
DOI: 10.1007/s00332-005-0647-z
J. Nonlinear Sci. Vol. 15: pp. 291–303 (2005)

© 2005 Springer Science+Business Media, Inc.

Co-Existence of Chaos and Stable Periodic Orbits
in a Simple Discrete Neural Network

Y. Huang1 and X. Zou2

1 Department of Mathematics, Zhongshan University, Guangzhou 510275, P. R. China
E-mail: stshyu@zsu.edu.cn

2 Department of Applied Mathematics, University of Western Ontario, London, Ontario,
Canada N6A 5B7
E-mail: xzou@uwo.ca

Received June 2, 2004; revised version accepted May 17, 2005
Online publication September 22, 2005
Communicated by J. Bélair

Summary. We show that a simple discrete network of two identical neurons can demon-
strate chaotic behavior near the origin. This is complementary to the results in Wu and
Zhang (Disc. Contin. Dynam. Syst. Series B, 4 (2004), 853–865), where it was shown
that the same system can have a large capacity of stable periodic orbits in a region away
from the origin.
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1. Introduction

In designing a neural network for content-addressable memory of spatial patterns, large
capacity is desirable. In view of dynamical systems, it requires that the model system
for the network have large number of stable (retrievable) periodic solutions. Recently,
Wu and Zhang [21] considered the following simple discrete network of two identical
neurons with excitatory interactions:

{
x(n) = βx(n − 1)+ α f (y(n − k)),

y(n) = βy(n − 1)+ α f (x(n − k)),
(1.1)

where n ∈ N , α > 0, β ∈ (0, 1), and k ≥ 1 is a fixed integer, and f : R→ R satisfies
the following conditions:
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(H1) There are some constants ε > 0 and R > r > 0 such that{
| f (x)− 1| ≤ ε, if x ∈ (r, R],

| f (x)+ 1| ≤ ε, if x ∈ [−R,−r).
(1.2)

(H2) There is a constant L > 0 such that

| f (x)− f (y)| ≤ L|x − y|, ∀x, y ∈ [−R,−r) or x, y ∈ (r, R]. (1.3)

Note that (H2) is the standard Lipschitz condition and (H1) allows a wide range of
activation functions, including the frequently used McCulloch-Pitts step function and
sigmoid functions with large gain f ′(0). Such a system describes the dynamics of a
network of two identical neurons, updated discretely, where the information processing
of a neuron involves the internal decay and feedback from the other neuron with delay.
For this simple network, it was shown in [21] that under certain technical conditions,
for every positive integer p with p|2k, system (1.1) has N (p)/p distinct asymptotically
stable p-periodic solutions. Here the integer N (p) is related to the well-known Möbius
inversion formula as below. Let p = ∏l

i=1 pmi
i , where pi , i = 1, 2, . . . , l, are primes.

For every subset I of the set {1, . . . , l}, let pI =
∏

i∈I pi . Then

N (p) =
∑

I⊂{1,...,l}
(−1)|I |2p/pI . (1.4)

Similar results have also been obtained for networks with more than two distinct
neurons (more choices for the parameters), but with some special connection structure.
For example, [22] deals with a ring structure and [20] considers a block structure. These
results reveal that networks updated discretely can allow amazingly large capacity and
therefore suggest the adoption of discrete networks, as far as memory for spatial patterns
is concerned.

We notice that all periodic solutions obtained in [21] are located in the region 	 =
{(x, y) ∈ R2: a ≤ |x | ≤ b, a ≤ |y| ≤ b} for some positive constants a < b depending
on r , R, α, and β. Thus, one naturally wonders how system (1.1) would behave outside
the region	. Noting that it is well known that difference equations generally have bigger
chances to support chaos than differential equations, it is reasonable for one to expect
chaotic behavior of (1.1) outside 	. In this paper, we will investigate the possibility of
chaos for system (1.1) near the origin. We point out that the obtained results in [21] for
multiplicity and stability of periodic solutions of (1.1) is independent of the behavior of f
on the interval [−r, r ], allowing much flexibility for f near the origin. Taking advantage
of this flexibility, we will show that indeed there are many periodic orbits (but usually
unstable) and even chaotic vibration near the origin for (1.1) under some assumptions
on f .

