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Abstract
Predator–prey interactions are among the most complicated interactions between bio-
logical species, in which there may be both direct effect (through predation) and
indirect effect (e.g., fear effect). In the literature, the indirect effect has been largely
missing in predator–prey models, until some recent works. Based on the recent work
(Wang et al. in JMath Biol 73:1179–1204, 2016) where a fear effect is considered in an
ODE model as a cost, in this paper, we also consider a benefit from the anti-predation
response in addition to the cost, as well as a time delay in the transfer of biomass
from the prey to the predator after predation. This results in a system of delay differ-
ential equations (DDEs). By analyzing this nonlinear DDE system, we obtain some
insights on how the anti-predation response level (indirect effect) and the biomass
transfer delay jointly affect the population dynamics; particularly we show how the
nonlinearity in the predation term mediated by the fear effect affects the long term
dynamics of the model system. We also perform some numerical computations and
simulations to demonstrate our results. These results seem to suggest a need to revisit
existing predator–prey models in the literature by incorporating the indirect effect and
biomass transfer delay.
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1 Introduction

Predator–prey system is one of the most important topics in mathematically biology.
Since the early pinioning model by Lotka (1920, 1925) and Volterra (1926, 1931),
there has been a vast and rich literature on the models for predator–prey interactions.
Without considering spatial and age structure, a predator–prey model can be generally
described by a system of ordinary differential equations of the form

⎧
⎪⎨

⎪⎩

du

dt
= f1(u(t)) − p(u(t), v(t))v(t),

dv

dt
= f2(v(t)) + cp(u(t), v(t))v(t),

(1.1)

where u(t) and v(t) are the population densities of the prey and predator, respectively,
under consideration. Here, f1(u) is the growth rate of the prey population in the
absence of the predator, and f2(v) is the growth rate of the predator population in the
absence of the prey; p(u, v) is referred to as the functional responsewhich accounts for
the predation rate and biomass transfer after predation, from the prey to the predator,
and the constant c explains the efficiency in biomass transfer. For some frequently
used forms of the functional response p(u, v), see, e.g., Arditi and Ginzburg (1989),
Holling (1965) and Rosenzweig and MacArthur (1963) for some earlier works and
Abrams and Ginzburg (2000), Jeschke et al. (2002) and Skalski and Gilliam (2001)
for some more recent works.

Predator–preyODEmodels of the form (1.1) only consider the direct effect between
the predator and prey, reflected by the predation term. In the real world however,
presence of predators also has indirect effects on prey population, in various ways.
For example, according to a recent field experimental studyon song sparrowpopulation
by Zanette et al. (2011), the perception of predation risk can reduce the number of
prey’s offspring by as much as 40%, even without any direct predation. This evidence
showed that the indirect effect can be as significant as direct predation for some species,
sometimes even more significant. This phenomenon has attracted some biologists,
both theoretical and experimental, and there have been some biological hypotheses
proposed on such effects and some field experiments reported confirming such effects.
See, e.g., Creel andChristianson (2008),Cresswell (2011), Lima (1998, 2009), Zanette
et al. (2011) and the references therein.

The aforementioned preliminary biological studies strongly suggest that the neglect
of indirect effect due to fear in the traditional predator–prey models, such as models of
the form of (1.1), may not be reasonable for many species. This means that the existing
mathematical models for predator–prey interactions need to be modified to include
the fear effect that is indirect. Recently, Wang et al. (2016) and Wang and Zou (2017,
2018)made some initial efforts along this direction by an ordinary differential equation
(ODE) model, a delay differential equation (DDE) model, and a partial differential
equation (PDE) model, respectively, to address different aspects of the anti-predation
responses of the prey caused by the fear. This work is mainly motivated byWang et al.
(2016) which proposed the following ODE model
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⎧
⎪⎨

⎪⎩

du

dt
= f (k, v(t)) r0 u(t) − d u(t) − a u2(t) − g(u(t)) v(t),

dv

dt
= c g(u(t)) v(t) − m v(t),

(1.2)

where u is the population density of prey species , v is the population density of
predator species, r0 is the reproduction rate of prey in the absence of predator, d is the
natural (density independent) death rate and the term au2 = (au)u reflects the crowing
effect with au accounting for density dependent death rate, c is the biomass transform
efficiency constant. The function g(u) is the functional response which is assumed to
depend on the prey population only. Here, the function f (k, v) is incorporated into the
model to account for the prey’s anti-predation response with the positive parameter
k measuring the response level due to the prey’s perceived fear, and hence, f (k, v)

is decreasing in k and v. By analyzing this model, Wang et al. (2016) obtained some
interesting results on how the anti-predation response affects the population dynamics
of this predator–prey model.

Obviously, in (1.2) only the cost of the anti-predation response in prey’s repro-
duction is considered, but the benefits of such responses are ignored. However, there
should be some benefits, as the prey’s anti-predation response will obviously decrease
the chance of the prey being caught by predators. This suggests a replacement of g(u)

in (1.2) by g(k, u) which is decreasing in the response level parameter k. Moreover,
in (1.2) it is assumed that the biomass transfer from prey to predator after predation
is instantaneous. But in reality, such transfer takes time [see, e.g., Cushing (1977),
Wangersky and Cunningham (1957), Li and Li (2012), Xu (2011) and the references
therein]. With the above observations of the mentioned two drawbacks in (1.2), we
propose, in this paper, the following modification:

⎧
⎪⎨

⎪⎩

du

dt
= f (k, v(t)) r0 u(t) − d u(t) − a u2(t) − g(k, u(t)) v(t),

dv

dt
= c g(k, u(t − τ)) v(t − τ) − m v(t).

(1.3)

where τ ≥ 0 is the average time needed for biomass transfer after predation from prey
to predator. Here, by the meanings of the parameter k, and the nonnegative functions
f (k, v) and g(k, u), it is reasonable to pose the following assumptions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f (0, v) = 1, f (k, 0) = 1, ∂ f
∂k < 0, ∂ f

∂v
< 0,

limk→∞ f (k, v) = 0, limv→∞ f (k, v) = 0,

g(k, 0) = 0, ∂g
∂k < 0,

limk→∞ g(k, u) = 0.

(1.4)

This model is a system of delay differential equations and hence is of infinite
dimension. In the rest of the paper, we will analyze this infinite dimensional dynamical
system. To make the analysis more explicit and for convenience of comparison, we
will follow Wang et al. (2016) to consider two particular forms for the functional
response g: (i) Holling Type I (linear) and (ii) Holling type II. The main concern is
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the longtime dynamics, and thus, we will perform stability analysis by employing the
stability theory and methods for delay differential equations. For the linear functional
response mediated by the prey’s anti-predation response, we find that there are two
thresholds for the anti-predation strategy k: when k is large, the prey species can always
survive from the predation and predator species will die out; an intermediate value
of k will lead to a stable coexistence equilibrium; when k is further decreased to a
very small level, the coexistence equilibrium becomes unstable and a Hopf bifurcation
occurs, leading to the occurrence of a stable periodic solution. This is in strong contrast
to the results for (1.2) in Wang et al. (2016), where there is no Hopf bifurcation when
the functional response is linear. For the Holling Type II functional response mediated
by the prey’s anti-predation response, we do similar analysis and the analytic results
reveal how the cost and benefit of the prey’s anti-predation response interplay to affect
the population dynamics. We also perform some numerical simulations to confirm our
analytic results, and to explore, more visually, how the anti-predation strategies and
the biomass transfer delay will impact the population dynamics.

