
Journal of Nonlinear Science          (2025) 35:113 
https://doi.org/10.1007/s00332-025-10205-z

Multi-periodicity in a Predator–Prey Systemwith a Fear
Effect

Yijin Zhao1 ·Weinian Zhang1 · Xingfu Zou2

Received: 5 December 2024 / Accepted: 13 August 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2025

Abstract
In this paper, we investigate multi-periodicity in a predator–prey system with a fear
effect. Overcoming the difficulties in the calculation of focal values and the irreducible
decomposition of the algebraic varieties of focal values under some restrictions of
biological sense byusing the stratified resultant elimination,wefind that theweak focus
is of multiplicity at most four. Based on this, we identify conditions for the occurrence
of exactly one, two, or three small cycles from Hopf bifurcations by determining the
independence of focal values. Moreover, applying the Poincaré–Bendixson theorem,
we also explore large cycles that are periodic orbits different from those arising from
Hopf bifurcations. Further, we prove the existence of the global attractor and obtain its
structure by integrating all results about the system. Our work indicates that there are
several ways of coexistence for the predator and prey, characterized by monostability,
bistability of node–cycle type, and bistability of cycle–cycle type.

Keywords Predator–prey system · Fear effect · Global attractor · Small cycle · Large
cycle

Mathematics Subject Classification 34C05 · 34D45 · 92D25

1 Introduction

It is known that there are three major types of interactions between two interacting
species—cooperation, competition, and predator–prey (P–P). Among the three, the
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P–P type is the most complicated and it allows richer population dynamics. This is
because a population dynamics model with the first two types of interactions is a
monotone dynamical system for which convergence to equilibria is generic, while a
dynamical model with a P–P type interaction generates a non-monotone dynamical
system and hence can have richer dynamics. Therefore, P–P type systems are the
most interesting not only mathematically but also biologically and have attracted a
lot of researchers, and many of them have been focusing on the impact of various
nonlinearities in the predation term represented by the functional response function.

On the other hand, more and more field experiments (e.g., Zanette et al. 2011)
have shown that many animals can perceive the risks from their predators and respond
accordingly to reduce the risk of predation, and the response to the fear can be in
various forms. In order to explore the impact of such an anti-predation response of
prey due to its fear of the predator, Wang et al. (2016) incorporated a fear factor into
a classic P–P model with Holling-II type functional response in such a way that the
fear effect can reduce the production, which reflects the scenario of the field study
(Zanette et al. 2011). The model reads

{
dx
dt = ( r

1+sy − δ1)x − δ3x2 − pxy
1+qx ,

dy
dt = −δ2y + cpxy

1+qx ,
(1.1)

where x and y represent the populations of prey and predator, respectively, r is the
birth rate of prey, δ3 represents the death rate of prey due to intra-species competition,
δ1 is the natural death rate of prey, δ2 is the death rate of predators, c is the conversion
efficiency of prey into predators, p is themaximum predation rate, and q is a limitation
parameter of the growth of the predator population for increasing prey density. The
fear effect in reducing the production is represented by the factor f (s, y) = 1/(1+sy),
which satisfies

f (0, y) = 1, lim
s→∞ f (s, y) = 0, ∂ f (s,y)

∂s < 0,

f (s, 0) = 1, lim
y→∞ f (s, y) = 0, ∂ f (s,y)

∂ y < 0,

where s reflects the level of fear. Here all parameters are positive, and in addition,
r > δ1 is assumed to ensure that in the absence of the predator, the prey population
settles at a positive equilibrium (r − δ1)/δ3.

It is shown in Wang et al. (2016) that system (1.1) has two boundary equilibria:
(0, 0) which is always unstable, and ((r − δ1)/δ3, 0) which is globally asymptotically
stable if cp − δ2q ≤ 0. In the complementary case cp − δ2q > 0, they used the
rescaling

y �→ sy, x �→ (cp − δ2q)x

δ2
, dt �→ δ2dt

(1 + qx)(1 + sy)
, (1.2)
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to simplify system (1.1) as

{ dx
dt = x(a1 + a2x − a3y − a4x2 − a5xy − a6y2 − a4x2y),
dy
dt = y(1 + y)(x − 1),

(1.3)

a polynomial system, where a1 := (r − δ1)/δ2, a2 := (rq − δ1q − δ3)/(cp − δ2q),
a3 := (δ1s + p)/(sδ2), a4 := δ3δ2q/(cp − δ2q)2, a5 := (δ1q + δ3)/(cp − δ2q) and
a6 := p/(sδ2). It is found that in addition to the two boundary equilibria E0 : (0, 0),
E1 : ([(a22 + 4a1a4)1/2 + a2]/(2a4), 0), the system may have an interior equilibrium
E2 : (1, y∗), where y∗ is expressed in terms of parameters ai s (i = 1, ..., 6), under
someconditions.Theydiscussed the stability of these equilibria in hyperbolic cases and
showed the occurrence of E2 as E1 loses its stability. When E2 is of center type, they
discussed the sign of a quantity computed from a formula given in Perko (1996), which
is actually equivalent to the focal value of multiplicity 1. They proved the existence
of a periodic orbit in the case that E2 is unstable and explained that the periodic
orbit is a result of Hopf bifurcation. They also gave a condition for non-existence
of periodic orbits by the Dulac–Bendixson criterion (Perko 1996). Moreover, they
observed the existence of two limit cycles numerically with the choice of parameters
(r , δ1, δ2, δ3, c, p, q, s) = (0.12, 0.01, 0.05, 0.01, 0.4, 0.5, 0.6, 60).

The numerical results in Wang et al. (2016) suggest that the dynamics of (1.1) are
far away from complete, and there may be some interesting dynamics un-discovered.
In this paper, we revisit system (1.1), hoping to theoretically confirm the extra peri-
odic orbit numerically observed in Wang et al. (2016) and even find more periodic
orbits. This will enable us to better understand the structure of global attractors which
allows us to identify more possibilities of survival patterns for the predator and prey.
To this end, we use a different set of rescaling and change of variables, in terms of ai s
(i = 1, ..., 6), to transform (1.1) to a new planar polynomial system (2.2) in Sect. 2,
which contains less parameters than (1.3) and hence has certain superiority over (1.3).
Corresponding to the boundary equilibria E0, E1 and the interior equilibrium E2 of
system (1.3), system (2.2) also has two boundary equilibria Ẽ0, Ẽ1 and one interior
equilibrium Ẽ2. In Sect. 2, corresponding to the results on the hyperbolic boundary
equilibria E0 and E1 for (1.3) in [26, Theorem 4.1], we explore the qualitative prop-
erties of the boundary equilibria in the nonhyperbolic case which is complementary
to [26, Theorem 4.1]; we also further discuss equilibria at infinity, from which we
deduce the existence of a global attractor in the closure of the first quadrant. In Sect.
3, we find small cycles (i.e., limit cycles of small amplitude), which arise via Hopf
bifurcations from the equilibrium Ẽ2 of center type. After computing focal values, we
not only prove that Ẽ2 is a weak focus of multiplicity at most 4 but also give conditions
for the occurrence of exactly one, two, or three small cycles from Hopf bifurcations,
by the stratified resultant elimination. In Sect. 4, by using the Poincaré–Bendixson
theorem, we find another periodic orbit which is different from those arising from
Hopf bifurcations and is thus referred to as a large cycle. Finally in Sect. 5, we briefly
summarize the main results on the structure of the global attractor and explain how the
structure affects the population dynamics of the involved predator and prey. Our work
shows that, in addition to the bistability of node–cycle type (one stable equilibrium
coexists with a stable periodic oscillation) found in Wang et al. (2016), this model
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system can also support the bistability of cycle–cycle type (one stable periodic orbit
coexisting with another stable periodic orbit). All these further new results clearly
illustrate the complexity of a predator–prey system when a fear effect is incorporated.

2 Equilibria and Global Attractor

In order to avoid the case cp − δ2q = 0, in which the rescaling used in (1.2) is not
available, we make a different transformation

y �→ sy, x �→ qx, dt �→ δ2dt
(1+qx)(1+sy) , (2.1)

to transform system (1.1) to another new planar polynomial differential system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx
dt = x

[
(b1 − b2) + (b1 − b2 − b3)x − (b2 + b4)y − b3x2

−(b2 + b3)xy − b4y2 − b3x2y
]

=: X(x, y),
dy
dt = y(y + 1)

[
(b5 − 1)x − 1

]
=: Y (x, y),

(2.2)

where b1 := r/δ2, b2 := δ1/δ2, b3 := δ3/(δ2q), b4 := p/(sδ2), and b5 := cp/(δ2q).
The form of (2.2) is of the same degree 4 as (1.3), but it only contains five param-
eters, in contrast with six parameters in (1.3), and is thus a bit more convenient to
analyze. Moreover, (2.2) is also more convenient than (1.3) when discussing the non-
hyperbolicity of the boundary equilibrium, because for (1.3), the expression for the
equilibrium E1 is irrational.

Obviously all bi ’s are positive with b1 > b2 (since r > δ1). Furthermore, (2.2)
is of Gaussian Type, and thus, the component x(t) (resp. y(t)) of a solution remains
positive provided that x0 > 0 (resp. y0 > 0).

Corresponding to the three equilibria E0, E1, and E2 for system (1.3), system
(2.2) also has three possible equilibria Ẽ0 = (0, 0), Ẽ1 = ((b1 − b2)/b3, 0) and
Ẽ2 = (1/(b5 − 1), ỹ∗). Here ỹ∗ := −(�2 + (� 2

2 − 4�1�3)
1/2)/(2�1) with

�1 := −b4(b5 − 1)2, �2 := −(b5 − 1)2b4 − b5(b5 − 1)b2 − b3b5,

�3 := b5(−(b5 − 1)b1 + (b5 − 1)b2 + b3).

Obviously, the two boundary equilibria Ẽ0 and Ẽ1 always exist (noting that r > δ1 is
pre-assumed) with Ẽ0 being a saddle.As for Ẽ1, it is a stable node if either [0 < b5 ≤ 1
and b1 > b2] or [b5 > 1 and b2 < b1 < β1], and a saddle if b5 > 1 and b1 > β1. Ẽ2
exists if b5 > 1 and b1 > β1, and it is a sink (resp. source) if b5 > 1 and β1 < b1 < β2
(resp. b5 > 1 and b1 > β2), where a sink is a stable node or focus, a source is an
unstable node or focus,

β1 := b2 + b3
b5−1 and β2 := (

b2 + b3(b5+1)
b5−1

)(
1 + b3b25

b4(b5−1)2
)
. (2.3)
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Notice that Ẽ2 is of center type (need to identify focus from center) if b5 > 1 and
b1 = β2. Ẽ1 is degenerate with eigenvalues −b3b5/(b5 − 1)2 and 0 if b5 > 1 and
b1 = β1, where β1 is given in (2.3). In the following, we give qualitative properties of
the boundary equilibrium Ẽ1 in degenerate cases or at infinity.

Theorem 2.1 (i) If b5 > 1 and b1 = β1, equilibrium Ẽ1 is a saddle node, which has a
parabolic sector in the first quadrant. (ii) System (2.2) has two equilibria Ix and Iy at
infinity in the first quadrant, which locate on the positive half x-axis and the positive
half y-axis, respectively, and both are degenerate. Near Ix the system has a unique
orbit in each direction (including the x-axis and its vertical one), which leaves from
Ix ; near Iy the system has a unique orbit in the direction of the y-axis, which leaves
from Iy, and another unique orbit vertical to the y-axis, which approaches Iy.

Proof We first discuss Ẽ1, for which we assumed that b5 > 1 and b1 = β1. With the
linear transformation

x �→ − 1
b5−1 + x + ( b2b3

+ b4(b5−1)
b3b5

+ 1
b5−1 )y, y �→ 1

b3b5(b5−1) y,

which translates Ẽ1 to the origin and diagonalizes the linear part, we can simplify
system (2.2) as{ dx

dt = p10x + p20x2 + p11xy + p02y2 + O(|(x, y)3|),
dy
dt = q11xy + q02y2 + O(|(x, y)3|), (2.4)

where p10 := −b3b5/(b5 − 1)2, p20 := −b3(b5 + 1)/(b5 − 1), q11 := b5 − 1,
q02 := −(b5 − 1)(b5(b5 − 1)b2 + (b5 − 1)2b4 + b5b3), and p11, p02 are given
in Appendix. By the Center Manifold Theorem (Guckenheimer and Holmes 1983,
Theorem 3.2.1, p.127), system (2.4) has a C2 center manifold x = h(y) near the
origin, which is tangent to the curve x = 0 at origin in the (x, y)-space. Clearly, h is
of the form h(y) = �4y2 + o(y2) with indeterminate �4. By the invariant property,
we have the equality ẋ = hy ẏ. Substituting the equations of (2.4) in the equality and
comparing the coefficients of y2, we obtain �4, given in Appendix. Thus, restricted
to the manifold, system (2.4) becomes the equation

dy
dt = q11h(y)y + q02y2 + O(|(h(y), y)3|) = q02y2 + O(y3),

which shows that Ẽ1 is a saddle node in system (2.4). Since p10 and q02 are both
negative and the stable manifold of Ẽ1 lies on the positive half x-axis, Ẽ1 has a
parabolic sector in the first quadrant.

For possible equilibria at infinity, applying the Poincaré transformation x = 1/z,
y = u/z, we change system (2.2) into the form⎧⎪⎪⎨
⎪⎪⎩

du
dt1

= u
{
b3u + b3z + (b3 + b2 + b5 − 1)uz + (b3 + b2 + b5 − b1

− 1)z2 + b4u2z + (b4 + b2 − 1)uz2 + (b2 − b1 − 1)z3
} =: U (u, z),

dz
dt1

= z
{
b3u + b3z + (b3 + b2)uz + (b3 + b2 − b1)z2

+ b4u2z + (b4 + b2)uz2 + (b2 − b1)z3
} =: Z(u, z),

(2.5)
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Fig. 1 Dynamics near O1 of system (2.5)

where dt1 = dt/z3. As indicated in Zhang et al. (1992, section 5.1, p.325-326) (or
Perko 1996, Theorem 2, p.369), equilibria of (2.5) on the u-axis correspond to equi-
libria of equation (2.2) at infinity in the first quadrant excluding the infinity Iy on the
y-axis. Solving equations U (u, 0) = 0 and Z(u, 0) = 0, we obtain a unique equilib-
rium O1 : (0, 0) of system (2.5) on the positive half u-axis, which corresponds to an
equilibrium Ix of (2.2) at infinity on the positive half x-axis. Note that O1 is of fully
null degeneracy because the Jacobianmatrix J |O1 is zero.Applying theBriot–Bouquet
transformation (Briot and Bouquet 1856; Zhang et al. 1992)

u = u, z = uz̃ (2.6)

to blow up O1 along the z-axis, we change system (2.5) into the form

⎧⎪⎨
⎪⎩

du
dt2

=b3+b3 z̃+u{(b3+b2+b5 − 1)z̃+b4uz̃+(b3+b2+b5−b1
− 1)z̃2+(b4+b2−1)uz̃2+(b2−b1−1)uz̃3} =: Ũ (u, z̃),

dz̃
dt2

= z̃2(1 + z̃){(1 − b5) + uz̃} =: Z̃(u, z̃),

(2.7)

where dt2 = dt1/u2. Since Ũ (0, z̃) = b3(1 + z̃) > 0, we see that (2.7) has no
equilibria on the positive half z̃-axis and all orbits on the half-plane z̃ > 0 cross the
z̃-axis from the left to the right, which by the blowing down (the inverse of (2.6)) gives
phase portrait Fig. 1 of (2.5) in the first quadrant except for orbits in the direction of the
z-axis because the transformation (2.6) is not invertible for u = 0. In order to detect
orbits in the direction of the z-axis, we apply another Briot–Bouquet transformation
u = zû, z = z to blow up in the direction of the u-axis, which changes system (2.5)
into the form⎧⎪⎨

⎪⎩
dû
dt3

= û(1 + û){(b5 − 1) − z} =: Û (û, z),
dz
dt3

= b3 + b3û + z{(b3 + b2 − b1) + (b3 + b2)û + (b2
− b1)z + (b2 + b4)ûz + b4û2z} =: Ẑ(û, z),

(2.8)

where dt3 = dt1/z2. Since Ẑ(0, 0) = b3 > 0, we see that system (2.8) does not
have an equilibrium at the origin, through which a unique orbit passes from down to
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up along the z-axis. This, by the corresponding blowing down, implies that there is
a unique orbit on the positive half z-axis which leaves O1 and goes upward (see the
bold line in Fig. 1). The above shows that near Ix system (2.2) has a unique orbit in
each direction (including the x-axis and its vertical one), which leaves from Ix .

