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Abstract

In this paper, we investigate multi-periodicity in a predator—prey system with a fear
effect. Overcoming the difficulties in the calculation of focal values and the irreducible
decomposition of the algebraic varieties of focal values under some restrictions of
biological sense by using the stratified resultant elimination, we find that the weak focus
is of multiplicity at most four. Based on this, we identify conditions for the occurrence
of exactly one, two, or three small cycles from Hopf bifurcations by determining the
independence of focal values. Moreover, applying the Poincaré—Bendixson theorem,
we also explore large cycles that are periodic orbits different from those arising from
Hopf bifurcations. Further, we prove the existence of the global attractor and obtain its
structure by integrating all results about the system. Our work indicates that there are
several ways of coexistence for the predator and prey, characterized by monostability,
bistability of node—cycle type, and bistability of cycle—cycle type.

Keywords Predator—prey system - Fear effect - Global attractor - Small cycle - Large
cycle

Mathematics Subject Classification 34C05 - 34D45 - 92D25

1 Introduction

It is known that there are three major types of interactions between two interacting
species—cooperation, competition, and predator—prey (P—P). Among the three, the
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P-P type is the most complicated and it allows richer population dynamics. This is
because a population dynamics model with the first two types of interactions is a
monotone dynamical system for which convergence to equilibria is generic, while a
dynamical model with a P-P type interaction generates a non-monotone dynamical
system and hence can have richer dynamics. Therefore, P-P type systems are the
most interesting not only mathematically but also biologically and have attracted a
lot of researchers, and many of them have been focusing on the impact of various
nonlinearities in the predation term represented by the functional response function.

On the other hand, more and more field experiments (e.g., Zanette et al. 2011)
have shown that many animals can perceive the risks from their predators and respond
accordingly to reduce the risk of predation, and the response to the fear can be in
various forms. In order to explore the impact of such an anti-predation response of
prey due to its fear of the predator, Wang et al. (2016) incorporated a fear factor into
a classic P-P model with Holling-II type functional response in such a way that the
fear effect can reduce the production, which reflects the scenario of the field study
(Zanette et al. 2011). The model reads

dx _ (_r _ 2 _ pxy

dar (H—sy 81)x —d3x T+gx’ 11
dy __ —8yy 4 B (L.1)
dt — 2Y 1+gx>

where x and y represent the populations of prey and predator, respectively, r is the
birth rate of prey, 43 represents the death rate of prey due to intra-species competition,
31 is the natural death rate of prey, §, is the death rate of predators, c is the conversion
efficiency of prey into predators, p is the maximum predation rate, and g is a limitation
parameter of the growth of the predator population for increasing prey density. The
fear effect in reducing the production is represented by the factor f (s, y) = 1/(1+sy),
which satisfies

fO,y)=1, lim f(s,y) =0, 260 g,
f(s,0) =1, lim f(s,y) =0, .Y ),
y—00 dy

where s reflects the level of fear. Here all parameters are positive, and in addition,
r > &1 is assumed to ensure that in the absence of the predator, the prey population
settles at a positive equilibrium (r — 81)/83.

It is shown in Wang et al. (2016) that system (1.1) has two boundary equilibria:
(0, 0) which is always unstable, and ((r — 81)/83, 0) which is globally asymptotically
stable if cp — §2g < 0. In the complementary case cp — d>¢ > 0, they used the
rescaling

) Sodt
Y Sy, X M, dt — 2—, (1.2)
& (I'+gx)(1 +sy)
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to simplify system (1.1) as

2 - asxy — 616)’2 - a4x2y),

dx

= =x(a; + arx —azy — asx
{ﬂ Y (1.3)

dt

=yl +y)x-—1),

a polynomial system, where a; := (r — 81)/62, az» := (rq — 819 — 83)/(cp — 629),
a3 == (815 + p)/(s82), a4 := 83829/ (cp — 82q)*, as == (819 + 83)/(cp — 829) and
ae := p/(s67). It is found that in addition to the two boundary equilibria Ey : (0, 0),
Eq: ([(a% +4ajay)'? + as] /(2aa), 0), the system may have an interior equilibrium
E> : (1, y,), where y, is expressed in terms of parameters @; s (i = 1, ..., 6), under
some conditions. They discussed the stability of these equilibria in hyperbolic cases and
showed the occurrence of E; as Ej loses its stability. When E» is of center type, they
discussed the sign of a quantity computed from a formula given in Perko (1996), which
is actually equivalent to the focal value of multiplicity 1. They proved the existence
of a periodic orbit in the case that E; is unstable and explained that the periodic
orbit is a result of Hopf bifurcation. They also gave a condition for non-existence
of periodic orbits by the Dulac-Bendixson criterion (Perko 1996). Moreover, they
observed the existence of two limit cycles numerically with the choice of parameters
(r,81,62,83,¢,p,q,s) =(0.12,0.01, 0.05,0.01, 0.4, 0.5, 0.6, 60).

The numerical results in Wang et al. (2016) suggest that the dynamics of (1.1) are
far away from complete, and there may be some interesting dynamics un-discovered.
In this paper, we revisit system (1.1), hoping to theoretically confirm the extra peri-
odic orbit numerically observed in Wang et al. (2016) and even find more periodic
orbits. This will enable us to better understand the structure of global attractors which
allows us to identify more possibilities of survival patterns for the predator and prey.
To this end, we use a different set of rescaling and change of variables, in terms of a; s
(i =1, ...,6), to transform (1.1) to a new planar polynomial system (2.2) in Sect. 2,
which contains less parameters than (1.3) and hence has certain superiority over (1.3).
Corresponding to the boundary equilibria Eg, E; and the interior equilibrium E» of
system (1.3), system (2.2) also has two boundary equilibria Eo, E 1 and one interior
equilibrium E,. In Sect. 2, corresponding to the results on the hyperbolic boundary
equilibria Eqy and E for (1.3) in [26, Theorem 4.1], we explore the qualitative prop-
erties of the boundary equilibria in the nonhyperbolic case which is complementary
to [26, Theorem 4.1]; we also further discuss equilibria at infinity, from which we
deduce the existence of a global attractor in the closure of the first quadrant. In Sect.
3, we find small cycles (i.e., limit cycles of small amplitude), which arise via Hopf
bifurcations from the equilibrium E5 of center type. After computing focal values, we
not only prove that E» is a weak focus of multiplicity at most 4 but also give conditions
for the occurrence of exactly one, two, or three small cycles from Hopf bifurcations,
by the stratified resultant elimination. In Sect. 4, by using the Poincaré—Bendixson
theorem, we find another periodic orbit which is different from those arising from
Hopf bifurcations and is thus referred to as a large cycle. Finally in Sect. 5, we briefly
summarize the main results on the structure of the global attractor and explain how the
structure affects the population dynamics of the involved predator and prey. Our work
shows that, in addition to the bistability of node—cycle type (one stable equilibrium
coexists with a stable periodic oscillation) found in Wang et al. (2016), this model
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system can also support the bistability of cycle—cycle type (one stable periodic orbit
coexisting with another stable periodic orbit). All these further new results clearly
illustrate the complexity of a predator—prey system when a fear effect is incorporated.

2 Equilibria and Global Attractor

In order to avoid the case cp — §2g = 0, in which the rescaling used in (1.2) is not
available, we make a different transformation

8d
Y sy, x> qx, dt e 5y 2.1)

to transform system (1.1) to another new planar polynomial differential system

9 = x[(b1 — b2) + (by — by — b3)x — (ba + by)y — b3x>
—(by + b3)xy — byy? — b3x?y]
= X(x,), (2.2)
D — y(y + D[(bs — DHx — 1]
=:Y(x,y),

where by :=1/82, by := 61/82, b3 := §3/(82q9), ba := p/(s82), and b5 := cp/(62q).
The form of (2.2) is of the same degree 4 as (1.3), but it only contains five param-
eters, in contrast with six parameters in (1.3), and is thus a bit more convenient to
analyze. Moreover, (2.2) is also more convenient than (1.3) when discussing the non-
hyperbolicity of the boundary equilibrium, because for (1.3), the expression for the
equilibrium E; is irrational.

Obviously all b;’s are positive with by > by (since r > §1). Furthermore, (2.2)
is of Gaussian Type, and thus, the component x(¢) (resp. y(¢)) of a solution remains
positive provided that xo > 0 (resp. yg > 0).

Corresponding to the three equilibria Eg, £, and E; for system (1.3), system
(2.2) also has three possible equilibria Eg = (0,0), E; = ((b; — b2)/b3,0) and
Ex = (1/(bs — 1), ). Here 3 := — (o2 + (0} — 4w 13) /%) /2wm1) with

w1 = —by(bs — 1)%, @2 := —(bs — 1)*bg — bs(bs — 1)by — b3bs,
@3 = bs(—(bs — 1)by + (bs — 1)by + b3).

Obviously, the two boundary equilibria Ey and E; always exist (noting that r > 8 is
pre-assumed) with Eo being a saddle. As for E 1,1itis astable nodeifeither [0 < b5 < 1
and by > by] or [bs > 1 and by < by < B1], and a saddle if b5 > 1 and by > fi. Ez
existsif bs > 1 and by > B1, and itis a sink (resp. source) if bs > 1 and 81 < b1 < B2
(resp. bs > 1 and b; > B>), where a sink is a stable node or focus, a source is an
unstable node or focus,

b3b?
Bl :=by+ bsbil and fp = (bz + b3;§[575:1))(1 + b4(bi-jl)2)' (23)
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Notice that £, is of center type (need to identify focus from center) if b5 > 1 and
b1 = Bo. El is degenerate with eigenvalues —b3bs/(bs — 1)2 and 0 if b5 > 1 and
b1 = B, where B is given in (2.3). In the following, we give qualitative properties of
the boundary equilibrium E; in degenerate cases or at infinity.

Theorem 2.1 (i) If b5 > 1 and by = B, equilibrium E] is a saddle node, which has a
parabolic sector in the first quadrant. (ii) System (2.2) has two equilibria I and I, at
infinity in the first quadrant, which locate on the positive half x-axis and the positive
half y-axis, respectively, and both are degenerate. Near I the system has a unique
orbit in each direction (including the x-axis and its vertical one), which leaves from
Iy; near Iy the system has a unique orbit in the direction of the y-axis, which leaves
from I, and another unique orbit vertical to the y-axis, which approaches 1.

Proof We first discuss £ 1, for which we assumed that b5 > 1 and by = B;. With the
linear transformation

x> - b (Rl g

1 1
b3bs 1Y YV heien Y

which translates E; to the origin and diagonalizes the linear part, we can simplify
system (2.2) as

{g—f = prox + paox? + prixy + poay* + 0(|(x, y)3)), 2.4
@ = auxy + qoy* + 0((x, y)3).

where pio := —bsbs/(bs — 1)%, pao = —b3(bs + 1)/(bs — 1), q11 = bs — 1,
qoo = —(bs — 1)(bs(bs — Dby + (bs — 1)*bs + bsb3), and pi1, poo are given

in Appendix. By the Center Manifold Theorem (Guckenheimer and Holmes 1983,
Theorem 3.2.1, p.127), system (2.4) has a C? center manifold x = h(y) near the
origin, which is tangent to the curve x = 0 at origin in the (x, y)-space. Clearly, & is
of the form h(y) = w4y? + o(y*) with indeterminate 4. By the invariant property,
we have the equality X = &,y. Substituting the equations of (2.4) in the equality and
comparing the coefficients of y2, we obtain wy, given in Appendix. Thus, restricted
to the manifold, system (2.4) becomes the equation

D = g1h()y + go2y* + O(h (), 1)) = goy> + 0,

which shows that E 1 is a saddle node in system (2.4). Since pjp and gop are both
negative and the stable manifold of E 1 lies on the positive half x-axis, E 1 has a
parabolic sector in the first quadrant.

For possible equilibria at infinity, applying the Poincaré transformation x = 1/z,
y = u/z, we change system (2.2) into the form

S = ulbsu + bz + (b3 + by + bs — Duz + (b3 + by + bs — by
— D22 4 byu?z + (by + by — Duz® + (by — b1 — D2’} =1 U(u,2),

& = o{bsu + bsz + (b3 + ba)uz + (b3 + by — b1)z?
+ bau*z + (bs + ba)uz® + (b2 — b1)2*}

2 Z(u, z),
2.5)
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Fig. 1 Dynamics near O of system (2.5)

where dt; = dt/z3. As indicated in Zhang et al. (1992, section 5.1, p.325-326) (or
Perko 1996, Theorem 2, p.369), equilibria of (2.5) on the u-axis correspond to equi-
libria of equation (2.2) at infinity in the first quadrant excluding the infinity /, on the
y-axis. Solving equations U (u#, 0) = 0 and Z(u, 0) = 0, we obtain a unique equilib-
rium Og : (0, 0) of system (2.5) on the positive half u-axis, which corresponds to an
equilibrium 7, of (2.2) at infinity on the positive half x-axis. Note that O is of fully
null degeneracy because the Jacobian matrix J| o, is zero. Applying the Briot-Bouquet
transformation (Briot and Bouquet 1856; Zhang et al. 1992)

u=u, 7=uzg (2.6)
to blow up O; along the z-axis, we change system (2.5) into the form

g—gzb3+b32+u{(b3+b2+b5 — DZ+bsuz+(b3+by+bs—b;
— DB+ (batby— Du+(by—by — Duz®) = U(u. 2),
L = 201+ D((1 - bs) +u3) = Z(u, ),
@7

where dty = dt/u®. Since U0,%) = b3(1 +2) > 0, we see that (2.7) has no
equilibria on the positive half z-axis and all orbits on the half-plane 7 > 0 cross the
z-axis from the left to the right, which by the blowing down (the inverse of (2.6)) gives
phase portrait Fig. 1 of (2.5) in the first quadrant except for orbits in the direction of the
z-axis because the transformation (2.6) is not invertible for u = 0. In order to detect
orbits in the direction of the z-axis, we apply another Briot—-Bouquet transformation
u = zit, 7 = z to blow up in the direction of the u-axis, which changes system (2.5)
into the form

W=a(l+a){bs— 1) —2) = U(@, 2),
372 = b3 + b3it + z{(b3 + by — b1) + (b3 + b2)it + (b2 (2.8)
—b1)z 4 (by + by)iiz + bgit?z)  =: Z(d, z),

where dr; = dt;/z%. Since Z(O, 0) = b3 > 0, we see that system (2.8) does not
have an equilibrium at the origin, through which a unique orbit passes from down to
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up along the z-axis. This, by the corresponding blowing down, implies that there is
a unique orbit on the positive half z-axis which leaves O and goes upward (see the
bold line in Fig. 1). The above shows that near I, system (2.2) has a unique orbit in
each direction (including the x-axis and its vertical one), which leaves from 1.