The remainder of this paper is organized as follows. In Sect. 2, we will address
the well-posedness of the model system (1.3) including the existence and uniqueness
of solution to (1.3) with biologically meaningful initial conditions, the positivity and
boundedness of the solution. In Sect. 3, we investigate the existence and stability of
equilibria. To this end, we consider two particular forms for the functional response
g, with Sect. 3.1 dealing with the linear functional response mediated by the prey’s
anti-predation response, and Sect. 3.2 covering the case of Holling Type II functional
response. In Sect. 4, we present some numeric results to confirm and demonstrate our
analytic results. In Sect. 5, we summarize our main results and discuss their biological
implications. We also discuss some possible future projects along this direction of fear
effect in predator–prey interactions.

2 Well-Posedness of theModel

Themodel (1.3) is a systemof delay differential equations forwhich an initial condition
needs to be specifiedon the interval [−τ, 0]. Considering the biologicalmeanings of the
variables u and v, nonnegativity is required, motivating the following initial condition

{
u(θ) = u0(θ),

v(θ) = v0(θ),
(2.1)

where (u0(θ), v0(θ)) ∈ C ([−τ, 0],R2+
)
.

By the fundamental theory of functional differential equations (see, e.g., Hale
and Lunel 1993), the system (1.3)–(2.1) has a unique solution (u(t), v(t)) =
(u(t, u0, v0), v(t, u0, v0)) which exists in a maximal interval [0, Tm). We now prove
the well-posedness of (1.3) in the sense that u(t) ≥ 0 and v(t) ≥ 0 for all t ∈ [0, Tm),
and Tm = ∞ meaning that the solution exists globally. Indeed, the nonnegativity of
u(t) and v(t) is a direct result of Theorem 2.1 in Smith (1995). To prove that Tm = ∞,
by the extension theory for delay differential equations (see, e.g., Hale and Lunel
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1993), we just need to establish a priori boundedness for the solution. To this end, we
consider W (t, τ ) = u(t − τ) + v(t)/c. Simple calculations lead to

W ′(t) = r0 u(t − τ) f (k, v(t − τ)) − d (u(t − τ)) − a u2(t − τ) − m

c
v(t)

≤ (r0 − d) u(t − τ) − m

c
v(t) − a u2(t − τ)

≤ r0 u(t − τ) − a u2(t − τ) − min
(
d,

m

c

)
W

≤ r20
4a

− min
(
d,

m

c

)
W =: r20

4a
− μW ,

where μ = min(d,m/c). This implies that lim supt→∞ W (t) ≤ r20/(4aμ), conclud-
ing the boundedness of u(t − τ) + v(t)/c. Since we have already shown that u(t) and
v(t) are nonnegative, u(t) and v(t) are also bounded.

Combining the above, we have proved the well-posedness of (1.3)–(2.1) as stated
in the following theorem.

Theorem 2.1 Initial value problem (1.3)–(2.1) has a unique solution which exists for
all t ≥ 0 and is bounded in [0,∞).

3 Equilibria and Their Stability

In this section, we investigate the longtime behavior of solutions to (1.3)–(2.1). To
be more concrete, we will consider two particular forms for the functional response
g(k, u): (i) linear; (ii) Holling Type II.

3.1 Model with Linear Functional Response

In this subsection, we consider g(k, u) being linear in u, that is, g(k, u) = ρ(k)u.
With this choice, (1.3) becomes

du

dt
= r0 u(t) f (k, v(t)) − d u(t) − a u2(t) − ρ(k) u(t) v(t),

dv

dt
= c ρ(k) u(t − τ) v(t − τ) − m v(t),

(3.1)

The dependence of g(k, u) on k assumed in (1.4) naturally poses the following con-
dition on ρ(k):

{
ρ(k) is a decreasing function with respect to k,

limk→∞ ρ(k) = 0.
(3.2)

System (3.1) has three possible equilibrium solutions. The trivial equilibrium E0 =
(0, 0) always exists. When r0 > d, there exists a predator-free equilibrium Eu =
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( r0−d
a , 0). A unique positive (coexistence) equilibrium exists when

r0 >
a m

c ρ(k)
+ d. (3.3)

The positive equilibrium is denoted by E+ = (ū, v̄) with ū and v̄ satisfying

ū = m

cρ(k)
,

r0 f (k, v̄) − d − aū − ρ(k)v̄ = 0.
(3.4)

Remark 3.1 Notice that ρ(k) is a decreasing function and limk→∞ ρ(k) = 0. There-
fore, for any set of other parameters in (3.1), there exists a critical value k∗ ≥ 0, such
that, when k > k∗, the condition (3.3) fails, implying that there is no positive solution
when k > k∗.

3.1.1 Local Stability and Hopf Bifurcation

In this section, we study the local stability for each of the equilibrium solution. The
linearization of (3.1) near an equilibrium (u∗, v∗) is given by

du

dt
= [r0 f (k, v∗) − d − 2 a u∗] u(t) − ρ(k) u∗ v(t) − ρ(k) v∗ u(t)

+
(

r0 u
∗ ∂ f

∂v

∣
∣
∣
∣
v∗

)

v(t),

dv

dt
= c ρ(k) u∗ v(t − τ) + c ρ(k) v∗ u(t − τ) − m v(t), (3.5)

where (u∗, v∗) denotes the corresponding equilibrium.
The characteristic equation of (3.5) at E0 = (0, 0) is

(r0 − d − λ)(−m − λ) = 0. (3.6)

Therefore, if r0 < d, E0 is locally asymptotically stable. If r0 > d, E0 is unstable.
Now if r0 > d, there exists a predator-free (semi-trivial) equilibrium Eu =

( r0−d
a , 0), the characteristic equation of which is given by

(−r0 + d − λ)

[

c ρ(k) e−λ τ r0 − d

a
− m − λ

]

= 0. (3.7)

Since r0−d > 0,−r0+d−λ = 0 only has a negative root. Other roots are determined
by the equation

c ρ(k) e−λ τ r0 − d

a
− m − λ = 0. (3.8)
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This transcendental equation is in the form of the Hayes equation, and hence, the
existing results for this equation can be employed. Note that c ρ(k) r0−d

a > 0 > −m
provided that r0 > d, by Hayes (1950) (also see Hale and Lunel 1993 or Smith 2010),
Eu is locally asymptotically stable if c ρ(k) r0−d

a − m < 0 and Eu is unstable if

c ρ(k) r0−d
a −m > 0. In other words, r0 < a m

c ρ(k) + d [reverse of (3.3)] is a necessary
and sufficient condition for Eu to be locally asymptotically stable.

