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Abstract
In this paper, we use the renewal equation approach to explore the impact of be-
haviour change and/or non-pharmaceutical interventions (NPIs) on the final size 
and peak size of an infectious disease without demography. To this end, we derive 
the renewal equations (REs) for the force of infection (both instantaneous and cu-
mulative) that have reflected the NPIs and/or behaviour change by the notion of 
practically susceptible population. A novelty in these REs is that they contain time-
varying kernels arising from the incorporation of effect of behaviour change. We 
then build the new REs into the Kermack–McKendrick model to obtain a general 
full model. Following Breda et al. (J Biol Dyn 6(sup2):103–117, 2012) and Diek-
mann et al. (Proc Natl Acad Sci USA 118(39):e2106332118, 2021), we analyze 
this new model to derive a general formula for the final size relation, by which we 
find that the final size relation depends not only on the basic reproduction number 
R0 but also on other associated values that reflect the impact of behaviour change. 
Specifically, we demonstrate that behaviour change can reduce the infection peak 
and herd immunity threshold in some specific models.
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1 Introduction

Many new emerging diseases have much shorter durations than the life span of the 
human host. Thus, in modelling the dynamics of such diseases, one typically ignores 
the demography of the host and just focuses on the transmission dynamics. For such a 
model, the disease eventually dies out, and hence, the long-term disease dynamics are 
no longer a major concern. Instead, the scale of the epidemic is generally the major 
concern, which can be reflected by the final size and the peak size. Taking the classic 
Kermack–McKendrick (K–M) disease model in Kermack and McKendrick (1927) 
as an example, the final size r∞ is determined in Kermack and McKendrick (1927) 
by the equation

 r∞ = 1 − e−R0r∞  (1.1)

where r∞ = limt→∞ r(t) with r(t) representing the fraction of recovered host popu-
lation in a closed population at time t.

Similar formulas have been obtained for final sizes of epidemics in some other 
circumstances (some expressed in terms of the susceptible population rather than the 
recovered population). For example, the simplest case of the K–M model in Kermack 
and McKendrick (1927) is described by the following ODE system

 

{
S′(t) = −βI(t)S(t),
I ′(t) = βI(t)S(t) − γI(t),
R′(t) = γI(t),

 (1.2)

for which the final size equation can actually be easily obtained in terms of 
S(∞) by analyzing the trajectories of the I − S equations and using the relation 
S(∞) + R(∞) = S(0) =: S0. See, e.g., Miller (2012)). Along the same line, Magal 
et al. (2016) investigated the final size of the two patch version of (1.2); while Ma and 
Earn (2006) explored the final size of multi-stage version of (1.2). There are some 
other more works that discuss the final size of various generalizations of the epidemic 
model (1.2) by analyzing the S-I equations, e.g., Anderson and Watson (1980), Arino 
et al. (2007), Andreasen (2011), Brauer (2008), Ketcheson (2021), Feng (2007), 
Kröger et al. (2021) and the references therein. We point out that this method is valid 
in these models mainly because the FOI in these models is linear in I (i.e. βI) cor-
responding to the mass action incidence rate. This can be clearly reflected in Arino 
et al. (2007): while a general FOI function is used for other topics on disease dynam-
ics, however, when it comes to the final size of the epidemic version of the model, the 
authors have to restrict themselves to the linear FOI.

On the other hand, note that during an epidemic, especially a severe epidemic 
(e.g., the recent covid-19 pandemic), due to the host’s fear of the disease and/or 
the non-pharmaceutical interventions (NPIs), some host individuals will behave 
more pre-cautiously and be more restrictive in their social activities. This implies 
that only a fraction P of the epidemically susceptible host is practically susceptible: 
Sp(t) = PS(t). Here the fraction P ∈ [0, 1] reflects the precaution level reflecting 
the effect of behaviour change of the public, and it typically depends on the severity 
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or prevalence of the epidemic, letting it be measured by L(t) and then P = P (L(t)) 
changes as the epidemic evolves. By its background, P(L) satisfies the following 
conditions:

 
dP (L)

dL
≤ 0 with P (0) ≤ 1 and lim

L→∞
P (L) ≥ 0, (1.3)

meaning that the more severe the epidemic is, the more cautious the public is. The 
severity level function L can be described by some disease-related variables, e.g., the 
infected population I(t) or the weighted sum of these disease variables, and it contains 
information on disease severity. Possible candidates include

 
L(t) =

n∑
i=0

wiI(t − τi) and L(t) =
∫ τ

0
w(ξ)I(t − ξ) dξ. (1.4)

where wi, i = 0, 1, . . . n and w(ξ), ξ ∈ [0, τ ] are weights for the past values of I(t). 
See Cheng and Zou (2022) for some details.

