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Abstract. A population with birth rate function B (N) N and linear
death rate for the adult stage is assumed to have a maturation delay
¹'0. Thus the growth equation N@(t)"B(N(t!¹))N(t!¹) e!d

1
¹

!

dN(t ) governs the adult population, with the death rate in previous life
stages d

1
70. Standard assumptions are made on B(N) so that

a unique equilibrium N
e

exists. When B(N) N is not monotone, the
delay ¹ can qualitatively change the dynamics. For some "xed values
of the parameters with d

1
'0, as ¹ increases the equilibrium N

e
can

switch from being stable to unstable (with numerically observed peri-
odic solutions) and then back to stable. When disease that does not
cause death is introduced into the population, a threshold parameter
R

0
is identi"ed. When R

0
(1, the disease dies out; when R

0
'1, the

disease remains endemic, either tending to an equilibrium value or
oscillating about this value. Numerical simulations indicate that oscil-
lations can also be induced by disease related death in a model with
maturation delay.
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1. Introduction

Classical epidemic models assume that the total population size
is constant, and concentrate on describing the spread of disease
through the population. More recent models consider a variable
population size, thus taking into account a longer time scale
with disease causing death and reduced reproduction; see, e.g.,
Zhou and Hethcote (1994). In disease transmission models, time
delay can be used to model some mechanisms. For example, in Heth-
cote and van den Driessche (1995) a delay corresponding to an infec-
tive period of constant length is introduced in an SIS model. Periodic
solutions of the proportional variables occur for a small range of
parameters (that appears to be outside the epidemiologically realistic
range).

In the population biology literature, oscillations of the population
size are observed from data. Theoretical models with time delay are
postulated and analyzed in an attempt to explain these oscillations; see,
e.g., Nisbet and Gurney (1982, Chapter 8). Population models with
density dependent recruitment incorporating a maturation time delay
can give rise to cycles of the general type observed.

It is our aim to formulate and analyze an SIS epidemic model with
maturation delay in a varying population of size N(t). To describe
disease transmission in non-constant population, assumptions must be
made on the demography and epidemiology. We consider a nonlinear
birth term B(N), and "nd that the form B(N)N is important in
determining the qualitative dynamics. In Sect. 2, we formulate our
population model, state basic assumptions, and give examples of B(N)
from the biological literature. In Sect. 3, we study the dynamics of the
population model with maturation delay in the absence of disease.
Results from monotone dynamical systems theory are used in the
global analysis, and the delay is taken as the bifurcation parameter.
Periodic solutions are found numerically for some values of delay, and
it is found that (for other parameter values "xed and a positive death
rate constant in each stage prior to the adult stage) these periodic
solutions persist for only a "nite positive range of values of the delay.
For large and for small values of the delay, there is convergence to
equilibrium. In Sect. 4 we formulate and analyze the SIS epidemic
model in a variable population. When there is no maturation delay,
a sharp threshold parameter R

0
is identi"ed with infectives dying out

or tending to an endemic level. With maturation delay, analysis for
a disease that does not cause death is given, and numerical simulations
on the model that includes disease related death show that this can give
rise to oscillations.
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2. Population model formulation

In the absence of disease and of maturation delay, we assume that the
population size changes according to a population growth equation

N@"B(N)N!dN, (2.1)

where @"d/dt. Here d'0 is the death rate constant, and B(N)N is
a birth rate function with B(N) satisfying the following basic assump-
tions for N3(0, R):

(A1) B(N)'0;
(A2) B(N ) is continuously di!erentiable with B@(N)(0;
(A3) B(0`)'d'B(R).

Note that (A2) and (A3) imply that B~1(N) exists for
N3 (B(R), B(0`)), and (A3) gives the existence of a carrying capacity
K such that B(N)'d for N(K, and B(N)(d for N'K. Under
these assumptions, nontrivial solutions of (2.1) approach B~1(d) as
tPR. Examples of birth functions B(N) found in the biological
literature that satisfy (A1)}(A3) are:

(B1) B
1
(N)"be~aN, with a'0, b'd;

(B2) B
2
(N)"

p
q#Nn

, with p, q, n'0 and
p
q
'd;

(B3) B
3
(N)"

A
N
#c, with A'0, d'c'0.