When condition (3.3) holds, there is a unique positive equilibrium E+ = (ū, v̄), at
which, the corresponding characteristic equation reads

λ2 + (a ū + m)λ+m a ū + e−λ τ

[

−m λ + m ρ(k) v̄ − r0 m v̄
∂ f

∂v

∣
∣
∣
∣
v̄

− a m ū

]

= 0.

(3.9)

When τ = 0, since a ū > 0 and m ρ(k) v̄ − r0 m v̄
∂ f
∂v

∣
∣
∣
v̄

> 0, by the Routh–Hurwitz

criterion, all roots of the resulting quadratic equation have negative real parts. Now,
we check if pure imaginary roots are possible for τ > 0. Plugging λ = ω i (ω > 0)
into (3.8) and separating the real and imaginary parts, we obtain

⎧
⎨

⎩

m ω sin(ωτ) −
[
m ρ(k)v̄ − r0 m v̄

∂ f
∂v

∣
∣
∣
v̄

− a m ū
]
cos(τ ω) = −ω2 + m a ū,

m ω cos(ωτ) +
[
m ρ(k)v̄ − r0 m v̄

∂ f
∂v

∣
∣
∣
v̄

− a m ū
]
sin(τ ω) = (a ū + m)ω,

(3.10)

By eliminating the trigonometric functions in (3.10), we obtain the following equation
for ω > 0:

ω4 + (p21 − q21 − 2p0)ω
2 + p20 − q20 = 0 (3.11)

where p0 = m a ū, p1 = a ū+m, q0 = m ρ(k)v̄−r0 m v̄
∂ f
∂v

∣
∣
∣
v̄
−a m ū and q1 = −m.

Simple calculation shows p21 − q21 − 2p0 = (aū)2 > 0. Now, we distinguish two
exclusive cases: (A) p20 > q20 ; and (B) p20 < q20 .

For (A), Eq. (3.11) has no positive solution, implying that (3.9) can not have pure
imaginary roots for all τ > 0. Therefore, the coexistence equilibrium is locally asymp-
totically stable for all τ > 0.

For (B), (3.11) has a unique positive root

ω0 =
⎛

⎝
−a2 ū2 +

√

a4 ū4 − 4 p40 + 4 q40
2

⎞

⎠

1
2

. (3.12)

Plugging ω = ω0 into (3.10) and solving the resulting equation for sinω0τ and
cosω0τ , we obtain
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⎧
⎪⎪⎨

⎪⎪⎩

cos(ω0 τ) = q0 ω2
0 − q0 p0 − p1 q1 ω2

0

q20 + q21 ω2
0

=: P0

sin(ω0 τ) = p1 ω0 + q1 ω0P0
q0

=: Q0

(3.13)

From this, we obtain a sequence of critical values for the delay parameter τ :

τn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

ω0
arccos

q0 ω2
0 − q0 p0 − p1 q1 ω2

0

q20 + q21 ω2
0

+ 2nπ

ω0
, n = 0, 1, . . . , if Q0 > 0;

1

ω0

[

2π − arccos
q0 ω2

0 − q0 p0 − p1 q1 ω2
0

q20 + q21 ω2
0

]

+ 2nπ

ω0
, n = 0, 1, . . . , if Q0 < 0.

(3.14)

Therefore, in this case, the coexistence equilibrium is locally asymptotically stable
when τ < τ0. At τ = τ0, (3.8) has a pair of pure imaginary roots±iω0. We now verify
the transversality condition at τ = τ0. We claim that

d(	(λ))

dτ

∣
∣
∣
∣
τ=τ0

> 0. (3.15)

Indeed, differentiating Eq. (3.9) with respect to τ , we obtain

(
dλ

dτ

)−1

= 2 λ + p1 + q1 e−λ τ

e−λ τ λ(q1 λ + q0)
− τ

λ
. (3.16)

Thus, at τ = τ0 (λ = iω0), we have

sgn

(
d	(λ)

dτ

∣
∣
∣
∣
τ=τ0

)

= sgn

(

	 d(λ)

dτ

∣
∣
∣
∣
τ=τ0

)

= sgn

⎛

⎝	
(
d(λ)

dτ

∣
∣
∣
∣
τ=τ0

)−1
⎞

⎠

= sgn

(

	
[
2 λ + p1 + q1 e−λ τ

e−λ τ λ(q1 λ + q0)
− τ

λ

]∣
∣
∣
∣
λ=i ω0

)

= sgn

(
−ω0(p1 q1 − 2 q0) cos(ω0 τ) + (2 q1 ω2

0 + p1 q0) sin(ω0 τ) − q21 ω0

ω0(q21 ω2
0 + q20 )

)

.

(3.17)

Plugging (3.13) into (3.17) and simplifying, we obtain

	
(
d((λ))

dτ

∣
∣
∣
∣
τ=τ0

)−1

= p21 − q21 − 2p0 + 2ω2

q21 ω2
0 + q20

= a2 ū2 + 2ω2

q21 ω2
0 + q20

> 0, (3.18)

implying

d(	(λ))

dτ

∣
∣
∣
∣
τ=τ0

> 0.
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This verifies the transversality condition at τ = τ0. Therefore, when τ increases to
pass τ0, Hopf bifurcation occurs.

Summarizing the above analysis, we have proved the following theorem.

Theorem 3.1 For model system (3.1), the following results hold.

(i) When r0 < d, there is only the trivial equilibrium E0 = (0, 0) and it is locally
asymptotically stable.

(ii) When d < r0 < d + a m
c ρ(k) , then E0 = (0, 0) becomes unstable and there is

the predator-free equilibrium Eu =
(
r0−d
a , 0

)
which is locally asymptotically

stable.
(iii) When r0 > d + a m

c ρ(k)) , both E0 and Eu are unstable and there is a third equilib-

rium, the positive (or coexistence) equilibrium E+. Moreover,

(iii)-1 if p0 > q0, then E+ = (ū, v̄) is locally asymptotically stable for all τ > 0;
(iii)-2 if p0 < q0, there is a τ0 > 0 such that E+ = (ū, v̄) is locally asymptotically

stable when 0 < τ < τ0 and is unstable when τ > τ0. Furthermore, there
is a Hopf bifurcation of E+ at τ = τ0, leading to the occurrence of periodic
solutions.

Remark 3.2 By Theorem (3.2) in Wang et al. (2016), we know that the ODE model
(1.2) with the linear functional response can never have periodic solutions. But in our
modified model (3.1) with both cost and benefit of the anti-predation response and
biomass transfer delay incorporated, even for the linear functional response, within
certain range of other parameters and time delay, the stability of the coexistence
equilibrium can be destroyed, leading to the occurrence of periodic solutions through
Hopf bifurcation. Although we used the delay τ as the bifurcation parameter, we can
also use an alternative parameter as the bifurcation parameter. For example, if we use
k as bifurcation parameter, we can also confirm Hopf bifurcation when k passes some
critical value. We will discuss this in more detail in Sect. 5.