Similar to the Briot–Bouquet transformation (2.6), the Poincaré transformation
used before (2.5) also has singularity, i.e., it is not invertible for x = 0. We need
to discuss orbits on the y-axis near the point at infinity. For this purpose, we apply
another Poincaré transformation x = v/z, y = 1/z to system (2.2), which leads to the
form

⎧⎨
⎩

dv
dt4

= v
{ − b4z − b3v2 − (b3 + b2 + b5 − 1)vz − (b4 + b2 − 1)z2

− b3v2z + (b1 − b3 − b2 − b5 + 1)vz2 + (b1 − b2 + 1)z3
}
,

dz
dt4

= z
{
(1 − b5)vz + z2 + (1 − b5)vz2 + z3

}
,

(2.9)

where dt4 = dt/z3. We only need to consider the origin O2 : (0, 0), which actually is
an equilibrium of (2.9), i.e., Iy is an equilibrium of (2.9) at infinity correspondingly.
This equilibrium is of fully null degeneracy because the Jacobian matrix J |O2 is zero.
Applying the transformation v = v, z = ẑv2, which blows up O2 twice along the
z-axis, we change system (2.9) into the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dv
dt5

= −b3v + v
{ − b4 ẑ − (b3 + b2 + b5 − 1)vẑ − b3v2 ẑ

− (b4 + b2 − 1)v2 ẑ2 − (b3 − b1 + b2 + b5
− 1)v3 ẑ2 + (b1 − b2 + 1)v4 ẑ3

} =: V̌ (v, ẑ),
dẑ
dt5

= 2b3 ẑ + ẑ
{
2b4 ẑ + (2b3 + 2b2 + b5 − 1)vẑ + 2b3v2 ẑ
+ (2b4 + 2b2 − 1)v2 ẑ2 + (2b3 − 2b1 + 2b2
+ b5 − 1)v3 ẑ2 − (2b1 − 2b2 + 1)v4 ẑ3

} =: Ž(v, ẑ),

(2.10)

where dt5 = dt4/v2. Solving V̌ (0, ẑ) = Ž(0, ẑ) = 0, we see that the origin of system
(2.10) is a unique equilibrium on the closure of the positive ẑ-axis and has eigenvalues
−b3 and 2b3, implying that it is a saddle. Thus, by blowing down, we obtain phase
portrait Fig. 2 of (2.9) in the first quadrant, where it is unknown whether there is an
orbit in the direction of the z-axis. For this unknown one, we apply another Briot–
Bouquet transformation v = v̆z, z = z to blow up in the direction of the v-axis, which
changes system (2.9) into the form

⎧⎪⎨
⎪⎩

dv̆
dt6

= −b4v̆ + v̆
{ − (b4 + b2)z − (b3 + b2)v̆z + (b1 − b2)z2

− b3v̆2z + (−b3 + b1 − b2)v̆z2 − b3v̆2z2
} =: V̆ (v̆, z),

dz
dt6

= z
{
z − (b5 − 1)v̆z + z2 − (b5 − 1)v̆z2

} =: Z̆(v̆, z),

(2.11)

where dt6 = dt4/z. Since V̆ (0, 0) = Z̆(0, 0) = 0, we see that the origin of system
(2.11) is an equilibrium. One can compute its two eigenvalues −b4 and 0, showing
that it has a center manifold v̆ = 0. The restriction of system (2.11) to the manifold is

123
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Fig. 2 Dynamics near O2 of system (2.9)

the equation dz/dt6 = z2 + z3, implying that the origin is a saddle node and there is
a unique orbit on the positive half z-axis (see the bold line in Fig. 2), but the infinitely
many orbits in the direction of z-axis lie in the half-plane z < 0 (which cannot be seen
in the first quadrant). Thus, near Iy system (2.2) has a unique orbit in the direction
of the y-axis, which leaves from Iy , and another unique orbit vertical to the y-axis,
which approaches Iy . The proof is completed. ��

Next, we apply the results of equilibria obtained inWang et al. (2016) and Theorem
2.1 to give the existence of global attractors, which is a compact invariant set attracting
all bounded subsets in the closure of the first quadrant.

Theorem 2.2 System (2.2) has a global attractor in the closure of the first quadrant.

Proof Section 4.1 ofWang et al. (2016) shows that system (2.2) has two and three equi-
libria in the cases (C1): either 0 < b5 ≤ 1 and b1 > b2 or b5 > 1 and b2 < b1 ≤ β1,
and (C2): b5 > 1 and b1 > β1, respectively. In case (C1), the system has two equilibria
Ẽ0 : (0, 0) and Ẽ1 : ((b1 − b2)/b3, 0). Moreover, Ẽ0 is a saddle and Ẽ1 has a stable
parabolic sector in the closure of the first quadrant as indicated in Wang et al. (2016)
and Theorem 2.1. From qualitative properties of equilibria at infinity, we similarly see
that the union of Ẽ0, Ẽ1 and the orbit connecting with them is the global attractor.

The most complicated case is (C2), where the system has three equilibria Ẽ0, Ẽ1
and Ẽ2 : (1/(b5 − 1), ỹ∗). Moreover, Ẽ0 and Ẽ1 are both saddles. Note that φt (P) :=
φ(t, P), which denotes the solution of system (2.2) initiated from the point P ∈ R

2+,
whereR+ represents [0,∞) , defines aC0 semigroup for t ≥ 0 on the complete metric
space R

2+. In order to find a global attractor, a compact invariant set attracting all
bounded subsets of R2+, by Corollary 1.1.4 of Cholewa et al. (2000, p.11) or Theorem
9.1 of Hale (2006, p.500) we need to claim that (K1) φt is asymptotically smooth, i.e.,
each nonempty, closed, bounded, positively invariant set in R2+ contains a nonempty,
compact subset which attracts it, (K2) φt keeps orbits of bounded sets bounded, i.e.,
for any bounded set B ⊂ R

2+, there is a number tB ≥ 0, such that
⋃

t≥tB φt (B) is
bounded in R

2+, and (K3) φt is point dissipative, i.e., there is a bounded set D ⊂ R
2+

such that for any point P ∈ R
2+ there is a number tP ≥ 0 such that φt (P) ∈ D if

t ≥ tP . Claim (K1) is obvious becauseHale said “Any ordinary differential equation in
R
n for which the solutions are defined for all t ≥ 0 defines a dynamical system which

is asymptotically smooth” Definition 8.1 of Hale (2006, p.498), which also holds in
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Fig. 3 Construction of D

R
2+, a closed subset of R2. (K2) is also true; otherwise, there is a point P̃ such that⋃
t≥0 φt (P̃) is unbounded inR2+, a contradiction to the fact that the positive half x-axis

and the positive half y-axis are both invariant and the equilibria at infinity are unstable
by Theorem 2.1. Finally, we prove (K3). For this, we denote the unstable manifold of
Ẽ1 inR2+ byWu and need to claim that (W)Wu first intersects the horizontal isocline
H : x = 1/(b5−1) for all y ≥ 0 at a point, denoted by Q : (1/(b5−1), ŷ), and Q does
not lie below Ẽ2, i.e., ŷ ≥ ỹ∗.Wemake the auxiliary vertical line L : x = (b1−b2)/b3
for all y > 0, which connects the point Ẽ1 in Fig. 3. On the line L , we can check that
all orbits cross from right to left and lower to upper because

dx
dt |x=(b1−b2)/b3 = −y(b1 − b2)(b3b4y + b3(b1 + b4) + b1(b1 − b2))/b23 < 0,
dy
dt |x=(b1−b2)/b3 = y(y + 1)(b5 − 1)(b1 − β1)/b3 > 0

on L as considered in case (C2). Note that no equilibria lie on the right ofH for y > 0
and equilibria at infinity are both unstable, which implies that Wu first intersects H
for all y ≥ 0 at a point Q. Further, onH we have X(1/(b5 − 1), y) > 0 (resp. < 0) if
0 < y < ỹ∗ (resp. y > ỹ∗), implying that each orbit starting from the right of H for
y > 0 crossesH not below Ẽ2 to the left. Thus, the intersection Q lies not below Ẽ2.
The claim (W) is proved. Finally, letϒ1 be the orbit connecting Ẽ0 and Ẽ1,ϒ2 the orbit
connecting Ẽ1 andQ,ϒ3 the line segment starting fromQ horizontally and intersecting
to the y-axis at a point, denoted by R, and ϒ4 the orbit connecting R and Ẽ0. Clearly,

ϒ1 := {(x, y) ∈ R
2 : 0 ≤ x ≤ b1−b2

b3
, y = 0}, ϒ2 := {φt (Q) ∈ R

2 : −∞ < t ≤ 0},
ϒ3 :={(x, y)∈R

2 : 0≤ x< 1
b5−1 , y= ŷ}, ϒ4 :={(x, y) ∈ R

2 : x=0, 0≤ y≤ ŷ},

and ϒ := ∪4
i=1ϒi is a simple closed curve. Note that no orbits cross ϒi s (i = 1, 2, 4)

because of the uniqueness of solutions. On ϒ3, all orbits cross from upper to lower
because dy

dt |y=ŷ = ŷ(ŷ + 1)((b5 − 1)x − 1) < 0 for any (x, ŷ) ∈ ϒ3 since
0 ≤ x < 1/(b5 − 1) and ŷ > 0 on ϒ3. This shows that the set D with the boundary
ϒ is what we need in (K3). ��

Remark that a transcritical bifurcation may occur at Ẽ1. In fact, introducing a
bifurcation parameter ε := b1 − β1, translating Ẽ1 : ((b1 − b2)/b3, 0) to the origin,
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diagonalizing the linear part and suspending system (2.2) with ε̇ = 0, we get

⎧⎨
⎩

dx
dt = p̃100x+ p̃200x2 + p̃110xy+ p̃101xε+ p̃020y2 + p̃011yε + O(|(x, y, ε)3|),
dy
dt = q̃110xy + q̃020y2 + q̃011yε + O(|(x, y, ε)3|),
dε
dt = 0,

(2.12)

where p̃100 = p10, p̃200 = p20, p̃101 = −(b5 + 1)/(b5 − 1), q̃110 = q11, q̃020 =
q02/(b5b3(b5−1)), q̃011 = q11/b3, and p̃110, p̃020, p̃011 are given inAppendix. Similar
to the proof of Theorem 2.1 on (i), we obtain a C2 center manifold x = h(y, ε) =
�5y2+�6yε+o(|(y, ε)2|), where�6 := b3b5((b5+1)b3+(b5−1)2)((b5−1)2b4−
b5(b5 + 1)b3) and �5 is given in Appendix. Thus, the restriction of system (2.12) to
the manifold is the equation dy

dt = q̌1(ε)y + q̌2(ε)y2 + O(y3), where

q̌1(ε) := q̃011ε and q̌2(ε) := q̃020 + (b4+b5)(b5−1)3

b3b5((b5+1)b3+(b5−1)2)
ε.

One can check that q̌1(0) = 0 and q̌2(0) = q̃020 < 0. Thus, we use the time-reversing
t �→ −t/q̌2(ε) to simplify the restricted equation as dy

dt = q̆1(ε)y − y2 + O(y3),
where

q̆1(ε) := −q̌1(ε)/q̌2(ε) = − q̃011
q̃020

ε + O(ε2).

Since q̃011/q̃020 < 0, we see that a transcritical bifurcation occurs at Ẽ1 by Chow and
Hale (1982, p.145). Therefore, if b5 > 1 and b1 = β1, Ẽ2 and Ẽ1 coincide as a saddle
node. When b5 > 1 and b1 > β1, Ẽ2 moves to the first quadrant and becomes a stable
node. Moreover, Ẽ1 becomes a saddle.

3 Small Cycles

As indicated in (4.17) and in (4.33) of Wang et al. (2016), the determinant of the
Jacobian matrix at the interior equilibrium E2 is positive, and its trace is equal to zero
as

− (a5 + 2a4)y∗ + a2 − 2a5 = 0, (3.1)

where y∗, being the ordinate of E2, is a function of (a1, ..., a6). In this case, E2 is of the
center type, which has a pair of conjugate pure imaginary eigenvalues. They employed
the formula given in Theorem 1 of Perko’s book (Perko 1996, p.34) to compute

σ∗ := −8a4(a2 − 2a4)2a26 − (a5 + 2a4)(−a5
+6a4a5 − 2a4 + 8a3a4 + 4a24)(a2 − 2a4)a6
−a4(a5 + 2a4)2(2a3 + a5)(a3 + a4 + a5),

(3.2)
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which is actually equivalent to the focal value of multiplicity 1 and discussed the
sign change of the quantity. Use (3.1) to eliminate a6 in (3.2) and express σ∗ as the
quadratic function σ∗(a1) = p1a21 + p2a1+ p3, where the coefficients pi (i = 1, 2, 3)
are polynomials of (a2, ..., a5). Choose values of parameters so as to show that
there can be 0, 1 or 2 positive real zeros of the quadratic function, which implies
that one limit cycle can arise via the Hopf bifurcation as σ varies to be nonzero.
They further found two limit cycles numerically for (r , δ1, δ2, δ3, c, p, q, s) =
(0.12, 0.01, 0.05, 0.01, 0.4, 0.5, 0.6, 60). However, for σ∗ to be zero, it is not deter-
mined yet whether Ẽ2 is a weak focus or a center. Moreover, the maximal multiplicity
needs to be considered in the case of weak focus.

As known in the first two paragraphes of Sect. 2, the unique interior equilibrium
Ẽ2 is of center type if

(b1, b2, b3, b4, b5) ∈ 
0 := {(b1, b2, b3, b4, b5) ∈ (0,∞)5 : b1 = β2, b5 > 1},
(3.3)

where β2 is defined in (2.3). In this case, the linearization of system (2.2) at Ẽ2 has a
pair of conjugate pure imaginary eigenvalues ±iω, where

ω :=
{

b3b25
(b5−1)2

(1 + b3b25
b4(b5−1)2

)(1 + b2b5
b4(b5−1) + b3b5(2b5+1)

b4(b5−1)2
)

}1/2

.

In the following, we give the multiplicity of Ẽ2 being a weak focus, and conditions
for exactly numbers of small cycles bifurcated from Ẽ2. For convenience, let ε be a
sufficiently small perturbation parameter, B−(x0) := (x0−ε, x0], B+(x0) := [x0, x0+
ε), Bo−(x0) := (x0 − ε, x0), Bo+(x0) := (x0, x0 + ε), Bo(x0) := (x0 − ε, x0 + ε), and

D1 := {(b3, b5) ∈ R
2 : 1 < b5 ≤ β

(33)
1 ,

b3 = −(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1))},
D2 := {(b3, b5) ∈ R

2 : β
(33)
1 < b5 ≤ β

(34)
1 ,

b3 = −(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1))},
D3 := {(b3, b5) ∈ R

2 : β
(34)
1 < b5 ≤ β

(36)
2 ,

b3 = −(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1))},
D4 := {(b3, b5) ∈ R

2 : β
(36)
2 < b5 < β

(35)
1 ,

b3 = −(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1))},
D5 := {(b3, b5) ∈ R

2 : β
(35)
1 < b5 < (3 + √

3)/2,
b3 = −(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1))},

D6 := {(b3, b5) ∈ R
2 : b5=β

(35)
1 , b3=−(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1))},

where β
(33)
1 , β(34)

1 , β(35)
1 , β(36)

2 , β(23)
2 , β(21)

1 , β(24)
1 , β(24)

2 , β(24)
3 , β(11)

1 , β(11)
2 , and β

(11)
3 ,

shown in Appendix, are zeros of polynomials.

Theorem 3.1 For (b1, b2, b3, b4, b5) ∈ 
0, the equilibrium Ẽ2 of system (2.2) is a
weak focus of multiplicity at most 4. Moreover, exactly k small cycles arise from Ẽ2 if
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Table 1 Sets �̃i
1, �̃

j
2, �̃3 for numbers of small-cycles. Sets �̃i

1, �̃
j
2, �̃3 for numbers of small-cycles for

(b3, b5) ∈ D1

b4 b2 b1 Number Label

b4 ∈ (0, ∞) b2 ∈ (0, ∞) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃12
1

(b3, b5) ∈ D1

Table 2 Sets �̃i
1, �̃

j
2, �̃3 for numbers of small-cycles. Sets �̃i

1, �̃
j
2, �̃3 for numbers of small-cycles for

(b3, b5) ∈ D2

b4 b2 b1 Number Label

b4 ∈ (0, β(23)
2 ) b2 ∈ (0, β(11)

2 ) b1 ∈ Bo−(β2) 1 �̃15
1

b1 ∈ B+(β2) 0

b2 ∈ (β
(11)
2 ,∞) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃16
1

b4 ∈ [β(23)
2 ,∞) b2 ∈ (0, ∞) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃17
1

b4 ∈ (0, β(23)
2 ) b2 ∈ Bo−(β

(11)
2 ) b1 ∈ Bo−(β2) 2 �̃3

2

b1 ∈ B+(β2) 1 �̃18
1

b2 ∈ B+(β
(11)
2 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃19
1

(b3, b5) ∈ D2

(b1, b2, b3, b4, b5) ∈ �̃k , for any k = 1, 2, 3, where �̃1 := ∪26
i=1�̃

i
1, �̃2 := ∪8

j=1�̃
j
2 ,

and �̃3, �̃i
1, �̃

j
2 are shown in Tables 1–5.

Proof Translating Ẽ2 to the origin and diagonalizing the linear part, we can change
system (2.2) into the form

{ dx
dt = −y + p̂20x2 + p̂11xy + p̂02y2 + p̂30x3 + p̂21x2y + p̂12xy2 + p̂31x3y,
dy
dt = x + q̂11xy + q̂12xy2,

(3.4)

where

p̂20 := − b3ω5
b4(b5−1)3

, p̂11 := −ω(b5−1)((b5+1)ω4−ω5)
b5ω4

, p̂02 := − b3b25ω5
b4(b5−1)ω4

,

p̂30 := − b4ω3/2(b5−1)4

b25ω4
, p̂21 := − b3b5ω5(ω4−ω5+b3)

b24(b5−1)4
, p̂12 := − b3b25ωω5

b4ω4
,

p̂31 := − b3ω3/2(b5−1)3

ω4
, q̂11 := b3b25+ω5

b4(b5−1) , q̂12 := b3b25ω5

b24(b5−1)2
,

ω4 := b2b5(b5 − 1) + b3b5(2b5 + 1) + b4(b5 − 1)2, ω5 := b3b25 + b4(b5 − 1)2.
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Using the polar coordinates (x, y) = (ρ cos θ, ρ sin θ), we can write system (3.4) as
the 2π -periodic equation

dρ
dθ

= G2(θ)ρ2+G3(θ)ρ3+G4(θ)ρ4

1+H1(θ)ρ+H2(θ)ρ2+H3(θ)ρ3 =
∞∑
k=2

ρk(θ)ρk (3.5)

near the origin by the analyticity as shown in Chen et al. (2008), where

G2(θ) := ( p̂02 + q̂11) cos θ + p̂11 cos2 θ sin θ + ( p̂20 − p̂02 − q̂11) cos3 θ,

G3(θ) := q̂12 cos θ sin θ+ p̂12 cos2 θ+( p̂21−q̂12) cos3 θ sin θ+( p̂30− p̂12) cos4 θ,

G4(θ) := p̂31 cos4 θ sin θ, H3(θ) := − p̂31 cos3 θ sin2 θ,

H1(θ) := − p̂02 sin θ − p̂11 cos θ sin2 θ + ( p̂02 − p̂20 + q̂11) cos2 θ sin θ,

H2(θ) := − p̂12 cos θ sin θ + (q̂12 − p̂21) cos2 θ sin2 θ + ( p̂12 − p̂30) cos3 θ sin θ,

ρk(θ) =
4∑

i=2
Gi (θ)Ak−i (θ), A�(θ) =

⎧⎪⎪⎨
⎪⎪⎩
0, if � < 0,
1, if � = 0,

−
3∑
j=1

Hj (θ)A�− j (θ), if � > 0.