Similar to the Briot-Bouquet transformation (2.6), the Poincaré transformation
used before (2.5) also has singularity, i.e., it is not invertible for x = 0. We need
to discuss orbits on the y-axis near the point at infinity. For this purpose, we apply
another Poincaré transformation x = v/z, y = 1/z to system (2.2), which leads to the
form

9 — y{ — bz — b3v® — (b3 + by + bs — Dvz — (bs + by — 1)z
— b3’z + (b) — b3 — by — bs + Dvz? + (by — by + D2}, (2.9)
& =z{(1 = bs)vz + 2% + (1 — bs)vz® + 23},

where dt4 = dt/z>. We only need to consider the origin O5 : (0, 0), which actually is
an equilibrium of (2.9), i.e., I, is an equilibrium of (2.9) at infinity correspondingly.
This equilibrium is of fully null degeneracy because the Jacobian matrix J| o, is zero.
Applying the transformation v = v, z = Zv?, which blows up O, twice along the
z-axis, we change system (2.9) into the form

:1171; = —b3v +v{ — bsZ — (b3 + by + bs — 1)vZ — b3v*Z
— (ba + by — 1)v?2% — (b3 — by + by + bs
— D322 + (by — by + Dv*23} = V@3,
9 _ b2+ 2{2ba + (2b3 + 2by + bs — DvZ + 2b3v’2
+ (2by + 2by — 1)V22% + (2b3 — 2by + 2by
+bs — D322 — (2by — 2by + D23} = 70,3,
(2.10)

where dts = dt4/v*. Solving \7(0, 7) = Z(O, z) = 0, we see that the origin of system
(2.10) is a unique equilibrium on the closure of the positive Z-axis and has eigenvalues
—b3 and 2b3, implying that it is a saddle. Thus, by blowing down, we obtain phase
portrait Fig. 2 of (2.9) in the first quadrant, where it is unknown whether there is an
orbit in the direction of the z-axis. For this unknown one, we apply another Briot—
Bougquet transformation v = ¥z, 7 = z to blow up in the direction of the v-axis, which
changes system (2.9) into the form

95 = —byi + 5{ — (ba + b2)z — (b3 + by)iz + (b1 — b)Z?
— b31722 + (=b3 + by — bz)ljzz - b35212} = ‘7(1\5, 2),
&= z{z — (bs — Doz + 22 — (bs — vz?} — 7(0, 7).,
(2.11)
where dtg = dt4/z. Since \7(0, 0) = Z(O, 0) = 0, we see that the origin of system
(2.11) is an equilibrium. One can compute its two eigenvalues —b4 and 0, showing

that it has a center manifold v = 0. The restriction of system (2.11) to the manifold is
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Fig.2 Dynamics near O; of system (2.9)

the equation dz/dt¢ = z> + z°, implying that the origin is a saddle node and there is
a unique orbit on the positive half z-axis (see the bold line in Fig. 2), but the infinitely
many orbits in the direction of z-axis lie in the half-plane z < 0 (which cannot be seen
in the first quadrant). Thus, near I, system (2.2) has a unique orbit in the direction
of the y-axis, which leaves from Iy, and another unique orbit vertical to the y-axis,
which approaches I,. The proof is completed. O

Next, we apply the results of equilibria obtained in Wang et al. (2016) and Theorem
2.1 to give the existence of global attractors, which is a compact invariant set attracting
all bounded subsets in the closure of the first quadrant.

Theorem 2.2 System (2.2) has a global attractor in the closure of the first quadrant.

Proof Section 4.1 of Wang et al. (2016) shows that system (2.2) has two and three equi-
libria in the cases (C1): either 0 < bs < 1 and by > by or bs > 1 and by < b; < fi,
and (C2): b5 > 1and by > B, respectively. In case (C1), the system has two equilibria
Eo : (0,0) and El 1 ((b1 — by) /b3, 0). Moreover, Eo is a saddle and El has a stable
parabolic sector in the closure of the first quadrant as indicated in Wang et al. (2016)
and Theorem 2.1. From qualitative properties of equilibria at infinity, we similarly see
that the union of Eo, E| and the orbit connecting with them is the global attractor.
The most complicated case is (C2) where the system has three equilibria Eo, E 1

and E2 (1/(bs — 1), ¥4). Moreover, Eo and E 1 are both saddles. Note that ¢ (P) :=
¢ (¢, P), which denotes the solution of system (2.2) initiated from the point P € RZ,
where R ; represents [0, 0o) , defines a C” semigroup for > 0 on the complete metric
space Ri. In order to find a global attractor, a compact invariant set attracting all
bounded subsets of Ri, by Corollary 1.1.4 of Cholewa et al. (2000, p.11) or Theorem
9.1 of Hale (2006, p.500) we need to claim that (K1) ¢’ is asymptotically smooth, i.e.,
each nonempty, closed, bounded, positively invariant set in ]R%r contains a nonempty,
compact subset which attracts it, (K2) ¢’ keeps orbits of bounded sets bounded, i.c.,
for any bounded set B C R2, there is a number 73 > 0, such that Uiz @' (B) s
bounded in R2 and (K3) ¢’ is pomt dissipative, i.e., there is a bounded set D C R2
such that for any point P € R there is a number tp > 0 such that ¢'(P) € D 1f
t > tp.Claim (K1) is obvious because Hale said “Any ordinary differential equation in
R" for which the solutions are defined for all # > 0 defines a dynamical system which
is asymptotically smooth” Definition 8.1 of Hale (2006, p.498), which also holds in
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Fig.3 Construction of D

Ri, a closed subset of R2. (K2) is also true; otherwise, there is a point P such that
U, >0 #' (P) is unbounded in R% , a contradiction to the fact that the positive half x-axis
and the positive half y-axis are both invariant and the equilibria at infinity are unstable
by Theorem 2.1. Finally, we prove (K3). For this, we denote the unstable manifold of
Eiin Ri by W* and need to claim that (W) W first intersects the horizontal isocline
H:x =1/(bs—1)forall y > 0atapoint,denotedby Q : (1/(bs—1), 3),and Q does
not lie below Ez, i.e., ¥ > y.. We make the auxiliary vertical line L : x = (b; —b3)/b3
for all y > 0, which connects the point £} in Fig. 3. On the line L, we can check that
all orbits cross from right to left and lower to upper because

DX\ br—bay by = =Y (b1 — b2)(b3bay + b3(by + bs) + by (b1 — b2)) /b3 < 0,
Flx=b1—bay/by = y(y + D(bs — 1)(by — B1)/b3 > 0

on L as considered in case (C2). Note that no equilibria lie on the right of H for y > 0
and equilibria at infinity are both unstable, which implies that WW" first intersects H
for all y > 0 at a point Q. Further, on H we have X(1/(b5 — 1), y) > 0 (resp. < 0) if
0 <y < yx (resp. y > yy), implying that each orbit starting from the right of H for
y > 0 crosses H not below E2 to the left. Thus, the intersection Q lies not below E2

The claim (W) is proved. Finally, let Y be the orbit connecting Eo and E 1, T the orbit
connecting £ and Q, Y3 the line segment starting from Q horizontally and intersecting
to the y-axis at a point, denoted by R, and Y4 the orbit connecting R and Ey. Clearly,

Tii={(r,y) eR?:0<x <22y =0}, Ty :={¢'(Q) e R?: —00 <t <0},
Y3:={(x,y) €R?: 0=<x < 5 1,y Fho Yai={(x,y) eR?:x=0,0<y<3},

and YT = Uf: 1 Y is a simple closed curve. Note that no orbits cross Y;s (i = 1,2, 4)
because of the uniqueness of solutions. On Y3, all orbits cross from upper to lower
because dz |y 5 = YO + D((bs — Dx — 1) < 0 for any (x,y) € Y3 since
0 <x < 1/(bs—1)and y > 0 on Y3. This shows that the set D with the boundary
Y is what we need in (K3). O

Remark that a transcritical bifurcation may occur at Ei. In fact, introducing a
bifurcation parameter € := b; — f1, translating E1 : ((b1 — b2) /b3, 0) to the origin,
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diagonalizing the linear part and suspending system (2.2) with é = 0, we get

g—f=ﬁ100x+15200x2 + Prioxy+ pro1xe+pooy® + poriye + O((x, y, €)3)),
g—); = g110xy + G020y + Gor1ye + O((x, y, €)*]),
<o

(2.12)

where p1oo = p10, P200 = P20, pro1 = —(bs + 1)/(bs — 1), G110 = q11, Go20 =
q02/(bsb3(bs—1)),qo11 = q11/b3,and p110, Po20, Po11 are given in Appendix. Similar
to the proof of Theorem 2.1 on (i), we obtain a C 2 center manifold x = h(y,e) =
@sy? +@eye+o(|(y, €)*]), where @ := b3bs((bs+ 1)b3 + (bs — 1)*)((bs — 1)?bs —
bs(bs + 1)b3) and s is given in Appendix. Thus, the restriction of system (2.12) to
the manifold is the equation ‘% = §1(€)y + ¢a(€)y? + O(y?), where

. ~ . ~ by+bs)(bs—1)*
q1(€) :==qor€ and ga(€) == Gooo + h3b5(((1j5+—§—15))b(3j-(b;—1)2)6'

One can check that ¢; (0) = 0 and §2(0) = Go2o < 0. Thus, we use the time-reversing
t > —t/q2(€) to simplify the restricted equation as % = gi(e)y — y> + 0(y%),
where

d1(€) 1= —g1(€)/ga(e) = —Lle 1+ O(e?).

4020

Since go11/4020 < 0, we see that a transcritical bifurcation occurs at E 1 by Chow and
Hale (1982, p.145). Therefore, if b5 > 1 and b| = By, Ez and El coincide as a saddle
node. When b5 > 1 and b > fi, Ez moves to the first quadrant and becomes a stable
node. Moreover, E 1 becomes a saddle.

3 Small Cycles
As indicated in (4.17) and in (4.33) of Wang et al. (2016), the determinant of the

Jacobian matrix at the interior equilibrium Ej is positive, and its trace is equal to zero
as

—(as +2a4)ysx +az — 2as =0, 3.1
where y,, being the ordinate of E», is a function of (ay, ..., ag). In this case, E> is of the

center type, which has a pair of conjugate pure imaginary eigenvalues. They employed
the formula given in Theorem 1 of Perko’s book (Perko 1996, p.34) to compute

0 1= —8as(ar — 2as)*ag — (as + 2a4)(—as
+6aqas — 2a4 + 8azas + 4af)(a2 — 2a4)ag (3.2)
—ay(as + 2a4)*(2az + as) (a3 + as + as),
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which is actually equivalent to the focal value of multiplicity 1 and discussed the
sign change of the quantity. Use (3.1) to eliminate ag in (3.2) and express oy as the
quadratic function o (a1) = p1 al2 + p2aj + p3, where the coefficients p; (i = 1,2, 3)
are polynomials of (a, ..., as). Choose values of parameters so as to show that
there can be 0, 1 or 2 positive real zeros of the quadratic function, which implies
that one limit cycle can arise via the Hopf bifurcation as o varies to be nonzero.
They further found two limit cycles numerically for (r,d1,62,63,¢, p,q,s) =
(0.12,0.01, 0.05,0.01, 0.4, 0.5, 0.6, 60). However, for o, to be zero, it is not deter-
mined yet whether E is a weak focus or a center. Moreover, the maximal multiplicity
needs to be considered in the case of weak focus.

As known in the first two paragraphes of Sect. 2, the unique interior equilibrium
E is of center type if

(b1, b2, b3, by, bs) € Eq := {(b1, ba, b3, ba, bs) € (0,00)° : by = pa, bs > 1},
(3.3)

where 5 is defined in (2.3). In this case, the linearization of system (2.2) at E> hasa
pair of conjugate pure imaginary eigenvalues £iw, where

1/2
| _bab3 b3b3 bybs b3bs(2bs+1)
©= { TSt LS T Vi s
In the following, we give the multiplicity of E, being a weak focus, and conditions
for exactly numbers of small cycles bifurcated from E,. For convenience, let € be a
sufficiently small perturbation parameter, B_ (xg) := (xo—¢€, xol, B+(x0) := [x0, X0+
€), B? (x0) := (xo — €, x0), BY (x0) := (x0, x0 +€), B’ (x0) := (x0 — €, x0 +¢€), and

Dy = {(b3,bs) € R2: 1 < bs < gV,

by = —(2b2 — 6bs +3)(bs — 1)*/(3(2bs — 1))},
Dy = {(b3, bs) € R?: B> < bs < g,

by = —(2b% — 6bs + 3)(bs — 1)?/(3(2bs — 1))},
D3 = {(b3,bs) € R2: gV < bs < 7,

by = —(2b2 — 6bs +3)(bs — 1)*/(3(2bs — 1))},
Dy :={(b3, bs) € R2: BP9 < bs < g,

by = —(2b2 — 6bs + 3)(bs — 1)?/(3(2bs — 1))},
Ds := {(b3, bs) € R?: B> < bs < 3+ /3)/2,

by = —(2b2 — 6bs +3)(bs — 1)*/(3(2bs — 1))},
Do = {(b3, bs) € R? : bs=B"), by =—(2b% — 6bs + 3)(bs — 1)%/(3(2bs — 1))},

33) 2(34) (35 K(36) 2(23) L1 L(24) L24) L(24) (11 11 11
Whereﬁl( ), ﬂl( ), ﬂ{ ), ,3§ )’ ,Bé )’ ,35 )’ ﬂf )’ /3§ )’ /3:5 )’ ﬂf )3 ,Bé )9andﬁ?() )’
shown in Appendix, are zeros of polynomials.

Theorem 3.1 For (b1, by, b3, bs, bs) € Ey, the equilibrium Ez of system (2.2) js a
weak focus of multiplicity at most 4. Moreover, exactly k small cycles arise from E; if
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Table 1 Sets 1~\’.1 s Aé, [\3 for numbers of small-cycles. Sets Al R 1~\£, 1~\3 for numbers of small-cycles for
(b3, bs) € Dy

by by by Number Label
b4 € (0, 00) by € (0, 00) by € B_(B2) 0
b1 € BY.(B2) 1 Al?
(b3, bs) € Dy

Table 2 Sets 1~\’i s [\é, [\3 for numbers of small-cycles. Sets Al s Aé, 1~\3 for numbers of small-cycles for
(b3, bs) € Dy

by by by Number Label
2 11 <
by € (0, ) by € 0. 85'") by € B%(B2) 1 AP
by € B+(B2) 0
by € (BY'", 00) by € B_(B2) 0
by € BS.(B2) 1 A6
2
by € [, 00) by € (0, 00) b € B_(B2) 0
by € BS.(B2) 1 Al
23 11 e
by € (0, B by € B2(B') by € B (B2) 2 A3
b1 € B4+ (B2) 1 A8
by € B+(By'") b € B_(B2) 0
b1 € BL.(B2) 1 AP
—_— (b3,bs5) € Dy

(b1, b2, b3, ba. bs) € Ay, for any k = 1,2.3, where Ay := U2% Al Ay := US| A,
and 1~\3, 1~\’i, 1~\§ are shown in Tables 1-5.