For convenience of notation and calculations in later places, we write P(L(t)) as 
Pl(t) to mean that the fraction P is time varying through the severity level. Replacing 
S(t) by Sp(t) in the mass action incidence rate βI(t)S(t) and standard incidence rate 
βI(t)S(t)/[I(t) + S(t)] respectively, we obtain the respective new incidence rates

 
βI(t)Sp(t) = [βPl(t)I(t)] · S(t) and

βI(t)Sp(t)
I(t) + Sp(t)

=
[

βPl(t)I(t)
I(t) + Pl(t)S(t)

]
· S(t),

which leads to the respective new FOIs given by

 
F (t) = βPl(t)I(t) and F (t) = βPl(t)I(t)

I(t) + Pl(t)S(t)
. (1.5)

Such new FOIs are no longer linear in I and depend on the past of I(t). In Cheng and 
Zou (2022) and a follow-up work (Cheng and Zou 2024), using the revised FOIs that 
reflect the effects of behaviour change as explained above, we explored the impact of 
such effects on the long-term disease dynamics for some disease models with demog-
raphy. Now, as we mentioned in the beginning, our interest in this work is in the 
final size and peak size of an epidemic that is deemed to die out (due to the nature of 
“without demography"). Then there arises the question: 
(Q1) What would be the impact of the host’s response/precaution reflected by 
P(L)) on the final size and peak size of a disease model without demography?
Notice the above revised FOI βP (L(t))I(t) is no longer linear in I (noting that L(t) 
depends on I(t)) and could be of various forms involving I(t) and its past values (see 
Cheng and Zou 2022, 2024). As such, it becomes very challenging, if not impos-
sible, to derive the final size equation by analyzing the trajectories of the (1.2) with 
βI  replaced by βP (L(t))I(t). And if one wishes to also incorporate disease latency 
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leading to a model with delays, the final size becomes even more challenging. These 
drive us to consider an alternative approach.

Notice that Breda et al. (2012) reformulated the general K–M mode in Kermack 
and McKendrick (1927) in terms of the RE for the force-of-infection (FOI) F(t)

 
F (t) =

∫ ∞

0
F (t − τ)S(t − τ)A(τ)dτ, (1.6)

and the cumulative force-of-infection (CFOI) y(t)

 
y(t) =

∫ ∞

0
(1 − e−y(t−τ))S(−∞)A(τ)dτ. (1.7)

Here A(τ) describes the expected contribution of the infected population to the 
force-of-infection. Indeed, by the RE approach, the authors established the following 
equation for y(∞)

 y(∞) = R0(1 − e−y(∞)), (1.8)

and identified the relation

 
r∞ = y(∞)

R0
 (1.9)

which transforms the final size equation (1.8) for the CFOI to the final size equation 
(1.1) for the recovered fraction. For the special case (1.2), Brauer (2008) also used 
RE for the FOI to reproduce the final size equation.

The above brief illustration of the RE approach in terms of FOI shows that FOI is 
indeed an important notion and offers an alternative candidate for employing the RE 
approach. This makes us wonder that 
(Q2) with the above revised FOI F (t) = βP (L(t))I(t) mediated by the precau-

tion of the public that reflects the behaviour change due to host’s fear of the 
disease can we apply the RE approach to address (Q1)?

It is well-known that most compartmental epidemic models can be described by REs, 
and hence, we wish to employ the RE theory to address these issues. Biologically, 
REs give a reasonable way to trace renewals/reproductions of the given class/popu-
lation over time. The idea was initially developed by Lotka (1907), Sharpe et al. 
(1911) and used by many researchers, e.g., Feller (1940, 1941), Inaba (2017), Lebre-
ton (1996), in modelling demography and species reproduction. Particularly, Diek-
mann et al. re-drew researchers’ attention to the RE method and demonstrated its 
powerfulness/usefulness in mathematical epidemiology-modelling in several works 
(e.g., Breda et al. 2012; Champredon et al. 2018; Diekmann and Heesterbeek 2000; 
Diekmann et al. 2021; Diekmann and Inaba 2023).