Let ρ(θ, ρ0) be the solution of equation (3.5) associated with ρ(0, ρ0) = ρ0. Then we
can compute the displacement function d(ρ0) := ρ(2π, ρ0)−ρ0 = ∑∞

i=1 G2i+1ρ
2i+1
0 ,

where G2i+1 s are called focal values in Li (2003); Lloyd (1988). The Maple software
produces the following expressions

G3 := − b3ω((b5 − 1)2b4 + b3b25)

8b4(b5 − 1)2(b5(b5 − 1)b2 + (b5 − 1)2b4 + b3b5(2b5 + 1))2
·

g3(b2, b3, b4, b5),

G5 := b3ω((b5 − 1)2b4 + b3b25)

768b34(b5 − 1)8(b5(b5 − 1)b2 + (b5 − 1)2b4 + b3b5(2b5 + 1))4
·

g5(b2, b3, b4, b5),

G7 := − b3ω((b5 − 1)2b4 + b3b25)

8847360b54(b5 − 1)14(b5(b5 − 1)b2 + (b5 − 1)2b4 + b3b5(2b5 + 1))6
·

g7(b2, b3, b4, b5),

G9 := − b3ω((b5 − 1)2b4+b3b25)

1070176665600b74(b5−1)20(b5(b5−1)b2+(b5−1)2b4+b3b5(2b5+1))8
·

g9(b2, b3, b4, b5),

(3.6)

where b1 is replaced with β2 in 
0 and

g3(b2, b3, b4, b5)
:= b5(2b5 − 1)(b5 − 1)2b22 + (b5 − 1){(4b5 − 1)(b5 − 1)2b4 + b5((8b25 + b5 − 2)b3
− b5(b5 − 1)2)}b2 + {2(b5 − 1)4b24 + b3(8b25 + 3b5 − 1)(b5 − 1)2b4
+ b3b5((2b5 + 1)(4b25 + b5 − 1)b3 − b5(b5 + 1)(b5 − 1)2)}
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but g5, g7 and g9 are much greater polynomials of 1191, 7079, and 23960 terms,
respectively. Since the fractions in Gi s (i = 3, 5, 7, 9) are all positive by (3.3), we can
use real zeros and signs of gi s (i = 3, 5, 7, 9) to discuss real zeros and signs of Gi s
(i = 3, 5, 7, 9).

First, in order to give the multiplicity of the weak focus Ẽ2, we claim that

V (g3, g5, g7, g9) ∩ 
0 = ∅, (3.7)

where V (φ1, ..., φm) presents the algebraic variety of polynomials φ1, ..., φm , i.e., the
set of common zeros of those polynomials. Taking the order

b2 ≺ b4 ≺ b3 ≺ b5 (3.8)

for variables in elimination stratum by stratum, we start from the primary stratum:
G0 := {g3, g5, g7, g9} and compute

r12(b3, b4, b5) := res(g5, g3, b2) = 512b23b
13
5 (2b5 − 1)(b5 − 1)20 ·

((b5 − 1)2b4 + b3b
2
5)

5r̃12(b3, b4, b5),

r13(b3, b4, b5) := res(g7, g3, b2) = 819200b23b
18
5 (2b5 − 1)(b5 − 1)30 ·

((b5 − 1)2b4 + b3b
2
5)

7r̃13(b3, b4, b5),

r14(b3, b4, b5) := res(g9, g3, b2) = 90316800b23b
23
5 ·

(2b5 − 1)(b5 − 1)40((b5 − 1)2b4 + b3b
2
5)

9r̃14(b3, b4, b5),

where res(φ1, φ2, x) denotes the Sylvester resultant (Gelfand et al. 1994;Mishra 1993)
of φ1 and φ2 with respect to the variable x , r̃12, r̃13 and r̃14 are polynomials of degree
13, 38 and 63 having 102, 1260 and 4743 terms, respectively. By Lemma 2 of Chen
and Zhang (2009), we get

V (G0) = V (G0, lcff(g3, b2)) ∪ V ( G0,G1
lcff(g3,b2)

), (3.9)

where G1 := {r12, r13, r14} is the first stratum of the primary stratum G0, the notion
V (

φ1,...,φm
ψ1,...,ψn

) presents V (φ1, ..., φm)\{∪n
i=1V (ψi )}, and lcff(φ, X) denotes the leading

coefficient of φ with respect to the variable X . Then, we compute

r23(b3, b5) := res(r13, r12, b4) ≡ 0, r24(b3, b5) := res(r14, r12, b4) ≡ 0,

because r12, r13 and r14 have the greatest common factor 512b23b
13
5 (b5 − 1)20(2b5 −

1)((b5 − 1)2b4 + b3b25)
5. Thus, we get the second stratum: G2 := {r23, r24} = {0},

which shows that we cannot continue to decompose the variety V (G1).
For further decomposition of stratum, we need a lemma for three polynomials

f1, f2, f3 ∈ K[x] over an algebraic closed field K with the following irreducible
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factorization

f1(x) = U
p1,1
1 (x) · · ·U p1,r

r (x) f̃
q1,1
1,1 (x) · · · f̃ q1,�1,� (x),

f2(x) = U
p2,1
1 (x) · · ·U p2,r

r (x)W
h1,1
1 (x) · · ·Wh1,s

s (x) f̃
q2,1
2,1 (x) · · · f̃ q2,m2,m (x),

f3(x) = U
p3,1
1 (x) · · ·U p3,r

r (x)W
h2,1
1 (x) · · ·Wh2,s

s (x) f̃
q3,1
3,1 (x) · · · f̃ q3,n3,n (x),

(3.10)

where x := (x1, ..., xϑ), U1, ...,Ur are common factors of f1, f2 and f3, W1, ...,Ws

are common factors of f2 and f3 but not f1, f̃1,1, ..., f̃1,� are factors of f1 but not f2 or
f3, f̃2,1, ..., f̃2,m are factors of f2 but not f1 or f3, f̃3,1, ..., f̃3,n are factors of f3 but not
f1 or f2, and p1,1, ..., p1,r , p2,1, ..., p2,r , p3,1, ..., p3,r , h1,1, ..., h1,s , h2,1, ..., h2,s ,
q1,1, ..., q1,�, q2,1, ..., q2,m , q3,1, ..., q3,n are positive integers. For a stratumwith more
than three polynomials,we select one factor of each polynomial in the stratum, and then
combine the selected factors to get a sub-stratum, and further obtain a decomposition
of an algebraic variety consisting of the stratum. ��
Lemma 3.1 Let f1, f2 and f3 be polynomials of the form (3.10). Then the stratum
G := { f1, f2, f3} contains r + �s + �mn sub-strata

Gκ := {Uκ}, if κ = 1, ..., r ,
Gκ := { f̃1,α,Wη}, if κ = r + (α − 1)s + η,

α = 1, ..., � and η = 1, ..., s,
Gκ := { f̃1,α, f̃2,β , f̃3,γ }, if κ = r + �s + (α − 1)mn + (β − 1)n + γ,

α = 1, ..., �, β = 1, ...,m and γ = 1, ..., n,

such that

V (G) = ( r⋃
κ=1

V (Gκ)
) ∪ ( r+�s+�mn⋃

κ=r+1
V (Gκ , Jκ ) ∪ V (

Gκ ,G∗
κ

Jκ
)
)
, (3.11)

where Jκ , κ = r +1, ..., r +�s+�mn, is the leading coefficient of the first polynomial
in the sub-stratum Gκ with respect to X, the main variable in the stratum G, and G∗

κ ,
κ = r + 1, ..., r + �s + �mn, is the stratum reduced from Gκ by computing resultants,
i.e.,

G∗
κ := {r̃αη}, if κ = r + (α − 1)s + β,

α = 1, ..., � and η = 1, ..., s,
G∗

κ := {r̂αβ, r̂αγ }, if κ = r + �s + (α − 1)mn + (β − 1)n + γ,

α = 1, ..., �, β = 1, ...,m and γ = 1, ..., n

with r̃αη := res(Wη, f̃1,α, X), r̂αβ := res( f̃2,β , f̃1,α, X)and r̂αγ := res( f̃3,γ , f̃1,α, X).

We leave the proof of Lemma 3.1 after we complete the proof of the theorem. Now,
we go back to the proof of Theorem 3.1. Compute

r23(b3, b5) := res(r̃13, r̃12, b4) = 279936b73b
41
5 (b5 − 1)74 ·

r̃ (1)
23 (b3, b5)r̃

(2)
23 (b3, b5)r̃

(3)
23 (b3, b5),
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r24(b3, b5) := res(r̃14, r̃12, b4) = 2579890176b113 b665 (b5 − 1)120 ·
r̃ (1)
23 (b3, b5)r̃

(1)
24 (b3, b5)r̃

(2)
24 (b3, b5), (3.12)

where r̃ (1)
23 := (4b5−1)(2b5−1)b3−(b5−1)3, and r̃ (2)

23 , r̃
(3)
23 , r̃

(1)
24 and r̃ (2)

24 are polyno-
mials of degree 19, 47, 41 and 75 having 137, 594, 534 and 1454 terms, respectively.
By Lemma 3.1, the first stratum G1 = {r12, r13, r14} has the 6 sub-strata:

G1,1 := {b3}, G1,2 := {b5}, G1,3 := {2b5 − 1},
G1,4 := {b5 − 1}, G1,5 := {(b5 − 1)2b4 + b3b25}, G1,6 := {r̃12, r̃13, r̃14},

as shown in Fig. 4, which satisfy

V (G1) = ( 5⋃
κ=1

V (G1,κ )
) ∪ (

V (G1,6, lcff(r̃12, b4)) ∪ V (
G1,6,G(1,6)

2
lcff(r̃12,b4)

)
)
,

where G(1,6)
2 := {r23, r24} is the stratum reduced from the first sub-stratum G1,6 by

computing resultant and, for convenience, referred to the second stratumcorresponding
to G1,6. Noting by (3.3) that V (G1,κ ) ∩ 
0 = ∅ for each κ = 1, ..., 5, we have that

V (G1) ∩ 
0 = (
V (G1,6, lcff(r̃12, b4)) ∪ V (

G1,6,G(1,6)
2

lcff(r̃12,b4)
)
) ∩ 
0. (3.13)

Similarly, we compute

r311(b5) := res(r̃ (1)
24 , r̃ (2)

23 , b3)

= 8545547296791713027842210491531264b235 (2b5 − 1)16(b5 − 1)260 ·
(16b25 − 9b5 + 2)r̃ (1)

311(b5)r̃
(2)
311(b5),

r312(b5) := res(r̃ (2)
24 , r̃ (2)

23 , b3)

= −104976b185 (2b5 − 1)45(b5 − 1)390r̃ (1)
312(b5)r̃

(2)
312(b5),

r313(b5) := res(r̃ (1)
24 , r̃ (3)

23 , b3)

= 2421244566773856b295 (2b5 − 1)50(b5 − 1)492r̃ (1)
313(b5)r̃

(2)
313(b5),

r314(b5) := res(r̃ (2)
24 , r̃ (3)

23 , b3)

= −2796574286309581231459965835978008491458560b455 (5b5 − 3)4 ·
(2b5 − 1)209(b5 − 1)744r̃ (1)

314(b5)r̃
(2)
314(b5)r̃

(3)
314(b5)r̃

(4)
314(b5), (3.14)

where r̃ (1)
311 is given in Appendix, r̃ (2)

311, r̃
(1)
312, r̃

(2)
312, r̃

(1)
313, r̃

(2)
313, r̃

(2)
314 and r̃ (3)

314 are poly-

nomials having 146, 276, 93, 120, 358, 141 and 579 terms, respectively, r̃ (1)
314 :=

10b35 −16b25 +4b5 +1 and r̃ (4)
314 := 2b25 −6b5 +3. By Lemma 3.1, the second stratum
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G(1,6)
2 = {r23, r24} has the 8 sub-strata:

G(1,6)
2,1 = {b3}, G(1,6)

2,2 = {b5}, G(1,6)
2,3 = {b5 − 1},

G(1,6)
2,4 = {r̃ (1)

23 }, G(1,6)
2,5 = {r̃ (2)

23 , r̃ (1)
24 }, G(1,6)

2,6 = {r̃ (2)
23 , r̃ (2)

24 },
G(1,6)
2,7 = {r̃ (3)

23 , r̃ (1)
24 }, G(1,6)

2,8 = {r̃ (3)
23 , r̃ (2)

24 },

as shown in Fig. 4, which satisfy

V (G(1,6)
2 ) = ( 4⋃

κ=1
V (G(1,6)

2,κ )
) ∪ ( 6⋃

κ=5
V (G(1,6)

2,κ , lcff(r̃ (2)
23 , b3)) ∪ V (

G(1,6)
2,κ ,G(2,κ)

3

lcff(r̃ (2)
23 ,b3)

)
)

∪( 8⋃
κ=7

V (G(1,6)
2,κ , lcff(r̃ (3)

23 , b3)) ∪ V (
G(1,6)
2,κ ,G(2,κ)

3

lcff(r̃ (3)
23 ,b3)

)
)
,

where G(2,5)
3 := {r311}, G(2,6)

3 := {r312}, G(2,7)
3 := {r313} and G(2,8)

3 := {r314} are

reduced from the second sub-strata G(1,6)
2,5 , G(1,6)

2,6 , G(1,6)
2,7 and G(1,6)

2,8 by computing

resultant and, for convenience, referred to the third strata corresponding to G(1,6)
2,5 ,

G(1,6)
2,6 , G(1,6)

2,7 and G(1,6)
2,8 , respectively. Noting by (3.3) that V (G(1,6)

2,κ ) ∩ 
0 = ∅ for
each κ = 1, 2, 3, we have

V (G(1,6)
2 ) ∩ 
0 =

(
V (G(1,6)

2,4 ) ∪ ( 6⋃
κ=5

V (G(1,6)
2,κ , lcff(r̃ (2)

23 , b3)) ∪ V (
G(1,6)
2,κ ,G(2,κ)

3

lcff(r̃ (2)
23 ,b3)

)
)

∪( 8⋃
κ=7

V (G(1,6)
2,κ , lcff(r̃ (3)

23 , b3)) ∪ V (
G(1,6)
2,κ ,G(2,κ)

3

lcff(r̃ (3)
23 ,b3)

)
)) ∩ 
0.

(3.15)

Similarly, by Lemma 3.1, the third stratum G(2,5)
3 = {r311} has the 6 sub-strata:

G(2,5)
3,1 := {b5}, G(2,5)

3,2 := {2b5 − 1}, G(2,5)
3,3 := {b5 − 1},

G(2,5)
3,4 := {16b25 − 9b5 + 2}, G(2,5)

3,5 := {r̃ (1)
311}, G(2,5)

3,6 := {r̃ (2)
311},

the third stratum G(2,6)
3 = {r312} has the 5 sub-strata:

G(2,6)
3,1 := {b5}, G(2,6)

3,2 := {2b5 − 1}, G(2,6)
3,3 := {b5 − 1},

G(2,6)
3,4 := {r̃ (1)

312}, G(2,6)
3,5 := {r̃ (2)

312},

the third stratum G(2,7)
3 = {r313} has the 5 sub-strata:

G(2,7)
3,1 := {b5}, G(2,7)

3,2 := {2b5 − 1}, G(2,7)
3,3 := {b5 − 1},

G(2,7)
3,4 := {r̃ (1)

313}, G(2,7)
3,5 := {r̃ (2)

313},
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and the third stratum G(2,8)
3 = {r314} has the 8 sub-strata:

G(2,8)
3,1 := {b5}, G(2,8)

3,2 := {5b5 − 3}, G(2,8)
3,3 := {2b5 − 1}, G(2,8)

3,4 := {b5 − 1},
G(2,8)
3,5 := {r̃ (1)

314}, G(2,8)
3,6 := {r̃ (2)

314}, G(2,8)
3,7 := {r̃ (3)

314}, G(2,8)
3,8 := {r̃ (4)

314},

as shown in Fig. 4. Noting by (3.3) that G(2,ς)
3,i ∩
0 = ∅ and G(2,�)

3, j ∩
0 = ∅ for each
i = 1, 2, 3, 4, j = 1, 2, 3, ς = 5, 8 and � = 6, 7, we have

V (G(2,5)
3 ) ∩ 
0 = (

6⋃
κ=5

V (G(2,5)
3,κ )) ∩ 
0, V (G(2,6)

3 ) ∩ 
0 = (
5⋃

κ=4
V (G(2,6)

3,κ )) ∩ 
0,

V (G(2,7)
3 ) ∩ 
0 = (

5⋃
κ=4

V (G(2,7)
3,κ )) ∩ 
0, V (G(2,8)

3 ) ∩ 
0 = (
8⋃

κ=5
V (G(2,8)

3,κ )) ∩ 
0.