Proof Translating E> to the origin and diagonalizing the linear part, we can change
system (2.2) into the form

d ~ ~ ~ ~ ~ ~ ~
{ 5—),( =—-y+ p20x2 + puxy + P02y2 + 1!730963 + p21x2y + P12Xy2 + p31x3y,
=X +quixy + giaxy?,
(3.4)
where
Ao byws A obs=D((bs+Dos—ws) . __ bsbgos
p20 L h4(h5—1)3’ pll L b5w4 ’ p02 L b4(25_1)w45
Hag 1 a0’ 2bs—1* 5 babsws(@s—wstby) . _ babsows
P30 = b§w4 ) P21 = , bi(b5_1)4 ’ P12 = l2)4(1)4 )
Ao be¥s—1)3  bsbstos A . _b3bsws
p31 = w1 » 411 = balbs—1)° q12 = hﬁ(bs—l)z’

w4 1= bybs(bs — 1) + b3bs(2bs + 1) + ba(bs — 1)%, ws := b3b? + by(bs — 1)°.
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Using the polar coordinates (x, y) = (p cos6, psinf), we can write system (3.4) as
the 2 -periodic equation

d G(0)02+G3(8)p3+Ga(6)p* &
dp 20)p"+G3(0)p”+Ga®)p ZZ,Ok(G),Ok
k=2

0 = THH 0)p+Hr )02+ Hs ()0 (3.5

near the origin by the analyticity as shown in Chen et al. (2008), where

G2(0) := (Poz + §11) cos @ + p1y cos> Osin@ + (pag — poz — §i1) cos* 6,
G3(0):=q12 cos O sin @+ pia cos2 O+ (pa1 —G12) cos® 0 sin O+ (p3g— p12) cos* 6,
G4(0) := p3icos*@sinf, H;z(9) := —p3i cos® Osin? 6,

Hi{(0) := —poasin@ — py1 cos O sin® 0 + (Po2 — pao + G11) cos? 0 sin 6,

H>(0) := —p1acosBsinb + (§12 — pa1) cos? 0 sin? 0 + (P12 — p3o) cos® O sin 6,

0, if £ <0,
4 1’ lf E == 0,

pk(0) = Y Gi(0)Ar—i (0), Ae(0) = 3
i=2 — Y Hj(0)A,—;(0), if £>0.

j=1

Let p(0, po) be the solution of equation (3.5) associated with o (0, po) = pg. Then we
can compute the displacement function d(pg) := p (27, po) —po = Zf’il g25+1p§’ +1 s
where Go; 11 s are called focal values in Li (2003); Lloyd (1988). The Maple software
produces the following expressions

byw((bs — 1)%bs + b3b2)

Gs =~ 8b4(bs — 1)2(bs(bs — 1)by + (bs — 1)2by + b3bs(2bs + 1))2

g3(ba, b3, ba, bs),
Gs e byw((bs — 1)°bs + b3b3) .

7683 (bs — 1)8(bs(bs — 1)ba + (bs — 1)2byg + b3bs(2bs + 1))
gs5(ba, b3, ba, bs),
) ) (3.6)
G = — bsw((bs — 1)“bs + b3bs) .
8847360192(195 — D 4(b5(bs — 1)by + (b5 — 1)2by4 + b3bs(2bs + 1))°©

87(b2, b3, ba, bs),

Goim b3w ((bs — 1)*by+b3b3)

~ 10701766656005] (bs — 1)20(bs (bs — 1)by+ (bs — 1)2by+b3bs (2bs +1)8
89(b2, b3, by, bs),

where b is replaced with f; in E¢ and

83(ba, b3, by, bs)
i= bs(2bs — 1)(bs — 1)?b3 + (bs — 1){(4bs — 1)(bs — 1)*by + bs((8b% + bs — 2)b3
— bs(bs — D)}by + {2(bs — 1)*b] + b3(8b% + 3bs — 1)(bs — 1)%by4
+ b3bs((2bs + 1)(4b§ +bs — D)b3 — bs(bs + 1)(bs — 1))}
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but g5, g7 and g9 are much greater polynomials of 1191, 7079, and 23960 terms,
respectively. Since the fractions in G; s (i = 3, 5,7, 9) are all positive by (3.3), we can
use real zeros and signs of g;s (i = 3,5, 7, 9) to discuss real zeros and signs of G; s
(i=3,5179).

First, in order to give the multiplicity of the weak focus E», we claim that

V(g3, &5, 87, 89) N Eg = 0, 3.7

where V (¢1, ..., @) presents the algebraic variety of polynomials ¢y, ..., ¢y, i.€., the
set of common zeros of those polynomials. Taking the order

by < by < by < bs (3.8)

for variables in elimination stratum by stratum, we start from the primary stratum:
Go := {g3, g5, g7, g9} and compute

r12(b3, by, bs) = res(gs, g3. by) = 512b3b3° (2bs — 1)(bs — > -
((bs — 1)*by + b3b3) F12(bs, bs, bs),
r13(b3, ba, bs) := tes(g7, g3, ba) = 81920063618 (2bs — 1)(bs — 1)* -
((bs — 1)?by + b3b3)713(b3, ba, bs),
r14(b3, ba, bs) := tes(go, g3, ba) = 90316800b3h% -
(2bs — 1)(bs — 1)**((bs — 1)*bs + b3b3)°714(b3, b, bs),

where res(¢1, @2, x) denotes the Sylvester resultant (Gelfand et al. 1994; Mishra 1993)
of ¢1 and ¢, with respect to the variable x, 72, 713 and 74 are polynomials of degree
13, 38 and 63 having 102, 1260 and 4743 terms, respectively. By Lemma 2 of Chen
and Zhang (2009), we get

V(Go) = V(Go, leff (g3, b2)) U V (74, (3.9)
where G| := {ry2, r13, r14} is the first stratum of the primary stratum Gy, the notion

V(H) presents V (o1, .., )\{U'_, V ()}, and Icff (¢, X) denotes the leading

,,,,, n

coefficient of ¢ with respect to the variable X. Then, we compute
r23(b3, bs) :=res(r13,r12, ba) =0, ra4(b3, bs) :=res(ri4, ri2, ba) =0,

because r12, r13 and r14 have the greatest common factor 512b§b§3(b5 — 1D2@2bs —
D((bs — 1)%bs + b3b§)5. Thus, we get the second stratum: G, := {ry3, r24} = {0},
which shows that we cannot continue to decompose the variety V (G).

For further decomposition of stratum, we need a lemma for three polynomials
f1, f2, f3 € K[x] over an algebraic closed field K with the following irreducible
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factorization

filx) = U]PI,I (x) - UP] r(x)ffﬂ 1(x) fq| [(x)
L) = UP @) 0P oW ) ”“( ) f f"“’ (3.10)
( ) . ZS(X)f:"QSll (.X) q3 " (_X)

) = UM (x) - UP (o)W,

where x := (x1, ..., Xy), U1, ..., U, are common factors of fi, f» and f3, Wy, ..., W;
are common factors of f> and f3 but not fi, f1 1y f1 ¢ are factors of fi butnot f; or
f3, fz, 1y fz m are factors of f> butnot f or f3, f3 Ly - f3 n are factors of f3 butnot
fior f, and P11y wes PLrs D215 ooos D2.rs P3.1s ooos P35 N11s s 1 s, B2 15 o B s,
G111y G1.6-92.15 -5 G2,m> 43,1, ---, 43,0 aT€ pOsitive integers. For a stratum with more
than three polynomials, we select one factor of each polynomial in the stratum, and then
combine the selected factors to get a sub-stratum, and further obtain a decomposition
of an algebraic variety consisting of the stratum. O

Lemma 3.1 Let f1, f> and f3 be polynomials of the form (3.10). Then the stratum
G :={f1, f2, f3} contains r + s + €mn sub-strata

G, = {l{,(}, ifk=1,..r,
Z{fl,a’WV)}’ ifKZr'F(a—l)S‘Fﬂ,
a=1,...,0 and n=1, ...,
Ge = {fra: fop. v} f k=r+ls+(@—Dmn+(B—Dn+y,
a=1,..,¢ B=1,...mand y=1,...,n

such that

r+es+Lmn

V@ =(Uv@ou( U V(G J) UV (555, (3.11)

k=r+1

where J, k =1+ 1, ..., r+L€s+Lmn, is the leading coefficient of the first polynomial
in the sub-stratum G, with respect to X, the main variable in the stratum G, and G,
Kk =r+1,..,r+ s+ €mn, is the stratum reduced from G, by computing resultants,
ie.,

Gy = {Fay)s if k=r+(@—1s+ 8,
a=1,...,0 and n=1, ..., s,
Gri={lup, Fay}, fxk=r+ls+@—Dmn+B—-Dn+y,
a=1,...¢ B=1,....mand y=1,...,n
With oy = res(Wy, fl,a, X), Fap = res(fg,/g, fl’a, X)andiy, = res(ﬁ,y, fl,a, X).
We leave the proof of Lemma 3.1 after we complete the proof of the theorem. Now,
we go back to the proof of Theorem 3.1. Compute
r23(b3, bs) := tes(F13, F1a, ba) = 279936b]b3" (bs — 1) -
733 (b3, bs)Fs3) (b3, bs)isy (b3, bs),
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r24(b3, bs) := tes(F14, F12, ba) = 257989017661 1% (b5 — 1)1%0 .

73y (b3, bs)Psy (b, bs)Fsy (b3, bs), (3.12)
where 7y := (4bs —1)(2bs — 1)b3 — (bs — 1)3, and 743, 753 , 7y and 73 are polyno-

mials of degree 19, 47, 41 and 75 having 137, 594, 534 and 1454 terms, respectively.
By Lemma 3.1, the first stratum G| = {r12, r13, r14} has the 6 sub-strata:

Gi.1 = {b3}, Gi2 = {bs}, Gi13:={2bs — 1},
Gra:=1{bs— 1}, Gis:={(bs— D*bs+b3b2}, Gi¢:= {F12, 13, F14},

as shown in Fig. 4, which satisfy

5
V@) = (U VG1.0) U (V(Gro 1eflGia, b)) UV (S0,
k=1

where G, (1.6) . = {ra3, r24} is the stratum reduced from the first sub-stratum G; ¢ by
computing resultant and, for convenience, referred to the second stratum corresponding
to G 6. Noting by (3.3) that V(G ) N Eg = ¥ foreach k = 1, ..., 5, we have that

V@) N Eo = (VGre IefGro b)) UV (Z2Z ) 1 5, (B13)

Similarly, we compute

r311(bs) = reS(fg; ,r23 ) b3)
= 8545547296791713027842210491531264b% (2bs — 1)'%(bs — 1)* .

(16b2 — 9bs + 2)73)) (bs)Fs) (bs),
~(2) ~(2)

r312(bs) :=res(iyy’, Ty » b3)
= —104976b1% (2bs — 1)® (bs — 17}, (bs)F i) (bs),
r313(b5) = 1res(r24 ,r23 ,bg)
= 242124456677385602° (2bs — 1) (bs — 1)*275), (bs)F515 (bs),
r314(bs) = reS(fé?, 72(3)7 b3)
= —27965742863095812314599658359780084914585606% (5bs — 3)* -
(2bs — 1*®(bs — 1)751), (b5)75 1y (bs)F5yy (05)7s 1 (bs), (3.14)

where r§1)1 is given in Appendix, rg)l, r§i)2, fﬁ;, Fé})g, ;7%)3, Féﬂ and réﬂ are poly-

nomials having 146, 276, 93, 120, 358, 141 and 579 terms, respectively, Féﬂ =
10b2 — 16b2 +4bs + 1 and 7y, := 2b2 — 6bs +3. By Lemma 3.1, the second stratum
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g§1’6> = {rp3, 4} has the 8 sub-strata:
1,6 1,6 1,6
G31” = (b3}, G357 = {bs), G357 = {bs — 1,
i, ' ~(1 i % ~(2) ~(1 1 6 ~(2) =2
gil 6; G ;3} N gil 6; { % %;}, g( = (73
g {23’~24} g {23’~24}1

as shown in Fig. 4, which satisfy

6 (1,6) ~(2.x)
- G003
VG = ( U VG) U ( U V(Gy0 el G ba) UV (et o)
s 7o

g(l .6) g(2 )
u( U V(GO 1t (73, b3)) U V(2
k=7

2 —1 D) by) ),

where (ng’s) = {r311}, QQ 9 = {ran), 9(2 P = {r313) and 9(2 D= (r314) are
reduced from the second sub-strata g§}56>, Q£’166), g“ %) and gS 8) by computing
resultant and, for convenience, referred to the third strata corresponding to Qé,lé@,
ggéG), g“ % and ggéﬁ), respectively. Noting by (3.3) that V(Q(1 6)) N 29 = ¥ for
each k = 1 2, 3, we have

g(l ,6) g(2 )
)

IS

6
Vg ng (V(g(l DU (U VG et (753 b3) UV (2
K=> (3.15)

(3) g(l ,6) g(2 )

8
U( U V(G50 Ieff (753 53) UV (2—)) ) 1 .
k=T ’ (r I3 ,b3)

Similarly, by Lemma 3.1, the third stratum g 2.5 = {r311} has the 6 sub-strata:

g<25’. {bs}, giS’. {2bs — 1}, 9‘25% {bs — 1},
g< P =16k —9bs +2), GUE = (), Gys = 1Enh

the third stratum g§2’6) = {r312} has the 5 sub-strata:

GHY = bs), G5V = (2bs— 1), G = (bs - 1),

26 1 26 2
G0 = i), 60 =

the third stratum g§2’7) = {r313} has the 5 sub-strata:

gm). (s}, G = (2bs — 1}, G = (bs — 1,

7 1 27 2
G = R, 6 = .
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(2,8)

and the third stratum G;™" = {r314} has the 8 sub-strata:

GaY = bs), GV = 5bs —3), G5 i=(2bs — 1), GV = (bs — 1),

28 1 28 2 28 3 28 4
R T e )

as shown in Fig. 4. Noting by (3.3) that 932 INE Eo = ¥ and QQ 9 A Eo = ¢ for each
i=1,2,3,4,j=1,2,3,¢ =5,8and o = 6,7, we have

VGPnEy = (U VGE N N B VGYT) N E = (U V(G5 N E.
€3 < a3. 16)
VG&T)n e = (U V@GN N Eo. VG NEy = (U v@Enne

K=

Thus, by (3.9), (3.13), (3.15), and (3.16) we obtain the decomposition

17
V(g3 85,87, 89) N Eo = (U Vi) N Eo, (3.17)

i=1

where

Vi = V(Go, Icff (g3, b2)),

o Go.G1,6,1cff (F12,b4)
Vo=V (—ICff(g—z ).

_ G0.G1.6.6';
Vsi=V (1cff<g3 bo)Ict (712,62 )

Ve e v [(9:9s Gy Jeff (753 b3)
4= Icff (g3.02). IcfF (712, b4)

&

<

Ictf (g3,b2),1ctf (F12,b4)

(go G665 1cff(f§§>,b3>)
voim v (St eln)

IcTT (g3, b2), 1T (712, b4)
G0.G1,6,G5 5 et (73 b3)
V=V < 2.8 _ 23 R

Icff (g3,b2), 1t (712,b4)

G0.G16.65:7.6%
Vg =V 2.5 ) s
lcff(g3,b2),lcff(r12,b4),1cff(r23 ,b3)

Go. G1.6.G55”. GV
Vo =V — o)
Icff (g3, b2), Icff (712, ba), Icff (7537, b3)
Go. G16. G5 G
Vip := -
left (g3, b2), Icff (712, bs), ICff(V23 . b3)
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|J0 = {93, 95,97, 95} Gia = Il;z” i (25) = {bs}
Gy, =
;:j = 22”,1)1 N =0 _':‘J% 5: Z b 1) N =0
Gra= (s — 1| —'&” {bs — 1}
Gus = {(bs — 1)?b, + bybZ] {6357 = (16bZ — 9b, + 2}
1202 BT 63 = () e f(i,‘h
o = ea] %= 0ol = o] el = ]
—-<“°’ {bs — 1) 931"’ (2bs — 1)) PN 5 =0
o] 657 = (s 1)
g = (l";].fj:]) (LZ.‘L-) 7{,(;21)
N gubol _ {,m ,1:1) ”5"’ = {,;fz‘}
g9 = ¢@ 2y 6% = (by)
gl = o2 e = 0] 9;3” @b~ 1] % =0
G =lobs 3| L, J‘”’ = (-1
952“ = (2bs— 1) gia) = (i)
Gy = (bs — 1) G2 = (A3}

Fig.4 Decomposition of G

Vit

Vi :

Vi3 :

Vig :

V15 :

Vie :

~(28) (1)
G35 = {54}

~(28) , (2)
G =154}

(

~(2, EY (3)
Ga7 = (i34}
(

(ZSY (4)
= {134}

Go. Gr.6. G5, G35

Ictf (g3, ba), Icff (F12, ba), Ictf (735, b3)
Go. G16. G5, G35

1t (g3, ba), Icff (712, ba), IcHF (7SS, b3)
Go. 6. G35 G55

- 1ctf (g3, ba), Icff (F12, ba), IcHE (7SS, b3)
_v G0, 91,6 g§186) g(2 )
.y G, Gr6: Ong s Gig

1t (g3, ba), Icff (712, ba), IcHE (7SS, b3)
_y Go. Gr6. Gag G35

1t (g3, ba), Icff (712, ba), IcHE (7SS, b3)
_y Go. G16. G5 %

( )
( )
( )
<lcff(g3, o) G (12, ), 1Y) bs)) ’
( )
( )

)

1ctf (g3, ba), Icff (F12, ba), IcEE (7SS, b3)

Next, we claim the following.