Functions B
1
, and B

2
with n"1 are used in "sheries, and are

known as the Ricker function and the Beverton-Holt function, respec-
tively. Function B

3
(N)N represents a constant immigration rate A to-

gether with a linear birth term cN.
For the population model (2.1), it can be postulated that the birth

rate function B(N)N should depend on t!¹, where ¹ is the develop-
mental or maturation time. Thus the population growth equation is

N@ (t)"B(N (t!¹))N(t!¹)!dN(t). (2.2)

Nisbet and Gurney (1982, Sect. 8.3) use this equation with
B(N)"B

1
(N) to model laboratory #y populations. This equation

has subsequently been considered by many authors, see the papers
cited in Notes after Corollary 3.4 and the references therein. Velasco-
HernaH ndez (1994) uses (2.2) with B

1
(N) for the vector population

equation in a model for Chagas disease. Mackey and Glass (1977) use
(2.2) with B(N)"B

2
(N ) to model blood cell production, where N is

the concentration of cells.
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Considering this maturation time in more detail, assume that the
population has m#1 life stages. For example, a population with
embryos, juveniles and adults has 3 life stages. Assuming that ¹

1
is the

time spent in the embryo stage, and that d
1

is the death rate constant
for the embryo stage, then the number of embryos at time t, E(t), is
given by

E (t)"P
t

t!¹
1

B(N (s))N(s) e!d
1
(t!s ) ds,

where N (s) in the integrand is the adult population size. This gives that
the rate of entry into the juvenile stage is

B(N (t!¹
1
)) N(t!¹

1
) e!d

1
¹

1 .

Similarly, the rate of entry into the adult stage is

B(N(t!¹
1
!¹

2
))N(t!¹

1
!¹

2
) e!(d

1
¹

1
#d

2
¹

2
)

where ¹
2

the time spent in the juvenile stage , and d
2

is the death rate
constant for the juvenile stage. For m#1 life stages, the rate of entry
into the adult stage at time t is

B((N(t!¹
1
!2!¹

m
)) N(t!¹

1
!2!¹

m
) e!(d

1
¹

1
#2#d

m
¹

m
)

where d
j
is the death rate constant for life stage j, and ¹

j
is the time

spent in that stage. As a special case, assume d
j
"d

1
70 for each life

stage, and let ¹"¹
1
#2#¹

m
. Then the population equation for

adults becomes

N@ (t )"B (N (t!¹ ))N (t!¹ ) e!d
1
¹

!dN (t). (2.3)

For some species, the death rate in each stage prior to the adult stage is
negligible compared with the death rate of the adult stage. Then we can
assume d

1
"0, and (2.3) reduces to (2.2).

3. Single-species population models with delay

In this section we consider the single-species population model (2.3).
To ensure the existence of a nontrivial equilibrium (though depending
on ¹ ), (A3) must be replaced by (A3*)

(A3*) B(0`)'ded
1
¹

'B(R).

Note that this reduces to (A3) when d
1
"0 or ¹"0. A maturation

delay ¹*0 is incorporated into the nonlinear birth term B(N (t!¹))
that is assumed to satisfy (A1), (A2) and (A3*), whereas the linear death
term is non-delayed and a death rate constant d'0 is assumed.
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Initially N (t) is assumed to be positive, continuous and bounded on
t3[!¹, 0]. Assume t

0
is the "rst time that N becomes zero. Then

N@(t
0
)'0 by (2.3) and (A1), which is impossible. Thus, N(t)'0 for all

positive t for which N(t) is "nite. By (2.3), the assumptions on B(N) and
initial conditions, N(t) exists and is bounded and continuous for
t3[0, ¹]. Proceeding in time steps of length ¹, it can be seen that
N(t) remains "nite for all positive t. Therefore N(t) is positive for all
positive t.

For ¹"0, equation (2.3) reduces to the ODE (2.1). With the above
assumptions, (2.1) has a unique positive equilibrium N

e
"B~1(d). By

using the Liapunov function <(N)"N!N
e
!N

e
ln(N/N

e
) , it can be

easily shown that for N(0) '0, N
e
is globally asymptotically stable. So

the particular forms of B(N) satisfying (A1)}(A3) do not a!ect the
dynamics of (2.1). With time delay ¹'0 incorporated, this simplicity
of the dynamics is not always maintained. Indeed, the pro"le of B(N)
N also contributes to the dynamics of (2.3). We begin by making an
additional assumption:

(A4) (B(N)N)@'0.

The following global result is proved by monotonicity as in Smith
(1995, Chapter 5). Freedman and Gopalsamy (1986, Theorem 2)
use a Lyapunov function to prove the result under the additional
hypothesis that B (N)N is zero at N"0 (which is not satis"ed by
B
3
(N)).

Theorem 3.1. Assume that (A1), (A2), (A3*) and (A4) hold. ¹hen, for
positive initial values, the unique positive equilibrium N

e
"B~1(ded

1
¹) of

(2.3) is globally asymptotically stable for all ¹70.

