (x) and J (x) may allow
for the possibility of non-unique µ0. It is also possible to ensure the uniqueness of µ0

under some condition(s). One such condition is the requirement that ϕβ < α+β
2 − θ

on the entire interval (0, c). This means requiring

maxµ∈(0,c) ϕβ (µ) = ϕβ (c) =
β

2
− δ <

α + β

2
− θ, (46)

that is, δ > θ − α/2. Thus if

θ − α/2 < δ < θ, (47)

then we are guaranteed existence of a travelling wave solution for kernel K (x) of
Type C, with the wave speed uniquely determined by φ(µ0) = (α + β)/2 − θ.

5. Travelling wave solutions for K (x) of type (D). For this type of kernel
function K(x), it has been pointed out in [10] that (1) does not allow travelling
wave front when β = 0. Now in the presence of the nonlocal feedback connections
(i.e., β > 0), we will see in this section that travelling wave front becomes possible.
Indeed, if β > α, then (PDEU) has the positive equilibrium U = β − α. Following
the same lines as in Sections 5, we can obtain the following theorem.

Theorem 5.1. Let K (x) be of Type (D). Assume that β > α and 0 < θ < β−α
2 .

If there exists a unique µ0 ∈ (0, c) such that ϕ (µ0) = β−α
2 − θ, then there exists a

solution to (1) given by u (x, t) = U (z) where z = x+ µ0τ and U (z) is the solution
to the ODE (20) with phase conditions (21). The solution is given by (23) and also
satisfies the boundary conditions

lim
z→−∞

U (z) = 0, lim
z→+∞

U (z) = β − α, lim
z→±∞

U ′ (z) = 0. (48)

We omit the proof of this theorem because it is similar to that for Theorems
3.1 and 5.1 (with some portions being exactly the same). Travelling wave fronts
may also be found under less strict conditions but that is beyond the scope of this
study. In the next session, an example will be given for K (x) of Type (D), for
which numeric simulations will be performed to show the existence of a travelling
wave front.
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6. Conclusions and discussion. In the previous sessions, we have established the
existence of travelling wave fronts for the model (1) with both synaptic input by
axonal connections (α connections) and the delayed nonlocal feedback connections
(β connections). We have seen that the existence of the wave front is characterized
by the total speed index function ϕ(µ): under some restrictions on the model pa-
rameters, for kernel K(x) of types (A),(B) and (C), the wave speed µ0 is the unique
solution of

ϕ(µ) =
β + α

2
− θ, µ ∈ (0, c); (49)

while for kernel K(x) of type (D), the wave speed µ0 is determined by

ϕ(µ) =
β − α

2
− θ, µ ∈ (0, c). (50)

From the results in the above sessions, we see the wave speed µ0, if any, is indeed
smaller than the axon potential speed c as is observed experimentally. We have also
seen that the wave obeys the phase conditions (21); this means that once a neuron
at position x is activated beyond its threshold value θ it does not relax back down
again to a value below θ. But this does not imply that the wave front has to be
monotone, see the examples 3 and 4 in the next section.

Since the main feature of the model (1) is the presence of the delayed nonlocal
feedback connections, it is interesting and worthwhile to discuss impact of delayed
feedback on the existence of wave front. First of all, as mentioned in the introduc-
tion, for the pure inhibitory type axon connection (kernel K(x) of type (D)), in
the absence of feedback connections, there will be no travelling wave front. Now,
for this type of kernel K(x), the incorporation of the delayed non-local feedback
connections with appropriate chosen kernel J(x), travelling wave front becomes pos-
sible. Although analytically determining the existence of a unique root for speed
equation (50) remains an open problem, the Example 4 in the next section does
show that for β > α it is possible for (1) to have travelling waves.