Lemma3.2 (M;): VN

Bo=0i=1,..

17.

We will prove this lemma after we complete the proof of the theorem. By Lemma
3.2 and (3.17), we see that claim (3.7) holds, which implies that the equilibrium E3 is
a weak focus of multiplicity at most 4 for (b1, b2, b3, ba, bs) € Ey.
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Further, we give conditions of parameters for exactly numbers of limit cycles. In
order to avoid a great deal of complicated symbolic computation, we restrict to the
surface

QB —Gbs+3)bs =12, (3.18)

IT:= {(b1, b2, b3, b4, bs5) € R3 iby = — 3(2bs—1)

to give sufficient conditions for 1, 2, and 3 limit cycles separately. We will give an
explanation for (3.18) after the proof of the theorem. In this case, substituting b3 =
—(2b2 — 6bs + 3)(bs — 1)*/(3(2bs — 1)) in g3, g5 and g7, which are defined just
below (3.6), we get

83 = (bs — 1)2g3(ba, ba, bs)/ (9(2bs — 1)?),
g5 = —(bs — 1)1 g5(ba, by, b5)/(6561(2bs — 1)®),
87 = —(bs — 1)°g5(ba, bs, b5)/(1594323(2bs — '),

where

23(b2, ba, bs)
:= 9bs(2bs — 1)°b3 4+ 3(2bs — 1)(bs — 1){3(4bs — 1)(2bs — 1)bs — 2bs -
(8b3 — 23b3 + 1062 + 6bs — 3)}b>
+(bs — 1)*{18(2bs — 1)*b% — 3(2bs — 1)(8b% 4 3bs — 1)(2b2 — 6bs + 3)by
+b5(2b2 — 6bs + 3)(16b2 — 36b2 — 8b2 + 25b2 — 3)},

g5 and g7 are polynomials of 34 and 58 degrees having 541 and 2108 terms, respec-
tively. Next, we prove in the following three steps: (I) compute V (g3) N (Ep N I1),
(IT) compute V (g3, g5) N (E¢ N IT), and (III) prove V (g3, g5, &7) N (Ep N IT) = .

Step (I): Compute V(g3) N (Eg N IT).

As indicated in (3.8), we will eliminate the variable in the order b, < by < bs
stratum by stratum because of the removal of b3 by (3.18). For consistency of nota-
tionss, we let ¢;; denote the jth occurrence of a polynomial in the i — 1th stratum
of elimination and write the kth occurrence of a real zero of the polynomial ¢;; as
,3,?/). By (3.3) and (3.18), E¢ requires that b3 > 0 and bs > 1 and IT requires that
by = —(2b% — 6bs + 3)(bs — 1)?/(3(2bs — 1)). Thus, the intersection of E¢ and IT
requires b3 = —(2b§ —6b5+3)(b5— 1)2/(3(2b5 —1)) > 0Oand b5 > 1, from which we
getl < b5 < (3+ «/g)/2. Thus, we need to find real zeros of ¢11(-) := g3(-, bs, b5)
forby > 0,by >0and 1 < bs < 3+ «/5)/2. In what follows, we use the notation
& to indicate “if and only if” shortly.

Lemma 3.3 ¢11 has two zeros in (—oo, 00), denoted by ,81(”) < ,Bém,

& either 1 <bs < 3++/3)/2 and by > .3521)
or BV < bs < 3++/3)/2 and 0 < by < P2V,
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and a unique multiple zero in (—00, 00), denoted by /3(11),

& either 1 <bs < (34+/3)/2 and by = ,3(21)
or BV < bs < 3++/3)/2 and by = /3@1),

otherwise, @11 has no zeros in (—00, 00), where /3131) ,8521) ,3521) /31(11) ,8(11) nd

,3(“) are given in Appendix. Moreover,

B >0 & B <bs < 34+3)/2 and B < by < PV,
,3(11) 0 & elther ,B( R bs < ﬂ(34) and 0 < by < ,3(23)
or BV < bs < 3+3)/2 and0<b4<ﬂ(21),
(11) (34) _ a2
B & B <bs < B+3)/2 and by =p2Y,

where ,8133) Bi G and ,3(2 ) are given in Appendix.

We will prove this lemma after we complete the proof of the theorem. By Lemma
3.3, we obtain

V(g3) N (Eo NI
= {(bl, by, b3, by, bs) € R : ,31(33) <bs < ,31(34), 0<by < ,3523),

(2b2 — 6bs + 3)(bs — 1)* (1
by = — , by = , by =
3 30bs — 1) 2 =B, 1=H

U1 b2, b3 ba bs) € B 2 B < bs < 3+ V3)/2, 0 < by < B,

(2b% — 6bs + 3)(bs — 1)2 an
3 30bs — 1) =B, 1= 5B

{(bl by. b3, by, bs) € RS : B3V < bs < 3 +3)/2, BB < by < pPV,

(2b% — 6bs + 3)(bs — 1)? (1
b = — s b = s b =
3 30bs — 1) 2 =P 1=H

U {(bl, by, b3, by, bs) € R : BBV < bs < 3 +/3)/2, by = BV,

(2b% — 6bs + 3)(bs — 1)? (1
by = — , by = , b= . 3.19
3 30bs — 1) =B 1=5 (3.19)

The proof of step (I) is completed.
Step (IT): Compute V (g3, g5) N (Eg N IT).
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Similar to the discussion on the decomposition of Gy, we start from the primary
stratum Gy := {g3, g5} and compute

F12(b4, bs) :=res(gs, &3, b2)
= 2203992115254 (2b% — 6bs + 3)*(bs — 1)1°

(2bs — 1)18(3(2b5 — Dby + bH(—2b% + 6bs — 3))5F\5) (ba, bs),

where

7Y (ba, bs) := 9(32b3 — 80b2 + 60bs — 15)(2bs — 1)%b]
+6b5(68b3 — 434b% + 942b3 — 831b2 + 324bs — 45)(2bs — 1)%by
—2b3(2b% — 6bs + 3)(168bS — 111252 + 2738b3 — 3189h3
+1920b62 — 585bs + 72).

By Lemma 2 of Chen and Zhang (2009, p. 567), we get
V(Go) = V(Go. leff(Z3. b2)) U V (191, (3.20)

where g” 1= ~{h2} is the first stratum of the primary stratum C;o. By Lemma 3.1, the
first stratum G has the 6 sub-strata:

Gii=1{bs),  Gip:={2b5 —6bs +3},
Gi3: {bs — 1}, G4 := {2bs — 1}, G15 := {3(2bs — 1)by + b3(—2b3 + 6bs — 3)},
gl 6 = {rlz ),

which satisfy V(G)) = (ngl V(g~1,,()). Noting by (3.3) and (3.18) that V(G1,,) N
(EogNIT) =@ foreachk =1, ..., 5, we have

V(G N (BoNTT) = V(Gie) N (EgNIT). (3:21)

Since Icff (g3, by) = 9bs(2bs — l)3 > O for (b1, by, b3, bs, bs5) € Ep, we see by (3.20)
and (3.21) that

V(Go) N (o NTT) = V(Go, G1.6) N (B N TT). (3.22)

Notice that V (Go, G1.6) N (EoNTI) C V(3)N(EgNTI). By (3.19), V(33) N (EgNTI)
requires

either ,3(33) <bs<(3++/3)/2 and 0<by < /3523)

3.23
or ,3(34) <bs<(B++3)/2 and B <by < gV, ©-23)

Thus, we discuss real zeros of ¢4(+) 1= rlz)( bs) under the condition (3.23). Similar
to Lemma 3.3, we also see that ¢»4 has two zeros in (—oo, 00), denoted by ,3;24)
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,3(24) & either ,8(3 ) < bs < ,8(35) or 6(35) <bs <3+ «/§)/2, and that ¢4 has
a unique multiple zero in (—oo, 00), denoted by ,3§24), & bs = ,31(35), where ﬁf33),
,81(35) ,3](24) B> 24 and /3§24) are given in Appendix. Moreover,
24 23

0< ﬁ{ ) < ﬂé )
0 < ,3(24) - ’3523)

(24) ,3(23)

23 24 21
,3( ) ,3( ) ,3( )

24 23
’35 ) ,3( )

& either ,3(36) < bs< BV or BV < bs < 3+4/3)/2,
& either ,31 < bs < ,31(35) or ﬂf’s) <bs < /3?7),
& b —ﬂfm,

& B <bs < 3+3))2.

o bs _/3](35)7

where 8 136) ,8(36) and ,3](37) are given in Appendix. We can check the common zero

of g3 and g5 corresponding to the zero of ¢4, i.e.,

,8(1 'is the common zero of gzand g5 &

either ﬁ§36) < b5 < ,3{35) and by /3524)

or bs = ﬂfs) and by /3(24)

or ﬂl(SS) <bs < (34+/3)/2 and by = ,81(24),
,3(“) is the common zero of g3 and g5 <

either B < bs < B and by = p*¥

or  bs=p" and by = Y

or B <bs < (3++/3)/2 and by = Y.

Thus, we obtain

V (g3, &5) N (Ep N II) Ny X .
= ((b1. b2, b3, ba, bs) € R By <bs< BV by=pY,

(2b —6b5+3)(bs— 1) (11)

by = w by 3—5 ,3 5 ﬂ2}

UL(br, b, b3, ba. bs) € B® : bs = | BV, by ﬁ( ), (3.24)

2b 6b5+3)(bs—1

by = — QBN ﬂé‘”, bi = B}

U {(b1, b2, b3, ba, bs) € RS : B < bs < B++/3)/2, bs = 57,

(2b%—6b5+3)(bs—1)2 11

by = —%,ID = ,35 )7 by = ,32}

The proof of step (II) is completed.
Step (III): Prove V (g3, g5, &7) N (Ep N II) = 0.
Similar to the discussion on the decomposition of Gy, we compute

res(g7, g3, ba) = 2570736403169280052°
(2b% — 6bs + 3)*(bs — 1)16(2bs — 1)*(3(2bs — 1)by4
Fb2(=2b% + 6b5 — 3))7F\3) (b, bs),

res(Fly, Py, by) = —3904305912313344b24(2b2 6bs + 3)°
(2bs — 1>23r§?(bs)rz?(bs)ré?(bs)
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where r( )isa polynomial of degree 38 having 197 terms, rg) (bs) and rg) (bs) is

given in Appendix, and r2(2) (bs) = 8193 — 26192 + 21bs — 6. We get by Lemma 3.1
that

5.
V(g3, 85, 87) N (EoNIT) = (U Vi) N (Eo N TD), (3.25)
where
. o . . 1eff ¢ b
Vi = V(&3 g5, &7, 1cf1f<g31, b)), Dy = v(EEnn ’lgff(;'jlbgz M2 i)y,
Dy 1= v (Budnd. PO Y S ) )}4 oy (Budsd ¥ 7z )

1cff (83,b2), 1cff(f12> by)”’ It (g3,52),1cff (75 ba)

. (D) (1) 2()
Vs =V 83.85.87,717 \713 T3
' 1cft(g3,b2),leff (F) bg)

Similar to Lemma 3.2, we also have ]>,~ N éz = @,i = 1,...5 By (3.25),
Vg3, &, 87) N @2 = (). This completes the proof of step (III).

At the end of this proof, we discuss the independence of focal values. Restricted to
the surface IT as shown in (3.18), we get by (2.2) that

X(1/(bs — 1), y) = X(y, b1, ba, ba, bs)/(3(2bs — 1)(bs — 1)?),
where

X(y, b1, by, ba, bs) := —3bs(bs — 1)(2bs — 1)y?
— (3b5(2bs — )by 4+ (bs — 1)(3(2bs — 1)by — b5(2b§ — 6bs + 3)))y
+ bs(3(2bs — 1)b; — (3(2bs — 1))by + (bs — 1)(2b§ — 6bs5 + 3)),

which implies that the vertical coordinate of E"z  (1/(bs — 1), y*) satisfies
X(y*, b1, ba, ba, bs) = 0 by (3.3). Also, the trace of the Jacobian matrix at Ez can be
computed as

Tr(J(E2)) = —(3ba(bs — 1)(2bs — 152
+((3(bs + 1))(2bs — Dby + (bs — 1)(3(2bs — 1) -
by — (2bs + 1)(2b3 — 6bs + 3))) 7
—(3(bs 4+ 1))(2bs — Dby + (3(bs + 1))(2bs — 1) -
by — (bs — 1)(2bs + 1)(2b2 — 6bs + 3))
/(B(bs — D(2bs — 1)).