Proof. From the assumptions, the positive steady state of (2.3) is
N

e
"B~1 (ded

1
¹ ). Consider (2.3) in C([!¹, 0], R`). Assumption (A4)

ensures that (2.3) is cooperative and irreducible and hence the solution
#ow of (2.3) is eventually strongly monotone; see Smith (1995, p. 89,
Corollary 3.5). Under the assumptions, (2.3) satis"es a scaled version of
the conditions of Smith (1995, p. 90, Proposition 4.2). This gives that all
solutions of (2.3) converge to 0 or N

e
. Since if 0 is an equilibrium then it

is unstable, every solution with positive initial values converges to the
unique positive equilibrium N

e
. Finally, a linear stability analysis using

the well known result for Hayes' equation z#d!e!d
1
¹(B (N

e
)#

B@(N
e
)N

e
) e~Tz"0 (see, e.g., Bellman and Cooke (1963, Theorem 13.8),

or Hale and Verduyn Lunel (1993, Theorem A5)) shows that (A2) and
(A4) guarantee that N

e
is locally asymptotically stable. Therefore, N

e
is

globally asymptotically stable. h
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Corollary 3.2. For B(N)"B
2
(N)"(p/(q#Nn)) with p/q'ded

1
¹ ,

0(n61, or B(N)"B
3
(N)"A/N#c with c(ded

1
¹ , and positive

initial values, the unique positive equilibrium N
e
"B~1 (ded

1
¹ ) of (2.3) is

globally asymptotically stable for all ¹70.

Proof. For the B(N ) functions given, assumptions (A1), (A2), (A3*)
and (A4) are all satis"ed. Thus Theorem 3.1 applies and gives the
result. h

Note that the result for B
2
(N) with d

1
"0 in Corollary 3.2 recreates

by a di!erent method Corollary 9.1 in Kuang (1993, p. 160).
If the extra condition (A4) is assumed, Theorem 3.1 shows that

incorporation of maturation ¹'0 does not make any qualitative
di!erence to the dynamics of the model. We next consider a particular
B(N) satisfying (A1)}(A3*) but not (A4), and show that the dynamics of
(2.3) can be quite di!erent from that of its ODE version (2.1).

For B
1
(N)"be~aN with a'0, b'ded

1
¹ , assumptions (A1)}(A3*)

are all satis"ed and equation (2.3) becomes

N@(t)"be~aN(t~T)N (t!¹) e!d
1
¹

!dN (t). (3.1)

Note that B(N)N is a one-humped function (hence not monotone) with
a maximum at N"1

a
. For this B(N), we introduce some de"nitions

needed in the following theorem.
Let k* be the solution with w3(n

2
, n) of the equations

G
sinw"!cosw[d

1
d

w cosw#k* sinw],

sinw!wcosw
w!sinw cos w

"2 d
1
d

w
cosw
sinw

#k* .
(3.2)

For b
d
'ek*#1, de"ne ¹* and ¹** by

¹*"
x
1
d

, ¹**"
x
2
d

, (3.3)

where x
1

and x
2
'x

1
are the two (positive) solutions of the following

equations:

G
x"!

v
tanv

,

v
4*/ v

"x (ln b
de

!
d
1

d
x ) ,

(3.4)

for v3 (n
2
, n). De"ne ¹@"max M¹70: ¹e(d!d

1
)¹
6e

b
N and

¹@@"G
R,

¹* ,

if b
d
(ek*#1,

if b
d
'ek*#1 .
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Theorem 3.3. Assume a'0, b'ded
1
¹ , and d

1
'0 in (3.1) with positive

initial values.

(i) If b
d
(ek*#1 , then the unique positive equilibrium N

e
"1

a
ln b

ded1¹
of

(3.1) is locally asymptotically stable independent of ¹.
(ii) If b

d
'ek*#1 , then there exist 0(¹*(¹** such that N

e
loses

stability when ¹ increases to pass through ¹*, and regains stability
when ¹ further increases to pass through ¹** .

(iii) For small ¹70, namely ¹(¹
0

where

¹
0
"minG

1
d
1

ln
b
d

, ¹@, ¹@@H , (3.5)

the equilibrium N
e
is globally asymptotically stable.

(iv) If d#b
e2(d

1
, then N

e
is globally asymptotically stable for all

¹(min M 1d
1
ln b

d
,¹ @@ N.