Encouraged by these works, in this paper, we will tackle the above two questions 
by the RE approach. To this end, in Sect. 2, we will first present some preliminaries 
that involve infection age. Going through the references (Breda et al. 2012; Ker-
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mack and McKendrick 1927) intensively, we find that age/stage density is the key to 
associating REs and compartment systems—age density deduces a RE and a com-
partment system can be obtained through the age density. In Sect. 3, we derive the 
renewal equations for the revised FOI function and the corresponding incidence rate 
function. Then, in Sect. 4, we use the REs for the revised FOI and the incidence rate 
to derive equations that govern the final size. Section 5 is dedicated to some special 
cases of the general model represented by the REs model in Sect. 3, for which we are 
able to obtain more detailed and more explicit results, particularly some results on the 
peak size, which is, in general, very challenging (if not impossible) for the general 
case. We conclude the paper with a discussion section (Sect. 6), in which we discuss 
the implications of our results and some possible extensions of this work.

We point out that our new REs contain time-varying kernels due to the behaviour 
change. It is the time varying nature of the kernel that makes our model more novel, 
the analysis more challenging, and the results more interesting both mathematically 
and epidemiologically. Our new model provides a general and plausible framework 
for estimating the final epidemic size and even peak size (in some special situations) 
when considering NPIs and/or behaviour changes during an epidemic.

2 Preliminaries on infection age structure and related notions

2.1 Density of infected class with respect to infection age

Denote by a ∈ [0, ∞) the infection age, which defines the length of time an individ-
ual has been infected, and let u(t, a) be the density (with respect to a) of the infected 
class at time t with infection age a. Let γ(a) denote the recovery rate of the infected 
population with age a and assume that γ(∞) < ∞. For the age density of infected 
individuals, there is the well-known McKendrick/von Foerster equation:

 
∂u(t, a)

∂a
+ ∂u(t, a)

∂t
= −γ(a)u(t, a). (2.1)

Firstly, we note that the characteristics of (2.1) define a family of lines with equa-
tion t = t0 + a, where t0 > 0 is considered the “birthdate" (infection time) of an 
infected individual. Then, the infection age density along the characteristic is 
u(t, a) = u(t0 + a, a) := ut0(a) which solves

 
dut0(a)

da
= −γ(a)ut0(a). (2.2)

The solution of (2.2) for t > a then is:

 u(t, a) = ut0(a) = ut0(0)e−
∫ a

0
γ(x)dx = u(t0, 0)e−

∫ a

0
γ(x)dx = u(t − a, 0)e−

∫ a

0
γ(x)dx

. (2.3)

Let
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 σ(a) := e
−

∫ a

0
γ(x)dx

,

which expresses the probability of a newly infected individual remaining infected at 
infection age a. That means a fraction σ(a) of the population infected at time t − a 
will still remain infected at time t with age a. Simple calculation yields

 σ′(a) = −γ(a)σ(a) < 0

Naturally, the following assumption on σ(a)

 σ(∞) = e
−

∫ ∞

0
γ(x)dx = 0, (2.4)

should be imposed since no individual will “survive” to infinity age. Accordingly 
u(t, ∞) = 0 for any t ∈ R.

Next, we need to track those infected individuals who are already infected at t = 0 
with age a0 and still remain infected at t with age a = a0 + t. Let u0(a0) = u(0, a0), 
which is the initial age distribution of the infected class. Solving (2.1) for a > t, one 
obtains

 
u(t, a) = u0(a − t)e−

∫ a

a−t
γ(x)dx = u0(a − t) σ(a)

σ(a − t)  (2.5)

Here, σ(a)/σ(a − t) describes the probability of those already infected initially at 
t = 0 with age a0 = a − t still remaining in the infected class at time t (with infec-
tion age a).

Summarizing the above, the solution of (2.1) is expressed piecewise as below

 
u(t, a) =

{
u(t − a, 0)σ(a), a < t

u0(a − t) σ(a)
σ(a−t) , a > t.  (2.6)

The piecewise nature accounts for the two sources for u(t, a): one is from the initially 
infected individuals for a > t represented by u0(a − t) = u(0, a − t), and the other 
is from the new infections (“birth” or “production”) during [0, t − a] for a < t repre-
sented by B(t − a) = u(t − a, 0).