By Kuznetsov (1995, p.67), we need to verify the transversal condition, i.e., a pair of
conjugate eigenvalues at E» crosses the imaginary axis with nonzero speed. Compute

BTr(J(Eg))|
8b1 b|=,32
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B 3(2bs — 1)by — b2(2b% — 6bs + 3)
 3bs(2bs — Dby + (bs — 1)(3(2bs — 1)bs — bs(2bs + 1)(2b2 — 6bs + 3))’

which is positive by (3.3), implying that there is a perturbation with exactly 1 small
cycle near Ez for (b1, ba, b3, ba, bs) € (EgNIT)\V (g3). By Christopher and Li (2007,
p.14), we need to determine the rank of the Jacobian matrix of the vector-valued
function constituted by focal values with respect to the perturbation parameters under
the condition that the focal values vanish. Compute

9Gs _ /3bs(bs—1)3/2(—2b2+6bs —3)3/2 ((6bs—3)bs—b2 (262 —6b5s+3))3/2 )
dby T 432b3((2bs—1)(3bs(2bs— )by +(bs—1)(3(2bs —1)bs—bs (2bs+1) (2b2—6bs+3))))>/2
Fi (b2, b, bs),

(3.26)
3(G3.Gs) bd(bs—1)* (2b2—6b5+3)* (6b5—3)bs—b2 (262 —6bs+3))° '
d(b2,b4) 725594112b; (2b5—1)10(3bs (2bs—1)ba+(bs —1)(3(2bs—1)bs —bs (2bs+1)(2b —6bs5+3)))°

Fy(by, ba, bs),

where Fj is given in Appendix and F is a polynomial of degree 41 having 875 terms.
Since the fractions in (3.26) are both positive by (3.3) and (3.18), we can use signs of F
and F; to discuss signs of dG3/db, and 9(G3, Gs)/9(ba, ba), respectively. Recall that,
restricted to the surface Eg N I, signs of G; s (i = 3, 5) are, respectively, determined
by signs of g; s (i = 3,5), which are described just below (3.6) and (3.18). Thus, we
compute the varieties

U1) : V(%) N(EoNTI) and (U2): V(g3 g5, F>) N (Eo NI

separately to discuss signs of two Jacobi determinants in (3.26) under the condition
that the focal values vanish. In order to compute (U1) : V({g3, F1}/g5) N (Ep N IT),
we calculate

res(F, g3, by) = —972b%(bs — 1)*(2bs — 1)S((6bs — 3)bs — b2 (2b% — 6bs + 3))-
R\Y (ba, bs),

where R\ (ba, bs) := 9(2bs—1)2b3—12b2(2bs — 1) (1362 —12bs+3)bs+4b% (25b3 —
96bg + 114b§ — 54bs +9). Similarly, since 1cff (g3, b2) > 0, by Lemma 2 of Chen
and Zhang (2009, p. 567), we get

3F1

VL) A @ N = vELRD) Az nm),
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Similar to Lemma 3.3, we see that @1 () := R(l)( bs) has two real zeros, denoted
by B! < BV, given in Appendix. By (3.19) and (3.24), we obtain

F
(83 1. 12)0( 20 N IT) = {(b1, ba, b3, by, bs) € R : ﬂ(34)

<bs < G2 by = B,
(2b2—6bs5+3)(bs—1)? 11
by = —%7 ,3( : . b1 = B},

which implies that there is a perturbation with exactly 2 small cycles near E, for
(b1, ba, b3, ba, bs) € V(g3/{gs, F1})N(EoNII). Moreover, we can check that G5 < 0
if (b1, by, b3, by, bs) € V({g3, F1}/g5) N (Eg N IT). Also, the discriminant of g3
with respect to the variable by is 9(2bs — 1)%(bs — 1)2¢21 (bs), and that G3 < 0 if
B < bs < B+/3)/2,bs = B>, by = —(2b2 —6bs+3)(bs — )2/ (3(2bs — 1)),
by # ,3(“) and b; = B,, which implies that there is a perturbation with exactly 1 small
cycle near E2 for (b1, by, b3, bg, bs) € V({g3, F1}/8&5) N (EoNII). The discussion on
(U1) is completed. In order to compute (U2) : V (g3, &5, F2) N(EpNTI), we calculate

res(Fa, &3, ba) = 10711401679872b1% (bs — 1)1*(2bs — 1)**
((6bs — 3)by — b2(2b2 — 6bs + 3))* R{3 (b4 bs).
res(R\Y, 7)), by) = 2754990144b)7 (2bs — 1)'% (2b% — 6b5 + 3)°
RSY (bs) RS (bs) RS (bs) RS (bs) RSY) (bs).

where Ié%) and Ié%) s(i =1, ...,5)are givenin Appendix. By Lemma 3.1, we similarly
get

~

V(g &, F2)N(EoNTD) = (‘U 17,-) N (8o N1, (3.27)

where

Vi = V(gs, 8, I, 10ff(§3, b)),

1 v(1
¥ g3 g57 F2a '"12 s 53)71Cff(r52)» b4))

Vo=V ,
2= Icff (23, bo)
v(1) (1) (1)
~ 2,1y, R, Ry
V} —V g3 g5 2:71p 13 ’
Ieff (g3, ba), ICff(rlz , )
~(1) (1) (2)
~ W R3. R,
V=V 83, 85. 125 13

1cff (33, b2). lcff(?l b4)
"y . V g31 gSsFZs rlz 7R§;)7 R(g)
1ctf (3, b), Icff (7Y, by)
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Table 3 Continuation of Table 1—Sets 1~\’i, 1~\£, i\3 for numbers of small cycles

by by by Number Label
by € 0, ) by € B (BY'") by € B2 (B2) 2 A3
b1 € B+ (B2) 1 AP
by € BL(B3'") by € B_(82) 0
by € BS.(B2) 1 A4
(b3, bs) € D3

~ o~ 1 4
]} . V g35 gSaFZarlz) R§3)7 R()

1t (23, bo), Icff (7Y, by)

1 5
V& gs, Fa, 7y, R§3),R()

1cf£ (23, ba), 1efE (Y, ba)

]

Similar to Lemma 3.2, we have f/i N éz =@,i = 1,..,7. By (3.27), we get
V (g3, &5, F2) N (Eg NIT) = @, which implies that there is a perturbation with exactly
3 small cycles near E> for (by, by, b, ba, bs) € V (g3, &) N (Eg N IT). The discus-
sion on (U2) is completed. Finally, checking the signs of focal values, we obtain the
numbers of small cycles in Table 1. The proof of this theorem is completed (Table 5).

]

Remark 1 Our sufficient condition given in Theorem 3.1 for the occurrence of exactly
1, 2, or 3 small cycles is obtained with the restriction to the surface IT as shown in
(3.18). This restriction eliminates b3, makes the leading coefficient of the cubic 71, with
respect to b4 vanish, and simplifies its real zeros to be of a single variable. Without this
restriction, it is hopeful to get a weaker condition, but it is hard to check the inequalities
which determine whether a real zero, an irrational function in two variables given by
the formulae of cubic zeros, exists in the allowed interval, which needs to check the
sign of difference between the zero and each endpoint of the interval.

Remark2 Theorem 3.1 does not give a condition for 4 small cycles although we
proved that the interior equilibrium E, is a weak focus of multiplicity at most 4
because of the difficulty in determining whether the common zero of two high-degree
polynomials with parameters lies in an allowed interval under parameter conditions.
Actually, if we want to find 4 small cycles, we need to give conditions for the inequality
Vg3, g5, 87) N Ep # @. Starting from the primary stratum {g3, g5, g7}, similar to
(3.25), we can find a unique first sub-stratum {r|2, 713} and three second sub-strata
{v(l)} {V(z)} and {r(3)} in E(, where 71, and r13 are defined just below (3.8), and F%),
~(2) and r(3) are defined in (3.12). Unlike 7. r23 , which can be solved with respect to b3,
the polynomials r(z) and r(3) are of degrees 8 and 15 with respect to b3, respectively,
without missing terms, zeros of which are functions of b5 but cannot be expressed in
terms of coefficients and rational numbers. This makes difficulties in checking whether
the common zeros of two polynomials in the first sub-stratum, which are of 13 and 38
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Table 4 Continuation of Table 1—Sets 1~\’i, Aé, i\3 for numbers of small cycles

by by by Number Label
by € (0, B3] by € 0. 8'") by € B%(B2) 1 Al
by € B4(B2) 0
by (B, 0) by € B_(B) 0
by € BY.(B2) 1 A?
by e (B, D) by € 0. 8"") by € B_(B2) 0
b1 € BY.(B2) 1 A3
by e 85" by € B2 (B2) 1 At
by € B4 (B2) 0
by e (85", 00) bi € B_(B2) 0
by € BY.(B2) 1 A3
by = B2V by € 0, 85" by € B_(B2) 0
b1 € BS.(B2) 1 AS
by e (85" 00) by € B_(B2) 0
b1 € BY.(B2) 1 Al
by € (B2, 00) by € (0, 0) by € B_(B2) 0
by € BS.(B2) 1 A$
by e (B, B2D) by € B_(B\'") by € B_(B2) 0
b1 € BY.(B2) 1 A?
by € BL(B\'D) by € B (B2) 2 A}
by € B1(B2) 1 AJ°
by = g2V by € BO(BY'D) by € B_(B2) 0
b1 € BS.(B2) 1 Al

~—— (b3,b5) € D3 UDg U D5 U Dg

degrees with 102 and 1260 terms, respectively, is positive in the case that b5 is chosen

to ensure that Fg) or Fg) has a positive zero and b3 is chosen to be the positive zero

exactly.
Finally, we provide the proofs of Lemmas 3.1, 3.2 and 3.3.

Proof of Lemma 3.1 Since Uy, ..., U, are common factors of polynomials fj, f> and
f3, we have

VG = ( LiJl VW)UV . o),
(3.28)
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Table 5 Continuation of Table 3—Sets 1~\’i, Aé, i\3 for numbers of small cycles

by by by Number Label
24 11 ~
by € (0. 87Y) by € B_(By'") by € B (B2) 1 A0
by € B4+(B2) 0
11 <
by € BL(BY') by € B_(B2) 1 A
by € BY.(B2) 2 A3
24 21 11 e
by (B, BY) by e B2(B) by € B (B2) 2 A3
b1 € B4 (B2) 1 AP
11
by € B4 (B3'") by € B_(B2) 0
by € BY.(B2) 1 AP
by € B2(BZY) by e B_(B3'") bi € B (B2) 2 AS
b1 € B+(B2) 1 AT
11 e
by € BL(BYD) by € B_(B2) 2 A]
by € BL.(B2) 3 As
24 11 ~
by € BL(BZY) by € BC(B3'") by € B%(B2) 2 AS
b1 € B+ (B2) 1 AP
11
by € BL(B3'") by € B_(B2) 0
by € BY.(B2) 1 A3

(b3,bs) € Dy, £ =4,5.6

where f, = fi/(U; il -~-Ur’7i”) for eachi = 1,2, 3. Since Wy, ..., Ug are common
factors of polynomials fz and f3, we have

V(i fou F) = VD) O V(o f) = VD) 0 (U VW) UV (s £3))3.29)

n=1

where fj = jgj-/(WI}l"_]‘I ~-~W;lj_]‘s) for each j = 2, 3. Since a polynomial vanishes

if and only if one of its factors is zero, we have

14

Vi = U fra Vi) = U fop V(R =ﬂLiJ1 fy- (330)

o= p=1
Thus, by (3.29) and (3.30), we can see that

K n m ¢

I 4 N - N -
Vi, f. D =(U U VUi W)U (U U U V(e f2.8. f3))- (33D

n=1a=1 y=1p=1a=1
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On the other hand, we also see by Theorem 1 of Chen and Zhang (2009) that
V(i o f3) = V(i fo o T UV (Rl RR), (3:32)

where Jj is the leading coefficient of f] withrespectto X and R, ji=res( fj, f.%),j=
2, 3. It is obvious that

1‘[ Jite (3.33)

la

where J 1.« 1sthe leading coefficient of flﬂ withrespectto X foreacha = 1, ..., £. Note
that from Mishra (1993, p. 227), the resultant has three properties (i) : res(fg, h, x) =
res(f, h, x)res(g, h, x), (i) : res(f, g, x) = (—1)dee(/ - dee@Nreg(g, £ x), (iii) :
res(f™, g", x) = (res(f, g, x))"™", where f, g and h are polynomials with respect to
x and deg(g, x) is the degree of the polynomial ¢ with respect to x. Those properties
enable us to see

M ¢ res(fo fi. X) = [Ty res(Wy™ i X) [T res(A5% L i, X0,

a h 3 ! ’,
res(fl,Wnl” xX) =TI lres(flq’ Wy, X), res(fl,fzzﬁﬁ,X)
= [Tocr res(f5", A X0,

(D) : res(Wy ", fi. X) = (— 1)h1nwn9*res(f1, VLX), res(fL fiL %)
= (- 1)‘12ﬂ§59*res(f1 fz‘ﬁﬂﬂ’
res(f1.a, Wy, X) = ( ~1)@wwnres(Wn, fra X). res(fras fp. X)
= (=1)%%Fres(f2.4, f1.a» X)»

WD) : res(fL, Wy, X) = (res(fr.ar Wy, X0)0elo, res(Fy, 3, X
= (res(f1,a- fz,fs, X))ded2p

where w, = deg(W,, X), 0y := deg(fi.a, X), g := deg(frp, X), and 0, =
ny=1 q1.040¢- Thus,

s 4
~ h
R12 — I—[ (_l)hl.nan* l_[ (_I)Qawn%.ahl,nrg:?*“ L
n=1 a=1

m 4
[ (—1)228s8e+ ] (_1)Qa§ﬁq1,aqz.ﬁle'3v“ql5,
B=1 a=1
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where 7y, = res(W,, fl,a, X) and 7op 1= res(ﬁ,ﬁ, fl,a, X). Similarly, we see

s 4
~ h
Riz =[] (—1)htnenos I1 (_I)Qawnq1,ahl,nrgi)'a L

n=1 a=1

n 4

[T (=D®réves I] (_I)Qaé‘yql,aq&yi-‘g;“qu’
y=l1 a=1

where 7o, := 1es(f3.y, fi.a, X) and ¢, := deg(f3,,, X). Thus, from (3.31), (3.32),
(3.33) and the expression of Rj> and R;3, we obtain

V(fi, . f) = (v<f], fé BNV U(V(f, fz, )NV (Riz, RiD\V (D)

n m

(((U U V(fie. W) U(U U U V(frar a5 3.0))

n=1a=l1 y=1p=1a=1

V3 5 s L - n m £ - - -
m(U V(JLe)) U (U U V(e W,7))U(U U U V(fia 2.8 3.9))

o= n—la—l y=I1p= lot 1

m((L_J U V(ran))U(U U U V(raﬂsray)))\v(u V(Jl a)))

n=1a=1 y=1p=1a=1

50 f oo, Wy F
=(U U Vi Wy J1a) U V(ﬁfbjl#))
n=1a=1 "

U(LnJ [nJ V(fras fops foys J )U(w))
=1 = 101 A A Tia

It follows by (3.28) that

V(U)) U ( U1 U1 V(fiar Wy J1.0) U V(M))
n o

¥ Srafo.8. Py Fapi
U U V(fia: fop. fry. Do) U (Feftlrsbion)),
y=1p=1a=I 1,

[

V(G) = (

K

C=l

U (

which shows that the conclusion (3.11) holds. This proves the lemma. O

Proof of Lemma 3.2 Claim (M) is obvious because (3.3) requires b5 € (1, 00), but
the equality 1cff (g3, b2) = bs(2bs — 1)(bs — D2=0 gives b5 = 0, 1/2 or 1, none of
which lie in (1, 0o), which shows that Icff (g3, b2) # O for (b, by, b3, by, bs) € Ey,
ie., Vi NEg C V(cff(gz, br)) N Eg = 0.