Proof of (i) and (ii). The value of N
e

is easily found as the unique
positive steady state of (3.1). Linear stability of (3.1) is governed by the
characteristic equation

z¹"!(c¹ ) e~zT!d¹ (3.6)
where

c¹"(d¹ ) Ak!
d
1
d

(d¹ )B, with k"ln
b
de

. (3.7)

Equation (3.7) represents a parabola in the d¹, c¹ plane (see Fig. 1).
Note that z"0 is not a root of (3.6). Setting z"iy, y'0 in (3.6) gives
the purely imaginary root curve parameterized as

c¹"

y¹
sin (y¹)

, d¹"

!y¹
tan (y¹ )

. (3.8)

Note that neither y¹ nor sin (y¹ ) is zero at a root. For y¹3 (n
2
, n),

(3.8) gives the part of the lowest imaginary root curve with d¹'0.
Substituting (3.8) into (3.7) gives the condition for the parabola and the
lowest imaginary root curve to intersect at the critical value of k,
namely k"k*, as in the "rst equation in (3.2) with w"y¹. These
curves must also be tangential at k"k* , and from the geometry there
is a unique solution k* (see Fig. 1). Di!erentiating to impose this
condition, and simplifying leads to the second equation in (3.2). If
k"ln b

de
(k* (i.e., b/d(ek*#1 ), such an intersection will not occur,

and (i) follows. If k'k* , the parabola intersects the lowest imaginary
root curve in two points where d¹"d¹* and d¹** . These points of
intersection given in (3.3) and (3.4) are found from (3.7) and (3.8). As
¹ passes through ¹*, stability of N

e
is lost. As ¹ passes through ¹** ,
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Fig. 1. Determination of ¹* and ¹** in Theorem 3.3.

stability is regained. For k su$ciently large, other imaginary root
curves for y¹3(2nn#n

2
, 2nn#n) may intersect the parabola, but

they do not alter the linear stability for ¹(¹* and ¹'¹**. Thus (ii)
is proved.

Proof of (iii) and (iv). We prove (iii) by using a global convergence
theorem for strongly order preserving (SOP) dynamical systems. But
since (A4) is not satis"ed for B

1
(N), SOP under the standard ordering

for (3.1) does not hold. In what follows, we use the exponential ordering
for monotone dynamical systems as initiated by Smith and Thieme
(1990), see Smith (1995, p. 102).

Let C
`
"([!¹, 0], R`). For k70, de"ne

Kk"M/3C
`

: /70 and /(h) ekh is non decreasing on [!¹, 0]N.

Then, Kk is a closed cone in C
`

, and thus it induces a partial ordering
on C

`
, de"ned by /

1
6k/2

if and only if /
2
!/

1
3Kk . Denote the

right hand side of (3.1) by f (N
t
), i.e., f: C

`
PR is de"ned by

f (/)"b/(!¹) e~a((~T)e!d
1
¹

!d/(0).

It is known (see Smith (1995, p. 108)) that if

G
f (/

2
)!f (/

1
)#k (/

2
(0)!/

1
(0))'0,

for /
i
3C

`
, i"1, 2, satisfying /

1
(k/2

,
(3.9)
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then, the solution #ow is SOP with respect to the ordering 6k . Using
the mean value theorem, there exists k70 such that (3.9) holds for
f (N

t
) de"ned above provided

k#min
/70

Lf (/)
L/(0)

#ekTmin
/70

Lf (/)
L/(!¹)

70,

that is

F(k)"k!d!be~2 e(k!d
1
)¹
70. (3.10)

Since F(k) is concave down with F (0)(0, (3.10) is true i! F(k) has
a nonnegative maximum, which is equivalent to ¹e(d!d

1
)¹
6e

b
, hence

the de"nition of ¹ @ above. The precompactness of the solution #ow is
shown by integrating (2.3) with B

1
(N), giving

N(t )"N(0) e~dt#e~dte!d
1
¹P

t

0

B
1
(N (s!¹ ))N(s!¹) eds ds.

Thus

N (t)6N(0) e~dt#
b
ae

e~dte!d
1
¹ P

t

0

eds ds

"

be!d
1
¹

aed
#AN(0)!

be!d
1
¹

aed B e~dt

6

be!d
1
¹

aed
#KN(0)!

be!d
1
¹

aed K .
By the global convergence theorem for SOP semi#ows (see Smith
(1995, p. 18)), every solution of (3.1) with positive initial values con-
verges to N

e
. Combining this with (i) and (ii), and noting that

N
e
depends on ¹, we conclude that N

e
is globally asymptotically stable

for ¹(¹
0

as in (3.5), thus proving (iii). Taking k"d
1

in (3.10) gives
the result of (iv). h

Note that in the special case that d
1
"d, ¹@ is given explicitly as

¹@"e
b
. In the special case that d

1
"0, from (3.2) w"n and k*"1, and

(3.4) has a unique positive solution ¹M * . The de"nitions of ¹ @ and ¹@@
precede the statement of Theorem 3.3 (with d

1
"0, k*"1).

Corollary 3.4. Assume a'0, b'd, and d
1
"0 in (3.1) with positive

initial values.