We may also discuss the dependence of the travelling wave speed µ0 on on the
connection strength β and the magnitude of the delay τ . Take the kernel K(x) of
types (A) or (B) as an example, by (12)-(14), (17) and (19), we know that the root
of (49) is decreasing in τ > 0, meaning that the larger the delay τ , the smaller the
wave speed µ0. To see the impact of β on µ0, we rewrite (49) as

ϕ(µ) − β

2
=

α

2
− θ. (51)

Now by(12)-(14), (19) and (15), we obtain

∂

∂β

(

ϕ(µ) − β

2

)

=
∂

∂β

(

ϕβ(µ) − β

2

)

=
∂

∂β
(−∆(µ)) (52)

=

∫ 0

−∞

(

1 − ex/µ
)

J(x − µτ) dx < 0. (53)

Noting that the right hand side of (51) is independent of β, we conclude that the
wave speed ( the root of (51)) is increasing in β. Of course, when β = 0 the wave
speed µ0 reduces to the wave speed purely determined by the α speed index function
ϕα(µ).
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7. Examples. This section intends to give examples to numerically demonstrate
the results obtained in the previous sections. To this end, we fix the kernel J(x) as
below

J (x) =
1√
π

e−x2

, (54)

which obviously satisfies conditions (6) and (7). Then, for each of the types (A)-(D),
we choose the following particular kernels for K(x):

• Example 1 (type (A)): K (x) = 1
2 exp (− |x|).

• Example 2 (type (B)): K (x) = 4 |x| exp−4|x|− |x| exp−2|x|.

• Example 3 (type (C)): K (x) = 5
2 |x| exp−|x|−4 |x| exp−

√
2|x|.

• Example 4 (type (D)): K (x) = − 1
2 exp (− |x|).

The explicit model parameters for Examples 1-3 are chosen as below:

α = 3.0; β = 0.75, c = 2.0, τ = 0.25, θ = 1.00. (55)

Then the related indirect parameters are numerically determined to be
(i) δ ≈ 0.0042, µ0 ≈ 0.565 for Example 1;
(ii) δ ≈ 0.0042, µ0 ≈ 0.146 for Example 2;
(iii) δ ≈ 0.0042, µ0 ≈ 1.398 for Example 3.

For Example 4, the explicit parameters are given by

α = 0.50; β = 3.00, c = 2.0, τ = 0.25, θ = 1.00, (56)

which numerically determine
(iv) δ ≈ 0.0042, µ0 ≈ 0.138.

For the purpose of comparison with results for the model without delayed non-
local feedback connection (i.e., β = 0), we denote the wave speed for β = 0 by µα.
That is, for Examples 1-3, µα solves ϕα(µ) = α/2 − θ in for µ in µ ∈ (0, c), while
for Example 4 there is no such µα. The determinations of wave speed for each of
the four examples are demonstrated in Figures 1-4.

With the above explicit parameters given and indirect parameters determined,
the wave equation (8) can be numerically solved, giving travelling wave front as
illustrated in Figures 5-8 for Examples 1-4 respectively. Observe that the travelling
wave fronts for Example 2 are non-monotone. More interestingly, in Example 3, for
β = 0 the travelling wave front is non-monotone while for β = 0.75 > 0, the wave
front becomes monotone. This observation suggests that the β connection not only
affects the waves speed but also has an impact on the shape of the wave fronts.

Finally, we point out that although in the end of Section 6, we are able to show
that the wave speed is decreasing in the delay τ only for Types A and B, numerical
simulations seem to support this conclusion for Types C and D as well. Figure 10 is
the numerical result for type D, showing the dependence of µ0 on τ , from which we
can see that the wave speed µ0 decreases asymptotically to zero as τ is increased.
One possible explanation for this is that the assumption of non-negativeness of
the kernel J(x) guarantees a positive global feedback from the whole neural fields
which is delayed by τ time units. Such a positive global feedback is advantageous to
the propagation of signals represented by the traveling wave fronts, and thus, the
larger the delay, the longer it takes for a location to receive the global feedback, and
hence, the slower the propagation would be. The same conclusion has been obtained
for travelling wave fronts in reaction-diffusion models for population growth with
a maturation delay, see, e.g., Zou [11] and the references therein. However, as τ
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varies, the shape of the wavefront does not change significantly, and we omit the
simulation results here.
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Figure 6. Plots of travelling wave solution for Example 1.
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Figure 7. Plots of travelling wave solution for Example 2.
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Figure 8. Plots of travelling wave solution for Example 3.
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Figure 9. Plots of travelling wave solution for Example 4.
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Figure 10. In Example 4, wave speed µ0 decreases as τ increases.
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