In order to prove claim (M,), we first try to solve the equation Icff (7|2, by) =
(bs — DH°(3(2bs — 1)b3 + (2b§ — 6bs + 3)(bs — 1)?) = 0, which is equivalent to
931(b3) := 3(2bs —1)b3+ (2bZ —6b5+3)(bs — 1)> = 0 by (3.3). By solving ¢31 = 0,
we get

by = (=2b% + 6bs — 3)(bs — 1)2/(3(2bs — 1)) (3.34)
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because lcff (@31, b3) = 3(2bs — 1) is positive by (3.3). We restrict 717, 713 and 714 to
(3.34) to get

Fio = b3 (bs — 1) Fia (b, bs)/(27(2bs ~ 1)?),
Fi3 = b3 (bs — 1)**F13(bs, bs)/(177147(2bs — 1)'9), (3.35)
Fia = b2(bs — 1)*0714(b4, bs)/(1162261467(2bs — '),

where

F12(b4, bs) := 9(32b3 — 80b2 + 60bs — 15)(2bs — 1)2b3
+6bs5 (6853 — 434b% + 942b3 — 831b2 + 324bs — 45)(2bs — 1)%by
—2b3(2b% — 6bs + 3)(168b% — 1112b2 + 2738b% — 3189b3
+1920b% — 585b5 + 72),

and 713 and 714 are polynomials of 38 and 64 degrees having 194 and 493 terms,
respectively. Similarly, we compute

res(713, 712, ba)
= —3904305912313344b2* (2bs — P11 (b5)7S5) (bs)P5) (bs)Fsy (bs),
res(714, 712, b4)

— —2151264861516838191936307263° (2b5 — 1)>7753) (bs)7S3 (bs)Fsy

(b3)Fs3 (bs), (3.36)

where 7 1= 8b3 — 26b% + 21bs — 6, 753 := 2b2 — 6bs + 3, 73} is a polynomial
having 52 terms and f%), fg) and féi) are given in Appendix, and get by Lemma 3.1

that
VN By = (UZ:1 Vzl') N Eo, (3.37)
where

Vo1 1=V (g3, &5, 87, 89, 712, 713, 714, @31, 12, 713, P14, Icff (F12, ba)),

-~ - N )
83, 85, 875 89,712, V13, F'14, ¥31, 12, I'13, I'14, Fy3 )
b

=V
Vo= WA 1ff (12, ba)

s oo PSP

) 83, 85, 87+ 89, 112, 713, 14, 931, 712, 713, 14, T3

Vo3 = V( = ),
Ictf' (712, ba)

S s A A A Al A(D)
. 83, 85,87, 89,712,713, 714, P31, 712,113,714, Fp3", Ty
Vg = V( - ),
Ictt (712, bg)

.~ o~ A oA A A(D A2

Vs - V(g&85,87,g9,r12,rl3,r14,¢31,r12,r13,rl4,723,r24)

25 = = )
Ictt (712, bg)

.~ o~ A A A A(3) (D

83, 85, 87, 89, 112,13, 4, P31, 112, F13, V14, V3", Iy

lcff(flz, b4) ’

Vag = V(
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s e s A a(3) A2)
g3s 85’ 877 8977121 r13, 714, (p317r129 r13, 14, 723 7r24
).

Vo7 :=V
27 = VI Icff (P12, bs)

Next, we prove that
M) :VoiNEp=9, i=1,..7. (3.38)

In order to prove claim (M), we try to solve the equation lcff (712, by) = 9(2bs —
1)2(32b3 — 80b2 4 60bs — 15) = 0, which is equivalent to gs; (bs) := 32b3 —80b2 +
60bs — 15 = 0 by (3.3). Using the Maple command “realroot(¢s;, 1/ 104),” we find
the polynomial ¢s; has a unique zero in the interval (1, 0o), covered by the isolated
interval [183457/131072, 91729/65536]. Compute

res(res(713, @51, bs), res(F12, @51, bs), by) &~ 2.0820323236234763745 x 1074,

which implies that V1 N Eg C V(F12, 713, ¢s51) N Eg = @. Similar to the discus-
sion on claim (M,;), we can prove that V, N Eg C V (F12, 713, fg)) NEy =0,
implying that claim (M) holds. In order to prove claim (M,3), using the Maple
command “realroot(fg), 1/10%),” we find the polynomial fg) has a unique zero in
the interval (1, 00), covered by the isolated interval [310119/131072, 38765/16384].
Compute res(@31, 73y, bs) = 144b2, which implies that Vo3 N g C V(g31, 753 N
Eo = {0 because (3.3) requires b3 € (0, 00). Claim (M,,) is obvious because
res(yy), 73, bs) & —1.482870925 x 10962, implying that Vs NEo C V (7Y}, 73y =
. Similar to the discussion on claim (My4), we prove that

— ~(2) (1 — A1) A3
VisNEo C VERD A =0, VisnEoc VL, 73 =0

and V7N Ep C V(fz(i), fé?) =0,

implying that claims (Mjs), (M) and (M57) hold, respectively. Thus, we get by
(3.37) and (3.38) that V, N Ep = ¥, implying that claim (M,) holds. Similar to the
discussion on claim (M,), we can prove that claim (M3) holds.

Claim (My) is obvious because (3.3) requires b5 € (1, 00), but the equality
Iff (753, b3) = 9(2bs — 1)2(32006% — 3600b3 + 148062 — 250bs + 13) = 0 has
no real zeros lie in (1, co) by using the Maple command “realroot,” showing that
Icff (73, b3) # O for (b1, by, b3, by, bs) € Eo, ie., V4N Eg C V(I (FS, b3)) N
Eo = . Similar to the discussion on claim (My), we prove that

V5N B C V(73 , b3)) N Eg =¥ and
(Vs UV7) N Bg C V(CHE (7Y, b3)) N B = 0,

implying that claims (Ms), (Mg) and (M) hold, respectively.
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In order to prove claim (Mg), using the Maple command “realroot,” we find that
the polynomial 7 r31 has a unique zero in (1, 00), covered by the isolated interval

= 3549434735393734987161122358701976160955684419494937
1 -= 17748288838313422294120286634350736906063837462003712 *

7098869470787469974322244717403952321911368838989875 ]
1496577676626844588240573268701473812127674924007424

Then, we try to find the common zero of Fg) and ;75‘11) corresponding to the zero of

’73(})1 covered by ;. Let fo(-) := Féi)(~, bs) and fi(-) := ’72(?('7 bs), and compute the
residues

f2(b3) :=rem(fo, f1, b3)
_12754584(2bs—1) "2 (bs—1) '8 0 (b3, b5)
(cff (f1,03))°
f3(b3) :==rem(f1, f2, b3)
_ _(bs—D*(cff(£1.53))° Q2 (b3.bs)
43046721 (2bs— 1) B3 (Icff (Q1,b3))2°
fa(b3) :=rem(f2, f3, b3)
24794911296]72(2}75 DM (bs—1)22(Icff (Q1,b3))% Q3(b3,bs)
(eff(f1, b3))9(10ff(Q2 b3))? ’
f5(b3) :=rem(f3, fa, b3
_ 2<bs—1)8<1cff<Qz,b3>>2<1cff(f1,bs))9Q4<b3,bs>
T 43046721(2bs— DT (Icff(Q1,b3))2 (Icff(03,b3))2
fe(b3) :=rem(fy, f5, b3)
297538935552b3(2b5 D (bs— 120 (Ieff(Q1,53)) 2 (Icff (Q3,53))% Q5(b3,bs)
(Icff (Q2,b3))2 (Icff(Q4,03))2 (cff (f1,63))° ’
J1(b3) :=rem(fs, f, b3)

__ 4bs(bs—1)"2(Icff(Q2,b3)) (Ieff (Q4,b3))* (Ictf (f1,53))° Q6 (b3.b5)
43046721 (2bs—1) 11 (Ieff (Q1 ,b3))2(lcff(Q3,b3))2(lcff(Q5,b3))2 ’

f8(b3) :=rem(fs, f7, b3)
_1071140167987253 (2bs— D3 (bs—1)32(1ctf(Q1,53))2 (cff(Q3,53)) 2 (Icff (Q5.53))2 07 (b3, b5)
(ICtF(Q2.53))2 (et (Q4,53)) 2 (Icff (06, b3)) 2 (ICHT (f1,53))°
f9(b3) rem(f7, f3, b3)
__ 4bs(bs—1)'0 (1662 —9b5+2)(1cff(Q2.53))* (et (Q4.b3))*Ieff (Q6.b3) 2 Ief (f1.b3)°F5 ) (bs)Fs (bs)
4782969(2b5— )P (It (Q1,563))2 (Icff (Q3,53)) 2 (It (05, 53)) > (IcHE (07,53))2 ’

where Q1, Q2, O3, Q4, Os, Q¢, Q7 are polynomials of 81, 111, 132, 149, 163, 174,
177 degrees having 626, 763, 783, 740, 650, 521, 355 terms, respectively. Computing
the resultant

res(Icff (f1, b3), 71}, bs) ~ —2.490625839 x 10'%,
res(lcff(Q1, b3), fgg, bs) ~ 1.622313374 x 102182,
res(Icff (Q2, b3), r311, bs) ~ 4.811873821 x 10°21°,
res(Icff(Q3, b3), 731}, bs) ~ 1335161275 x 10°°%,
res(Icff(Qu, b3), 751}, bs) ~ 5.019118277 x 10+,
res(Icff(Qs, b3), 73], bs) ~ —7.657363922 x 10347,
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res(Icff(Qs, b3), A1), bs) ~ 2.182108063 x 1034,
res(Icff(Q7, b3), 731}, bs) ~ 5.576492737 x 10°%72,

we can check that Icff ( f1, b3) > 0, Icff( f2, b3) < 0, Icff(f3, b3) < 0, leff (f1, b3) <
0,1cft(f5, b3) > 0,1cff(fo, b3) > 0,1cff(f7, b3) < Oandlcff(f3, b3) > Oforbs € I;.
Thus, from a pseudo-remainder formula in Knuth (1969); Mishra (1993), we can see
that

V(fo. fi. D)

Fi fou P IR (o, b))y 2o A e (f3, b3)
1ctf(f1, b3) IHE(f1, b3), 1T (f2, b3)

F3, fas AP 1CE(fa, b3) "7 fa f5. 730 IR f5, b3) )
Icff(f1. b3), Ictf(fa, b3), IcfE(f3, b3) 1Mt (f1, b3), 1Cf(fa, b3), It (f3, b3), IefT(fa, b3)

fS f6 ;3]] ]Cff(f() b3) )
Ieff (f1, b3), Ieff(f2, b3), Icft(f3, b3), Ictt (fa, b3), Ictf (f5, b3)

for 1. Fs1, CFE(f7, b3) )
Letf ( f1, b3), Ictt(f2, b3), Icff ( f3, b3), Ictf (fa, b3), Ictf (fs, b3), Ietf (f6, b3)

fro f. 731 Teff (fy. b3) )
1eff(f1, b3), 1ctt (f2, b3), Icff(f3, b3), Ieft (fa, b3), Icff(fs, b3), 1eff (fo, D3), Ictt (f7, b3)

Fs. fou S
IGHT /1 53). 1eTF(fa. 3). 1 (f3. b3). 1T (fa. b3). 1T (5. ba). 16TE i, b Ik (o ba). 1T (fs. b3)

= Vs, 7))

= V(fo, fi, Fs)) Ief(f1, b3)) U V(

U V(

uv(

U V(

uv(

V(

By solving fg = 0, we get b3 = P1(bs) :=3(2b5 — 1)(b5 — 1)2Qg(b5)/1cff(Q7, b3),
where Qg is a polynomial having 175 terms. Thus, the interval /; determines a unique
zero in V (fo, f1). In order to check if the zero lies in Eg, we compute the derivative
Pl’(bs) = 6(bs — 1)Q9(bs)/(Ictf (Q7, b3))2, where Qg is a polynomial having 352
terms. Computing the resultant res(Qo, Fé})l, bs) = 2.614190103 x 10'1%7° we can
check that Pl’ > O for b5 € I . It follows that P; is monotone on /1. Thus, correspond-
ing to 11, we have a unique isolated interval [—230.0212076, —230.0212068] for b3,
which does not lie in (0, 00), implying that Vs N E¢ C V (753, 75y, 7x1)) N Eo = 7.
Thus, claim (Mg) holds. Similar to the discussion on claim (Mg), we can prove that
claims (M;)s fori =9, ..., 17 hold. This proves the lemma. O

Proof of Lemma 3.3 First, noting Icff(¢11, by) = 9b5(2bs — 1)3 > 0, we compute the
discriminant A(g11) = 9(2bs — 1)2(bs — 1)%¢21 (bs), where

@21 == 9(2bs — 1)?b — 12b2(2bs — 1)(13b% — 12bs5 + 3)by4
+4b2(25b% — 96b3 + 114b2 — 54bs +9).

Since A(p21) = 2592b§ (2bs — 1)5 > 0, the polynomial ¢,; has two real zeros

@ (21), given in Appendix. Clearly, D < 0 since 26b2 — 24bs 4+ 6 > 0. We
1 2 5
can see that

BV > 0 & 26b% — 24bs + 6 > 6\/16b§ — 24b3 + 12b2 — 2bs,
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which s equivalent to the inequality @31 (bs) := 10062 —384b3+456b2 —216b5+36 >
0 since 26b§ — 24bs5 + 6 > 0. Using the Maple command “realroot,” we get that @3]

has a zero ,31(31), given in Appendix. This implies that ,31(21) <0&1<bs5< ﬁ?l),

BV =0 & bs = V. and 7 > 0 & BV < bs < (3 + v/3)/2. Thus, the
conclusion on the number of zeros of ¢11 in (0, co) given in Lemma 3.3 is obtained.
Next, by the expression of ,Bf“), we can see that ﬁf“) > 05 @rp(by) > (pé{z (bg),

which is equivalent to the inequalities
®22(bs) > 0 and ¢23(bs) > 0, (3.39)

where

@2 = —3(4bs — 1)(2bs — )by + 2b5(8b3 — 23b3 + 102 + 6bs — 3),
@23 := 18(2bs — 1)?b — 3(2bs — 1)(8b2 + 3bs — 1)(2b% — 6bs + 3)by4
+ bs(2b% — 6bs + 3)(16b3 — 36b3 — 8b3 + 25b% — 3).