Many diseases have latency, and the latent period can vary from individual to indi-
vidual. For some diseases, the individual latencies vary slightly; for such a disease, 
one may assume a fixed constant latency. If considering a fixed latency τ ≥ 0,

 
E(t) :=

∫ τ

0
u(t, a)da, I(t) :=

∫ ∞

τ

u(t, a)da,

then represent the total numbers of latent class and infectious class, respectively. 
Accordingly, U(t) := E(t) + I(t) is the total number of infected individuals and
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R(t) :=

∫ ∞

0
γ(a)u(t, a)da,

sums up all those who have recovered at different infection ages and, hence, gives the 
total number of recovered classes at time t.

Throughout this work, we use the following classical/standard notations:

 s(t) := S(t)/N0, s(∞) := s∞ and r(t) := R(t)/N0, r(∞) := r∞. (2.7)

2.2 The related mean period

Consider the recovery age as a random variable ξ. Then

 
P(0 < ξ ≤ a) = 1 − σ(a) =

∫ a

0
γ(x)σ(x)dx

 Accordingly, the probability density function of ξ is f(a) = γ(a)σ(a). Assuming 
fixed constant latency τ > 0 as stated above, then

 

TE =
∫ τ

0 xγ(x)σ(x)dx∫ τ

0 γ(x)σ(x)dx
=

∫ τ

0 σ(x)dx

1 − σ(τ)
− τσ(τ)

1 − σ(τ)
and

TI =
∫ +∞

τ
xγ(x)σ(x)dx∫ ∞

τ
γ(x)σ(x)dx

=
∫ ∞

τ
σ(x)dx

σ(τ)
+ τ

 (2.8)

represent the mean time infected individuals stay in the latent class and the mean time 
of an infected individual stays in the infectious class, respectively. Consequently, 
TI − τ  is the mean infectious period and

 

Ttol =
∫ ∞

0
xγ(x)σ(x)dx = −

∫ ∞

0
xdσ(x) =

∫ ∞

0
σ(x)dx − xσ(x)|x=∞

x=0

=
∫ ∞

0
σ(x)dx

=
∫ τ

0
σ(x)dx +

∫ ∞

τ

σ(x)dx

= σ(τ)TI + (1 − σ(τ))TE

 (2.9)

is the mean infected period, which is the weighted sum of TE  and TI .
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3 Derivation of the model

3.1 The derivation of the REs for B(t) and FOI F(t)

After the preparations in Sect. 2, we are now in a position to follow the idea in Breda 
et al. (2012) to formulate our new REs in terms of the new FOIs in (1.5). Assume 
that the infectivity of infected individuals with infection age a is β(a) ∈ [0, 1] for 
a ∈ [τ, ∞). Then the total infectivity of the infectious population at time t is

 
C(t) :=

∫ ∞

τ

β(a)u(t, a)da. (3.1)

As is known, this is traditionally defined as the force-of-infection when focusing on 
physiological infectivity (see, e.g., Anderson and May 1991). Particularly, if β(a) is 
independent on a, C(t) = βI(t).

Now, with the new FOI given in (1.5), the incidence rate is accordingly revised to

 

B(t) :=
∫ ∞

τ

[β(a)Pl(t)S(t)u(t, a)]da = SP (t)C(t)

= Pl(t)S(t)C(t) = [Pl(t)C(t)] · S(t);
 (3.2)

accordingly, the force-of-infection in (3.1) is revised to

 F (t) := Pl(t)C(t) (3.3)

In (3.3), C(t) and P(L) measure the efficiency of physiological infection (focusing 
more on features of epidemics) and effect of behaviour change respectively. In other 
words, F is a result of combining the infectivity and effect of behaviour change.