(3.16)

Thus, by (3.9), (3.13), (3.15), and (3.16) we obtain the decomposition

V (g3, g5, g7, g9) ∩ 
0 =
(

17⋃
i=1

Vi

)
∩ 
0, (3.17)

where

V1 := V (G0, lcff(g3, b2)),
V2 := V

(G0,G1,6,lcff(r̃12,b4)
lcff(g3,b2)

)
,

V3 := V

(
G0,G1,6,G(1,6)

2,4
lcff(g3,b2),lcff(r̃12,b4)

)
,

V4 := V

(
G0,G1,6,G(1,6)

2,5 ,lcff(r̃ (2)
23 ,b3)

lcff(g3,b2),lcff(r̃12,b4)

)
,

V5 := V

(
G0,G1,6,G(1,6)

2,6 ,lcff(r̃ (2)
23 ,b3)

lcff(g3,b2),lcff(r̃12,b4)

)
,

V6 := V

(
G0,G1,6,G(1,6)

2,7 ,lcff(r̃ (3)
23 ,b3)

lcff(g3,b2),lcff(r̃12,b4)

)
,

V7 := V

(
G0,G1,6,G(1,6)

2,8 ,lcff(r̃ (3)
23 ,b3)

lcff(g3,b2),lcff(r̃12,b4)

)
,

V8 := V

(
G0,G1,6,G(1,6)

2,5 ,G(2,5)
3,5

lcff(g3,b2),lcff(r̃12,b4),lcff(r̃
(2)
23 ,b3)

)
,

V9 := V

( G0,G1,6,G(1,6)
2,5 ,G(2,5)

3,6

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(2)
23 , b3)

)
,

V10 := V

( G0,G1,6,G(1,6)
2,6 ,G(2,6)

3,4

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(2)
23 , b3)

)
,
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Fig. 4 Decomposition of G0

V11 := V

( G0,G1,6,G(1,6)
2,6 ,G(2,6)

3,5

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(2)
23 , b3)

)
,

V12 := V

( G0,G1,6,G(1,6)
2,7 ,G(2,7)

3,4

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(3)
23 , b3)

)
,

V13 := V

( G0,G1,6,G(1,6)
2,7 ,G(2,7)

3,5

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(3)
23 , b3)

)
,

V14 := V

( G0,G1,6,G(1,6)
2,8 ,G(2,8)

3,5

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(3)
23 , b3)

)
,

V15 := V

( G0,G1,6,G(1,6)
2,8 ,G(2,8)

3,6

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(3)
23 , b3)

)
,

V16 := V

( G0,G1,6,G(1,6)
2,8 ,G(2,8)

3,7

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(3)
23 , b3)

)
,

V17 := V

( G0,G1,6,G(1,6)
2,8 ,G(2,8)

3,8

lcff(g3, b2), lcff(r̃12, b4), lcff(r̃
(3)
23 , b3)

)
.

Next, we claim the following.

Lemma 3.2 (Mi ): Vi ∩ 
0 = ∅, i = 1, ..., 17.

We will prove this lemma after we complete the proof of the theorem. By Lemma
3.2 and (3.17), we see that claim (3.7) holds, which implies that the equilibrium Ẽ2 is
a weak focus of multiplicity at most 4 for (b1, b2, b3, b4, b5) ∈ 
0.
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Further, we give conditions of parameters for exactly numbers of limit cycles. In
order to avoid a great deal of complicated symbolic computation, we restrict to the
surface

� := {(b1, b2, b3, b4, b5) ∈ R
5 : b3 = − (2b25−6b5+3)(b5−1)2

3(2b5−1) } (3.18)

to give sufficient conditions for 1, 2, and 3 limit cycles separately. We will give an
explanation for (3.18) after the proof of the theorem. In this case, substituting b3 =
−(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1)) in g3, g5 and g7, which are defined just
below (3.6), we get

g3 = (b5 − 1)2 g̃3(b2, b4, b5)/(9(2b5 − 1)2),
g5 = −(b5 − 1)11g̃5(b2, b4, b5)/(6561(2b5 − 1)8),
g7 = −(b5 − 1)20 g̃5(b2, b4, b5)/(1594323(2b5 − 1)14),

where

g̃3(b2, b4, b5)

:= 9b5(2b5 − 1)3b22 + 3(2b5 − 1)(b5 − 1){3(4b5 − 1)(2b5 − 1)b4 − 2b5 ·
(8b45 − 23b35 + 10b25 + 6b5 − 3)}b2

+(b5 − 1)2{18(2b5 − 1)2b24 − 3(2b5 − 1)(8b25 + 3b5 − 1)(2b25 − 6b5 + 3)b4

+b5(2b
2
5 − 6b5 + 3)(16b55 − 36b45 − 8b35 + 25b25 − 3)},

g̃5 and g̃7 are polynomials of 34 and 58 degrees having 541 and 2108 terms, respec-
tively. Next, we prove in the following three steps: (I) compute V (g̃3) ∩ (
0 ∩ �),
(II) compute V (g̃3, g̃5) ∩ (
0 ∩ �), and (III) prove V (g̃3, g̃5, g̃7) ∩ (
0 ∩ �) = ∅.

Step (I): Compute V (g̃3) ∩ (
0 ∩ �).
As indicated in (3.8), we will eliminate the variable in the order b2 ≺ b4 ≺ b5

stratum by stratum because of the removal of b3 by (3.18). For consistency of nota-
tionss, we let ϕi j denote the j th occurrence of a polynomial in the i − 1th stratum
of elimination and write the kth occurrence of a real zero of the polynomial ϕi j as

β
(i j)
k . By (3.3) and (3.18), 
0 requires that b3 > 0 and b5 > 1 and � requires that

b3 = −(2b25 − 6b5 + 3)(b5 − 1)2/(3(2b5 − 1)). Thus, the intersection of 
0 and �

requires b3 = −(2b25−6b5+3)(b5−1)2/(3(2b5−1)) > 0 and b5 > 1, fromwhichwe
get 1 < b5 < (3 + √

3)/2. Thus, we need to find real zeros of ϕ11(·) := g̃3(·, b4, b5)
for b2 > 0, b4 > 0 and 1 < b5 < (3 + √

3)/2. In what follows, we use the notation
⇔ to indicate “if and only if” shortly.

Lemma 3.3 ϕ11 has two zeros in (−∞,∞), denoted by β
(11)
1 < β

(11)
2 ,

⇔ either 1 < b5 < (3 + √
3)/2 and b4 > β

(21)
2

or β
(31)
1 < b5 < (3 + √

3)/2 and 0 < b4 < β
(21)
1 ,

123



Journal of Nonlinear Science           (2025) 35:113 Page 21 of 50   113 

and a unique multiple zero in (−∞,∞), denoted by β
(11)
3 ,

⇔ either 1 < b5 < (3 + √
3)/2 and b4 = β

(21)
2

or β
(31)
1 < b5 < (3 + √

3)/2 and b4 = β
(21)
1 ;

otherwise, ϕ11 has no zeros in (−∞,∞), where β
(31)
1 , β

(21)
1 , β

(21)
2 , β

(11)
1 , β

(11)
2 and

β
(11)
3 are given in Appendix. Moreover,

β
(11)
1 > 0 ⇔ β

(34)
1 < b5 < (3 + √

3)/2 and β
(23)
2 < b4 < β

(21)
1 ,

β
(11)
2 > 0 ⇔ either β

(33)
1 < b5 ≤ β

(34)
1 and 0 < b4 < β

(23)
2

or β
(34)
1 < b5 < (3 + √

3)/2 and 0 < b4 < β
(21)
1 ,

β
(11)
3 > 0 ⇔ β

(34)
1 < b5 < (3 + √

3)/2 and b4 = β
(21)
1 ,

where β
(33)
1 , β(34)

1 and β
(23)
2 are given in Appendix.

We will prove this lemma after we complete the proof of the theorem. By Lemma
3.3, we obtain

V (g̃3) ∩ (
0 ∩ �)

=
{
(b1, b2, b3, b4, b5) ∈ R

5 : β
(33)
1 < b5 ≤ β

(34)
1 , 0 < b4 < β

(23)
2 ,

b3 = − (2b25 − 6b5 + 3)(b5 − 1)2

3(2b5 − 1)
, b2 = β

(11)
2 , b1 = β2

}

∪
{
(b1, b2, b3, b4, b5) ∈ R

5 : β
(34)
1 < b5 < (3 + √

3)/2, 0 < b4 < β
(21)
1 ,

b3 = − (2b25 − 6b5 + 3)(b5 − 1)2

3(2b5 − 1)
, b2 = β

(11)
2 , b1 = β2

}

∪
{
(b1, b2, b3, b4, b5) ∈ R

5 : β
(34)
1 < b5 < (3 + √

3)/2, β
(23)
2 < b4 < β

(21)
1 ,

b3 = − (2b25 − 6b5 + 3)(b5 − 1)2

3(2b5 − 1)
, b2 = β

(11)
1 , b1 = β2

}

∪
{
(b1, b2, b3, b4, b5) ∈ R

5 : β
(34)
1 < b5 < (3 + √

3)/2, b4 = β
(21)
1 ,

b3 = − (2b25 − 6b5 + 3)(b5 − 1)2

3(2b5 − 1)
, b2 = β

(11)
3 , b1 = β2

}
. (3.19)

The proof of step (I) is completed.
Step (II): Compute V (g̃3, g̃5) ∩ (
0 ∩ �).
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Similar to the discussion on the decomposition of G0, we start from the primary
stratum G̃0 := {g̃3, g̃5} and compute

ř12(b4, b5) := res(g̃5, g̃3, b2)
= 22039921152b155 (2b25 − 6b5 + 3)2(b5 − 1)10

(2b5 − 1)18(3(2b5 − 1)b4 + b25(−2b25 + 6b5 − 3))5ř (1)
12 (b4, b5),

where

ř (1)
12 (b4, b5) := 9(32b35 − 80b25 + 60b5 − 15)(2b5 − 1)2b24

+6b5(68b
5
5 − 434b45 + 942b35 − 831b25 + 324b5 − 45)(2b5 − 1)2b4

−2b35(2b
2
5 − 6b5 + 3)(168b65 − 1112b55 + 2738b45 − 3189b35

+1920b25 − 585b5 + 72).

By Lemma 2 of Chen and Zhang (2009, p. 567), we get

V (G̃0) = V (G̃0, lcff(g̃3, b2)) ∪ V ( G̃0,G̃1
lcff(g̃3,b2)

), (3.20)

where G̃1 := {ř12} is the first stratum of the primary stratum G̃0. By Lemma 3.1, the
first stratum G̃1 has the 6 sub-strata:

G̃1,1 := {b5}, G̃1,2 := {2b25 − 6b5 + 3},
G̃1,3 := {b5 − 1}, G̃1,4 := {2b5 − 1}, G̃1,5 := {3(2b5 − 1)b4 + b25(−2b25 + 6b5 − 3)},
G̃1,6 := {ř (1)

12 },

which satisfy V (G̃1) = (⋃6
κ=1 V (G̃1,κ )

)
. Noting by (3.3) and (3.18) that V (G̃1,κ ) ∩

(
0 ∩ �) = ∅ for each κ = 1, ..., 5, we have

V (G̃1) ∩ (
0 ∩ �) = V (G̃1,6) ∩ (
0 ∩ �). (3.21)

Since lcff(g̃3, b2) = 9b5(2b5−1)3 > 0 for (b1, b2, b3, b4, b5) ∈ 
0, we see by (3.20)
and (3.21) that

V (G̃0) ∩ (
0 ∩ �) = V (G̃0, G̃1,6) ∩ (
0 ∩ �). (3.22)

Notice that V (G̃0, G̃1,6)∩(
0∩�) ⊂ V (g̃3)∩(
0∩�). By (3.19), V (g̃3)∩(
0∩�)

requires

either β
(33)
1 < b5 < (3 + √

3)/2 and 0 < b4 < β
(23)
2

or β
(34)
1 < b5 < (3 + √

3)/2 and β
(23)
2 ≤ b4 ≤ β

(21)
1 .

(3.23)

Thus, we discuss real zeros of ϕ24(·) := ř (1)
12 (·, b5) under the condition (3.23). Similar

to Lemma 3.3, we also see that ϕ24 has two zeros in (−∞,∞), denoted by β
(24)
1 <
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β
(24)
2 , ⇔ either β

(33)
1 < b5 < β

(35)
1 or β

(35)
1 < b5 < (3 + √

3)/2, and that ϕ24 has

a unique multiple zero in (−∞,∞), denoted by β
(24)
3 , ⇔ b5 = β

(35)
1 , where β

(33)
1 ,

β
(35)
1 , β(24)

1 , β(24)
2 and β

(24)
3 are given in Appendix. Moreover,

0 < β
(24)
1 < β

(23)
2 ⇔ either β

(36)
2 < b5< β

(35)
1 or β

(35)
1 < b5 < (3+√

3)/2,
0 < β

(24)
2 < β

(23)
2 ⇔ either β

(36)
1 < b5 < β

(35)
1 or β

(35)
1 < b5 < β

(37)
1 ,

β
(24)
2 = β

(23)
2 ⇔ b5 = β

(37)
1 ,

β
(23)
2 < β

(24)
2 < β

(21)
1 ⇔ β

(37)
1 < b5 < (3 + √

3)/2,
0 < β

(24)
3 < β

(23)
2 ⇔ b5 = β

(35)
1 ,

where β
(36)
1 , β(36)

2 and β
(37)
1 are given in Appendix. We can check the common zero

of g̃3 and g̃5 corresponding to the zero of ϕ24, i.e.,

β
(11)
1 is the common zero of g̃3 and g̃5 ⇔

either β
(36)
1 < b5 < β

(35)
1 and b4 = β

(24)
2

or b5 = β
(35)
1 and b4 = β

(24)
3

or β
(35)
1 < b5 < (3 + √

3)/2 and b4 = β
(24)
1 ,

β
(11)
2 is the common zero of g̃3 and g̃5 ⇔

either β
(36)
2 < b5 < β

(35)
1 and b4 = β

(24)
1

or b5 = β
(35)
1 and b4 = β

(24)
3

or β
(35)
1 < b5 < (3 + √

3)/2 and b4 = β
(24)
2 .

Thus, we obtain

V (g̃3, g̃5) ∩ (
0 ∩ �)

= {(b1, b2, b3, b4, b5)∈ R
5 : β

(36)
2 <b5<β

(35)
1 , b4=β

(24)
1 ,

b3 = − (2b25−6b5+3)(b5−1)2

3(2b5−1) , b2 = β
(11)
2 , b1 = β2}

∪ {(b1, b2, b3, b4, b5) ∈ R
5 : b5 = β

(35)
1 , b4 = β

(24)
3 ,

b3 = − (2b25−6b5+3)(b5−1)2

3(2b5−1) , b2 = β
(11)
2 , b1 = β2}

∪ {(b1, b2, b3, b4, b5) ∈ R
5 : β

(35)
1 < b5 < (3 + √

3)/2, b4 = β
(24)
2 ,

b3 = − (2b25−6b5+3)(b5−1)2

3(2b5−1) , b2 = β
(11)
2 , b1 = β2}.

(3.24)

The proof of step (II) is completed.
Step (III): Prove V (g̃3, g̃5, g̃7) ∩ (
0 ∩ �) = ∅.
Similar to the discussion on the decomposition of G0, we compute

res(g̃7, g̃3, b2) = 25707364031692800b205
(2b25 − 6b5 + 3)2(b5 − 1)16(2b5 − 1)26(3(2b5 − 1)b4
+b25(−2b25 + 6b5 − 3))7ř (1)

13 (b4, b5),

res(ř (1)
13 , ř (1)

12 , b4) = −3904305912313344b245 (2b25 − 6b5 + 3)6

(2b5 − 1)23ř (1)
23 (b5)ř

(2)
23 (b5)ř

(3)
23 (b5),
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where ř (1)
13 is a polynomial of degree 38 having 197 terms, ř (1)

23 (b5) and ř (3)
23 (b5) is

given in Appendix, and ř (2)
23 (b5) := 8b35 − 26b25 + 21b5 − 6. We get by Lemma 3.1

that

V (g̃3, g̃5, g̃7) ∩ (
0 ∩ �) =
(

5⋃
i=1

V̂i

)
∩ (
0 ∩ �), (3.25)

where

V̂1 := V (g̃3, g̃5, g̃7, lcff(g̃3, b2)), V̂2 := V (
g̃3,g̃5,g̃7,ř

(1)
12 ,ř (1)

13 ,lcff(ř (1)
12 ,b4)

lcff(g̃3,b2)
),

V̂3 := V (
g̃3,g̃5,g̃7,ř

(1)
12 ,ř (1)

13 ,ř (1)
23

lcff(g̃3,b2),lcff(ř
(1)
12 ,b4)

), V̂4 := V (
g̃3,g̃5,g̃7,ř

(1)
12 ,ř (1)

13 ,ř (2)
23

lcff(g̃3,b2),lcff(ř
(1)
12 ,b4)

),

V̂5 := V (
g̃3,g̃5,g̃7,ř

(1)
12 ,ř (1)

13 ,ř (3)
23

lcff(g̃3,b2),lcff(ř
(1)
12 ,b4)

).

Similar to Lemma 3.2, we also have V̂i ∩ 
̃2 = ∅, i = 1, ..., 5. By (3.25),
V (g̃3, g̃5, g̃7) ∩ 
̃2 = ∅. This completes the proof of step (III).

At the end of this proof, we discuss the independence of focal values. Restricted to
the surface � as shown in (3.18), we get by (2.2) that

X(1/(b5 − 1), y) = X̃(y, b1, b2, b4, b5)/(3(2b5 − 1)(b5 − 1)2),

where

X̃(y, b1, b2, b4, b5) := −3b4(b5 − 1)(2b5 − 1)y2

− (3b5(2b5 − 1)b2 + (b5 − 1)(3(2b5 − 1)b4 − b5(2b25 − 6b5 + 3)))y
+ b5(3(2b5 − 1)b1 − (3(2b5 − 1))b2 + (b5 − 1)(2b25 − 6b5 + 3)),

which implies that the vertical coordinate of Ẽ2 : (1/(b5 − 1), ỹ∗) satisfies
X̃(ỹ∗, b1, b2, b4, b5) = 0 by (3.3). Also, the trace of the Jacobian matrix at Ẽ2 can be
computed as

Tr(J (Ẽ2)) = −(3b4(b5 − 1)(2b5 − 1)ỹ2∗
+((3(b5 + 1))(2b5 − 1)b2 + (b5 − 1)(3(2b5 − 1) ·
b4 − (2b5 + 1)(2b25 − 6b5 + 3)))ỹ∗
−(3(b5 + 1))(2b5 − 1)b1 + (3(b5 + 1))(2b5 − 1) ·
b2 − (b5 − 1)(2b5 + 1)(2b25 − 6b5 + 3))

/(3(b5 − 1)(2b5 − 1)).