The linear ¢ has a unique zero 13;22) = 2bs (Sbg1 — 23bg + IObg +6bs —3)/(3(4bs5 —
1)(2bs—1)) since Icff (g2, bg) = —3(4b5—1)(2bs—1) < 0. Similar to the discussion
on the sign of ﬂlm), we can see that ﬂ1(22) <0 1<bs < ,31(32), ,3](22) =0<%
bs = /3;32)’ and ,8}22) >0 /81(32) < bs < 3+ +/3)/2, where ﬁfz) is a zero of the
polynomial @3 (bs) := 8b% — 23b3 + 1062 + 6bs — 3, in the interval (1, (3 ++/3)/2),

299614051283 74903512821] Thus

covered by [m’ 34359738368

90 >0 & B <bs <(B++3)/2 and 0 < by < 2. (3.40)

The quadratic @3 has two real zeros ;31(23) < ,3523), given in Appendix, since the

discriminant A(¢23) = 9(bs+1)(2bs —1)*(—2b2+6bs —3) (46b3 —20b% +3bs —3) >
0. Similar to the discussion on the sign of ,81(21), we can see that ,31(23) < 0, and
ﬂéB) <0<&1<b;5< ﬂ1(33), ﬂéB) =0 b5 = ,31(33), and /3523) >0<% ﬂ1(33) <
bs < (3 ++/3)/2, where ,81(33) is a zero of the polynomial ¢33(bs) := 16bg — 3617‘51 —

8b3+25h3 -3, intheinterval (1, (3++/3)/2), covered by | 05HeE, LsZesorsT |
Thus,

@3>0 & either 1 < bs < B> and by > 0

3.41
or ,81(33) <bs < (3++/3)/2 and by > ,3523). (341)

@ Springer



Journal of Nonlinear Science (2025) 35:113 Page370of50 113

We also see by a similar discussion on the sign of ﬁl(zl) that

/3521) B /61(22) - 0. ﬂ§21) B ’3523) -0,

ﬂ§23) _ /31(22) S0 & 1<bs < ﬂf34), ﬂ§23) _ /31(22) —0 & bs = ﬁ1(34),
13523) _ ,3522) <0 o ﬁf34) <bs < (3+3)2, ,31(21) _ ﬂ§23) -0

& bs=p>Y,

BV — B 5 0 & either 1 < bs < BV or B < bs < 3 +3)/2,
(3.42)

where B is a zero of the polynomial g34(bs) := 92b% — 224b3 — 16b% + 1623 —
57b%+18bs—9, inthe interval (1, (3++/3)/2), covered by [ 195550473693 | 151J38236847 |
Thus, by (3.39), (3.40), (3.41) and (3.42), the distribution of zeros of ¢; given in

Lemma 3.3 is obtained. This proves the lemma. O

4 Large Cycles

In contrast with the last section, where we studied limit cycles arising from the focal
center in a small neighborhood of the focal center, in this section we find periodic orbits
outside the small neighborhood, called large cycles. Ref. Wang et al. (2016) uses the
Poincaré—Bendixson theorem (Meiss 2007) to show the existence of a periodic orbit in
the case that interior equilibrium E is unstable and explains that the periodic orbit is
resulted from a Hopf bifurcation. In this section, we give conditions for the existence of
large cycles which do not arise from the interior equilibrium via Hopf bifurcations. We
also show that large cycles may exist even if the interior equilibrium is stable and that
k (k =0, 1, 2) small cycles can co-exist together with some large cycles. By Theorem
3.1, we see that depending on the signs of focal values, (2.2) can have (i) no small
cycles and the interior equilibrium of system (2.2) is unstable if (b1, by, b3, bs, bs) €
AY; (ii) a unique small cycle which is unstable if (b, by, b3, by, bs) € AL; and (iii)
two small cycles with the inner one being stable and the outer one being unstable if
(b1, by, b3, by, bs) € A2. Here

AY :={(b1, ba, b3, bs, bs) € R’ : (b3, bs) € Dy, by €

0, B5V). by € 0, B, b1 € By (o)}

U{(b1, ba, b3, ba, bs) € R : (b3, bs) €
6

U Di.ba € 0. 8771, b2 € 0. B3'"). b1 € Bo(B2)
i=3

U{(b1. b2, b3, bs., bs) € R : (b3, bs) €

6

U Dibse B7 . 8PV). by € (B BY'V). b1 € B1 ()
i=3

U{(b1, by, b3, by, bs) € R : (b3, bs) € Dy, by € (0, B*Y),
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by € B_(By'"). b1 € B+(B))

U{(b1, b2, b3, bs, bs) € R : (b3, bs) € Ds., by € (0, B5°").

by € B_(5'"), b1 € B4 (B2))

U{(b1, ba, b3, ba, bs) € R : (b3, bs) € Dg, by € (0, B,

by € B_(By'"). b1 € B (B},

AL = {(b1,b2, b3, ba, bs) € RY: (b3, bs) € Da, by € (0, B,
by € (0, B3V, by € B (B2))

U{<b1 ba, b3, by, bs) € R? : (b3, bs) €

UD,,b4 € 0. 871, ba € (0, '), b1 € B2(B2)}
i=3

U{(b1, b, b3, by, bs) € R : (b3, bs) €
| Di ks e 87 8PV). by € (B BY'V). b1 € B2 (B2))
i=3
U{(b1, ba. b3, by, bs) € R : (b3, bs) € Dy, by € (0, ™),
by € B_(B5'"). b1 € B2 ()
U{(b1. ba, b3, ba, bs) € R : (b3, bs) € Ds, by € (0, p5°Y),
by € B_(B3'"). b1 € B ()
U{(b1. ba, b3, ba, bs) € R : (bs, bs) € Dg, by € (0, B5°Y),
by € B_(B3'"). b1 € B% ()
U{(b1, b2, b, by, bs) € R® = (b3, bs) € Dy, by < (0, B°Y),
by € BL(B5'"). b1 € B_(Ba))
U{(b1, ba. by, by, bs) € R : (b3, bs) € Ds, by € (0, p5),
by € BL(B3'"). b1 € B_(Ba))
U{(b1, ba, b3, by, bs) € R : (b3, bs) € D, by € (0, ),
by € BL(BY'"). b1 € B_(B2)).

= {(b1, b2, b3, by, bs) € R : (b3, bs) € Dy, by € (0, B*Y),
bz e BL(BY). b1 € BL(B))
U{(b1. ba, b3, b, bs) € R® : (b3, bs) € Ds, by € (0, p5°Y),
by € BL(BS')). b1 € BL(B))
U{(b1. ba, b3, b, bs) € B> : (b3, bs) € Dg, by € (0, B5°Y),
by € BL(BS'). b1 € BL(B)),
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B2 is defined in (2.3), D1, ..., Dg are defined just before Theorem 3.1 and 8, 23 5(21),
,3{24), ,3524), ,3§24), ﬂf“), ,3511) and ﬁéll) are given in Appendix.
The following theorem confirms that large cycles are possible.

Theorem 4.1 For (b1, by, b3, by, b5) € A*, system (2.2) has at least one large cycle,
where A, = A0 U A1 U A2 and Al s (@ =0, 1, 2) are defined just before.

Proof We will use the Poincaré—Bendixson theorem (Hale 1980; Meiss 2007; Zhang
et al. 1992) to prove this theorem in three cases: (L1) (by, by, b3, bs, bs) € ]\2, L2)
(bl, bz, b3, b4, b5) € [\i, and (L3) (bl, bz, b3, b4, b5) (S Ai

In case (L1), from the proof of Theorem 2.2, we see that the flow ¢, defined by
the solution ¢’ (P) := ¢ (¢, P) of system (2.2) initiated from the point P € R2, is
point dissipative. That is, there is a bounded closed set D C R?, as shown in Fig. 3,
such that for any point P € Ri, there is a number tp > 0, satisfying ¢'? (P) € D.
This implies that the bounded closed set D is positively invariant, i.e., each positive
semi-orbit, denoted by yti={(¢'(P):t >0, P eD}is always in D. So the positive
semi-orbit ¥+ is bounded and in a bounded closed set D. Moreover, by the discussion
just before (2.3), we can see that system (2.2) has three equilibria Eo, E 1 and Ez in
this case, which implies that there are a finite number of equilibria in the bounded
closed set D. Thus, by the Poincaré—Bendixson theorem of (Hale 1980, Theorem 1.3,
p.54), one of the following is satisfied: (i): w(y ™) is an equilibrium, (ii): w(y ™) is a
periodic orbit, and (iii): there are a finite number of equilibria and a set of orbits in
w(y ™), every one of which tends to the equilibria as t — 400, where w denotes the
w-limit set. In this case, we claim that (i) does not occur because all three equilibria
of system (2.2) are unstable. Also, we claim that (iii) does not occur. In fact, from the
proof of Theorem 2.2, we see that the stable manifold of the saddle Eo lies on the
y-axis and tends to infinity as t — —o0, and the stable manifold of the saddle E 1 lies
on the x-axis and tends to EO or infinity as t — —o0o, which implies that if (iii) occurs,
an orbit tends to E as 1 — =+00. By the discussion on the beginning of Sect. 2, we
can see that the determinant of the Jacobian matrix of system (2.2) at E,is positive,
which implies that E5 does not have hyperbolic sectors. So there are no homoclinic
orbits connecting E5. The claim is proved. From the above analysis, the system has
at least one periodic orbit in D. By the discussion on the beginning of this proof, no
small cycles arise from Hopf bifurcation. This implies that the periodic orbit given by
the Poincaré—Bendixson theorem above is not the small cycle.

In case (L2), the equilibrium E, is stable and there exists a unique small cycle,
denoted as f‘, which is unstable. The cycle [" intersects the horizontal isocline H : x =
1/(bs — 1) transversely at two points. We denote the intersection that lies above E» as

O : (1/(bs —1), y,), where 3, > y,. Thus, there is a point Q :(1/(bs—1), 3, +98),
6 > 0 small enough, such that the positive semi-orbit with Q as an initial point
intersects H for y > y, ata point for the first time, denoted by Q* (1) (bs—1), 34) =
¢;(Q), where 7 > 0 and 3, — $, > 8. We construct the curve £ := {¢'(Q) : 0 <t <
fYU{(x,y) € H: 3, +8 <y < 9} and further construct an annular region, denoted
by R, with £ as the internal boundary and Y as the external boundary, where Y is the
boundary of D. Clearly, the bounded closed set R is positively invariant, which implies
that each positive semi-orbit, denoted by y+ := {¢'(P) : t > 0, P € R}, is bounded.
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Moreover, similar to the discussion on case (L.1), we can see that system (2.2) has two
equilibria E"o and E 1 in R in this case, which implies that there are a finite number
of equilibria in the bounded closed set R. Thus, by the Poincaré—Bendixson theorem
of (Hale 1980, Theorem 1.3, p.54), the conclusions (i), (ii) and (iii) described in case
(L1) still hold for the replacement of ¥ by y*. By the same reason, we see that (i)
and (iii) do not occur. From the above analysis, the system has at least one periodic
orbit in R. In addition, the way we construct the simple closed curve £ determines
that there are no limit cycles arising from Hopf bifurcation in the annular region .
This implies that the periodic orbit given by the Poincaré—Bendixson theorem above
is not the small cycle.

In case (L3), the equilibrium Ez is unstable and there exist two small-cycles, where
the inner one is stable and the outer one (denoted by I") is unstable. The proof for this
case is similar to the proof of case (I.2) and is thus omitted here. The proof of the
theorem is completed. U

Theorem 4.1 states that even if the system has two small cycles, it can also have a
large cycle. Moreover, if the system has no or one small cycle, it still has a large cycle
in some appropriate cases. Next, we present some numerical results to illustrate our
analytical results, confirming the existence of a large cycle as well as the possibility
of 0, 1 and 2 small cycles. In Figs. 5, 6, 7 and 8, we show the very last part of each
trajectory to avoid plotting a huge amount of data. We also use the solid and dotted
curves to represent stable and unstable limit cycles, respectively, and use blue color

and green color to mark small cycles and large cycles, respectively.

, 709905987 2860 92621853 3 4ol
Firstly, we choose (b1, b2, b3, bs, bs) = (250000000’ 5000 2888000000 00 m) to

simulate two small cycles and find that there is one large cycle, which is stable. In Fig.
5, the equilibrium Ez is unstable because Tr(J (Ez)) = 7.62306 x 10~'2. The orbits
from the two initial points (0.766, 3.33) and (0.77, 3.36) spiral outward and inward,
respectively, as the time + — oo, implying that there exists a stable limit cycle,
generated by the Hopf bifurcation. The orbits from the two initial points (0.82, 3) and
(0.85, 3) spiral outward and inward, respectively, as the time t — —oo, implying that
there exists an unstable limit cycle, generated by the Hopf bifurcation. The orbits from
the two initial points (0.965, 3) and (0.975, 3) spiral outward and inward, respectively,
as the time t+ — oo, implying that there is a stable limit cycle in addition to the one
arising from the Hopf bifurcation.

Secondly, we choose (b1, by, b3, ba, bs) = (%, 285—70, %, 23—0, %) to simu-
late one limit cycle arising from Hopf bifurcations and find that one large cycle
exists, which is stable. In Fig. 6, the equilibrium Ez is stable because Tr(J (Ez)) =
—2.2487578321 x 1078, Similarly, we choose the initial points (0.791, 0.74) and
(0.791, 0.746) (resp. (0.855, 0.856) and (0.863, 0.845)) and simulate the orbits sep-
arately as the time t — —oo (resp. ¢t — o). This implies that there exists a small
cycle (resp. large cycle), which is unstable (resp. stable).

Thirdly, choose (b1, b, b3, by, bs) = (52, 5=, Faade 3. 109) to simulate no
limit cycles arising from Hopf bifurcations and find that there is one large cycle, which
is stable. In Fig. 7, the equilibrium E is unstable because Tr(J (E2)) = 2.8789414 x
1073, Similarly, choose the initial points (1.2, 15.6) and (1.17, 16) and simulate the
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Fig.5 1~\£ scenario—two small cycles (blue) and one large cycle (green)

0.9

0.8[+

0.7}

0.6 ---

i i L i i i
0.65 0.7 0.75 0.8 0.85 0.9
x

Fig.6 1~\i scenario—one small cycles (blue) and one large cycle (green)

orbits separately as time t — oo. This implies that there exists a large cycle, which is
stable. m|

Finally, we simulate 3 small cycles and find that no other periodic orbits exist
except the three limit cycles. As a demonstration, we choose (b, bz,~ b3, by, bs) =

515446001 1153 3771687633 1 1151 . S .
(125000000, 2000° T12625000000° 50° W)' In Fig. 8, the equilibrium E; is unstable

because Tr(J(E»)) = 6.9720317 x 10~ Similarly, choose the initial points
(0.77,5.25), (0.78,5.2), (1.1,6) and (1.1, 6.15) (resp. (0.85,5.85) and (0.9, 5.5))
and simulate the orbits separately as the time t — 0o (resp. r — —o00). This implies
that there exist three small cycles, which are stable, unstable, and stable from inside
to outside.
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] rtt VR il | Tt My Bl i s

0.5 0.6 0.7 0.8 0.9 1 1.1
x

Fig.8 Az scenario—three small cycles (blue) and no large cycles

5 Conclusion and Discussion

Unlike an attractor, which is a nonempty invariant set for which there exists an open
neighborhood such that all orbits starting from any point in the neighborhood converge
to the set, a global attractor is a compact invariant set attracting all bounded subsets
in phase space. Therefore, an attractor can be an equilibrium, while a global attractor
typically exhibits more complicated internal structure, including equilibria, periodic
orbits and homoclinic/heteroclinic orbits. Theorem 2.2 confirms the existence of a
global attractor of system (2.2) in the closure of the first quadrant, implying that the
populations of both predator and prey will not inflate to infinity. More interesting is the
dynamics inside the global attractor, which can have five cases as shown in Fig. 9, and
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i, i,

% <

0 El Tx Eo E, X
(a) Case (S1). (b) Case (S2). (c) Case (S3).

Fig.9 Structure of the global attractor

(a) Case (S4). (b) Case (S5).

Fig. 10 Continuation Fig. 9—structure of the global attractor

in some of these cases, multi-stability within the positive equilibrium E» and periodic
orbits (including small cycles and large cycles) can occur in several different patterns
(Fig. 10).

In case (S1), the global attractor is Eo U W”(Eo) U El, where W“(Eo) is the
unstable manifold of Eo in the closure of the first quadrant. In case (S2), the global
attractor is Eg UW" (Eo) U E; UW"(E}) U Ez, where W (Ey) is as described above
and W“(E 1) is the unstable manifold of E 1 in the closure of the first quadrant In
cases (Si) (i = 3,4,5), the global attractor is Eo UWH(Eo) U E; UW"(E,) U Ir,
where W*(E;), i = 0, 1 are as described above, ITr is a bounded closed region with
the periodic orbit I' as the boundary and I' is the outermost periodic orbit surrounding
E2 More spe01ﬁcally, in case (S3), there is the equilibrium E2 in int(Ilp), in case
(S4), there are Ez and one unstable limit cycle in int(I11), and in case (S5), there are
E» and two limit cycles in int(I1r), where int represents the interior of the region.
Moreover, our global attractor is connected but not locally connected (i.e., a space
X is locally connected if for any x € X, and each neighborhood U of x, there is a
connected neighborhood V' of x which is contained in U, as defined in Armstrong
1983, p.61).
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We point out that if we ignore the fear effect (i.e., s = 0), Cheng (1981); Hsu
et al. (1978) show that system (1.1) has at most one limit cycle, which is stable. This
gives a monostable scenario with either the coexistence equilibrium or the positive
periodic orbit arising from Hopf bifurcation at the positive equilibrium being globally
asymptotically stable. If we consider the fear effect, however, Wang et al. (2016) gives
a parameter condition for the occurrence of one limit cycle from a Hopf bifurcation
while displaying another limit cycle numerically. This indicates that a relatively low
level of fear may lead to a situation of bistability in which the positive equilibrium
regains its local stability while the limit cycle also remains stable.