We would like to mention that chaotic neural networks have potential applications to
various practical problems, for example, to the problem of combinational optimization
(see,. e.g., [8], [9], [10], [13], [14], [17], [19]) and to the problem of dynamical associative
memory (see, e.g., [1], [2]). Taking the traveling salesman problem (TSP) as an example,
the earlier application of neural networks to TSP by Hopfield and Tank [12] suffered from
the existence of numerous local minima, and the probability of convergence to the global
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optimization is very low. However, it has been shown that the global searching ability
of a neural network can be greatly enhanced by incorporating the chaotic simulated
annealing in a discrete neural network, in [1] (see [11] for a review on this topic).

The rest of the paper is organized as follows. In Section 2, we will consider a simple
case of (1.1): k = 1, meaning that there is no time delay in the system. In this case,
system (1.1) is two-dimensional; however, there is an invariant subset for (1.1) on which
the system (1.1) is equivalent to a one-dimensional dynamical system. By appealing to
some existing results on chaos of one-dimensional dynamical systems, we will show
that even in this simplest case, the system still has chaos if the nonlinearity f satisfies
some conditions. In Section 3, we consider the general k ≥ 2, for which (1.1) is 2k
dimensional in essence. We first show that, on the one hand, the dynamics of (1.1) on
a domain outside the ball B(0, r) is topologically semiconjugate to a simple dynamical
system (

∑
, π), which will be specified later. As is known, topological semiconjugacy

is an important notion in dynamical systems. On the other hand, we will identify a
symmetric k-dimensional invariant subset for (1.1) inR2k , and will employ the modified
Morotto Theorem to prove that system (1.1) may have infinitely many (unstable) periodic
orbits and chaos on this subset near the origin under some conditions on f near the origin.
We point out that the reason we separate the case k = 1 from the cases k ≥ 2 is that the
existing results on chaos for one-dimensional maps only require C0 property, while in
the higher dimensional cases, smoothness is required, as will be seen in Section 3.

2. The Case k = 1

In this section, we consider the system (1.1) with k = 1. In this case, the system can be
written as {

x(n) = βx(n − 1)+ α f (y(n − 1)),

y(n) = βy(n − 1)+ α f (x(n − 1)),
(2.1)

which is a dynamical system on R2. Here we are concerned only with the dynamics on
the region D = [−r, r ]× [−r, r ] ⊂ R2.

It is easy to see that the diagonal line L1 � {(x, x); x ∈ R} is an invariant set for
system (2.1). On L1, the dynamics of (2.1) is the same as that of the following one-
dimensional dynamical system:

x(n) = βx(n − 1)+ α f (x(n − 1)) � g(x(n − 1)). (2.2)

Obviously, if (2.2) is chaotic, so is (2.1); if (2.2) has a periodic orbit {pi }l1 with period l,
then {(pi , pi )}l1 is a periodic orbit of (2.1) with the same period l.

To study the discrete dynamical system (2.2), we first review some results about
one-dimensional dynamical systems. For details, see, for example, [4]–[6].

Let I denote a closed interval on the real line and C0(I, I ) the set of all continuous
maps from I into itself. Let g ∈ C0(I, I ). For any positive integer n, we define gn

inductively by g0 = Id , the identity map of I , and gn = g ◦ gn−1.
Let p be a fixed point of g. The unstable manifold W u(p, g) is defined by

W u(p, g) = ∩ε>0 ∪∞n=0 gn((p − ε, p + ε)).
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That is, x ∈ W u(p, g) if for every neighborhood V of p, x ∈ gn(V ) for some positive
integer n.

A point x is said to be a homoclinic point of g if there exists a periodic point p
of period n with x �= p and x ∈ W u(p, gn) such that gnm(x) = p for some positive
integer m.

Definition 2.1. Let g ∈ C0(I, I ). g is said to be chaotic in Li-Yorke’s sense if there
exists an uncountable set S ⊂ I with

lim sup
n→∞

|gn(x)− gn(y)| > 0, ∀x, y ∈ S, x �= y,

and

lim inf
n→∞ |g

n(x)− gn(y)| = 0, ∀x, y ∈ S.