By Kuznetsov (1995, p.67), we need to verify the transversal condition, i.e., a pair of
conjugate eigenvalues at Ẽ2 crosses the imaginary axis with nonzero speed. Compute

∂Tr(J (Ẽ2))

∂b1
|b1=β2
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= 3(2b5 − 1)b4 − b25(2b
2
5 − 6b5 + 3)

3b5(2b5 − 1)b2 + (b5 − 1)(3(2b5 − 1)b4 − b5(2b5 + 1)(2b25 − 6b5 + 3))
,

which is positive by (3.3), implying that there is a perturbation with exactly 1 small
cycle near Ẽ2 for (b1, b2, b3, b4, b5) ∈ (
0∩�)\V (g̃3). By Christopher and Li (2007,
p.14), we need to determine the rank of the Jacobian matrix of the vector-valued
function constituted by focal values with respect to the perturbation parameters under
the condition that the focal values vanish. Compute

∂G3
∂b2

= −
√
3b5(b5−1)3/2(−2b25+6b5−3)3/2((6b5−3)b4−b25(2b

2
5−6b5+3))3/2

432b24((2b5−1)(3b5(2b5−1)b2+(b5−1)(3(2b5−1)b4−b5(2b5+1)(2b25−6b5+3))))5/2
·

F1(b2, b4, b5),

∂(G3,G5)
∂(b2,b4)

= b45(b5−1)4(2b25−6b5+3)4((6b5−3)b4−b25(2b
2
5−6b5+3))3

725594112b74(2b5−1)10(3b5(2b5−1)b2+(b5−1)(3(2b5−1)b4−b5(2b5+1)(2b25−6b5+3)))6
·

F2(b2, b4, b5),

(3.26)

where F1 is given in Appendix and F2 is a polynomial of degree 41 having 875 terms.
Since the fractions in (3.26) are both positive by (3.3) and (3.18), we can use signs of F1
and F2 to discuss signs of ∂G3/∂b2 and ∂(G3,G5)/∂(b2, b4), respectively. Recall that,
restricted to the surface 
0 ∩ �, signs of Gi s (i = 3, 5) are, respectively, determined
by signs of g̃i s (i = 3, 5), which are described just below (3.6) and (3.18). Thus, we
compute the varieties

(U1) : V (
g̃3,F1
g̃5

) ∩ (
0 ∩ �) and (U2) : V (g̃3, g̃5, F2) ∩ (
0 ∩ �)

separately to discuss signs of two Jacobi determinants in (3.26) under the condition
that the focal values vanish. In order to compute (U1) : V ({g̃3, F1}/g̃5) ∩ (
0 ∩ �),
we calculate

res(F1, g̃3, b2) = −972b45(b5 − 1)4(2b5 − 1)6((6b5 − 3)b4 − b25(2b
2
5 − 6b5 + 3))·

R̃(1)
12 (b4, b5),

where R̃(1)
12 (b4, b5) := 9(2b5−1)2b24−12b25(2b5−1)(13b25−12b5+3)b4+4b45(25b

4
5−

96b35 + 114b25 − 54b5 + 9). Similarly, since lcff(g̃3, b2) > 0, by Lemma 2 of Chen
and Zhang (2009, p. 567), we get

V (
g̃3,F1
g̃5

) ∩ (
0 ∩ �) = V (
g̃3,F1,R̃

(1)
12

g̃5
) ∩ (
0 ∩ �).
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Similar to Lemma 3.3, we see that ϕ21(·) := R̃(1)
12 (·, b5) has two real zeros, denoted

by β
(21)
1 < β

(21)
2 , given in Appendix. By (3.19) and (3.24), we obtain

V (
g̃3,F1,R̃

(1)
12

g̃5
) ∩ (
0 ∩ �) = {(b1, b2, b3, b4, b5) ∈ R

5 : β
(34)
1

< b5 < (3 + √
3)/2, b4 = β

(21)
1 ,

b3 = − (2b25−6b5+3)(b5−1)2

3(2b5−1) , b2 = β
(11)
3 , b1 = β2},

which implies that there is a perturbation with exactly 2 small cycles near Ẽ2 for
(b1, b2, b3, b4, b5) ∈ V (g̃3/{g̃5, F1})∩(
0∩�). Moreover, we can check thatG5 < 0
if (b1, b2, b3, b4, b5) ∈ V ({g̃3, F1}/g̃5) ∩ (
0 ∩ �). Also, the discriminant of g̃3
with respect to the variable b2 is 9(2b5 − 1)2(b5 − 1)2ϕ21(b4), and that G3 < 0 if
β

(34)
1 < b5 < (3+√

3)/2, b4 = β
(21)
1 , b3 = −(2b25 −6b5+3)(b5−1)2/(3(2b5−1)),

b2 �= β
(11)
3 and b1 = β2, which implies that there is a perturbation with exactly 1 small

cycle near Ẽ2 for (b1, b2, b3, b4, b5) ∈ V ({g̃3, F1}/g̃5)∩ (
0∩�). The discussion on
(U1) is completed. In order to compute (U2) : V (g̃3, g̃5, F2)∩(
0∩�), we calculate

res(F2, g̃3, b2) = 10711401679872b155 (b5 − 1)14(2b5 − 1)24

((6b5 − 3)b4 − b25(2b
2
5 − 6b5 + 3))4 Ř(1)

13 (b4, b5),

res(Ř(1)
13 , ř (1)

12 , b4) = 2754990144b175 (2b5 − 1)15(2b25 − 6b5 + 3)3

R̂(1)
23 (b5)R̂

(2)
23 (b5)R̂

(3)
23 (b5)R̂

(4)
23 (b5)R̂

(5)
23 (b5),

where Ř(1)
13 and R̂(i)

23 s (i = 1, ..., 5) are given inAppendix. ByLemma 3.1,we similarly
get

V (g̃3, g̃5, F2) ∩ (
0 ∩ �) =
(

7⋃
i=1

Ṽi

)
∩ (
0 ∩ �), (3.27)

where

Ṽ1 := V (g̃3, g̃5, F2, lcff(g̃3, b2)),

Ṽ2 := V (
g̃3, g̃5, F2, ř

(1)
12 , Ř(1)

13 , lcff(ř (1)
12 , b4)

lcff(g̃3, b2)
),

Ṽ3 := V (
g̃3, g̃5, F2, ř

(1)
12 , Ř(1)

13 , R̂(1)
23

lcff(g̃3, b2), lcff(ř
(1)
12 , b4)

),

Ṽ4 := V (
g̃3, g̃5, F2, ř

(1)
12 , Ř(1)

13 , R̂(2)
23

lcff(g̃3, b2), lcff(ř
(1)
12 , b4)

),

Ṽ5 := V (
g̃3, g̃5, F2, ř

(1)
12 , Ř(1)

13 , R̂(3)
23

lcff(g̃3, b2), lcff(ř
(1)
12 , b4)

),
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Table 3 Continuation of Table 1—Sets �̃i
1, �̃

j
2, �̃3 for numbers of small cycles

b4 b2 b1 Number Label

b4 ∈ (0, β(21)
1 ) b2 ∈ Bo−(β

(11)
2 ) b1 ∈ Bo−(β2) 2 �̃2

2

b1 ∈ B+(β2) 1 �̃13
1

b2 ∈ B+(β
(11)
2 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃14
1

(b3, b5) ∈ D3

Ṽ6 := V (
g̃3, g̃5, F2, ř

(1)
12 , Ř(1)

13 , R̂(4)
23

lcff(g̃3, b2), lcff(ř
(1)
12 , b4)

),

Ṽ7 := V (
g̃3, g̃5, F2, ř

(1)
12 , Ř(1)

13 , R̂(5)
23

lcff(g̃3, b2), lcff(ř
(1)
12 , b4)

).

Similar to Lemma 3.2, we have Ṽi ∩ 
̃2 = ∅, i = 1, ..., 7. By (3.27), we get
V (g̃3, g̃5, F2)∩ (
0 ∩�) = ∅, which implies that there is a perturbation with exactly
3 small cycles near Ẽ2 for (b1, b2, b3, b4, b5) ∈ V (g̃3, g̃5) ∩ (
0 ∩ �). The discus-
sion on (U2) is completed. Finally, checking the signs of focal values, we obtain the
numbers of small cycles in Table 1. The proof of this theorem is completed (Table 5).

�

Remark 1 Our sufficient condition given in Theorem 3.1 for the occurrence of exactly
1, 2, or 3 small cycles is obtained with the restriction to the surface � as shown in
(3.18). This restriction eliminates b3,makes the leading coefficient of the cubic r̃12 with
respect to b4 vanish, and simplifies its real zeros to be of a single variable. Without this
restriction, it is hopeful to get a weaker condition, but it is hard to check the inequalities
which determine whether a real zero, an irrational function in two variables given by
the formulae of cubic zeros, exists in the allowed interval, which needs to check the
sign of difference between the zero and each endpoint of the interval.

Remark 2 Theorem 3.1 does not give a condition for 4 small cycles although we
proved that the interior equilibrium Ẽ2 is a weak focus of multiplicity at most 4
because of the difficulty in determining whether the common zero of two high-degree
polynomials with parameters lies in an allowed interval under parameter conditions.
Actually, if wewant to find 4 small cycles, we need to give conditions for the inequality
V (g3, g5, g7) ∩ 
0 �= ∅. Starting from the primary stratum {g3, g5, g7}, similar to
(3.25), we can find a unique first sub-stratum {r̃12, r̃13} and three second sub-strata
{ř (1)
23 }, {ř (2)

23 } and {ř (3)
23 } in 
0, where r̃12 and r̃13 are defined just below (3.8), and r̃ (1)

23 ,

r̃ (2)
23 and r̃ (3)

23 are defined in (3.12). Unlike r̃ (1)
23 , which can be solved with respect to b3,

the polynomials r̃ (2)
23 and r̃ (3)

23 are of degrees 8 and 15 with respect to b3, respectively,
without missing terms, zeros of which are functions of b5 but cannot be expressed in
terms of coefficients and rational numbers. Thismakes difficulties in checkingwhether
the common zeros of two polynomials in the first sub-stratum, which are of 13 and 38
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Table 4 Continuation of Table 1—Sets �̃i
1, �̃

j
2, �̃3 for numbers of small cycles

b4 b2 b1 Number Label

b4 ∈ (0, β(23)
2 ] b2 ∈ (0, β(11)

2 ) b1 ∈ Bo−(β2) 1 �̃1
1

b1 ∈ B+(β2) 0

b2 ∈ (β
(11)
2 ,∞) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃2
1

b4 ∈ (β
(23)
2 , β

(21)
1 ) b2 ∈ (0, β(11)

1 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃3
1

b2 ∈ (β
(11)
1 , β

(11)
2 ) b1 ∈ Bo−(β2) 1 �̃4

1

b1 ∈ B+(β2) 0

b2 ∈ (β
(11)
2 ,∞) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃5
1

b4 = β
(21)
1 b2 ∈ (0, β(11)

3 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃6
1

b2 ∈ (β
(11)
3 ,∞) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃7
1

b4 ∈ (β
(21)
1 , ∞) b2 ∈ (0, ∞) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃8
1

b4 ∈ (β
(23)
2 , β

(21)
1 ) b2 ∈ B−(β

(11)
1 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃9
1

b2 ∈ Bo+(β
(11)
1 ) b1 ∈ Bo−(β2) 2 �̃1

2

b1 ∈ B+(β2) 1 �̃10
1

b4 = β
(21)
1 b2 ∈ Bo(β

(11)
3 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃11
1

(b3, b5) ∈ D3 ∪ D4 ∪ D5 ∪ D6

degrees with 102 and 1260 terms, respectively, is positive in the case that b5 is chosen
to ensure that r̃ (2)

23 or r̃ (3)
23 has a positive zero and b3 is chosen to be the positive zero

exactly.

Finally, we provide the proofs of Lemmas 3.1, 3.2 and 3.3.

Proof of Lemma 3.1 Since U1, ...,Ur are common factors of polynomials f1, f2 and
f3, we have

V (G) = ( r⋃
κ=1

V (Uκ)
) ∪ V ( f̃1, f̃2, f̃3),

(3.28)
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Table 5 Continuation of Table 3—Sets �̃i
1, �̃

j
2, �̃3 for numbers of small cycles

b4 b2 b1 Number Label

b4 ∈ (0, β(24)
�−3 ) b2 ∈ B−(β

(11)
2 ) b1 ∈ Bo−(β2) 1 �̃20

1

b1 ∈ B+(β2) 0

b2 ∈ Bo+(β
(11)
2 ) b1 ∈ B−(β2) 1 �̃21

1

b1 ∈ Bo+(β2) 2 �̃4
2

b4 ∈ (β
(24)
�−3 , β

(21)
1 ) b2 ∈ Bo−(β

(11)
2 ) b1 ∈ Bo−(β2) 2 �̃5

2

b1 ∈ B+(β2) 1 �̃22
1

b2 ∈ B+(β
(11)
2 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃23
1

b4 ∈ Bo−(β
(24)
�−3 ) b2 ∈ B−(β

(11)
2 ) b1 ∈ Bo−(β2) 2 �̃6

2

b1 ∈ B+(β2) 1 �̃24
1

b2 ∈ Bo+(β
(11)
2 ) b1 ∈ B−(β2) 2 �̃7

2

b1 ∈ Bo+(β2) 3 �̃3

b4 ∈ B+(β
(24)
�−3 ) b2 ∈ Bo−(β

(11)
2 ) b1 ∈ Bo−(β2) 2 �̃8

2

b1 ∈ B+(β2) 1 �̃25
1

b2 ∈ B+(β
(11)
2 ) b1 ∈ B−(β2) 0

b1 ∈ Bo+(β2) 1 �̃26
1

(b3, b5) ∈ D�, � = 4, 5, 6

where f̃i := fi/(U
pi,1
1 · · ·U pi,r

r ) for each i = 1, 2, 3. Since W1, ...,Us are common
factors of polynomials f̃2 and f̃3, we have

V ( f̃1, f̃2, f̃3) = V ( f̃1) ∩ V ( f̃2, f̃3) = V ( f̃1) ∩ (
(

s⋃
η=1

V (Wη)) ∪ V ( f̂2, f̂3)
)
,(3.29)

where f̂ j := f̃ j/(W
h j−1,1
1 · · ·Wh j−1,s

s ) for each j = 2, 3. Since a polynomial vanishes
if and only if one of its factors is zero, we have

V ( f̃1) =
�⋃

α=1
f̃1,α, V ( f̂2) =

m⋃
β=1

f̃2,β , V ( f̂3) =
n⋃

β=1
f̃3,γ . (3.30)

Thus, by (3.29) and (3.30), we can see that

V ( f̃1, f̃2, f̃3) = ( s⋃
η=1

�⋃
α=1

V ( f̃1,α,Wη)
) ∪ ( n⋃

γ=1

m⋃
β=1

�⋃
α=1

V ( f̃1,α, f̃2,β , f̃3,γ )
)
. (3.31)
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On the other hand, we also see by Theorem 1 of Chen and Zhang (2009) that

V ( f̃1, f̃2, f̃3) = V ( f̃1, f̃2, f̃3, J̃1) ∪ V (
f̃1, f̃2, f̃3,R12,R13

J̃1
), (3.32)

where J̃1 is the leading coefficient of f̃1 with respect to X and R1 j := res( f̃ j , f̃1, X), j =
2, 3. It is obvious that

J̃1 =
�∏

α=1
J̃
q1,α
1,α , (3.33)

where J̃1,α is the leading coefficient of f̃1,α with respect to X for eachα = 1, ..., �.Note
that fromMishra (1993, p. 227), the resultant has three properties (i) : res( f g, h, x) =
res( f , h, x)res(g, h, x), (ii) : res( f , g, x) = (−1)deg( f ,x)deg(g,x)res(g, f , x), (iii) :
res( f m, gn, x) = (res( f , g, x))mn, where f , g and h are polynomials with respect to
x and deg(ϕ, x) is the degree of the polynomial ϕ with respect to x . Those properties
enable us to see

(I) : res( f̃2, f̃1, X) = ∏s
η=1 res(W

h1,η
η , f̃1, X)

∏m
β=1 res( f̃

q2,β
2,β , f̃1, X),

res( f̃1,W
h1,η
η , X) = ∏�

α=1 res( f̃
q1,α
1,α ,W

h1,η
η , X), res( f̃1, f̃

q2,β
2,β , X)

= ∏�
α=1 res( f̃

q1,α
1,α , f̃

q2,β
2,β , X),

(II) : res(W
h1,η
η , f̃1, X) = (−1)h1,ηωη�∗res( f̃1,W

h1,η
η , X), res( f̃

q2,β
2,β , f̃1, X)

= (−1)q2,βςβ�∗ res( f̃1, f̃
q2,β
2,β , X),

res( f̃1,α,Wη, X) = (−1)�αωη res(Wη, f̃1,α, X), res( f̃1,α, f̃2,β , X)

= (−1)�αςβ res( f̃2,β , f̃1,α, X),

(III) : res( f̃
q1,α
1,α ,W

h1,η
η , X) = (res( f̃1,α,Wη, X))q1,αh1,η , res( f̃

q1,α
1,α , f̃

q2,β
2,β , X)

= (res( f̃1,α, f̃2,β , X))q1,αq2,β ,

where ωη := deg(Wη, X), �α := deg( f̃1,α, X), ςβ := deg( f̃2,β , X), and �∗ :=∑�
α=1 q1,α�α . Thus,

R12 =
s∏

η=1
(−1)h1,ηωη�∗

�∏
α=1

(−1)�αωηq1,αh1,η r̃
q1,αh1,η
αη

m∏
β=1

(−1)q2,βςβ�∗
�∏

α=1
(−1)�αςβq1,αq2,β r̂

q1,αq2,β
αβ ,
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where r̃αη := res(Wη, f̃1,α, X) and r̂αβ := res( f̃2,β , f̃1,α, X). Similarly, we see

R13 =
s∏

η=1
(−1)h1,ηωη�∗

�∏
α=1

(−1)�αωηq1,αh1,η r̃
q1,αh1,η
αη

n∏
γ=1

(−1)q3,γ ζγ �∗
�∏

α=1
(−1)�αζγ q1,αq3,γ r̂

q1,αq3,γ
αγ ,

where r̂αγ := res( f̃3,γ , f̃1,α, X) and ζγ := deg( f̃3,γ , X). Thus, from (3.31), (3.32),
(3.33) and the expression of R12 and R13, we obtain

V ( f̃1, f̃2, f̃3) = (
V ( f̃1, f̃2, f̃3) ∩ V ( J̃1)

) ∪ (
V ( f̃1, f̃2, f̃3) ∩ V (R12, R13)\V ( J̃1)

)
= (

((
s⋃

η=1

�⋃
α=1

V ( f̃1,α,Wη)) ∪ (
n⋃

γ=1

m⋃
β=1

�⋃
α=1

V ( f̃1,α, f̃2,β , f̃3,γ )))

∩(
�⋃

α=1
V ( J̃1,α))

) ∪ (
((

s⋃
η=1

�⋃
α=1

V ( f̃1,α,Wη)) ∪ (
n⋃

γ=1

m⋃
β=1

�⋃
α=1

V ( f̃1,α, f̃2,β , f̃3,γ )))

∩((
s⋃

η=1

�⋃
α=1

V (r̃αη)) ∪ (
n⋃

γ=1

m⋃
β=1

�⋃
α=1

V (r̂αβ, r̂αγ )))\V (
�⋃

α=1
V ( J̃1,α))

)
= ( s⋃

η=1

�⋃
α=1

V ( f̃1,α,Wη, J̃1,α) ∪ V (
f̃1,α,Wη,r̃αη

J̃1,α
)
)

∪( n⋃
γ=1

m⋃
β=1

�⋃
α=1

V ( f̃1,α, f̃2,β , f̃3,γ , J̃1,α) ∪ (
f̃1,α, f̃2,β , f̃3,γ ,r̂αβ ,r̂αγ

J̃1,α
)
)
.