(i) If b
d
6e2, then N

e
"1

a
ln b

d
is locally asymptotically stable, indepen-

dent of ¹.
(ii) If b

d
'e2, then there exists a ¹M *'0 such that Hopf bifurcation

occurs when ¹ increases through ¹M *.
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Fig. 2. Determination of ¹M * in Corollary 3.4.

(iii) For small ¹70, namely ¹(¹
0
"minM¹@, ¹@@N, the equilibrium

N
e

is globally asymptotically stable.

Proof. Set d
1
"0 in the proof of Theorem 3.3. Now (3.7) represents

a straight line in the d¹, c¹ plane (see Fig. 2). Classical results on
Hayes' equation show that N

e
is asymptotically stable for all ¹70 if

ln b
de

(i.e., b
d
6e2). If ln b

de
'1 (i.e., b

d
'e2), then N

e
loses stability at some

¹M *. From (3.6), it can be seen that iy is a simple root and no integral
multiple of iy is a root. When d

1
"0, dRe (z)

dt
"

y2
(1#d¹ )2#(y¹)2'0 at z"iy,

¹"¹M * . Thus, Hopf bifurcation occurs at ¹M *. h

Notes. For case (i) in the above corollary, N
e

is actually globally
asymptotically stable if the inequality is strict, i.e., b

d
(e2 , see Kuang

(1992, Corollary 4.3). The result of case (ii) is established in Brauer
(1987, Theorem 5) as a special case of a delayed nonlinear renewal
equation result. When the delay is normalized to 1, Smith (1995,
Theorem 5.3, p. 114) gives conditions for global attractivity of N

e
. So

and Yu (1994, Theorem 4.1) also have results on global attractivity of
N

e
for small values of the delay ¹.
From Theorem 3.3 and Corollary 3.4, it is possible that for "xed

values of the parameters, as ¹ increases the equilibrium N
e

of (3.1)
switches from being stable to unstable. As it loses stability, stable
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periodic solutions with period 3 (2¹, 4¹ ) may arise by Hopf bifurca-
tion. Stability of the bifurcating periodic solutions has not been
proved, but the numerical simulations in the next paragraph support
this conclusion. This model with d

1
"0 is the one proposed by

Nisbet and Gurney (1982, Section 8.3) to explain oscillations in blow#y
data. When d

1
'0 in (3.1), it is possible that for a further increase

in ¹, N
e

regains stability. This phenomenon does not occur in
the model with d

1
"0 that has been considered previously in the

literature.
These stability switches are illustrated in Figs. 3(a)}(d) by numerical

simulations using XPPAUT (Ermentraut, 1996). These "gures show
numerical solutions of (3.1) for t3[0, 25] with a"1, d"1,
b3M20, 80N, d

1
3M0, 1N and ¹3M0.2, 1.0, 2.4N with initially N(t)"3.5

on [!¹, 0]. In Fig. 3(a), with b"20, d
1
"1, k"lnb/d!1(k*+

3.21 when d
1
"d. Thus, in agreement with Theorem 3.3(i), N tends to

N
e
(depending on ¹ ) for all values of ¹. Numerically this convergence

to equilibrium appears to be global, although Theorem 3.3(i) only
assures local stability and ¹

0
in (3.5)+0.14 for these parameter values.

Figure 3(b), with d
1
"1 and b"80, gives k'k*. As predicted by

Theorem 3.3(ii), N tends to N
e

for ¹"0.2(¹*+0.85, whereas
N oscillates about N

e
for ¹"1.0 (i.e., ¹*(¹(¹** ). For a large

value of ¹, namely ¹"2.4'¹**+1.77, N again tends to N
e
. Fig-

ures 3(c) and 3(d) have d
1
"0, thus the results of Corollary 3.4 are

illustrated. In Fig. 3(c), b"20 so b/d'e2, and for ¹"0.2 and ¹"1.0
(both are less than ¹M *+1.21), N tends to N

e
. But for ¹"2.4'¹M *,

N oscillates about N
e
. Such oscillatory behavior does not occur for

these same values of a, d, b, ¹ but with d
1
"1 (Fig. 3(a)). When b is

increased to 80, oscillation now occurs for ¹"1.0 and ¹"2.4 since
¹M *+0.58 for these parameter values. The oscillation for ¹"2.4,
d
1
"0 should be compared with the convergence to equilibrium for

¹"2.4, d
1
"1 (Fig. 3(b)). Note the di!erent scale for N on Fig. 3(d)

compared with other "gures, and that in all "gures behavior of N (t) for
small time depends on the initial values taken.