Note that this definition is just one version of the original definition of chaos by Li
and Yorke [16] for scalar maps. The following lemma gives some equivalent conditions
guaranteeing chaos in Li-Yorke’s sense.

Lemma 2.1 ([5]). Let g ∈ C0(I, I ). Then the following statements are equivalent:

(i) g has a periodic point whose period is not a power of 2;
(ii) g has a homoclinic point;

(iii) g has positive topological entropy (see [3] for a definition of topological entropy).

Moreover, each of the above conditions implies that g is chaotic in Li-Yorke’s sense.

From Lemma 2.1, we know that if one of the conditions (i)–(iii) holds, then g has
very complicated dynamical behavior. However, in practice, for a given g ∈ C0(I, I ),
it is generally very difficult, if not impossible, to verify these conditions. Based on
our experience, we feel that (ii) is relatively more convenient. Thus, in the following
theorem, we will establish a chaos result for equation (2.2) by verifying condition (ii)
for the nonlinear map g associated with (2.2).

Theorem 2.1. Assume that f is continuous and satisfies the following conditions: There
exist 0 < r1 < r2 < r , where r is given by (H1), such that

f (0) = f (r1) = 0, (2.3)

f (x) > 0, 0 < x < r1, (2.4)

f (x) < 0, r1 < x < r2. (2.5)

Then there exists a constant α0 > 0 such that for α > α0, system (2.1) is chaotic in
Li-Yorke’s sense on {[−r, r ]× [−r, r ]} ∩ L1.

Proof. Let gα(x) � βx + α f (x). By (2.3) and (2.5), one knows that gα(0) = 0 and
there exists α1 > 0 such that for any α > α1, the equation gα(x) = 0 has a solution
rα ∈ (r1, r2) and rα → r1 as α→∞. Moreover, gα(x) > 0, 0 < x < rα.
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On the other hand, since

lim
α→+∞ max

0≤x≤r1

gα(x) = ∞,

there exists α2 such that for α > α2,

max
0≤x≤r1

gα(x) ≥ r2. (2.6)

Let α0 = max{α1, α2}. For any α > α0, let xα ∈ [0, r1] be the maximum point of gα on
[0, r1], and let pα be the largest fixed point on [0, xα] of gα . Then, in terms of [5], we
have

W u(pα, gα) ⊃ [0, r2].

Since gα(rα) = 0, gα(xα) ≥ r2 by (2.6) and xα > pα , we have

gα([xα, rα]) ⊃ [0, r2].

Thus there exists zα ∈ (xα, rα] ⊂ [0, r2] ⊂ W u(pα, gα) such that gα(zα) = pα . There-
fore zα is a homoclinic point of gα . This completes the proof by Lemma 2.1(ii).

Remark 2.1. In fact, we can give an estimation of α0 for a given signal transmission
function f . For example, if f (0) = 0, βx0 + f (x0) = 0 for some 0 �= x0 ∈ (0, r) and
the maximum of f on [0, x0] is larger than or equal to x0, then g(x) = βx + α f (x) has
a homoclinic point, and thus the corresponding system (2.1) is chaotic in the Li-Yorke
sense for any α > 1.

Remark 2.2. Under the assumption of Theorem 2.1, from Lemma 2.1, one knows that
system (2.1) has a periodic point whose period is not a power of 2. Let g have a periodic
orbit with period m0 · 2l0 for some odd integer m0 > 1 and positive integer l0. Then
g indeed has infinitely many periodic orbits, whose periods can be any positive integer
that is arranged behind the integer m0 · 2l0 according to Sarkovskii’s ordering. More
precisely, if we let P P(g) denote the set of periods of all periodic points of g, then from
the well-known Sarkovskii Theorem, we have

P P(g) ⊃ {p ∈ N+ | p = m2l , or p = 2l ′ , m ≥ 1, l ′ ≥ 0, l ≥ l0}.
Thus, system (2.1) is chaotic and has infinitely many periodic orbits on [−r, r ]× [−r, r ].