It follows by (3.28) that

V (G) = ( r⋃
κ=1

V (Uκ)
) ∪ ( s⋃

η=1

�⋃
α=1

V ( f̃1,α,Wη, J̃1,α) ∪ V (
f̃1,α,Wη,r̃αη

J̃1,α
)
)

∪ ( n⋃
γ=1

m⋃
β=1

�⋃
α=1

V ( f̃1,α, f̃2,β , f̃3,γ , J̃1,α) ∪ (
f̃1,α, f̃2,β , f̃3,γ ,r̂αβ ,r̂αγ

J̃1,α
)
)
,

which shows that the conclusion (3.11) holds. This proves the lemma. ��
Proof of Lemma 3.2 Claim (M1) is obvious because (3.3) requires b5 ∈ (1,∞), but
the equality lcff(g3, b2) = b5(2b5 − 1)(b5 − 1)2 = 0 gives b5 = 0, 1/2 or 1, none of
which lie in (1,∞), which shows that lcff(g3, b2) �= 0 for (b1, b2, b3, b4, b5) ∈ 
0,
i.e., V1 ∩ 
0 ⊂ V (lcff(g3, b2)) ∩ 
0 = ∅.

In order to prove claim (M2), we first try to solve the equation lcff(r̃12, b4) =
(b5 − 1)6(3(2b5 − 1)b3 + (2b25 − 6b5 + 3)(b5 − 1)2) = 0, which is equivalent to
ϕ31(b3) := 3(2b5−1)b3+(2b25−6b5+3)(b5−1)2 = 0 by (3.3). By solving ϕ31 = 0,
we get

b3 = (−2b25 + 6b5 − 3)(b5 − 1)2/(3(2b5 − 1)) (3.34)
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because lcff(ϕ31, b3) = 3(2b5 − 1) is positive by (3.3). We restrict r̃12, r̃13 and r̃14 to
(3.34) to get

r̃12 = b25(b5 − 1)8r̂12(b4, b5)/(27(2b5 − 1)2),
r̃13 = b25(b5 − 1)24r̂13(b4, b5)/(177147(2b5 − 1)10),
r̃14 = b25(b5 − 1)40r̂14(b4, b5)/(1162261467(2b5 − 1)17),

(3.35)

where

r̂12(b4, b5) := 9(32b35 − 80b25 + 60b5 − 15)(2b5 − 1)2b24
+6b5(68b55 − 434b45 + 942b35 − 831b25 + 324b5 − 45)(2b5 − 1)2b4
−2b35(2b

2
5 − 6b5 + 3)(168b65 − 1112b55 + 2738b45 − 3189b35+1920b25 − 585b5 + 72),

and r̂13 and r̂14 are polynomials of 38 and 64 degrees having 194 and 493 terms,
respectively. Similarly, we compute

res(r̂13, r̂12, b4)

= −3904305912313344b245 (2b5 − 1)23r̂ (1)
23 (b5)r̂

(2)
23 (b5)r̂

(3)
23 (b5)r̂

(4)
23 (b5),

res(r̂14, r̂12, b4)

= −21512648615168381919363072b395 (2b5 − 1)37r̂ (2)
23 (b5)r̂

(4)
23 (b5)r̂

(1)
24

(b5)r̂
(2)
24 (b5), (3.36)

where r̂ (2)
23 := 8b35 − 26b25 + 21b5 − 6, r̂ (4)

23 := 2b25 − 6b5 + 3, r̂ (1)
24 is a polynomial

having 52 terms and r̂ (1)
23 , r̂

(3)
23 and r̂ (2)

24 are given in Appendix, and get by Lemma 3.1
that

V2 ∩ 
0 =
(⋃7

i=1 V2i

)
∩ 
0, (3.37)

where

V21 := V (g3, g5, g7, g9, r̃12, r̃13, r̃14, ϕ31, r̂12, r̂13, r̂14, lcff(r̂12, b4)),

V22 := V (
g3, g5, g7, g9, r̃12, r̃13, r̃14, ϕ31, r̂12, r̂13, r̂14, r̂

(2)
23

lcff(r̂12, b4)
),

V23 := V (
g3, g5, g7, g9, r̃12, r̃13, r̃14, ϕ31, r̂12, r̂13, r̂14, r̂

(4)
23

lcff(r̂12, b4)
),

V24 := V (
g3, g5, g7, g9, r̃12, r̃13, r̃14, ϕ31, r̂12, r̂13, r̂14, r̂

(1)
23 , r̂ (1)

24

lcff(r̂12, b4)
),

V25 := V (
g3, g5, g7, g9, r̃12, r̃13, r̃14, ϕ31, r̂12, r̂13, r̂14, r̂

(1)
23 , r̂ (2)

24

lcff(r̂12, b4)
),

V26 := V (
g3, g5, g7, g9, r̃12, r̃13, r̃14, ϕ31, r̂12, r̂13, r̂14, r̂

(3)
23 , r̂ (1)

24

lcff(r̂12, b4)
),
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V27 := V (
g3, g5, g7, g9, r̃12, r̃13, r̃14, ϕ31, r̂12, r̂13, r̂14, r̂

(3)
23 , r̂ (2)

24

lcff(r̂12, b4)
).

Next, we prove that

(M2i ) : V2i ∩ 
0 = ∅, i = 1, ..., 7. (3.38)

In order to prove claim (M21), we try to solve the equation lcff(r̂12, b4) = 9(2b5 −
1)2(32b35 −80b25 +60b5 −15) = 0, which is equivalent to ϕ51(b5) := 32b35 −80b25 +
60b5 − 15 = 0 by (3.3). Using the Maple command “realroot(ϕ51, 1/104),” we find
the polynomial ϕ51 has a unique zero in the interval (1,∞), covered by the isolated
interval [183457/131072, 91729/65536]. Compute

res(res(r̂13, ϕ51, b5), res(r̂12, ϕ51, b5), b4) ≈ 2.0820323236234763745 × 10674,

which implies that V21 ∩ 
0 ⊂ V (r̂12, r̂13, ϕ51) ∩ 
0 = ∅. Similar to the discus-
sion on claim (M21), we can prove that V22 ∩ 
0 ⊂ V (r̂12, r̂13, r̂

(2)
23 ) ∩ 
0 = ∅,

implying that claim (M22) holds. In order to prove claim (M23), using the Maple
command “realroot(r̂ (4)

23 , 1/104),” we find the polynomial r̂ (4)
23 has a unique zero in

the interval (1,∞), covered by the isolated interval [310119/131072, 38765/16384].
Compute res(ϕ31, r̂

(4)
23 , b5) = 144b23, which implies that V23 ∩ 
0 ⊂ V (ϕ31, r̂

(4)
23 ) ∩


0 = ∅ because (3.3) requires b3 ∈ (0,∞). Claim (M24) is obvious because
res(r̂ (1)

24 , r̂ (1)
23 , b5) ≈ −1.482870925×10662, implying thatV24∩
0 ⊂ V (r̂ (1)

24 , r̂ (1)
23 ) =

∅. Similar to the discussion on claim (M24), we prove that

V25 ∩ 
0 ⊂ V (r̂ (2)
24 , r̂ (1)

23 ) = ∅, V26 ∩ 
0 ⊂ V (r̂ (1)
24 , r̂ (3)

23 ) = ∅
and V27 ∩ 
0 ⊂ V (r̂ (2)

24 , r̂ (3)
23 ) = ∅,

implying that claims (M25), (M26) and (M27) hold, respectively. Thus, we get by
(3.37) and (3.38) that V2 ∩ 
0 = ∅, implying that claim (M2) holds. Similar to the
discussion on claim (M2), we can prove that claim (M3) holds.

Claim (M4) is obvious because (3.3) requires b5 ∈ (1,∞), but the equality
lcff(r̃ (2)

23 , b3) = 9(2b5 − 1)2(3200b45 − 3600b35 + 1480b25 − 250b5 + 13) = 0 has
no real zeros lie in (1,∞) by using the Maple command “realroot,” showing that
lcff(r̃ (2)

23 , b3) �= 0 for (b1, b2, b3, b4, b5) ∈ 
0, i.e., V4 ∩ 
0 ⊂ V (lcff(r̃ (2)
23 , b3)) ∩


0 = ∅. Similar to the discussion on claim (M4), we prove that

V5 ∩ 
0 ⊂ V (lcff(r̃ (2)
23 , b3)) ∩ 
0 = ∅ and

(V6 ∪ V7) ∩ 
0 ⊂ V (lcff(r̃ (3)
23 , b3)) ∩ 
0 = ∅,

implying that claims (M5), (M6) and (M7) hold, respectively.
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In order to prove claim (M8), using the Maple command “realroot,” we find that
the polynomial r̃ (1)

311 has a unique zero in (1,∞), covered by the isolated interval

I1 := [ 3549434735393734987161122358701976160955684419494937748288838313422294120286634350736906063837462003712 ,

7098869470787469974322244717403952321911368838989875
1496577676626844588240573268701473812127674924007424 ].

Then, we try to find the common zero of r̃ (2)
23 and r̃ (1)

24 corresponding to the zero of

r̃ (1)
311 covered by I1. Let f0(·) := r̃ (1)

24 (·, b5) and f1(·) := r̃ (2)
23 (·, b5), and compute the

residues

f2(b3) := rem( f0, f1, b3)

= − 12754584(2b5−1)12(b5−1)18Q1(b3,b5)
(lcff( f1,b3))9

,

f3(b3) := rem( f1, f2, b3)

= − (b5−1)4(lcff( f1,b3))9Q2(b3,b5)
43046721(2b5−1)13(lcff(Q1,b3))2

,

f4(b3) := rem( f2, f3, b3)

= 24794911296b25(2b5−1)11(b5−1)22(lcff(Q1,b3))2Q3(b3,b5)
(lcff( f1,b3))9(lcff(Q2,b3))2

,

f5(b3) := rem( f3, f4, b3)

= 2(b5−1)8(lcff(Q2,b3))2(lcff( f1,b3))9Q4(b3,b5)
43046721(2b5−1)11(lcff(Q1,b3))2(lcff(Q3,b3))2

,

f6(b3) := rem( f4, f5, b3)

= 297538935552b35(2b5−1)11(b5−1)26(lcff(Q1,b3))2(lcff(Q3,b3))2Q5(b3,b5)
(lcff(Q2,b3))2(lcff(Q4,b3))2(lcff( f1,b3))9

,

f7(b3) := rem( f5, f6, b3)

= 4b5(b5−1)12(lcff(Q2,b3))2(lcff(Q4,b3))2(lcff( f1,b3))9Q6(b3,b5)
43046721(2b5−1)11(lcff(Q1,b3))2(lcff(Q3,b3))2(lcff(Q5,b3))2

,

f8(b3) := rem( f6, f7, b3)

= − 10711401679872b55(2b5−1)13(b5−1)32(lcff(Q1,b3))2(lcff(Q3,b3))2(lcff(Q5,b3))2Q7(b3,b5)
(lcff(Q2,b3))2(lcff(Q4,b3))2(lcff(Q6,b3))2(lcff( f1,b3))9

,

f9(b3) := rem( f7, f8, b3)

= 4b5(b5−1)16(16b25−9b5+2)(lcff(Q2,b3))2(lcff(Q4,b3))2(lcff(Q6,b3))2(lcff( f1,b3))9r̃
(1)
311(b5)r̃

(2)
311(b5)

4782969(2b5−1)8(lcff(Q1,b3))2(lcff(Q3,b3))2(lcff(Q5,b3))2(lcff(Q7,b3))2
,

where Q1, Q2, Q3, Q4, Q5, Q6, Q7 are polynomials of 81, 111, 132, 149, 163, 174,
177 degrees having 626, 763, 783, 740, 650, 521, 355 terms, respectively. Computing
the resultant

res(lcff( f1, b3), r̃
(1)
311, b5) ≈ −2.490625839 × 10169,

res(lcff(Q1, b3), r̃
(1)
311, b5) ≈ 1.622313374 × 102182,

res(lcff(Q2, b3), r̃
(1)
311, b5) ≈ 4.811873821 × 103216,

res(lcff(Q3, b3), r̃
(1)
311, b5) ≈ 1.335161275 × 103924,

res(lcff(Q4, b3), r̃
(1)
311, b5) ≈ 5.019118277 × 104538,

res(lcff(Q5, b3), r̃
(1)
311, b5) ≈ −7.657363922 × 105047,
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res(lcff(Q6, b3), r̃
(1)
311, b5) ≈ 2.182108063 × 105458,

res(lcff(Q7, b3), r̃
(1)
311, b5) ≈ 5.576492737 × 105672,

we can check that lcff( f1, b3) > 0, lcff( f2, b3) < 0, lcff( f3, b3) < 0, lcff( f4, b3) <

0, lcff( f5, b3) > 0, lcff( f6, b3) > 0, lcff( f7, b3) < 0 and lcff( f8, b3) > 0 for b5 ∈ I1.
Thus, from a pseudo-remainder formula in Knuth (1969); Mishra (1993), we can see
that

V ( f0, f1, r̃
(1)
311)

= V ( f0, f1, r̃
(1)
311, lcff( f1, b3)) ∪ V (

f1, f2, r̃
(1)
311, lcff( f2, b3)

lcff( f1, b3)
) ∪ V (

f2, f3, r̃
(1)
311, lcff( f3, b3)

lcff( f1, b3), lcff( f2, b3)
)

∪ V (
f3, f4, r̃

(1)
311, lcff( f4, b3)

lcff( f1, b3), lcff( f2, b3), lcff( f3, b3)
) ∪ V (

f4, f5, r̃
(1)
311, lcff( f5, b3)

lcff( f1, b3), lcff( f2, b3), lcff( f3, b3), lcff( f4, b3)
)

∪ V (
f5, f6, r̃

(1)
311, lcff( f6, b3)

lcff( f1, b3), lcff( f2, b3), lcff( f3, b3), lcff( f4, b3), lcff( f5, b3)
)

∪ V (
f6, f7, r̃

(1)
311, lcff( f7, b3)

lcff( f1, b3), lcff( f2, b3), lcff( f3, b3), lcff( f4, b3), lcff( f5, b3), lcff( f6, b3)
)

∪ V (
f7, f8, r̃

(1)
311, lcff( f8, b3)

lcff( f1, b3), lcff( f2, b3), lcff( f3, b3), lcff( f4, b3), lcff( f5, b3), lcff( f6, b3), lcff( f7, b3)
)

∪ V (
f8, f9, r̃

(1)
311

lcff( f1, b3), lcff( f2, b3), lcff( f3, b3), lcff( f4, b3), lcff( f5, b3), lcff( f6, b3), lcff( f7, b3), lcff( f8, b3)
)

= V ( f8, r̃
(1)
311).

By solving f8 = 0, we get b3 = P1(b5) := 3(2b5 − 1)(b5 − 1)2Q8(b5)/lcff(Q7, b3),
where Q8 is a polynomial having 175 terms. Thus, the interval I1 determines a unique
zero in V ( f0, f1). In order to check if the zero lies in 
0, we compute the derivative
P ′
1(b5) = 6(b5 − 1)Q9(b5)/(lcff(Q7, b3))2, where Q9 is a polynomial having 352

terms. Computing the resultant res(Q9, r̃
(1)
311, b5) = 2.614190103 × 1011479, we can

check that P ′
1 > 0 for b5 ∈ I1. It follows that P1 is monotone on I1. Thus, correspond-

ing to I1, we have a unique isolated interval [−230.0212076,−230.0212068] for b3,
which does not lie in (0,∞), implying that V8 ∩ 
0 ⊂ V (r̃ (2)

23 , r̃ (1)
24 , r̃ (1)

311) ∩ 
0 = ∅.
Thus, claim (M8) holds. Similar to the discussion on claim (M8), we can prove that
claims (Mi ) s for i = 9, ..., 17 hold. This proves the lemma. ��
Proof of Lemma 3.3 First, noting lcff(ϕ11, b2) = 9b5(2b5 − 1)3 > 0, we compute the
discriminant �(ϕ11) = 9(2b5 − 1)2(b5 − 1)2ϕ21(b4), where

ϕ21 := 9(2b5 − 1)2b24 − 12b25(2b5 − 1)(13b25 − 12b5 + 3)b4
+ 4b45(25b

4
5 − 96b35 + 114b25 − 54b5 + 9).

Since �(ϕ21) = 2592b55(2b5 − 1)5 > 0, the polynomial ϕ21 has two real zeros

β
(21)
1 < β

(21)
2 , given in Appendix. Clearly, β(21)

2 > 0 since 26b25 − 24b5 + 6 > 0. We
can see that

β
(21)
1 > 0 ⇔ 26b25 − 24b5 + 6 > 6

√
16b45 − 24b35 + 12b25 − 2b5,
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which is equivalent to the inequalityϕ31(b5) := 100b45−384b35+456b25−216b5+36 >

0 since 26b25 − 24b5 + 6 > 0. Using the Maple command “realroot,” we get that ϕ31

has a zero β
(31)
1 , given in Appendix. This implies that β

(21)
1 < 0 ⇔ 1 < b5 < β

(31)
1 ,

β
(21)
1 = 0 ⇔ b5 = β

(31)
1 , and β

(21)
1 > 0 ⇔ β

(31)
1 < b5 < (3 + √

3)/2. Thus, the
conclusion on the number of zeros of ϕ11 in (0,∞) given in Lemma 3.3 is obtained.