When B (N)"B
2
(N)" p

q`Nn with n'1, assumption (A4) is also not
satis"ed. Assuming that p, q'0, n'1 and p

q
'ded

1
¹ , results qualitat-

ively like Theorem 3.3 and Corollary 3.4 can be derived for equations
(2.3) and (2.2) with this B (N). For the parameters estimated from blood
cell date and used by Mackey and Glass (1977), namely d"0.1, p

q
"0.2

(giving qd
p
"0.5), n"10 and ¹"6, periodic solutions of (2.2) occur.

However, for d
1
"0.1, qd

p
"0.5 and large enough values of n721,

stability switches as found in Theorem 3.3 occur as ¹ increases. This
value of n is found by MAPLE from the characteristic equation with
B
2
(N).
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Fig. 3. Numerical simulations for (3.1) with a"d"1: (a) d
1
"1, b"20; (b) d

1
"1,

b"80; (c) d
1
"0, b"20; (d) d

1
"0, b"80.

Another quantity of some interest when B (N)N is zero at N"0
(e.g., B

1
(N) and B

2
(N)) is the growth rate at low density (initial

growth rate), denoted by r. By linearization of (2.3) at N"0,
r"B (0) e!¹ (d

1
#r )

!d. When ¹"0, r"B(0)!d. Thus time delay
decreases the initial growth rate.
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Fig. 3. Continued.

4. SIS epidemic model

We assume now that disease has entered the population, and that the
population is divided into susceptible and infective classes, with the
size of each class given by S (t) and I(t), respectively, so that

344 K. Cooke et al.



N(t)"S (t)#I(t). Transmission of disease is assumed to occur due to
contact between susceptibles and infectives; vertical transmission is
ignored. The disease is assumed to confer no immunity, thus upon
recovery an infective individual returns to the susceptible class, hence
the name SIS model. This type of model is appropriate for some
bacterial infections. For a fatal disease, the recovery rate constant is set
to zero, giving an SI model. In the absense of maturation delay, disease
transmission is modeled by the equations

S@ (t)"B(N) N!dS!
jSI
N

#cI

(4.1)

I@ (t)"
jSI
N

!(d#e#c) I.

Here e70 is the disease induced death rate constant, c70 is the
recovery rate constant (1c is the average infective time), and j'0 is the
contact rate constant. The standard incidence function is used with jI

N
giving the average number of adequate contacts with infectives of one
susceptible per unit time. For some diseases, this incidence function
seems to "t the data better than mass action incidence, see Mena-Lorca
and Hethcote (1992), de Jong et al. (1995) and references therein.
Adding the equations in (4.1) gives N@"B(N)N!dN!eI, which re-
duces to (2.1) in case there are no disease induced deaths or in the
absence of disease (e"0 or I"0). For B

3
(N) with c"0, model (4.1)

reduces to the SIS model with recruitment-death demographics ana-
lyzed by Zhou and Hethcote (1994, Sect. 2). They also analyze (4.1) with
generalized logistic demographics (see Zhou and Hethcote (1994, Sect.
3)); see also Allen and Cormier (1996, Sect. 2). Bremermann and Thieme
(1989) consider a more general epidemic model that has some similarities
with (4.1), but their model uses mass action incidence, and has multiple
classes of infective individuals who, on recovery, are permanently im-
mune. For a model of a vertically transmitted disease with maturation
delay see Busenberg and Cooke (1993, Sect. 4.2), and for models with
delay on recruitment into a core group see Brauer (1999).

In order to incorporate maturation delay into the epidemic model
(4.1), we assume that there is no horizontal transmission to individuals
who are not yet adults, all newly matured adults are susceptible and
the rate of entry into the adult stage is B(N (t!¹))N(t!¹ ) e!d

1
¹.

Setting S"N!I gives the system

I@ (t)"j (N!I)
I
N
!(d#e#c)I

N@(t)"B(N (t!¹ )) N(t!¹) e!d
1
¹

!dN!eI. (4.2)

Interaction of maturation delay and nonlinear birth 345



Throughout this section, B(N) is assumed to satisfy (A1), (A2) and
another strengthened version of (A3), namely

(A3@) B(0`)'(d#e) ed
1
¹ and ded

1
¹

'B(R).

With nonnegative initial values, namely N(t)'0, N (t)7I (t)70
on [!¹, 0], solutions exist and remain for all t'0 in the nonnegative
quadrant with N(t)7I (t). If B(N)N is zero at N"0, then the trivial
equilibrium N"0, I"0 (with lim(I,N)P(0,0) SIN

"0, since 06S6N)
exists, and is always unstable since (I, N)"(0, N(t )) where N(t) is
a solution to (2.3) remains away from (0, 0).