3.1.2 Global Stability of the Boundary Equilibria E0 and Eu

Theorem 3.1-(i) and (ii) established the local asymptotical stability of E0 and Eu ,
respectively. In this subsection, we show that E0 and Eu are actually globally asymp-
totically stable under the respective condition.

Theorem 3.2 When r0 < d, there is only one trivial equilibrium E0 = (0, 0) and it is
globally asymptotically stable.

Proof Consider the Lyapunov functional V (t) = u(t)+ v(t)
c + ρ(k)

∫ t
t−τ

u(s) v(s)ds.
Calculating the derivative of V along the trajectory of (3.1) yields

V̇ = r0 u(t) f (k, v(t)) − d u(t) − a u2(t) − m v(t)

c
. (3.19)

Therefore, V̇ ≤ 0 provided r0 < d [note that f (k, v(t)) ≤ 1 by (1.4)]. V̇ = 0 if and
only if u(t) = v(t) = 0. Thus, u(t) → 0 and v(t) → 0 as t → ∞, implying that
E0 = (0, 0) is globally asymptotically stable. 
�
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Theorem 3.3 When d < r0 < d + a m
c ρ(k) , Eu =

(
r0−d
a , 0

)
is globally asymptotically

stable.

Proof Note that

du

dt
= r0 u(t) f (k, v(t)) − d u(t) − a u2(t) − ρ(k) u(t) v(t)

≤ r0 u(t) − d u(t) − a u2(t)

since f (k, v(t)) ≤ 1. By the property of the logistic equation and the comparison
theorem, for any ε > 0, there exist a T = T (ε) > 0, such that u(t) < r0−d

a + ε when
t > T . Then, for t > T + τ , the DDE for v(t) satisfies

dv

dt
= c ρ(k) u(t − τ) v(t − τ) − m v(t)

< c ρ(k)

(
r0 − d

a
+ ε

)

v(t − τ) − m v(t). (3.20)

This establishes the following comparison (from above) equation for the variable v(t)

dx

dt
= c ρ(k)

(
r0 − d

a
+ ε

)

x(t − τ) − m x(t). (3.21)

Since r0 < d + a m
c ρ(k) and ε is arbitrary, we can choose ε < m

c ρ(k) − r0−d
a so that

c ρ(k)
(
r0−d
a + ε

)
− m < 0 and c ρ(k)

(
r0−d
a + ε

)
> 0 > −m. For such chosen

ε, by Theorem 4.7 in Smith (2010), the trivial solution x = 0 of (3.21) is globally
asymptotically stable, meaning that every solution x(t) of (3.21) satisfies x(t) → 0 as
t → ∞. Since (3.21) is linear and cooperative, by (3.20) and the comparison theorem
[see, e.g., Theorem 4.1 in Smith (1995)], we have 0 ≤ v(t) ≤ x(t), implying that
v(t) → 0 as t → ∞. Now by the theory of asymptotically autonomous systems in
Castillo-Chavez and Thieme (1995), the behavior of u is governed by the limiting
equation

du

dt
= r0 u(t) − d u(t) − a u2(t).

By the result on a logistic equation, we then conclude that u(t) → r0−d
a as t → ∞.

Therefore, we have proved that Eu =
(
r0−d
a , 0

)
is globally asymptotically stable. 
�

3.2 Model with the Holling Type II Functional Response

In this subsection, we study the model system (1.3) with Holling Type II functional
response
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g(u(t), k) = ρ(k)
p u(t)

1 + q u(t)
. (3.22)

To make the model more mathematically tractable, in this subsection we also choose
some particular forms for the functions ρ(k) and f (v, k) that represent the fear effect
through the response level parameter k as below:

ρ(k) = 1

1 + c1 k
, f (v(t), k) = 1

1 + c2 k v(t)
. (3.23)

With the above adoptions, model (1.3) becomes

⎧
⎪⎪⎨

⎪⎪⎩

du

dt
= r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) − p u(t) v(t)

1 + q u(t)
· 1

1 + c1 k
,

dv

dt
= c

1 + c1 k
· p u(t − τ) v(t − τ)

1 + q u(t − τ)
− m v(t),

(3.24)

Here, we introduce two constants c1 and c2 to describe the decreasing rate of repro-
duction and predation, respectively, with respect to the response level k.

This system also has three possible equilibrium solutions. The trivial equilibrium
E0 = (0, 0) always exists. When r0 > d, there exists the predator-free equilibrium
Eu = ( r0−d

a , 0). A positive (coexistence) equilibrium is determined by solving the
system

⎧
⎪⎪⎨

⎪⎪⎩

0 = r0
1 + c2 k v̄

− d − a ū − p v̄

1 + q ū
· 1

1 + c1 k
,

0 = c

1 + c1 k
· p ū

1 + q ū
− m.

(3.25)

The second equation does not contain variable v, and it has a positive solution for u if
and only if

c p > m q(1 + c1 k), (3.26)

and the solution is given by

ū = m(1 + c1 k)

c p − m q(1 + c1 k)
.

Plugging this ū into the first equation in (3.25) gives the following quadratic equation
for the variable v:

a2 v2 + a1 v + a0 = 0 (3.27)
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where

⎧
⎪⎨

⎪⎩

a2 = c2 k p,

a1 = p + (d + a ū)(1 + q ū)(1 + c1 k)c1 k,

a0 = (1 + q ū)(1 + c1 k)(d + a ū − r0).

Note that under (3.26), both a1 and a2 are positive, and a0 < 0 if and only if d +aū−
r0 < 0 which is equivalent to

m(1 + c1 k)

c p − m q(1 + c1 k)
<

r0 − d

a
. (3.28)

By the property of quadratic functions, we conclude that (3.27) has a positive solution
v̄ if and only if (3.28) holds. Summarizing the above, when r0 > d, there exists a
unique positive equilibrium (ū, v̄) if and only if

0 <
m(1 + c1 k)

c p − m q(1 + c1 k)
<

r0 − d

a
. (3.29)

3.2.1 Local Stability and Hopf Bifurcation

In this subsection, we study the local stability for each of the equilibrium solutions.
The linearization of (3.24) at an equilibrium (u∗, v∗) is given by

⎛

⎜
⎜
⎜
⎝

d u

d t

d v

d t

⎞

⎟
⎟
⎟
⎠

=
⎛

⎝
J11 J12

0 −m

⎞

⎠

⎛

⎝
u(t)

v(t)

⎞

⎠+
⎛

⎝
0 0

K21 K22

⎞

⎠

⎛

⎝
u(t − τ)

v(t − τ)

⎞

⎠ (3.30)

where

J11 = r0
1 + c2 k v∗ − d − 2 a u∗ − p v∗

(1 + c1 k)(1 + q u∗)2
,

J12 = − c2 k r0 u∗

(1 + c2 k v∗)2
− p u∗

(1 + c1 k)(1 + q u∗)
,

K21 = c p v∗

(1 + c1 k)(1 + q u∗)2
,

K22 = c p u∗

(1 + c1 k)(1 + q u∗)
.