3. General k ≥ 2

In this section, we consider general k ≥ 2, for which system (1.1) is equivalent to a
2k-dimensional dynamical system as is shown below. Lettingwj (n) = x(n+ j − k−1)
andwk+ j (n) = y(n+ j−k−1) for j = 1, . . . , k, we then rewrite (1.1) as the following
discrete dynamical system on R2k :

w(n + 1) = F(w(n)), (3.1)
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where F : R2k → R
2k is given by

F




w1
...

wk−1

wk

wk+1
...

w2k−1

w2k



=




w2
...

wk

βwk + α f (wk+1)

wk+2
...

w2k

βw2k + α f (w1)



. (3.2)

We shall denote byw(n, w0) the solution of (3.1) with initial conditionw(0) = w0 ∈ R2k ,
where N denotes the set of all nonnegative integer numbers.

For w = (w1, . . . , w2k)
T ∈ R2k , its norm is defined by

‖w‖ = max
1≤ j≤2k

{|wj |}.

It is easy to see that F is continuous under this norm. Thus we can take (3.1) as a discrete
dynamical system (R2k, F) with finite dimension 2k.

Let S = {−1, 1} be endowed with the discrete topology. Its 2k times product,∑
= S2k = S × S × · · · × S, (3.3)

is a compact metric space. One of its equivalent distances is

ρ(σ 1, σ 2) = max
1≤ j≤2k

{|σ 1
j − σ 2

j |}, σ i = (σ i
1, . . . , σ

i
2k) ∈

∑
, i = 1, 2. (3.4)

Define the cycle shift π on
∑

by

π(σ1, . . . , σ2k) = (σ2, . . . , σ2k, σ1), (3.5)

for (σ1, . . . , σ2k) ∈
∑

. Thus, we obtain another compact topological dynamical system
(
∑
, π). The dynamics of the system (

∑
, π) is very simple, e.g., all points in

∑
are

periodic points of π .
We are now in the position to prove that the system F restricted to some invariant set

in R2k is topologically semiconjugate to (
∑
, π). Recall that the sign function is defined

by

sgn(x) =
{

1, x ≥ 0
−1, x < 0

for x ∈ R.

Let β ∈ (0, 1
2 ) and define

a∗ = α(1− ε)− βb∗, b∗ = α

1− β (1+ ε), (3.6)

where ε ∈ (0, εβ) with εβ = 1− 2β. If r < a∗, R > b∗, let r∗ = min{a∗ − r, R− b∗},
and

ac = a∗ − c, bc = b∗ + c, (3.7)



Co-Existence of Chaos and Stable Periodic Orbits 297

for a given c ∈ [0, r∗). For σ ∈∑, define

	(σ, c) = {w ∈ R2k | |wj | ∈ [ac, bc], sign{wj } = σj , j = 1, . . . , 2k}, (3.8)

	(c) =
⋃
σ∈
∑	(σ, c). (3.9)

Lemma 3.1. Assume that (H1) holds with β ∈ (0, 1
2 ) and r < a∗, R > b∗, where a∗

and b∗ are defined by (3.6). Then, for any c ∈ [0, r∗), the compact set 	(c) given by
(3.9) is an invariant set of F. That is, F(	(c)) ⊂ 	(c).

The proof is included in the proof of Theorem 2.2 in [21].

Theorem 3.1. Under the assumptions of Lemma 3.1, for any c ∈ [0, r∗), the subsystem
(	(c), F) is topologically semiconjugate to the system (

∑
, π). That is, there exists a

continuous and onto mapping h from 	(c) to
∑

such that

h ◦ F = π ◦ h. (3.10)

Proof. For a fixed c ∈ [0, r∗) and w = (w1, w2, . . . , w2k) ∈ 	(c), define

h(w) = (sign(w1), sign(w2), . . . , sign(w2k)). (3.11)

It is routine to check that h is a continuous and onto (but not necessarily 1-1) mapping
from 	(c) to

∑
, since the set 	(c) is away from any axes. By the definitions of F, π

and F and the set 	(c) (see also [21]), we then obtain

h ◦ F(w) = π ◦ h(w), ∀w ∈ 	(c),

completing the proof.