Next, by the expression of β
(11)
1 , we can see that β(11)

1 > 0 ⇔ ϕ22(b4) > ϕ
1/2
21 (b4),

which is equivalent to the inequalities

ϕ22(b4) > 0 and ϕ23(b4) > 0, (3.39)

where

ϕ22 := −3(4b5 − 1)(2b5 − 1)b4 + 2b5(8b45 − 23b35 + 10b25 + 6b5 − 3),
ϕ23 := 18(2b5 − 1)2b24 − 3(2b5 − 1)(8b25 + 3b5 − 1)(2b25 − 6b5 + 3)b4

+ b5(2b25 − 6b5 + 3)(16b55 − 36b45 − 8b35 + 25b25 − 3).

The linear ϕ22 has a unique zero β
(22)
1 := 2b5(8b45−23b35+10b25 +6b5−3)/(3(4b5−

1)(2b5−1)) since lcff(ϕ22, b4) = −3(4b5−1)(2b5−1) < 0. Similar to the discussion
on the sign of β

(21)
1 , we can see that β

(22)
1 < 0 ⇔ 1 < b5 < β

(32)
1 , β

(22)
1 = 0 ⇔

b5 = β
(32)
1 , and β

(22)
1 > 0 ⇔ β

(32)
1 < b5 < (3 + √

3)/2, where β
(32)
1 is a zero of the

polynomial ϕ32(b5) := 8b45 − 23b35 + 10b25 + 6b5 − 3, in the interval (1, (3+√
3)/2),

covered by
[
299614051283
137438953472 ,

74903512821
34359738368

]
. Thus,

ϕ22 > 0 ⇔ β
(32)
1 < b5 < (3 + √

3)/2 and 0 < b4 < β
(22)
1 . (3.40)

The quadratic ϕ23 has two real zeros β
(23)
1 < β

(23)
2 , given in Appendix, since the

discriminant�(ϕ23) = 9(b5+1)(2b5−1)2(−2b25+6b5−3)(46b35−20b25+3b5−3) >

0. Similar to the discussion on the sign of β
(21)
1 , we can see that β

(23)
1 < 0, and

β
(23)
2 < 0 ⇔ 1 < b5 < β

(33)
1 , β(23)

2 = 0 ⇔ b5 = β
(33)
1 , and β

(23)
2 > 0 ⇔ β

(33)
1 <

b5 < (3+ √
3)/2, where β

(33)
1 is a zero of the polynomial ϕ33(b5) := 16b55 − 36b45 −

8b35+25b25−3, in the interval (1, (3+√
3)/2), covered by

[
296055361513
137438953472 ,

148027680757
68719476736

]
.

Thus,

ϕ23 > 0 ⇔ either 1 < b5 ≤ β
(33)
1 and b4 > 0

or β
(33)
1 < b5 < (3 + √

3)/2 and b4 > β
(23)
2 .

(3.41)
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We also see by a similar discussion on the sign of β
(21)
1 that

β
(21)
2 − β

(22)
1 > 0, β

(21)
2 − β

(23)
2 > 0,

β
(23)
2 − β

(22)
1 > 0 ⇔ 1 < b5 < β

(34)
1 , β

(23)
2 − β

(22)
1 = 0 ⇔ b5 = β

(34)
1 ,

β
(23)
2 − β

(22)
1 < 0 ⇔ β

(34)
1 < b5 < (3 + √

3)/2, β
(21)
1 − β

(23)
2 = 0

⇔ b5 = β
(34)
1 ,

β
(21)
1 − β

(23)
2 > 0 ⇔ either 1 < b5 < β

(34)
1 or β

(34)
1 < b5 < (3 + √

3)/2,

(3.42)

where β
(34)
1 is a zero of the polynomial ϕ34(b5) := 92b65 − 224b55 − 16b45 + 162b35 −

57b25+18b5−9, in the interval (1, (3+√
3)/2), covered by [ 302676473693137438953472 ,

151338236847
68719476736 ].

Thus, by (3.39), (3.40), (3.41) and (3.42), the distribution of zeros of ϕ11 given in
Lemma 3.3 is obtained. This proves the lemma. ��

4 Large Cycles

In contrast with the last section, where we studied limit cycles arising from the focal
center in a small neighborhood of the focal center, in this sectionwe find periodic orbits
outside the small neighborhood, called large cycles. Ref. Wang et al. (2016) uses the
Poincaré–Bendixson theorem (Meiss 2007) to show the existence of a periodic orbit in
the case that interior equilibrium E2 is unstable and explains that the periodic orbit is
resulted from aHopf bifurcation. In this section, we give conditions for the existence of
large cycles which do not arise from the interior equilibrium via Hopf bifurcations.We
also show that large cycles may exist even if the interior equilibrium is stable and that
k (k = 0, 1, 2) small cycles can co-exist together with some large cycles. By Theorem
3.1, we see that depending on the signs of focal values, (2.2) can have (i) no small
cycles and the interior equilibrium of system (2.2) is unstable if (b1, b2, b3, b4, b5) ∈
�̃0∗; (ii) a unique small cycle which is unstable if (b1, b2, b3, b4, b5) ∈ �̃1∗; and (iii)
two small cycles with the inner one being stable and the outer one being unstable if
(b1, b2, b3, b4, b5) ∈ �̃2∗. Here

�̃0∗ := {(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D2, b4 ∈

(0, β(23)
2 ), b2 ∈ (0, β(11)

2 ), b1 ∈ B+(β2)}
∪{(b1, b2, b3, b4, b5) ∈ R

5 : (b3, b5) ∈
6⋃

i=3

Di , b4 ∈ (0, β(23)
2 ], b2 ∈ (0, β(11)

2 ), b1 ∈ B+(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈

6⋃
i=3

Di , b4 ∈ (β
(23)
2 , β

(21)
1 ), b2 ∈ (β

(11)
1 , β

(11)
2 ), b1 ∈ B+(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D4, b4 ∈ (0, β(24)

1 ),
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b2 ∈ B−(β
(11)
2 ), b1 ∈ B+(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D5, b4 ∈ (0, β(24)

2 ),

b2 ∈ B−(β
(11)
2 ), b1 ∈ B+(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D6, b4 ∈ (0, β(24)

3 ),

b2 ∈ B−(β
(11)
2 ), b1 ∈ B+(β2)},

�̃1∗ := {(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D2, b4 ∈ (0, β(23)

2 ),

b2 ∈ (0, β(11)
2 ), b1 ∈ Bo−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈

6⋃
i=3

Di , b4 ∈ (0, β(23)
2 ], b2 ∈ (0, β(11)

2 ), b1 ∈ Bo−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈

6⋃
i=3

Di , b4 ∈ (β
(23)
2 , β

(21)
1 ), b2 ∈ (β

(11)
1 , β

(11)
2 ), b1 ∈ Bo−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D4, b4 ∈ (0, β(24)

1 ),

b2 ∈ B−(β
(11)
2 ), b1 ∈ Bo−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D5, b4 ∈ (0, β(24)

2 ),

b2 ∈ B−(β
(11)
2 ), b1 ∈ Bo−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D6, b4 ∈ (0, β(24)

3 ),

b2 ∈ B−(β
(11)
2 ), b1 ∈ Bo−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D4, b4 ∈ (0, β(24)

1 ),

b2 ∈ Bo+(β
(11)
2 ), b1 ∈ B−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D5, b4 ∈ (0, β(24)

2 ),

b2 ∈ Bo+(β
(11)
2 ), b1 ∈ B−(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D6, b4 ∈ (0, β(24)

3 ),

b2 ∈ Bo+(β
(11)
2 ), b1 ∈ B−(β2)},

�̃2∗ := {(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D4, b4 ∈ (0, β(24)

1 ),

b2 ∈ Bo+(β
(11)
2 ), b1 ∈ Bo+(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D5, b4 ∈ (0, β(24)

2 ),

b2 ∈ Bo+(β
(11)
2 ), b1 ∈ Bo+(β2)}

∪{(b1, b2, b3, b4, b5) ∈ R
5 : (b3, b5) ∈ D6, b4 ∈ (0, β(24)

3 ),

b2 ∈ Bo+(β
(11)
2 ), b1 ∈ Bo+(β2)},
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β2 is defined in (2.3), D1, ..., D6 are defined just before Theorem 3.1 and β
(23)
2 , β(21)

1 ,

β
(24)
1 , β(24)

2 , β(24)
3 , β(11)

1 , β(11)
2 and β

(11)
3 are given in Appendix.

The following theorem confirms that large cycles are possible.

Theorem 4.1 For (b1, b2, b3, b4, b5) ∈ �̃∗, system (2.2) has at least one large cycle,
where �̃∗ := �̃0∗ ∪ �̃1∗ ∪ �̃2∗ and �̃i∗ s (i = 0, 1, 2) are defined just before.

Proof We will use the Poincaré–Bendixson theorem (Hale 1980; Meiss 2007; Zhang
et al. 1992) to prove this theorem in three cases: (L1) (b1, b2, b3, b4, b5) ∈ �̃0∗, (L2)
(b1, b2, b3, b4, b5) ∈ �̃1∗, and (L3) (b1, b2, b3, b4, b5) ∈ �̃2∗.

In case (L1), from the proof of Theorem 2.2, we see that the flow φt , defined by
the solution φt (P) := φ(t, P) of system (2.2) initiated from the point P ∈ R

2+, is
point dissipative. That is, there is a bounded closed set D ⊂ R

2+, as shown in Fig. 3,
such that for any point P ∈ R

2+, there is a number tP ≥ 0, satisfying φtP (P) ∈ D.
This implies that the bounded closed set D is positively invariant, i.e., each positive
semi-orbit, denoted by γ + := {φt (P) : t ≥ 0, P ∈ D}, is always inD. So the positive
semi-orbit γ + is bounded and in a bounded closed setD. Moreover, by the discussion
just before (2.3), we can see that system (2.2) has three equilibria Ẽ0, Ẽ1 and Ẽ2 in
this case, which implies that there are a finite number of equilibria in the bounded
closed setD. Thus, by the Poincaré–Bendixson theorem of (Hale 1980, Theorem 1.3,
p.54), one of the following is satisfied: (i): ω(γ +) is an equilibrium, (ii): ω(γ +) is a
periodic orbit, and (iii): there are a finite number of equilibria and a set of orbits in
ω(γ +), every one of which tends to the equilibria as t → ±∞, where ω denotes the
ω-limit set. In this case, we claim that (i) does not occur because all three equilibria
of system (2.2) are unstable. Also, we claim that (iii) does not occur. In fact, from the
proof of Theorem 2.2, we see that the stable manifold of the saddle Ẽ0 lies on the
y-axis and tends to infinity as t → −∞, and the stable manifold of the saddle Ẽ1 lies
on the x-axis and tends to Ẽ0 or infinity as t → −∞, which implies that if (iii) occurs,
an orbit tends to Ẽ2 as t → ±∞. By the discussion on the beginning of Sect. 2, we
can see that the determinant of the Jacobian matrix of system (2.2) at Ẽ2 is positive,
which implies that Ẽ2 does not have hyperbolic sectors. So there are no homoclinic
orbits connecting Ẽ2. The claim is proved. From the above analysis, the system has
at least one periodic orbit in D. By the discussion on the beginning of this proof, no
small cycles arise from Hopf bifurcation. This implies that the periodic orbit given by
the Poincaré–Bendixson theorem above is not the small cycle.

In case (L2), the equilibrium Ẽ2 is stable and there exists a unique small cycle,
denoted as �̃, which is unstable. The cycle �̃ intersects the horizontal isoclineH : x =
1/(b5 − 1) transversely at two points. We denote the intersection that lies above Ẽ2 as
Q̂u : (1/(b5 − 1), ŷu), where ŷu > ỹ∗. Thus, there is a point Q̂ : (1/(b5 − 1), ŷu + δ),
δ > 0 small enough, such that the positive semi-orbit with Q̂ as an initial point
intersectsH for y ≥ ỹ∗ at a point for the first time, denoted by Q̂∗ : (1/(b5−1), ŷ∗) =
φ ť (Q̂), where ť > 0 and ŷ∗ − ŷu > δ. We construct the curve L := {φt (Q̂) : 0 ≤ t ≤
ť} ∪ {(x, y) ∈ H : ŷu + δ ≤ y ≤ ŷ∗} and further construct an annular region, denoted
byR, with L as the internal boundary and ϒ as the external boundary, where ϒ is the
boundary ofD. Clearly, the bounded closed setR is positively invariant, which implies
that each positive semi-orbit, denoted by γ̃ + := {φt (P) : t ≥ 0, P ∈ R}, is bounded.
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Moreover, similar to the discussion on case (L1), we can see that system (2.2) has two
equilibria Ẽ0 and Ẽ1 in R in this case, which implies that there are a finite number
of equilibria in the bounded closed setR. Thus, by the Poincaré–Bendixson theorem
of (Hale 1980, Theorem 1.3, p.54), the conclusions (i), (ii) and (iii) described in case
(L1) still hold for the replacement of γ + by γ̃ +. By the same reason, we see that (i)
and (iii) do not occur. From the above analysis, the system has at least one periodic
orbit in R. In addition, the way we construct the simple closed curve L determines
that there are no limit cycles arising from Hopf bifurcation in the annular region R.
This implies that the periodic orbit given by the Poincaré–Bendixson theorem above
is not the small cycle.

In case (L3), the equilibrium Ẽ2 is unstable and there exist two small-cycles, where
the inner one is stable and the outer one (denoted by �̃) is unstable. The proof for this
case is similar to the proof of case (L2) and is thus omitted here. The proof of the
theorem is completed. �

Theorem 4.1 states that even if the system has two small cycles, it can also have a
large cycle. Moreover, if the system has no or one small cycle, it still has a large cycle
in some appropriate cases. Next, we present some numerical results to illustrate our
analytical results, confirming the existence of a large cycle as well as the possibility
of 0, 1 and 2 small cycles. In Figs. 5, 6, 7 and 8, we show the very last part of each
trajectory to avoid plotting a huge amount of data. We also use the solid and dotted
curves to represent stable and unstable limit cycles, respectively, and use blue color
and green color to mark small cycles and large cycles, respectively.

Firstly, we choose (b1, b2, b3, b4, b5) =
(
709905987
250000000 ,

2869
5000 ,

92621853
2888000000 ,

3
100 ,

461
200

)
to

simulate two small cycles and find that there is one large cycle, which is stable. In Fig.
5, the equilibrium Ẽ2 is unstable because Tr(J (Ẽ2)) = 7.62306 × 10−12. The orbits
from the two initial points (0.766, 3.33) and (0.77, 3.36) spiral outward and inward,
respectively, as the time t → ∞, implying that there exists a stable limit cycle,
generated by the Hopf bifurcation. The orbits from the two initial points (0.82, 3) and
(0.85, 3) spiral outward and inward, respectively, as the time t → −∞, implying that
there exists an unstable limit cycle, generated by the Hopf bifurcation. The orbits from
the two initial points (0.965, 3) and (0.975, 3) spiral outward and inward, respectively,
as the time t → ∞, implying that there is a stable limit cycle in addition to the one
arising from the Hopf bifurcation.

Secondly, we choose (b1, b2, b3, b4, b5) = ( 74817
100000 ,

87
250 ,

1859
54000 ,

3
20 ,

23
10 ) to simu-

late one limit cycle arising from Hopf bifurcations and find that one large cycle
exists, which is stable. In Fig. 6, the equilibrium Ẽ2 is stable because Tr(J (Ẽ2)) =
−2.2487578321 × 10−8. Similarly, we choose the initial points (0.791, 0.74) and
(0.791, 0.746) (resp. (0.855, 0.856) and (0.863, 0.845)) and simulate the orbits sep-
arately as the time t → −∞ (resp. t → ∞). This implies that there exists a small
cycle (resp. large cycle), which is unstable (resp. stable).

Thirdly, choose (b1, b2, b3, b4, b5) = ( 6425 ,
1
25 ,

2502839
31500000 ,

3
100 ,

109
50 ) to simulate no

limit cycles arising fromHopf bifurcations and find that there is one large cycle, which
is stable. In Fig. 7, the equilibrium Ẽ2 is unstable because Tr(J (Ẽ2)) = 2.8789414×
10−3. Similarly, choose the initial points (1.2, 15.6) and (1.17, 16) and simulate the
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Fig. 5 �̃2∗ scenario—two small cycles (blue) and one large cycle (green)

Fig. 6 �̃1∗ scenario—one small cycles (blue) and one large cycle (green)

orbits separately as time t → ∞. This implies that there exists a large cycle, which is
stable. ��

Finally, we simulate 3 small cycles and find that no other periodic orbits exist
except the three limit cycles. As a demonstration, we choose (b1, b2, b3, b4, b5) =
( 515446001125000000 ,

1153
2000 ,

3771687633
112625000000 ,

1
50 ,

1151
500 ). In Fig. 8, the equilibrium Ẽ2 is unstable

because Tr(J (Ẽ2)) = 6.9720317 × 10−11. Similarly, choose the initial points
(0.77, 5.25), (0.78, 5.2), (1.1, 6) and (1.1, 6.15) (resp. (0.85, 5.85) and (0.9, 5.5))
and simulate the orbits separately as the time t → ∞ (resp. t → −∞). This implies
that there exist three small cycles, which are stable, unstable, and stable from inside
to outside.
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Fig. 7 �̃0∗ scenario—no small cycles and one large cycle (green)

Fig. 8 �̃3 scenario—three small cycles (blue) and no large cycles

5 Conclusion and Discussion

Unlike an attractor, which is a nonempty invariant set for which there exists an open
neighborhood such that all orbits starting from any point in the neighborhood converge
to the set, a global attractor is a compact invariant set attracting all bounded subsets
in phase space. Therefore, an attractor can be an equilibrium, while a global attractor
typically exhibits more complicated internal structure, including equilibria, periodic
orbits and homoclinic/heteroclinic orbits. Theorem 2.2 confirms the existence of a
global attractor of system (2.2) in the closure of the first quadrant, implying that the
populations of both predator and prey will not inflate to infinity. More interesting is the
dynamics inside the global attractor, which can have five cases as shown in Fig. 9, and
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Fig. 9 Structure of the global attractor

Fig. 10 Continuation Fig. 9—structure of the global attractor

in some of these cases, multi-stability within the positive equilibrium Ẽ2 and periodic
orbits (including small cycles and large cycles) can occur in several different patterns
(Fig. 10).