From (3.30), we can derive the characteristic equation as

(λ − J11)(λ + m − K22e
−τ λ) − J12 K21e

−τ λ = 0. (3.31)
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At E0 = (0, 0), J11 = r0 − d, J12 = J21 = K12 = K22 = 0, and hence, the
characteristic equation of (3.31) becomes

(λ − r0 + d)(λ + m) = 0.

Therefore, if r0 < d, E0 is locally asymptotically stable. If r0 > d, E0 is unstable.
Now if r0 > d, there exists the predator-free (semi-trivial) equilibrium Eu =

( r0−d
a , 0), at which the characteristic equation is given by

(λ − d + r0)

(

λ + m − c p û

(1 + c1 k)(1 + q û)
e−τ λ

)

= 0 (3.32)

where û = r0−d
a . Since r0 − d > 0, λ − d + r0 = 0 only has a negative root. Other

roots of (3.32) are determined by the equation

λ + m − c p û

(1 + c1 k)(1 + q û)
e−τ λ = 0. (3.33)

Noting that c p û
(1+c1 k)(1+q û)

> 0 > −m, again by the results for the Hayes equation
given in Hayes (1950) (also see Hale and Lunel 1993 or Smith 2010), Eu is locally
asymptotically stable if

c p û

(1 + c1 k)(1 + q û)
− m < 0, (3.34)

and Eu is unstable if (3.34) is reversed. Calculation shows that (3.34) is equivalent to

m(1 + c1 k) > [c p − m q(1 + c1 k)] r0 − d

a
,

which holds if

either { c p < m q(1 + c1 k) } ,

or

{

c p > m q(1 + c1 k) > 0 and
m(1 + c1 k)

c p − m q(1 + c1 k)
>

r0 − d

a

}

.
(3.35)

Note that (3.35) is nothing but precisely the violation of (3.29). Therefore, it is the loss
of stability of Eu that leads to the occurrence of the positive equilibrium E+ = (ū, v̄).

When condition (3.29) holds, there is a unique positive equilibrium E+ = (ū, v̄)

with the following characteristic equation

λ2 + (m − J11)λ − J11 m + e−λ τ (−m λ + J11 m − J12 K21) = 0 (3.36)

where K22 has been simplified to m for this case.
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When τ = 0, (3.36) reduces to

λ2 − J11λ − J12 K21 = 0. (3.37)

Note that J12 < 0 and K21 > 0. Thus, if J11 < 0, then by the Routh–Hurwitz criterion,
the above quadratic equation only has roots with negative real parts. Now we check,
under the condition J11 < 0, if the roots of (3.36) will cross the pure imaginary axis
to enter the right half plane in the complex plane as τ increases.

Plugging λ = ω i into (3.36) and separating the real and imaginary parts, we obtain

{
m ω sin(ωτ) − (J11m − J12 K21) cos(τ ω) = −ω2 − J11m,

m ω cos(ωτ) + (J11m − J12 K21) sin(τ ω) = (−J11 + m)ω,
(3.38)

Eliminating the cosine and sine functions by trigonometric identity leads to the fol-
lowing equation for ω:

ω4 + J 211 ω2 +
(
2m J11 J12 K21 − J 212 K

2
21

)
= 0. (3.39)

Note that this is indeed a quadratic equation for ω2 and J 211 > 0. Thus, when

2m J11 J12 K21 − J 212 K
2
21 > 0, (3.40)

then (3.39) has no positive solution, implying that no root of (3.36) will cross the pure
imaginary axis for all τ ≥ 0; that is, all roots remain in the left half complex plane for
all τ ≥ 0. Therefore, the coexistence equilibrium is locally asymptotically stable for
all τ ≥ 0, provided that J11 < 0 and (3.40) holds.

If J11 < 0 but (3.40) is reversed, then (3.38) has a unique positive root

ω0 =

√
√
√
√−J 211 +

√

J 411 − 4 · (2m J11 J12 K21 − J 212 K
2
21

)

2
,

corresponding to which, τ has a sequence of values

τn = 1

ω0
arccos

ω2
0 m(−J11 + m) + (ω2

0 + J11 m)(J11m − J12 K21)

m2 ω2
0 + (J11m − J12 K21)2

+2 n π

ω0
, n = 0, 1, 2, . . . ,

which are possible critical values for τ atwhichHopf bifurcationmayoccur. Therefore,
the coexistence equilibrium is locally asymptotically stable when τ < τ0 where

τ0 = 1

ω0
arccos

ω2
0 m(−J11 + m) + (ω2

0 + J11 m)(J11m − J12 K21)

m2 ω2
0 + (J11m − J12 K21)2

. (3.41)
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When τ = τ0, (3.36) has a pair of pure imaginary roots ±iω0. In order to confirm
Hopf bifurcation at the first critical value τ = τ0, we need to verify the transversality
condition, that is,

d	(λ)

dτ

∣
∣
∣
∣
τ=τ0

> 0. (3.42)

Indeed, differentiating Eq. (3.36) with respect to τ , we have

(
dλ

dτ

)−1

= m − J11 + 2 λ − m e−λ τ

e−λ τ λ(−m λ + J11m − J12 K21)
− τ

λ
.

Hence, at τ = τ0 (λ = iω0),

sgn

(
d	(λ)

dτ

∣
∣
∣
∣
τ=τ0

)

= sgn

(

	 d(λ)

dτ

∣
∣
∣
∣
τ=τ0

)

= sgn

⎛

⎝	
(
d(λ)

dτ

∣
∣
∣
∣
τ=τ0

)−1
⎞

⎠

= sgn

(

	
[

m − J11 + 2 λ − m e−λ τ

e−λ τ λ(−m λ + J11m − J12 K21)
− τ

λ

]∣
∣
∣
∣
λ=i ω0

)

= sgn

(
k1 cos(ω0 τ) + k2 sin(ω0 τ) − m2 ω0

ω0[(J 211 + ω2
0)m

2 − 2m J11 J12 K21 + J 212 K
2
21]

)

where k1 = ω0(I11 m − 2 J12 K21 + m2) and k2 = m2 J11 + m(−J 211 − J12 K21 −
2ω2

0) + J11 J12 K21.
From system (3.38), we have

cos(ω0 τ) = ω2
0 m(−J11 + m) + (ω2

0 + J11 m)(J11m − J12 K21)

m2 ω2
0 + (J11m − J12 K21)2

,

sin(ω0 τ) = −ω2
0 − J11m + (J11 m − J12 K21) cos(ω0 τ)

m ω0
.