Obviously, u(t, 0) = B(t) holds, since the incidence accounts for new infections 
occurring per unit time. Moreover, for t > τ , the incidence rate B(t) can also be 
expressed as

 

B(t) =
∫ ∞

τ

β(a)SP (t)u(t, a)da

= SP (t)
(∫ t

τ

β(a)u(t, a)da +
∫ ∞

t

β(a)u(t, a)da

)

= SP (t)
(∫ t

τ

φ(a)B(t − a)da + G(t)
)

 (3.4)

where

 
φ(a) :=

{
0, a ∈ [0, τ)
β(a)σ(a), a ∈ [τ, ∞)  (3.5)

and
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G(t) :=
∫ ∞

t

β(a)u0(a − t) σ(a)
σ(a − t)

da =
∫ ∞

t

u0(a − t) φ(a)
σ(a − t)

da

=
∫ ∞

0
u0(η)φ(η + t)

σ(η)
dη.

 (3.6)

Here φ(a) is continuous in a ∈ [τ, ∞), and it is the expected contribution to the FOI 
from those infected individuals with infection age a (according to Breda et al. 2012). 
Note that Ttol < ∞ ensures 

∫ ∞
τ

φ(a)da < ∞.

When 0 ≤ t < τ , a > τ  implies a > t and hence

 
Bτ (t) = SP (t)C(t) = SP (t)

∫ ∞

τ

β(a)u(t, a)da = SP (t)Gτ (t)  (3.7)

where

 

Gτ (t) =
∫ ∞

τ

β(a)u(t, a)da =
∫ ∞

τ

β(a)u0(a − t) σ(a)
σ(a − t)

da

=
∫ ∞

τ

u0(a − t) φ(a)
σ(a − t)

da =
∫ ∞

τ−t

u0(η)φ(η + t)
σ(η)

dη.

 (3.8)

Denote

 
G⋄(t) =

{
G(t) t ≥ τ,
Gτ (t) t < τ.  (3.9)

G⋄(t) reflects the contribution to new infection at t by those already infec-
tive at t = 0. G⋄(t) is continuous at t = τ . Because φ(a) goes to zero when 
the infection age a of an individual tends to infinity, G(t) also tends to zero, i.e. 
limt→∞ G⋄(t) = limt→∞ G(t) = 0.

Following Breda et al. (2012), Diekmann et al. (2021), we may extend the domain 
of B(t) to include negative axis, so that we actually have

 
G(t) =

∫ ∞

t

φ(a)B(t − a)da and Gτ (t) =
∫ ∞

τ

φ(a)B(t − a)da,

due to the fact that u0(a − t) = B(t − a)σ(a − t). Combining the above, we then 
have obtained the REs for B(t) and F(t) as

 
B(t) = SP (t)

∫ ∞

τ

φ(a)B(t − a)da (3.10)

and
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F (t) = Pl(t)
∫ ∞

τ

φ(a)B(t − a)da =
∫ ∞

τ

Pl(t)ϕ(a)︸ ︷︷ ︸
Revised kernel

F (t − a)S(t − a) da (3.11)

for t ∈ (−∞, ∞) rather than for t ∈ (0, ∞) only. This allows us to consider the ini-
tial time to be at −∞ for both (3.10) and (3.11), as is done in Breda et al. (2012), 
Diekmann et al. (2021). We point out that in contrast to (1.6), the RE (3.11) is no lon-
ger a traditional scalar RE because the kernel Pl(t)ϕ(a) = P (L(t))ϕ(a) depends not 
only on the infection age a but also on the time variable t through the severity L(t). 
Moreover, the severity measure may involve the past values of I(t), as demonstrated 
in (1.4). This means that even for the current value B(t) or F(t), we need knowledge/
information of not only the current “practically susceptible population", but also the 
entire history of B over the interval (−∞, t].

We point out that the REs (3.10) and (3.11) naturally lead to the iterated transition 
property (semi-group property) and allow us to track how the current value depends 
on the past values. For example, for any a1, a2 ≥ 0, from (3.10), we can obtain

 
B(t) = SP (t)

∫ ∞

τ

φ(a2)
{

SP (t − a2)
∫ ∞

τ

φ(a1)B(t − a2 − a1)da1

}
da2  (3.12)

which is a result of two iterative trackings. See Fig. 1 for an illustration of (3.12).