For this epidemic model, the basic reproduction number

R
0
"

j
d#e#c

, (4.3)

gives the average number of new infectives produced by one infective
during the mean death adjusted infective period. When there is no
delay, R

0
acts as a sharp threshold, as shown by the following result.

Theorem 4.1. Consider the model system (4.2) with nonnegative initial
values, ¹"0, B(N) satisfying (A1), (A2) and (A3@) and R

0
given

by (4.3). If R
0
(1, then the disease dies out with I(t)P0 and

N(t)PN
e
"B~1(d) as tPR. If R

0
'1 and I (0)'0, then the disease

remains endemic with I(t)PI*"(1!1R
0
)N* and N(t)PN*"

B~1(d#e(1!1/R
0
)) as tPR.

Proof. The disease-free equilibrium with I"0 and the unique endemic
equilibrium with I*'0 are found easily from the steady states of (4.2)
using the assumptions on B(N).

For the disease-free equilibrium, consider <"1
2
I2. Then along

trajectories of (4.2), <@60 provided R
0
(1, and <@"0 i! I"0. Thus

IP0 as tPR. The N@ equation of (4.2) is then asymptotically
autonomous, and the limit equation is the ODE (2.1). By the results of
Sect. 3, and theory of asymptotically autonomous systems (see,
Castillo-Chavez and Thieme (1995, Theorem 2.5)), N(t)PB~1(d)
as tPR.

For local stability of the endemic equilibrium, the Jacobian matrix
evaluated at this equilibrium is

J"A
!j (1!1R

0
) j (1!1R

0
)2

!e e (1!1R
0
)#B @ (N*)N*B .

By (A2), B@(N*)(0, so det J'0, and trace J(0 provided j'e,
which is certainly true if R

0
'1. Periodic solutions can be eliminated
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by using the Bendixson-Dulac theorem (see, for example, Hale and
Kocak (1991, Theorem 12.9)) since (4.2) gives

L
LI A

I@
NIB#

L
LN A

N@
NIB(0

for N'0 and I'0 provided j'e. As the ODE system is 2-dimen-
sional, the endemic equilibrium is globally asymptotically stable pro-
vided R

0
'1 and I (0) '0. h

For B(N)N"A (i.e., B
3
(N) with c"0), this sharp threshold result

is proved for a contact rate depending on N (i.e., j (N)) by Zhou and
Hethcote (1994, Sect. 2).

Incorporating maturation delay ¹'0 in the model, R
0

still acts as
the threshold for the existence of the endemic equilibrium. The steady
states of (4.2) and the behavior when R

0
(1 are given in the following

results.

Theorem 4.2. Consider (4.2) with B(N) satisfying (A1), (A2) and (A3@),
and R

0
given by (4.3). If R

0
61, then the disease free equilibrium, namely

I"0, N
e
"B~1 (ded

1
¹ )

is the only nontrivial equilibrium. If R
0
'1, then there is also the endemic

equilibrium, namely

I*"A1!
1
R

0
BN*, N*"B~1AAd#eA1!

1
R

0
BB ed

1
¹B . (4.4)

Theorem 4.3. Consider (4.2) with R
0
(1, B(N) satisfying (A1), (A2) and

(A3@) and positive initial values with N(t)7I (t) on [!¹, 0]. ¹hen I(t)
tends to zero. If in addition either the hypotheses of ¹heorem 3.1, or
¹heorem 3.3 (iii) or (iv) hold, then N

e
is globally asymptotically stable.

Proof. Using<"1
2
I2 as in the proof of Theorem 4.1, the result for I(t)

follows. From results of Castillo-Chavez and Thieme (1995, Theorem
2.5), the N@ limit equation is (2.3), and the globally asymptotic results
for that equation in Sect. 3 apply. h

In the case of no disease related death (e"0), N*"N
e

and the
following result holds.

Theorem 4.4. Consider (4.2) with e"0, R
0
" j

d`c , B(N ) satisfying (A1),
(A2) and (A3@), and positive initial values with N (t)7I (t) on [!¹, 0]. If
in addition either (A4) holds or conditions of ¹heorem 3.3 hold such that
N

e
is globally asymptotically stable, then I* is globally asymptotically

stable if R
0
'1.
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Proof. When e"0, the total population equation is the same as
equation (2.3). If (A4) also holds, then N

e
is globally asymptotically

stable for all ¹70 (by Theorem 3.1). If NPN
e
, then using results of

Castillo-Chavez and Thieme (1995, Theorem 2.5), the behavior of I is
governed by the logistic equation

I@ (t)"j A1!
I

N
e
B I!(d#c)I.