(3.43)

Consequently,

	
(
d(λ)

dτ

∣
∣
∣
∣
τ=τ0

)−1

= J 211 + 2ω2

(J 211 + ω2
2)m

2 − 2m J11 J12 K21 + J 212 K
2
21

> 0.

(3.44)

Therefore, the transversal condition holds and there occurs a Hopf bifurcation at τ =
τ0.

If (3.29) holds but J11 > 0, then Eq. (3.36) only has roots with positive real parts
when τ = 0, meaning that the positive equilibrium E+ = (ū, v̄) is unstable when
τ = 0. Now, we follow the same procedure to check if the roots of (3.36) will cross
the pure imaginary axis to enter the left half plane in the complex plane as τ increases.
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Plugging λ = ω i into (3.36) and separating the real and imaginary parts, we still
obtain the system (3.38) and Eq. (3.39) for ω. But now, since J11 > 0, the condition
(3.40) is reversed, and thus, (3.38) has a unique positive root ω0. Differentiating Eq.
(3.36) and evaluating at λ = iω0, we find that (3.44) still holds, implying that any
roots on the right half of the complex plane will remain on the right half plane as τ

increases. This means that the positive equilibrium E+ = (ū, v̄) remains unstable for
all τ > 0.

Summarizing the above analysis, we have proven the following theorem,

Theorem 3.4 For model system (3.24), the following hold.

(i) When r0 < d, there is only the trivial equilibrium E0 = (0, 0) and it is locally
asymptotically stable; when r0 > d, it becomes unstable and there is the predator-
free equilibrium Eu.

(ii) For Eu, when (3.29) is violated (i.e., (3.35) holds), Eu is locally asymptotically
stable; when (3.29) holds, then Eu becomes unstable and there is the positive
(coexistence) equilibrium E+.

(iii) Assume (3.29) holds so that E+ exists and suppose J11 < 0 holds.

(iii)-1 If (3.40) is satisfied, then E+ = (ū, v̄) is locally asymptotically stable for all
τ > 0

(iii)-2 If (3.40) is reversed, then there is a τ0 > 0 such that E+ = (ū, v̄) is locally
asymptotically stable when 0 < τ < τ0 and unstable when τ > τ0. Fur-
thermore, there is a Hopf bifurcation around E+ at τ = τ0, causing periodic
solutions around E+.

(iv) Assume (3.29) holds so that E+ exists and suppose J11 > 0 holds, then E+ =
(ū, v̄) is unstable for all τ > 0.

Remark 3.3 Comparing with the results for the case with linear functional response
(i.e., (3.1)) in Sect. 3.1, as far as the stability of the coexistence equilibrium is con-
cerned, we have required a condition “J11 < 0” which is needed for the corresponding
ODE when τ = 0 to have its coexistence equilibrium being stable. This should not
be surprising as it is well-known that for an ODE predator–prey model (i.e., without
delay) with a functional response of Holling Type II, the positive equilibrium may
also lose its stability to periodic solutions through Hopf bifurcation. It is very natural
to expect Hopf bifurcation to occur as well when J11 changes signs. But this is quite
analytically demanding, hence we will explore along this line numerically in Sect. 4.

3.2.2 Global Stability of the Boundary Equilibria E0 and Eu

Parallel to Sect. 3.1.2, in this subsection, we study the global asymptotical stability of
the equilibria E0 and Eu .

Theorem 3.5 When r0 < d, the trivial equilibrium E0 = (0, 0) is indeed globally
asymptotically stable.

Proof Consider

V (t) = u(t) + v(t)

c
+ 1

1 + c1k

∫ t

t−τ

p u(s) v(s)

1 + qu(s)
ds.
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Then,

V̇ = r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) − m v(t)

c
. (3.45)

Therefore, V̇ ≤ 0 provided r0 < d, and V̇ = 0 if and only if u(t) = v(t) = 0. Thus,
u(t) → 0 and v(t) → 0 as t → ∞, and hence, E0 = (0, 0) is globally asymptotically
stable. 
�
Theorem 3.6 When d < r0 and (3.34) holds (i.e., (3.29) is violated), Eu =

(
r0−d
a , 0

)

is globally asymptotically stable.

Proof Consider

du

dt
= r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) − p u(t) v(t)

(1 + q u(t)) (1 + c1 k)

≤ r0 u(t) − d u(t) − a u2(t).

By the property of logistic equation and the comparison theorem, for any ε > 0, there
exist a T = T (ε) > 0, such that when t > T , u(t) < r0−d

a + ε. Then, for t > T + τ ,
the DDE for v(t) satisfies

dv

dt
= c

1 + c1 k
· p u(t − τ) v(t − τ)

1 + q u(t − τ)
− m v(t)

<
c

1 + c1 k
·

p
(
r0−d
a + ε

)

1 + q
(
r0−d
a + ε

)v(t − τ) − m v(t).
(3.46)

By (3.34), we can choose ε > 0 sufficiently small so that

c

1 + c1 k
· p

(
û + ε

)

1 + q
(
û + ε

) − m < 0.

By Smith (2010), the trivial solution of

dx

dt
= c

1 + c1 k
· p
(
û + ε

)
x(t − τ)

1 + q
(
û + ε

) − m x(t), (3.47)

is globally asymptotically stable. Note that (3.47) is monotone, by (3.46) and the
comparison theorem, v(t) → 0 as t → ∞. This means that the first equation in
(3.24) is asymptotically autonomous having the following logistic equation as its limit
equation:

du

dt
= r0 u(t) − d u(t) − a u2(t).
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Since û = (r0 − d)/a attracts every positive solution to this logistic equation, by the
theory of asymptotically autonomous systems (see, e.g., Castillo-Chavez and Thieme
1995), we conclude that in the system (3.24) u(t) → û = r0−d

a as t → ∞. Therefore,
every positive solution of (3.24) converges to Eu = (û, 0

)
. This together with the

local stability established in Theorem 3.4 implies that Eu is globally asymptotically
stable. 
�

4 Numerical Simulations

In this section, we present some numerical simulations to illustrate the main analytic
results obtained in Sect. 3, and also to more visually explore the impact of the anti-
predation response level and the biomass transfer time.

We begin with the model (3.1) that adopts the linear functional response, with two
response functions f (k, v) and ρ(k) given by (3.23), that is, the following system:

⎧
⎪⎨

⎪⎩

du

dt
= r0 u(t)

1 + c2 k v(t)
− d u(t) − a u2(t) − u(t) v(t)

1 + c1 k
,

dv

dt
= c u(t − τ) v(t − τ)

1 + c1 k
− m v(t).