We now explore the dynamics of (3.1) on the set D = {w ∈ R2k | ‖w‖ ≤ r}. It is
easy to see that the set

Lk = {w = (w1, . . . , w2k)
T ∈ R2k | wj = wk+ j , j = 1, . . . , k}

is invariant under F . On this set, the dynamics of F is determined by that of the k-
dimensional dynamical system (Rk,Gα), where

Gα



w1
...

wk−1

wk


 =




w2
...

wk

βwk + α f (w1)


 . (3.12)

To investigate the system (Rk,Gα), we first introduce the concepts of expanding fixed
point and snap-back repeller for a map as below.
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Definition 3.1. Let F be a continuous mapping from RN into itself, and B(z0, r) be the
open ball of radius r centered at z0 with respect to a given norm | · | in RN .

(i) Let F be differentiable in B(z0, r). The point z0 is an expanding fixed point of F in
B(z0, r)with respect to the norm | · | if F(z0) = z0 and there exists a constant s > 1
such that for any x, y ∈ B(z0, r),

|F(x)− F(y)| ≥ s|x − y|. (3.13)

(ii) Assume that z0 is an expanding fixed point of F in B(z0, r) for some r > 0. Then
z0 is said to be a snap-back repeller of F if there exists a point x0 ∈ B(z0, r) with
x0 �= z0, such that Fm(x0) = z0 and the determinant |DFm(x0)| �= 0 for some
positive integer m.

The following theorem shows that the notion of snap-back repeller indeed character-
izes chaotic behavior for multidimensional discrete dynamical systems.

Lemma 3.2. If F possesses a snap-back repeller, then the system (RN , F) is chaotic in
the sense of Li-Yorke. That is,

(i) there is a positive integer K such that for each integer p ≥ K , F has a periodic
point of period p;

(ii) there is a “scrambled set” of F, i.e., an uncountable set S containing no periodic
points of F, such that
(ii1) F(S) ⊂ S,
(ii2) for every xS, yS ∈ S with xS �= yS,

lim sup
k→∞

|Fk(xS)− Fk(yS)| > 0,

(ii3) for every xS ∈ S and any periodic point yper of F,

lim sup
k→∞

|Fk(xS)− Fk(yper)| > 0;

(iii) there is an uncountable subset S0 of S such that for every xS0 , yS0 ∈ S0,

lim inf
k→∞

|Fk(xS0)− Fk(yS0)| = 0.

Remark 3.1. We point out that Definition 3.1(i) is a modification of the original defi-
nition of the expanding fixed point in Marotto [18], where the fixed point z0 of F was
said to be expanding if every eigenvalue λ of DF(z0) satisfies |λ| > 1. Lemma 3.2 was
initially proved in Marotto [18] in his sense of an expanding fixed point, where the author
took it for granted that his “expanding property” of a fixed point z0 would imply (3.13)
under the same norm. However, this is not true, as was pointed out and demonstrated by
examples in [7] and [15]. The work [7] shows that redefining the expanding fixed point
as in our Definition 3.1(i) is a remedy, the cost is that verifying (3.13) is usually much
harder than verifying that every eigenvalue λ of DF(z0) satisfies |λ| > 1. Fortunately,
for system (3.1), we are able to verify (3.13) by a limiting and continuity argument (see
Lemma 3.4).
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The following assumption on the nonlinear activation function f near the origin will
be needed in our main results.

(H3) f : R→ R is continuous differentiable, and there exists x̄ ∈ (−r, r) with x̄ �= 0
such that

f (0) = f (x̄) = 0, f ′(0) �= 0, and f ′(x̄) �= 0, (3.14)

where r > 0 is given by (1.2).

We are now in the position to state and prove our main result.

Theorem 3.2. Assume (H3) holds. Then there exists a positive constant α0 such that for
any α > α0, the system (3.12) is chaotic in the sense of Li-Yorke (and thus, so is (3.1)).
In particular, in this case, (3.1) has infinitely many periodic orbits with different periods
near the origin.

We divide the proof of this theorem into the following lemmas under the same as-
sumption.

Lemma 3.3. There exists r1 such that det G ′α(w) �= 0 for any α > 0 andw ∈ B(0, r1)∩
B(w̄, r1), where G ′(w) is the Jacobian matrix of Gα at w, B(w, a) denotes the ball in
R

k with the center at w and radius a and w̄ = (x̄, 0, . . . , 0)T ∈ Rk .