Now, our further and more careful analysis of this model incorporated a cost for the
prey due to fear effect, shows that the positive equilibrium of (1.1) is indeed a weak
focus of multiplicity of up to 4, and the case of exactly 3 small cycles leads to another
type of bistabiliy: While the positive equilibrium remains unstable, two stable cycles
may occur which are separated by another cycles between them; see Theorem 3.1.
Moreover, Theorem 4.1 also gives certain parameter range for system (1.1) to have a
large cycle, showing that even if only 2 small cycles arise from Hopf bifurcations, there
can be a large cycle surrounding them which is not a result of Hopf bifurcation. Our
theoretical results show that the structure of the global attractor of this model system
is rich; there can be a variety of outcomes of the predator—prey interaction when fear
effect is considered, as illustrated in Fig. 9. In particular, the demonstrated bistable
scenarios indicate that the predator and prey can co-exist in a way that is dependent
on their initial populations.

Finally, we would like to discuss a biological implication of our results. There is
a well-known paradox in mathematical ecology, called the “Paradox of Enrichment,”
and it is about the model (1.1) without fear effect with the growth function formulated
in the form of logistic growth, that is, the parameters r, 61 and &3 are absorbed into the
form of intrinsic growth rate and carrying capacity. As mentioned in the beginning of
this section (citing results from Cheng 1981; Hsu et al. 1978), increasing the carrying
capacity of the prey can destabilize the positive equilibrium leading to a globally stable
periodic solution, and such a periodic solution may stay very close to O for the prey
population and/or the predator population for a long time (slow dynamics near the
boundaries of the first quadrant in the phase plane). This is ecologically not plausible
because, by the nature of the predator—prey interaction, increasing the carrying capacity
of the prey will benefit the prey species and such a benefit will later be passed to the
predator species; yet the slow dynamics near the 0 will put both prey and predator at
high risk of extinction by any random negative incidences. This is referred to as the
“Paradox of Enrichment.” Now, with the fear effect incorporated, we have seen that
there are two different types of bistable scenarios for which the solutions with initial
populations located in the basin of attraction of the stable positive equilibrium or the
stable inner periodic cycle will no longer experience the risky slow dynamics. Thus,
for such solutions, the “Paradox of Enrichment” is no longer a paradox.
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Appendix: Some Complicated Formulae

In the proof of Theorem 2.1, piy = (bs(bs — 1)((bs + b3 + (bs — 1)*)by +
(bs — D*((bs + 2)b3 + (bs — 1)})bs + bsbz(b3 + (bs — 1)?))/(bs — 1), ppr =
—(b2(bs — )*b3 + bs(bs — 1)((bs — 1)*(b3 + 2(bs — 1)?)by — bsb3(bsbz — 2(bs —
D2)by+(bs— D)*(b3+(bs —1)2)b3 +bsbs (bs — 1)* (b3 +2(bs — 1)*) by — b3b2 (bsb3 —
(bs —1)%)/(bs — 1) and @y := (1 — bs)(b2(bs — 1)*b3 + bs(bs — 1)((bs — 1)? (b3 +
2(bs — 1)?)bs — bsb3(bsbs —2(bs — 1)%)by + (bs — 1)* (b3 + (bs — 1)?) b7 +bsb3 (bs —
1)2(b3 + 2(bs — 1)*)bs — b3b2 (bsbz — (bs — 1)%))/(b3bs).

At the end of Sect. 2, pi19 := ((b5s — 1)b5((bs + 1)b3 + (b5 — 1)2)b2 + (b5 —
1)2((bs + 2)b3 + (bs — 1)?)bs + bsb3(bs + (bs — 1)2))/(bsb3(bs — 1)?), pozo =
(=b2(bs — 1)*b3 + (bs — D)bs(—(bs — 1)? (b3 +2(bs — 1)?)bs + bsb3(bsbs — 2(bs —
1)3)by — (bs— 1)*(b3+ (bs — 1)?)b] —bsb3 (bs — 1)* (b3 +2(bs — 1)*)bs+b2b3 (bsb3 —
(bs — 1))/ (b2b3(bs — 1)3), poi1 := (bs(bs — 1)3by+ (bs — 1)? (b3 + (bs — 1)*)bs —
bsb3(bsbs — (bs — 1)?))/(bsb3(bs — 1)?) and w5 := (3(bs — 1)*b7 + babs(bs —
1)3(2by — b3 + 2bs — 2) + bab2(bs — 1)((bs + b3 + 3(bs — 1)?) + b2b3((bs +
2)(bs + Dbz + (bs + 4)(bs — 1)?))(b2b3(bs — 1)((bs + D)b3 + (bs — D)~

Before Theorem 3.1, /31(33), ,3](34), ,31(35) and ,3536) are zeros of the polynomials
@33(bs) := 16b3 — 36bs — 8b3 + 25b3 — 3, a4(bs) := 92b§ — 224b3 — 16b3 +
162b3 — 57b% + 18bs — 9, g35(bs) := 20b3 — 68b% + 57bs — 15 and @36(bs) =
168b% — 111252 + 2738b3 — 3189b3 + 192062 — 585bs + 72 covered by

296055361513 148027680757 302676473693 151338236847
[137438953472’ 68719476736 ] ’ [137438953472’ 68719476736 ] '
316731117455 19795694841 157594099533 315188199067
[137438953472’ 8589934592 :| |: 68719476736 137438953472:| '

respectively, and ﬁ;B) = (lébg - 42b§ + 4b§ + 15b5 — 3 4+ (—(bs + 1)(2b§ —
6bs + 3)(46b3 — 2002 + 3bs — 3)'/2)/(12(2bs — 1)), BV := b2(26b2 — 24b5 +
6 — 6(16b% — 24b3 4 12b2 — 2b5)'/2} /(3(2bs — 1)), B 1= bs(—136bS + 9363 —
2318b2 +2604b3 — 1479b2 +414bs — 45 — (40000b1> — 51520054 +2873760b1° —
914291252+ 1844405255 —24884568b +231151445% — 149588643 +6713307h% —
2038392b3 + 396036b2 — 43740bs + 2025)'/%) /(3(2bs — 1)(32b2 — 80b2 + 60bs —
15)), B := bs(—136b% + 936b3 — 2318b% + 26043 — 1479b2 + 414bs — 45 +
(40000b1% — 51520051 +2873760b1°0 — 9142912b7 + 1844405258 — 24884568b] +
23115144b8 — 14958864b3 + 6713307b% — 2038392b3 + 396036b2 — 43740bs +
2025)1/2)/(3(2bs — 1)(32b3 — 80b% + 60bs — 15)), B>V := bs(—136b¢ + 936b3 —
2318b¢ +2604b3 — 14792 + 414bs — 45)/(3(2bs — 1)(32b3 — 80b2 + 60bs — 15)),
BV = (bs — 1)(=3(4bs — 1)(2bs — 1)bs + 2b5(8b% — 23b3 + 10b2 + 6bs —
3) — (9(2bs — 1)?b] — 12b2(2bs — 1)(13b2 — 12bs + 3)bs + 4b3(25b% — 96b3 +
114b2 —54b5+9))/2) / (6bs5(2bs — 1)2), SV := (bs — 1) (=3 (4bs — 1) (2bs — 1)bs +
2bs5(8b% —23b3 + 1062 + 6b5 — 3) + (9(2bs — 1)b3 — 12b2(2bs — 1)(13b2 — 12bs +
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3)by + 4b3(25b% — 96b3 + 114b% — 54bs + 9))1/2)/(6bs5(2bs — 1)) and B!V :=
(bs—1)(—3(4bs —1)(2bs — 1)bs+2bs(8b2 —23b3+10b2 +6b5 —3)) / (6bs (2bs — 1)?).

In the proof of Theorem 3.1, ,81(31), B ](36), ,43§36) and ,81(37) are zeros of the polynomials
@31(bs) = 100b% — 384b3 + 456b2 — 216bs + 36, 936 (bs), ¢36(bs) and @37 (bs) :=
1856510 — 1481652 +44240b8 —56608b1 + 1403658 +40680b3 —46410b2+20016b3 —
2745b% — 486bs + 135, covered by

147768672059 295537344119 151214956493 302429912987
[ 68719476736 137438953472j| ’ |: 68719476736 137438953472:| '
157594099533 315188199067
|: 68719476736 137438953472i|
323076177543 40384522193
[137438953472’ 17179869184:| '

respectively, B3> := b2{26b2 —24bs+6+6(16b% —24b3 4 126 —2bs) 12} / (3(2bs —
1), B = (16b% — 423 + 4b2 + 15bs — 3 — ((bs + 1)(—2b% + 6bs — 3)(46b3 —
2062 +3bs —3))/2) /(12(2bs — 1)), RSY (bs) := 8b3 —26b2 +21b5 — 6, RS (bs) :=
323 —80b2 +60bs — 15, RS3 (bs) := 1685 — 111253 42738b2 —3189b3 +19206% —
585bs + 72, RS} (bs) := 10068 — 6083 + 1324b% — 1272b3 + 591b2 — 126bs + 9,

73D (bs) := 460800610 — 9263360b4% + 81404288b1* — 41797017643

+ 1410177920012 — 332881808061 + 571081809651
— 72936531362 + 7035858828b5 — 51603079681
+ 287451709268 — 1204489980b3 + 371863629b5 — 8148762053
+ 11860830b2 — 1008450b5 + 36450 = 73 (bs),
Fy(ba, by, bs) := 9b2(2bs — 1)>b3 + 3b5(2bs — 1)(b5 — 1)
(3(2bs — 1)(4bs — 3)bg — 2bs5 (82 — 25b3 + 10b2 + 6b5 — 3))b>
+ (bs — D*{18(bs — 1)(2bs — 1263 — 3b5(2bs — 1)
(16b% — 54b3 + 482 + 3bs — 9)bs + b3 (2b2 — 6bs
+3)(16b3 — 44b% + 1263 + 1362 — 3)},
731 (bs) = 1029220902102630400b2°
— 18932387359653068800627 + 15013353541256560640052°
— 68731814600721729536052°
+ 206857606814047235072062*
— 444315837672418491392062° + 7196576363925899969536b2>
— 9121489683461357488640b2"
+ 9267554060472935708928b2° — 7649827649414653180928b.°
+ 5142740566484693410432518
— 2778263794975800256832b17 + 1149095427108262799776b1°
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— 303305982772656804512b1

— 10397349886853933056b1% 4 69519028856295071384b1°

— 49493096995967293484b12

+ 23634939830234001304b11 — 881013759124697663651°

+ 2683471070823686014b2 — 678979492837418935h8

+ 143252750515655090b7 — 251000642468508255°

+ 3612691134669890b3 — 4189901999696005¢ + 37909624759650b3

— 2527773384150b% + 110982368700b5 — 2405214000,
753 (bs) := 1354638011924480053°

— 31338506560208896053" + 32633129819968634883°

— 1975184851924903526452°

+ 72679468424282701824b2°

— 133523461871425290240b2 — 14910192049854731059263°

+ 1882641718448314736640b3°

— 662169912954700603392062* + 13498507630764318816256b2°
134829410982317014722562>
— 14206959864832318783488b2" + 9457744872379281915264062°
— 236100973335876209571840b1°
+ 411229484077109445499968b1% — 560331770721137677700640b17
+ 624012040457000976036960b1°
— 580309766693303409280872b1° + 455944991759976539725740b1*
— 304571657407390634772234b13
+ 173472251808073343904432b1% — 84266698376353021491519511
+ 34844982505233029974422510
— 12216543247894691610648b2 + 3608974969450679346156bS
— 8905010800924711815395]

+ 181334416934452161978172 - 29975727010020857028bg
+ 3930406820462712744b§
- 394913924909840880!); + 2873843407541865617%

— 1360031608961280b5 + 31754946067200 = 733 (bs),

A2

7537 (bs) = 452738898984960063° — 16901315870064640053°

+ 2994766066356387840b3" — 3360672603783168000053°

+ 26878497127220364902452°

— 163429910042044873113652% + 7867163007312738791424b27

— 3082272616438368610713652°

+ 100254986197207612861440b2% — 274731191154460598347776b2*
+ 641350279800470279481856b2°

@ Springer



113 Page 48 of 50 Journal of Nonlinear Science (2025) 35:113

— 1286253672139043635144704b3% + 2230312287468288761678208b3'
— 335940195434675513979168062°
+ 4410412822398488737801824b17 — 5058105151614670719632448b18
+ 5073758818196560736193360b57
— 4453082055862479204251904b16 + 3417987222327495324285504b1°
— 229131071164153390669531264*
+ 1338571242090706835590920b1° — 67929183939240905841075651
+ 298158954238069139646522b1!
— 112548711365963147598984b1° + 36267685782348678185583b3
— 9881488560145530503934b8
+ 2248153774054024161258b7 — 420123525773087846466b
+ 63071625321665675010b3 — 7375368278374295220b%
+ 642189471423121800b3 — 38794236987242160b2
+ 1433357457285600b5 — 24083630661600,

R\Y (b4, bs) := 1458(32b3 — 80b2
+ 60bs — 15)(2bs — 1)%b%
— 243b5(8b3 — 170052 + 4248b3 — 37293 + 1386bs
— 180)(2bs — 1)°bj + 81b3 (3206465 — 311344b]
+ 112806458 — 204895253 + 2133438b3 — 134069453
+ 50507162 — 105408bs + 9396) (2bs5 — 1)*b]
— 54b3(345760b10 — 38741125 + 1810333665
— 464114041 + 7270756268 — 73631646b3
+ 4942043153 — 21928833b3 + 6205167b3 — 10172795
+ 73710)(2bs — 1)°b3 + 1851 (262 — 6bs + 3)
(1131776b30 — 12161712b3 + 5475491255 — 1357818005
+ 206307750b§ — 20283730253 + 13215822353 — 56893860b3
+ 1561050952 — 2480868b5 + 174312)(2bs
— 1)%b3 — 96b3(2b5 — 1)(84744b10 — 8946162
+ 397448268 — 97698751 + 14769558b%
— 14475357b3 + 9405774b3 — 403614953 + 110268063
— 174231bs + 12150)(2b2 — 6bs + 3)*by
+ 256b41 (16868 — 111263 + 273852 — 3189b3
+ 192062 — 585bs + 72)(25b% — 9663 + 114b3 — 54bs
+ 9)(2b5 — 6bs +3)°,

RSy (bs) := 2371379200062* — 5740549693442

+ 6498506768384b2% — 4577959162880062! + 22533328933478452°
— 824940827031040b1° + 2334874124179072518
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5242854056898240b17 + 9509293922106848b1°

— 14109846206731488b1 + 1727919128704764061*
17564967094747932b13 + 14867581076762958b.

— 10485326116792161b1! + 6150121974821628b1°
2986796712693483b9 + 1191999779585874b5

— 386526987399483b1 + 1001944628998565

— 20285817268257b3 + 310255512699652

— 341160741324b3 + 24987314808b2 — 107390448055 + 20995200.
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