(4.1)

We fix the parameters

r0 = 0.03, d = 0.01, a = 0.01, m = 0.05, c = 0.4, c1 = 1, c2 = 1, (4.2)

and demonstrate how k and τ impact the population dynamics. To this end, we transfer
the threshold for r0 in comparison with d + am/cρ(k) for the stability of Eu in (ii)
and (iii) of Theorem 3.1 to a threshold value for k. By setting r0 = d + a m

c ρ(k) and
using the parameter values in (4.2), we obtain k∗ = 15. By Theorem 3.1, when
k > 15, the predator-free equilibrium Eu is stable (as demonstrated in Fig. 1a for
k = 20); when k < 15, Eu becomes unstable and there occurs the unique coexistence
equilibrium E+. For k = 11 < k∗ and with the above parameters, we can numerically
calculate to obtain p0 = 0.00075 and |q0| = 0.0005250388635, giving a situation
of p0 > |q0| (Theorem 3.1-(iii)-1), and hence, E+ is asymptotically stable for any
τ > 0, as demonstrated in Fig. 1b.

When k is further decreased to k = 1, we still have the coexistence equilib-
rium E+, and p0 and q0 are numerically computed to be p0 = 0.000125 and
q0 = 0.0007484621132, corresponding to the scenario in Theorem 3.1-(iii)-(2). Fur-
ther calculations reveal that τ0 = 3.678038406. The numeric solutions are illustrated
inFig. 2, for τ < τ0 and τ > τ0, respectively in (a) and (b). For latter case (τ = 4 > τ0),
the periodic solutions are also illustrated in the u − v plane in Fig. 3. With the param-
eters given in (4.2), we also plot the bifurcation diagrams with respect to time delay
τ (with k = 1 fixed) and anti-predation strategy k (with τ = 2 fixed), respectively,
in Fig. 4a, b. There, the curve represents either the predator population of the stable
positive equilibrium point, or the maximum and the minimum value of the predator
population in the bifurcated periodic solution.
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Fig. 1 Population dynamics of (4.1). a When k = 20 > k∗ = 15, the predator-free equilibrium Eu
is stable, the predator species goes extinct and the prey species eventually goes to its carrying capacity.
b When k = 11 < k∗ = 15, Eu is unstable and there is the coexistence equilibrium E+ which is
asymptotically stable for all τ ≥ 0 since p0 = 0.00075 > |q0| = 0.0005250388635
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Fig. 2 Population dynamics of (4.1). a When k = 1 < k∗, p0 = 0.000125 < q0 = 0.0007484621132,
τ = 2 < τ0 = 3.678038406, the coexistence equilibrium is stable. b τ = 4 > τ0 = 3.678038406, there
occurs a periodic solution

Next demonstrate the results for the model system (3.24) with the following param-
eter values

r0 = 0.03, d = 0.01, a = 0.01, m = 0.05, c = 0.4,

c1 = 1, c2 = 1, p = 0.5, q = 0.6. (4.3)

Since r0 > d, the predator-free equilibrium Eu exists. For its stability, we can similarly
transfer the threshold value for r0 in Theorem 3.4 to a critical value k∗ of k, by setting

r0 = a m(1 + c1 k)

c p − m q(1 + c1 k)
+ d
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Fig. 3 Plot of periodic orbit of (4.1) in u = v plane when k = 1 and τ = 4 > τ0 = 3.678038406
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Fig. 4 Bifurcation diagram for (4.1): a fixing k = 1 and choosing τ as the bifurcation parameter; b fixing
τ = 2 and choosing k as the bifurcation parameter

and solving it for k, leading to the a numeric value k∗ = 2.636363636. Thus, by
Theorem (3.4), when k > 2.636363636, the predator-free equilibrium Eu is stable
(as demonstrated in Fig. 5a), and when k < 2.636363636, Eu becomes unstable
and there occurs the unique coexistence equilibrium E+. As far as the stability of
E+ is concerned under k < k∗ = 2.636363636, it depends on whether J11 < 0
or J11 > 0. When k = 2, numeric calculations give J11 = −0.01184921799 < 0
and 2m J11 J12 K21 − J 212 K

2
21 = 1.723290120 × 10−7 > 0 [i.e., (3.40) holds]. By

Theorem 3.4-(iii)-1, E+ is asymptotically stable (see Fig. 5b).
However, when k is further decreased to k = 1, computations give J11= −

0.003821249991<0 (still negative) but 2m J11 J12 K21 − J 212 K
2
21= − 2.86322377×

10−8 < 0 [i.e., (3.40) is reversed now]. This is the scenario of Theorem 3.4-(iii)-2,
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Fig. 5 Population dynamics of (3.24). a When k = 20 > k∗ = 2.636363636, the predator-free
equilibrium Eu is stable. b When k = 2 < k∗, Eu becomes unstable and there occurs the positive
equilibrium E+ which is asymptotically stable for all τ > 0 because J11 = −0.01184921799 < 0 and(
2m J11 J12 K21 − J212 K

2
21

)
= 1.723290120 · 10−7 > 0
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Fig. 6 When k = 1 < k∗, J11 = −0.003821249991 < 0,
(
2m J11 J12 K21 − J212 K

2
21

)
= −2.86322377·

10−8 < 0. a When τ = 4 < τ0 = 33.27610729, the coexistence equilibrium E+ is still stable; b When
τ = 120 > τ0 = 33.27610729, E+ loses its stability and a periodic solution occurs

meaning that the stability of E+ further depends on the size of delay τ . By (3.41), we
compute to obtain τ0 = 33.27610729. The numeric solutions for τ < τ0 and τ > τ0
are shown in Fig. 6a and b, respectively, for τ = 4 and τ = 120; and plotting in the
u − v plane for the case of Fig. 6b is given in Fig. 7.

Parallel to Fig. 4, we also plot the bifurcation diagrams with respect to delay τ (with
k = 1 fixed) and anti-predation response level k (with τ = 2 fixed), respectively, in
Fig. 8a and b, with the parameters given in (4.3).

We have seen in Theorem 3.4 and mentioned in Remark 3.3 that when J11 > 0, the
system has no stable equilibrium for all τ > 0. In such a case, periodic behavior is
the outcome. This is demonstrated in Fig. 9. Indeed, we not only observe the periodic
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Fig. 7 Periodic orbits when k = 1 and τ = 120
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Fig. 8 Bifurcation diagram for a fix k = 1, choose τ as the bifurcation parameter. b Fix τ = 2, choose k
as the bifurcation parameter

behaviors, but also find that the magnitude of the sustained oscillations (periodic
solutions) is enlarged by τ > 0.

5 Conclusion and Discussion

Recent field studies on the fear effect in predator–prey interactions have trigged the
need to modify existing predator–prey models that do not consider the fear effect. In a
recent workWang et al. (2016), the authors incorporated an anti-predation mechanism
into an ODEmodel to account for the fear effect which leads to a cost in reproduction;
analyzing the model, they have obtained some results on the effect of such an anti-
predation response. In this paper, based on the fact that in addition to cost, there is also
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Fig. 9 By setting k = 3.4, J11 = 0.00084875902838911633 > 0. a Solutions approach to a periodic
solution for τ = 0 (periodic solutions for the ODE). b Periodic behaviors are preserved for τ > 0 and are
actually magnified by τ > 0

a benefit for an anti-predication response; and meanwhile, there is also a time delay
in biomass transfer from prey to predator after predation, we have further modified
the model studied in Wang et al. (2016) to explore the joint effects of both biomass
transfer delay and the fear effect.