Proof. A direct calculation shows that for w = (w1, . . . , wk)
T ∈ Rk ,

det G ′α(w) = (−1)k+1α f ′(w1). (3.15)

The conclusion follows from the assumption (H3) and (3.15).

Lemma 3.4. There exist s > 1, α1 > 0, r2 > 0, and a norm in Rk such that

|Gα(w)− Gα(u)| ≥ s|w − u|, (3.16)

for any α > α1 and any w, u ∈ B(0, r2).

Proof. The Jacobian matrix of Gα at 0 is

G ′α(0) =




0 1 0 · · · 0
0 0 1 · · · 0
·· ·· ·· · · · ··
0 0 0 · · · 1

α f ′(0) 0 0 · · · β


 .

Its eigenvalues are determined by

λk − βλk−1 = α f ′(0). (3.17)
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Let α1 = 1+β
| f ′(0)| . From (3.17), one easily knows that for α > α1, all the eigenvalues of

G ′α(0) are strictly larger than 1 in norm. By Chen et al. [7], there exists a norm | · | in Rk

such that

|G ′α(0)w| ≥ s|w|, ∀w ∈ Rk,

for some s = 1+ δ > 1. By continuity of f ′(·), there exists r2 > 0 such that for α > α1,

‖G ′α(w)− G ′α(0)‖2 <
δ

2
, ∀w ∈ B(0, r2).

Therefore

|Gα(w)− Gα(u)| =
∣∣∣∣
∫ 1

0
G ′α(u + t (w − u))(w − u)dt

∣∣∣∣
≥ |G ′α(0)(w − u)| − δ

2
|w − u|

≥
(

1+ δ
2

)
|w − u|, ∀w, u ∈ B(0, r2),

completing the proof.

Lemma 3.5. For a sufficiently small neighborhood O(0) of 0 and any bounded interval
I of R, there exists α3 = α3(O(0), I ) such that the equation α f (x) = y has at least one
solution x ∈ O(0) for any α > α3 and any y ∈ I .

Proof. Since f (0) = 0 and f ′(0) �= 0, for any neighborhood O(0) of the origin, there
exist two neighborhoods U and V of 0 such that U, V ⊂ O(0) and f : U → V is a
homeomorphism. For any bounded interval I , there exists µ0 > 0 such that

µ0 I � {µ0 y | y ∈ I } ⊂ V .

Take α3 = µ0. Then
1

α
I ⊂ V,

for any α > α3. Thus, for any y ∈ I and α > α3, the equation f (x) = 1
α

y has as a
solution x ∈ U ⊂ O(0).

Lemma 3.6. Let k ≥ 2. For any sufficiently small neighborhood W of the origin in Rk ,
there exists a constant α4 such that for any α > α4 there is a 0 �= wα ∈ W with

Gk+1
α (wα) = 0. (3.18)

Proof. Let W be any small neighborhood of the origin in Rk . There are small intervals
U of 0 such that U ×U × · · · ×U ⊂ W . For k = 2, by Lemma 3.5, there exists α′4 such
that for any α > α′4, there are x1, x2 ∈ U with

α f (x2) = −β x̄,

α f (x1) = x̄ − βx2,
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where x̄ is such that f (x̄) = 0. Let wα = (x1, x2)
T . Then wα �= 0, wα ∈ W , and

G3
α(w) = 0.

For k > 2, again by Lemma 3.5, there exists α′′4 > 0 such that for any α > α′′4 , there
are x1, x2 ∈ U with

α f (x1) = x̄, α f (x2) = −β x̄ .

Take wα = (x1, x2, 0, . . . , 0)T . Then 0 �= wα ∈ W and

Gk+1
α (wα) = 0.

Letting α4 = max{α′4, α′′4 }, we obtain the result.

We are now ready for the following:

Proof of Theorem 3.2. Let W be a neighborhood of 0 in Rk , small enough such that
W ∈ B(0, r2), which is a ball centered at 0 with radius r2 with respect to the norm | · |
given in Lemma 3.4. Let α0 = max{α2, α4}. By the Chain Rule, (3.15) and the fact that
f ′(x) �= 0 at x = 0, x1, x2, and x̄ , one easily sees that |DGk+1

α (wα)| �= 0, where α > α0

andwα is as in Lemma 3.6. This, together with Lemmas 3.4 and 3.6, shows that Gα has a
snap-back repeller for any α > α0, completing the proof of the theorem by Lemma 3.2.