In case (S1), the global attractor is Ẽ0 ∪ Wu(Ẽ0) ∪ Ẽ1, where Wu(Ẽ0) is the
unstable manifold of Ẽ0 in the closure of the first quadrant. In case (S2), the global
attractor is Ẽ0 ∪Wu(Ẽ0)∪ Ẽ1 ∪Wu(Ẽ1)∪ Ẽ2, whereWu(Ẽ0) is as described above
and Wu(Ẽ1) is the unstable manifold of Ẽ1 in the closure of the first quadrant. In
cases (Si) (i = 3, 4, 5), the global attractor is Ẽ0 ∪ Wu(Ẽ0) ∪ Ẽ1 ∪ Wu(Ẽ1) ∪ �� ,
where Wu(Ẽi ), i = 0, 1 are as described above, �� is a bounded closed region with
the periodic orbit � as the boundary and � is the outermost periodic orbit surrounding
Ẽ2. More specifically, in case (S3), there is the equilibrium Ẽ2 in int(��), in case
(S4), there are Ẽ2 and one unstable limit cycle in int(��), and in case (S5), there are
Ẽ2 and two limit cycles in int(��), where int represents the interior of the region.
Moreover, our global attractor is connected but not locally connected (i.e., a space
X is locally connected if for any x ∈ X , and each neighborhood U of x , there is a
connected neighborhood V of x which is contained in U , as defined in Armstrong
1983, p.61).
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We point out that if we ignore the fear effect (i.e., s = 0), Cheng (1981); Hsu
et al. (1978) show that system (1.1) has at most one limit cycle, which is stable. This
gives a monostable scenario with either the coexistence equilibrium or the positive
periodic orbit arising from Hopf bifurcation at the positive equilibrium being globally
asymptotically stable. If we consider the fear effect, however, Wang et al. (2016) gives
a parameter condition for the occurrence of one limit cycle from a Hopf bifurcation
while displaying another limit cycle numerically. This indicates that a relatively low
level of fear may lead to a situation of bistability in which the positive equilibrium
regains its local stability while the limit cycle also remains stable.

Now, our further and more careful analysis of this model incorporated a cost for the
prey due to fear effect, shows that the positive equilibrium of (1.1) is indeed a weak
focus of multiplicity of up to 4, and the case of exactly 3 small cycles leads to another
type of bistabiliy: While the positive equilibrium remains unstable, two stable cycles
may occur which are separated by another cycles between them; see Theorem 3.1.
Moreover, Theorem 4.1 also gives certain parameter range for system (1.1) to have a
large cycle, showing that even if only 2 small cycles arise fromHopf bifurcations, there
can be a large cycle surrounding them which is not a result of Hopf bifurcation. Our
theoretical results show that the structure of the global attractor of this model system
is rich; there can be a variety of outcomes of the predator–prey interaction when fear
effect is considered, as illustrated in Fig. 9. In particular, the demonstrated bistable
scenarios indicate that the predator and prey can co-exist in a way that is dependent
on their initial populations.

Finally, we would like to discuss a biological implication of our results. There is
a well-known paradox in mathematical ecology, called the “Paradox of Enrichment,”
and it is about the model (1.1) without fear effect with the growth function formulated
in the form of logistic growth, that is, the parameters r , δ1 and δ3 are absorbed into the
form of intrinsic growth rate and carrying capacity. As mentioned in the beginning of
this section (citing results from Cheng 1981; Hsu et al. 1978), increasing the carrying
capacity of the prey can destabilize the positive equilibrium leading to a globally stable
periodic solution, and such a periodic solution may stay very close to 0 for the prey
population and/or the predator population for a long time (slow dynamics near the
boundaries of the first quadrant in the phase plane). This is ecologically not plausible
because, by the nature of the predator–prey interaction, increasing the carrying capacity
of the prey will benefit the prey species and such a benefit will later be passed to the
predator species; yet the slow dynamics near the 0 will put both prey and predator at
high risk of extinction by any random negative incidences. This is referred to as the
“Paradox of Enrichment.” Now, with the fear effect incorporated, we have seen that
there are two different types of bistable scenarios for which the solutions with initial
populations located in the basin of attraction of the stable positive equilibrium or the
stable inner periodic cycle will no longer experience the risky slow dynamics. Thus,
for such solutions, the “Paradox of Enrichment” is no longer a paradox.
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Appendix: Some Complicated Formulae

In the proof of Theorem 2.1, p11 := (b5(b5 − 1)((b5 + 1)b3 + (b5 − 1)2)b2 +
(b5 − 1)2((b5 + 2)b3 + (b5 − 1)2)b4 + b5b3(b3 + (b5 − 1)2))/(b5 − 1), p02 :=
−(b25(b5 − 1)4b22 + b5(b5 − 1)((b5 − 1)2(b3 + 2(b5 − 1)2)b4 − b5b3(b5b3 − 2(b5 −
1)2))b2+(b5−1)4(b3+(b5−1)2)b24+b5b3(b5−1)2(b3+2(b5−1)2)b4−b23b

2
5(b5b3−

(b5 − 1)2))/(b5 − 1) and �4 := (1− b5)(b25(b5 − 1)4b22 + b5(b5 − 1)((b5 − 1)2(b3 +
2(b5−1)2)b4−b5b3(b5b3−2(b5−1)2))b2+(b5−1)4(b3+(b5−1)2)b24+b5b3(b5−
1)2(b3 + 2(b5 − 1)2)b4 − b23b

2
5(b5b3 − (b5 − 1)2))/(b3b5).

At the end of Sect. 2, p̃110 := ((b5 − 1)b5((b5 + 1)b3 + (b5 − 1)2)b2 + (b5 −
1)2((b5 + 2)b3 + (b5 − 1)2)b4 + b5b3(b3 + (b5 − 1)2))/(b5b3(b5 − 1)2), p̃020 :=
(−b25(b5 − 1)4b22 + (b5 − 1)b5(−(b5 − 1)2(b3 + 2(b5 − 1)2)b4 + b5b3(b5b3 − 2(b5 −
1)2))b2−(b5−1)4(b3+(b5−1)2)b24−b5b3(b5−1)2(b3+2(b5−1)2)b4+b25b

2
3(b5b3−

(b5 −1)2))/(b25b
2
3(b5 −1)3), p̃011 := (b5(b5 −1)3b2 + (b5 −1)2(b3 + (b5 −1)2)b4 −

b5b3(b5b3 − (b5 − 1)2))/(b5b23(b5 − 1)2) and �5 := (3(b5 − 1)4b24 + b4b5(b5 −
1)3(2b2 − b3 + 2b5 − 2) + b2b25(b5 − 1)((b5 + 1)b3 + 3(b5 − 1)2) + b25b3((b5 +
2)(b5 + 1)b3 + (b5 + 4)(b5 − 1)2))(b25b3(b5 − 1)((b5 + 1)b3 + (b5 − 1)2))−1.

Before Theorem 3.1, β
(33)
1 , β

(34)
1 , β

(35)
1 and β

(36)
2 are zeros of the polynomials

ϕ33(b5) := 16b55 − 36b45 − 8b35 + 25b25 − 3, ϕ34(b5) := 92b65 − 224b55 − 16b45 +
162b35 − 57b25 + 18b5 − 9, ϕ35(b5) := 20b35 − 68b25 + 57b5 − 15 and ϕ36(b5) :=
168b65 − 1112b55 + 2738b45 − 3189b35 + 1920b25 − 585b5 + 72 covered by

[
296055361513

137438953472
,
148027680757

68719476736

]
,

[
302676473693

137438953472
,
151338236847

68719476736

]
,[

316731117455

137438953472
,
19795694841

8589934592

]
and

[
157594099533

68719476736
,
315188199067

137438953472

]
,

respectively, and β
(23)
2 := (16b45 − 42b35 + 4b25 + 15b5 − 3 + (−(b5 + 1)(2b25 −

6b5 + 3)(46b35 − 20b25 + 3b5 − 3))1/2)/(12(2b5 − 1)), β(21)
1 := b25{26b25 − 24b5 +

6− 6(16b45 − 24b35 + 12b25 − 2b5)1/2}/(3(2b5 − 1)), β(24)
1 := b5(−136b65 + 936b55 −

2318b45 +2604b35 −1479b25 +414b5 −45− (40000b125 −515200b115 +2873760b105 −
9142912b95+18444052b85−24884568b75+23115144b65−14958864b55+6713307b45−
2038392b35 + 396036b25 − 43740b5 + 2025)1/2)/(3(2b5 − 1)(32b35 − 80b25 + 60b5 −
15)), β(24)

2 := b5(−136b65 + 936b55 − 2318b45 + 2604b35 − 1479b25 + 414b5 − 45 +
(40000b125 −515200b115 +2873760b105 −9142912b95 +18444052b85 −24884568b75 +
23115144b65 − 14958864b55 + 6713307b45 − 2038392b35 + 396036b25 − 43740b5 +
2025)1/2)/(3(2b5 − 1)(32b35 − 80b25 + 60b5 − 15)), β(24)

3 := b5(−136b65 + 936b55 −
2318b45 + 2604b35 − 1479b25 + 414b5 − 45)/(3(2b5 − 1)(32b35 − 80b25 + 60b5 − 15)),

β
(11)
1 := (b5 − 1)(−3(4b5 − 1)(2b5 − 1)b4 + 2b5(8b45 − 23b35 + 10b25 + 6b5 −

3) − (9(2b5 − 1)2b24 − 12b25(2b5 − 1)(13b25 − 12b5 + 3)b4 + 4b45(25b
4
5 − 96b35 +

114b25−54b5+9))1/2)/(6b5(2b5−1)2), β(11)
2 := (b5−1)(−3(4b5−1)(2b5−1)b4+

2b5(8b45 −23b35 +10b25 +6b5 −3)+ (9(2b5 −1)2b24 −12b25(2b5 −1)(13b25 −12b5 +
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3)b4 + 4b45(25b
4
5 − 96b35 + 114b25 − 54b5 + 9))1/2)/(6b5(2b5 − 1)2) and β

(11)
3 :=

(b5−1)(−3(4b5−1)(2b5−1)b4+2b5(8b45−23b35+10b25+6b5−3))/(6b5(2b5−1)2).

In the proof ofTheorem3.1,β(31)
1 ,β(36)

1 ,β(36)
2 andβ

(37)
1 are zeros of the polynomials

ϕ31(b5) := 100b45 − 384b35 + 456b25 − 216b5 + 36, ϕ36(b5), ϕ36(b5) and ϕ37(b5) :=
1856b105 −14816b95+44240b85−56608b75+14036b65+40680b55−46410b45+20016b35−
2745b25 − 486b5 + 135, covered by

[
147768672059

68719476736
,
295537344119

137438953472

]
,

[
151214956493

68719476736
,
302429912987

137438953472

]
,[

157594099533

68719476736
,
315188199067

137438953472

]

and

[
323076177543

137438953472
,
40384522193

17179869184

]
,

respectively,β(21)
2 := b25{26b25−24b5+6+6(16b45−24b35+12b25−2b5)1/2}/(3(2b5−

1)), β(23)
1 := (16b45 − 42b35 + 4b25 + 15b5 − 3− ((b5 + 1)(−2b25 + 6b5 − 3)(46b35 −

20b25 +3b5 −3))1/2)/(12(2b5 −1)), R̂(1)
23 (b5) := 8b35 −26b25 +21b5 −6, R̂(2)

23 (b5) :=
32b35−80b25+60b5−15, R̂(3)

23 (b5) := 168b65−1112b55+2738b45−3189b35+1920b25−
585b5 + 72, R̂(5)

23 (b5) := 100b65 − 608b55 + 1324b45 − 1272b35 + 591b25 − 126b5 + 9,

ř (1)
23 (b5) := 460800b165 − 9263360b155 + 81404288b145 − 417970176b135

+ 1410177920b125 − 3328818080b115 + 5710818096b105

− 7293653136b95 + 7035858828b85 − 5160307968b75

+ 2874517092b65 − 1204489980b55 + 371863629b45 − 81487620b35

+ 11860830b25 − 1008450b5 + 36450 ≡ r̂ (1)
23 (b5),

F1(b2, b4, b5) := 9b25(2b5 − 1)3b22 + 3b5(2b5 − 1)(b5 − 1)

(3(2b5 − 1)(4b5 − 3)b4 − 2b5(8b
4
5 − 25b35 + 10b25 + 6b5 − 3))b2

+ (b5 − 1)2{18(b5 − 1)(2b5 − 1)2b24 − 3b5(2b5 − 1)

(16b45 − 54b35 + 48b25 + 3b5 − 9)b4 + b25(2b
2
5 − 6b5

+ 3)(16b55 − 44b45 + 12b35 + 13b25 − 3)},
r̃ (1)
311(b5) := 1029220902102630400b285

− 18932387359653068800b275 + 150133535412565606400b265

− 687318146007217295360b255

+ 2068576068140472350720b245

− 4443158376724184913920b235 + 7196576363925899969536b225

− 9121489683461357488640b215

+ 9267554060472935708928b205 − 7649827649414653180928b195

+ 5142740566484693410432b185

− 2778263794975800256832b175 + 1149095427108262799776b165
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− 303305982772656804512b155

− 10397349886853933056b145 + 69519028856295071384b135

− 49493096995967293484b125

+ 23634939830234001304b115 − 8810137591246976636b105

+ 2683471070823686014b95 − 678979492837418935b85

+ 143252750515655090b75 − 25100064246850825b65

+ 3612691134669890b55 − 418990199969600b45 + 37909624759650b35

− 2527773384150b25 + 110982368700b5 − 2405214000,

ř (3)
23 (b5) := 13546380119244800b325

− 313385065602088960b315 + 3263312981996863488b305

− 19751848519249035264b295

+ 72679468424282701824b285

− 133523461871425290240b275 − 149101920498547310592b265

+ 1882641718448314736640b255

− 6621699129547006033920b245 + 13498507630764318816256b235

− 13482941098231701472256b225

− 14206959864832318783488b215 + 94577448723792819152640b205

− 236100973335876209571840b195

+ 411229484077109445499968b185 − 560331770721137677700640b175

+ 624012040457000976036960b165

− 580309766693303409280872b155 + 455944991759976539725740b145

− 304571657407390634772234b135

+ 173472251808073343904432b125 − 84266698376353021491519b115

+ 34844982505233029974422b105

− 12216543247894691610648b95 + 3608974969450679346156b85

− 890501080092471181539b75

+ 181334416934452161978b65 − 29975727010020857028b55

+ 3930406820462712744b45

− 394913924909840880b35 + 28738434075418656b25

− 1360031608961280b5 + 31754946067200 ≡ r̂ (3)
23 (b5),

r̂ (2)
24 (b5) := 4527388989849600b335 − 169013158700646400b325

+ 2994766066356387840b315 − 33606726037831680000b305

+ 268784971272203649024b295

− 1634299100420448731136b285 + 7867163007312738791424b275

− 30822726164383686107136b265

+ 100254986197207612861440b255 − 274731191154460598347776b245

+ 641350279800470279481856b235
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− 1286253672139043635144704b225 + 2230312287468288761678208b215

− 3359401954346755139791680b205

+ 4410412822398488737801824b195 − 5058105151614670719632448b185

+ 5073758818196560736193360b175

− 4453082055862479204251904b165 + 3417987222327495324285504b155

− 2291310711641533906695312b145

+ 1338571242090706835590920b135 − 679291839392409058410756b125

+ 298158954238069139646522b115

− 112548711365963147598984b105 + 36267685782348678185583b95

− 9881488560145530503934b85

+ 2248153774054024161258b75 − 420123525773087846466b65

+ 63071625321665675010b55 − 7375368278374295220b45

+ 642189471423121800b35 − 38794236987242160b25
+ 1433357457285600b5 − 24083630661600,

Ř(1)
13 (b4, b5) := 1458(32b35 − 80b25

+ 60b5 − 15)(2b5 − 1)6b64

− 243b5(8b
5
5 − 1700b45 + 4248b35 − 3729b25 + 1386b5

− 180)(2b5 − 1)6b54 + 81b35(32064b
8
5 − 311344b75

+ 1128064b65 − 2048952b55 + 2133438b45 − 1340694b35

+ 505071b25 − 105408b5 + 9396)(2b5 − 1)4b44

− 54b55(345760b
1
50 − 3874112b95 + 18103336b85

− 46411404b75 + 72707562b65 − 73631646b55

+ 49420431b45 − 21928833b35 + 6205167b25 − 1017279b5

+ 73710)(2b5 − 1)3b34 + 18b75(2b
2
5 − 6b5 + 3)

(1131776b150 − 12161712b95 + 54754912b85 − 135781800b75

+ 206307750b65 − 202837302b55 + 132158223b45 − 56893860b35

+ 15610509b25 − 2480868b5 + 174312)(2b5

− 1)2b24 − 96b95(2b5 − 1)(84744b105 − 894616b95

+ 3974482b85 − 9769875b75 + 14769558b65

− 14475357b55 + 9405774b45 − 4036149b35 + 1102680b25

− 174231b5 + 12150)(2b25 − 6b5 + 3)2b4

+ 256b115 (168b65 − 1112b55 + 2738b45 − 3189b35

+ 1920b25 − 585b5 + 72)(25b45 − 96b35 + 114b25 − 54b5

+ 9)(2b25 − 6b5 + 3)3,

R̂(4)
23 (b5) := 23713792000b245 − 574054969344b235

+ 6498506768384b225 − 45779591628800b215 + 225333289334784b205

− 824940827031040b195 + 2334874124179072b185
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− 5242854056898240b175 + 9509293922106848b165

− 14109846206731488b155 + 17279191287047640b145

− 17564967094747932b135 + 14867581076762958b125

− 10485326116792161b115 + 6150121974821628b105

− 2986796712693483b95 + 1191999779585874b85

− 386526987399483b75 + 100194462899856b65

− 20285817268257b55 + 3102555126996b45

− 341160741324b35 + 24987314808b25 − 1073904480b5 + 20995200.
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