FollowingWanget al. (2016),wehave considered two types of functional responses:
Holling Type I and Holling Type II. In both cases, we have obtained and stated our
main results more explicitly in terms of some parameters such as r0 and d, but they
can be translated into statements in terms of the two main parameters k and τ . Such
a translation will lead to loss of some explicitness, but this can be easily achieved
numerically, as demonstrated in Sect. 4. For example, when Holling Type I (linear)
functional response is adopted, Theorem 3.1 can be restated in terms of k and τ as
below:

Theorem 5.1 For the predator–prey system (3.1)with linear functional response under
condition r0 > d, there may exist two critical values of the anti-predation level k that
0 < k̂ < k∗, such that,

(i) When k > k∗, Eu =
(
r0−d
a , 0

)
is globally asymptotically stable. When k < k∗,

Eu =
(
r0−d
a , 0

)
is unstable and there occurs a unique coexistence equilibrium

E+.
(ii) When k∗ > k > k̂, the unique coexistence equilibrium E+ = (ū, v̄) is locally

asymptotically stable for all τ > 0. If 0 < k < k̂, there is a τ0 > 0 such that
E+ = (ū, v̄) is locally asymptotically stable when 0 < τ < τ0 and unstable
when τ > τ0; furthermore, there is a Hopf bifurcation about E+ at τ = τ0.

When Holling type II functional response is adopted, Theorem 3.4 can be restated in
terms of k and τ as below.

Theorem 5.2 Consider the predator–prey system (3.24)withHolling type II functional
response under condition r0 > d.
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(i) There exists a critical value k∗ > 0 such that for k > k∗, Eu =
(
r0−d
a , 0

)
is

globally asymptotically stable. When k < k∗, Eu =
(
r0−d
a , 0

)
is unstable and

there occurs a unique coexistence equilibrium E+ = (ū, v̄).
(ii) When k < k∗ and J11 < 0, there exists another critical value 0 < k̂ < k∗ such

that

(ii)-1 if k̂ < k < k∗, the unique coexistence equilibrium E+ is locally asymptoti-
cally stable for all τ > 0;

(ii)-2 if 0 < k < k̂, there is a τ0 > 0 such that E+ is locally asymptotically stable
only when 0 < τ < τ0 and it becomes unstable when τ > τ0; furthermore,
there is a Hopf bifurcation about E+ at τ = τ0.

(iii) When k < k∗ and J11 > 0, a periodic solution occurs even if τ = 0, and it does
not vanish for all τ > 0.

We point out that the critical values k∗ and k̂ in the above translated theorems are
defined implicitly by equations in Theorem 3.4-(ii) corresponding to the thresholds
for the inequalities there, which in general cannot be solved explicitly. However, as
demonstrated in Sect. 4, given the values of other parameters, they can be numerically
calculated.

From the above theorems,wefind that the anti-predation strategy k and the digestion
delay τ play important roles in both models. As long as r0 (the natural growth rate of
prey) is greater than d (the natural death rate of prey), the trivial equilibrium solution
is unstable and the populations of the predator and prey are determined by k and τ ,
in terms of the critical values k∗, k̂ and τ0, as classified in the theorems. Note that
τ0 depends on k, as illustrated in Fig. 10 for both functional responses considered
for the given set of parameter values in (4.3). Also from the equations that determine
the critical values k∗ (r0 = d + am/cρ(k) in Theorem 3.1 and (3.29) in Theorem
3.4), we can see the impact of the incorporated benefit factor ρ(k) as a function of the
anti-predation response level k. This shows the trade-off effect of cost and benefit of
the response k, and is in strong contrast to the corresponding models considered in
Wang et al. (2016), where no benefit was considered (ρ(k) = 1) and hence small k
favors the prey population since k only leads to a cost of reducing the reproduction of
the prey. Also, in the ODEmodel in Wang et al. (2016) with Holling Type I functional
response, there is no periodic solution for any values of the parameter set; however,
with the digestion delay incorporated, periodic phenomenon becomes possible.

We also point out an important difference of the model with Holling Type II func-
tional response from that with Holling Type I functional response. For the former,
when k < k∗, delay caused oscillations can occur only in the case when J11 < 0; and
when J11 > 0, there is also a periodic solution but that is not caused by the delay τ .
This indicates that the sign change of J11 from negative to positive also leads to Hopf
bifurcation, and this is in agreement with the periodic solution observed in the ODE
model with Holling Type II functional response in Wang et al. (2016). Accordingly,
one can also explore the sign change numerically by the formula defining J11 and the
equations in (3.25) that determine the coexistence equilibrium E+ = (ū, v̄).
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Fig. 10 Critical value of time delay for fixed anti-predation level k for both functional responses

The differences between the two functional responses considered in our model are
illustrated in Sect. 4 by using the same set of parameter values. It has been seen that for
a given τ > 0, the critical value k∗ in Holling type II model is much less than that in
the model with linear functional response (2.636363636 vs 15 in our numeric results).
This seems to suggest that anti-predation strategy is more sensitive to the population of
predator with Holling Type II functional response than with Holling Type I. Similarly,
for a given k, the critical delay τ0 in Holling type II model is much greater than that in
the model with linear functional response (see Fig. 10). Thus, the results are actually
specific to the particular choice of the functional response function. This is not sur-
prising to predator–prey modellers as it has been widely known that different kinds
of predation between species have different characteristics and hence, needs to use
different functional responses to capture the main feature. Exploring the joint impacts
of anti-predation response and biomass transfer delay on the population dynamics
with other types of functional responses remains an interesting and worthwhile topic
for future research. We point out that in both cases, we have only explored the Hopf
bifurcation at the first critical value τ0 for the delay parameter. This is because this
value is most important, serving as a threshold for the stability of the positive equilib-
rium E+ and carrying information about the consequence of E+ becoming unstable.
Investigation of the bifurcations at the subsequent critical values τn, n = 1, 2, . . . is
more involving, demanding theory andmethods on global bifurcation and hence could
be very lengthy. Therefore, we decide not to explore in this paper.

We have chosen the ODE model (1.2) from Wang et al. (2016) as the basic model
into which a benefit coming from the anti-predation response and a delay in biomass
transfer are incorporated. Note that this basic model uses the logistic growth for the
prey population and assumes that the predator is a specialist. Other types of growth
for prey population and the predation by generalist predators are also important topics
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to investigate, when the fear effect and the biomass transfer delay are incorporated.
We remark that, also based on (1.2), Das and Samanta (2018) incorporated an extra
food source for the predator and added a white noise to the death rates of the prey
and predator and they analyzed the resulting stochastic model. Mondal et al. (2018)
further considered a digestion delay in addition to the cost of fear, white noise in the
death rates, and extra food for the predator; however, the benefit of the anti-predation
response was not considered.
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