Remark 3.2. In the proof of Theorem 3.2, we have shown only the existence of chaos
in the k-dimensional invariant subspace Lk near the origin by showing that the k-
dimensional dynamical system Gα possesses a snap-back repeller, which then implies
the occurrence of chaos in the sense of Li-Yorke by Lemma 3.2 in this subspace. How-
ever, we do not have to confine ourselves to Lk , and the reason we choose Lk is simply
that we want to avoid the mathematical ideas from being hidden behind the complexity
caused by the high dimension. Indeed, calculation shows that the Jacobian matrix of F
at w = (w1, . . . , wk, wk+1, . . . , w2k) ∈ R2k is

F ′(w) =




0 1 0 · · · 0 0 0 · · · 0
0 0 1 · · · 0 0 0 · · · 0
·· ·· ·· · · · ·· ·· ·· · · · ··
0 0 0 · · · 1 0 0 · · · 0
0 0 0 · · · β α f ′(wk+1) 0 · · · 0
0 0 0 · · · 0 0 1 · · · 0
·· ·· ·· · · · ·· ·· ·· · · · ··
·· ·· ·· · · · ·· ·· ·· · · · 1

α f ′(w1) 0 0 · · · 0 0 0 · · · β



. (3.19)

From (3.19), corresponding to (3.15) for Gα , we can easily compute for F

det F ′(w) = (−1)2k+1α2 f ′(w1) f ′(wk+1). (3.20)

Thus, Lemma 3.3 is also valid for F if we choose w̄ = (x̄, 0, . . . , 0, x̄, 0, . . . , 0) ∈ R2k .
Also from (3.19), we can obtain the characteristic equation of F ′(0) as

(λk − βλk−1)2 = (α f ′(0))2, (3.21)
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Table 1. n(k) for some k.

k 2 3 4 5 10 15 20

p:p | k 1, 2 1, 3 1, 2, 4 1, 5 1, 2, 5, 10 1, 3, 5, 15 1, 2, 4, 5, 10, 20

n(k) 3 4 6 11 108 2192 52488

from which we can similarly establish the expanding property for F near the origin, as is
done for Gα in Lemma 3.4. As for Lemma 3.6, if we replacewα = (x1, x2, 0, . . . , 0) ∈ Rk

in the proof by wα = (x1, x2, 0, . . . , 0, x1, x2, 0, . . . , 0) ∈ R2k , the proof can easily be
carried over for F as well. Now, since Lemma 3.5 is only for the scalar function f ,
we can actually prove that F also has a snap-back repeller for α > α0, implying the
existence of chaos in R2k near the origin.

4. Conclusion

Recent work ([21], [22], and [20]) has shown that discrete neural networks with delay can
admit a large capacity of periodic solutions. To gain some sense of such large capacity,
we provide the following table, showing how the total number n(k) of stable periodic
orbits of (1.1), located in the region	(c), grows as the delay increases (using the formula
(1.4)), where

n(k) =
∑
p|k

N (p)

p
.

This suggests that as far as associative memory for periodic patterns is concerned, delayed
discrete networks may be superior to continuous networks, and thus reveal great potential
for delayed discrete networks. How to implement such associate memory networks
remains a technical and engineering problem. On the other hand, the dynamics of the
network outside the region where the n(k) stable periodic orbits are identified is another
interesting, practical, and challenging problem. In this paper, we have seen that even
the very simple discrete network (1.1) of two identical neurons can demonstrate very
complicated (chaotic) behavior near the origin. This is complementary to the results in
[21] and [20], [22], and gives some further valuable information for designing networks.
The dynamics of system (1.1) in the exterior region of 	(c) is also worth investigating.
Extending the work to discrete neural networks with more parameters for training is a
meaningful job. Also worth exploring are the applications of such neural networks with
both chaos and large-number stable periodic solutions co-existing.
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