If R
0
'1, then I"0 is unstable and I* becomes globally asymp-

totically stable. h

By contrast for B(N)"B
1
(N ), if conditions of Theorem 3.3 hold

such that N oscillates about N
e
, then numerical simulations of (4.2)

with e"0 indicate that I (t) oscillates about I* if R
0
'1. Both N and

I oscillate with the same period 3(2¹, 4¹), with the amplitude of
I increasing as R

0
increases. As predicted by Theorem 3.3(ii), if these

parameter assumptions are satis"ed, then stability of the endemic state
is lost at ¹"¹* but regained for large ¹'¹** with I approaching
I* . Parameter R

0
again acts as a threshold, determining whether the

disease dies out, or remains in the population (either tending to an
endemic value or oscillating).

We conclude with some preliminary results on model (4.2) with
disease related death when R

0
'1. For e'0, linear stability of the

endemic equilibrium (4.4) is governed by the determinantal equation

0"K
!j (1!1R

0
)!z j (1!1R

0
)2

!e C (N* ) e!d
1
¹e!¹z

!d!z K (4.5)

where C(N)"(B (N)N)@. Since this no longer decouples, the analysis of
(4.5) is quite hard. However, for B(N)"B

2
(N) with n"1, or

B(N)"B
3
(N), the following is true.

Theorem 4.5. Consider (4.2) with e'0, B(N)" p
q`N

with p
q
'(d#e) ed

1
¹

or B(N)"A
N
#c with ded

1
¹

'c, and positive initial values N(t)7I(t) on
[!¹, 0]. If R

0
'1, then (I*, N*) given by (4.4) is locally asymptotically

stable.

Proof. Equation (4.5) can be written as

z2#AjA1!
1
R

0
B#dB z#jA1!

1
R

0
B d#ejA1!

1
R

0
B
2

"AjA1!
1
R

0
B#zBC (N* ) e!d

1
¹e!¹z . (4.6)
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Fig. 4. Numerical simulations for (4.2) with B(N)"B
1
(N) , a"d"d

1
"1, b"80,

c"0.5, ¹"0.2 and e"10: (a) j"12; (b) j"15; (c) j"20; (d) j"28.

By Theorem 4.1, the endemic equilibrium is locally stable when ¹"0.
For ¹'0, note that zero is not a root and look for nonzero purely
imaginary roots by setting z"iv, v'0, in (4.6). Taking the modulus of
each side gives a quadratic in w"v2. For the given B(N) , C (N*)'0,
and it is easy to see that the constant term in the quadratic is positive.

Interaction of maturation delay and nonlinear birth 349



Fig. 4. Continued.

For R
0
'1, with algebraic manipulation, it can be seen that the

quadratic has no positive root, thus no purely imaginary root is
possible for (4.6). By the results of Theorem A.1 in Cooke and van den
Driessche (1996), all roots have negative real parts for ¹70, and so
the endemic equilibrium (I*, N* ) is locally asymptotically stable. h
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Numerical simulations of (4.2) using XPPAUT with e'0 and
B(N)"B

2
(N) with n"1 or B(N)"B

3
(N) (so that (A4) is true) show

that when R
0
'1, (I, N)P(I*, N*). Numerical solutions of (4.2) with

B(N)"B
1
(N) indicate that the e!ect of disease transmission with

disease related death (e'0) can be very complicated. Figure 4 shows
the results of some numerical simulations of (4.2) with B (N)"B

1
(N),

a"d"d
1
"1, b"80, ¹"0.2, c"0.5 and e"10 with N(t)"3.5

and I(t)"2 on [!¹, 0]. The contact rate constant j takes the values
12, 15, 20 and 28 in Fig. 4(a), (b), (c) and (d) respectively, thus
R

0
" j

11.5
'1. In Fig. 4(a) with j"12, (I, N)P(I*, N*) in a non-

oscillatory way (similar to the behavior when e"0, see Figure 3(b)
with ¹"0.2). For j"15, (I, N ) still approaches (I*, N* ) but now in
an oscillatory way, see Fig. 4(b). When j is increased to 20, sustained
oscillations (periodic solutions) of (I, N) about (I*, N*) occur, see
Fig. 4(c). Comparing this with Fig. 3(b) for ¹"0.2, such sustained
oscillations are caused by disease transmission and disease related
death. If j is further increased to 28, (I, N) regains convergence to
(I*, N*), again in an oscillatory way, see Fig. 4(d). Note that in Fig. 4,
N* decreases but I* increases as R

0
'1 increases. Qualitatively,

similar results are observed for the same parameter values except that
d
1
"0 (no death in pre-adult stages), or c"0 (SI model). According to

the model given by (4.2) with e'0, the maturation delay and contact
rate constant of the disease determine (for R

0
'1) whether the disease

approaches an endemic value or whether solutions oscillate. This latter
phenomenon is left for further study.
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