3.2 Full general model

With the above preparation, a general model without demography can be formulated 
by RE as

 

{
S′(t) = −B(t) = −F (t)S(t)
F (t) = Pl(t)

∫ ∞
τ

φ(a)F (t − a)S(t − a)da  (3.13)

Corresponding to the model (3.13) with φ(a) given in (3.5), we have the following 
compartmental model (see details in Appendix):

Fig. 1 Depiction of the RE (3.12) of B(t)
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


S′(t) = −F (t)S(t)
E′(t) = −

∫ τ

0 γ(a)u(t, a)da − u(t, τ) + F (t)S(t)
I ′(t) = −

∫ ∞
τ

γ(a)u(t, a)da + u(t, τ)
R′(t) =

∫ ∞
0 γ(a)u(t, a)da

 (3.14)

We assume there is no recovery individual at the epidemic’s beginning time 
t = t0 (i.e., R(t0) = 0 ) throughout this paper. In the sequel, as we proceed further, 
we will take t0 = −∞ or t0 = 0, depending on the purpose.

Remark 3.1 It is worth noting that (3.13) and (3.14) can both be obtained from the 
equation (2.1), respectively. Age density of the infected population u(t, a) establishes 
a bridge between the REs model (3.13) and the compartmental model (3.14).

Observe that in (3.14), the equations of E′ and I ′ couple via the term u(t, τ), which is 
the rate at which The infectious class gains from the latent class. Now we determine 
u(t, τ) by (2.6) as below.

For t ≥ τ  (long-time), by (2.6),

 u(t, τ) = u(t − τ, 0)σ(τ) = B(t − τ)σ(τ).

That means that, with probability σ(τ), those individuals who get infected at time 
t − τ  will enter the infectious class from the latent class at time t.

If t < τ  (short-time), again by (2.6),

 
u(t, τ) = u0(τ − t) σ(τ)

σ(τ − t)
.

At such a time t, only those who are already infected at time t = 0 are possible to 
enter the infectious class (with probability σ(τ)/σ(τ − t) ), because at time t, all 
newly infected individuals during [0, t] have no chance to become infectious (their 
infection ages are all less than the latency τ . Moreover, noting that

 u0(τ − t) = u(−(τ − t), 0)σ(τ − t) = B(t − τ)σ(τ − t),

we have actually also have u(t, τ) = B(t − τ)σ(τ).
Summarizing the above, we conclude that on the whole time axis, there holds

 u(t, τ) = B(t − τ)σ(τ). (3.15)

From the first equation of (3.13), we obtain

 S(t) = S(t0)e−
∫ t

t0
F (ξ)dξ = S(t0)A(t; t0)  (3.16)

with

 A(t; t0) := e
−

∫ t

t0
F (ξ)dξ
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representing the probability for an uninfected individual at time t0 to escape from 
becoming infected at least until time t. Furthermore, the cumulative force of infection 
(CFOI) during the period [t0, t] is given as

 
Y (t; t0) :=

∫ t

t0

F (ξ)dξ. (3.17)

According to (3.16), given that S(t0) ≈ N0 (the total population), we actually have 
the following relation among the CFI Y (t; t0), “escaping" probability A(t; t0) and 
s∞ := s(∞) = S(∞)/N0:

 s∞ = A(∞; t0) = e−Y (∞;t0). (3.18)

Obviously, divergence of Y (∞; t0) is equivalent to s∞ = 0 from (3.18).
Denote

 
R̂o(t) : = P (0)N0

∫ t

τ

φ(a)da, t ≥ τ.  (3.19)

Then the basic reproduction number of (3.13) is given by

 Ro := R̂o(∞).

The following theorem simply means that the disease will eventually die out. This is 
not surprising because the model does not have a demographic structure, and hence, 
there is no recruitment for the susceptible class.

Theorem 3.1 For model (3.14), the total infected population U(∞) = 0 holds. 
Accordingly, E(∞) = 0, I(∞) = 0.

Proof We leave the proof in the Appendix.  □

Because of the results in Theorem (3.1), it is reasonable to assume the following for 
the severity variable:

Assumption 3.1 L(∞) = 0 and L′(∞) = 0; and U = 0 ⇋ L = 0.

4 Final epidemic sizes for the model (3.14)

4.1 The case that the initial condition is given by S(−∞):

To make mathematical analysis easier, Breda et al. (2012), Diekmann et al. (2021) 
(references therein) assume time starts from −∞. This assumption gives some con-
venience in the analysis due to the occurrence of the related integrals in the REs. In 
this subsection, we adopt this assumption on the starting time, i.e. t0 = −∞, so that 

1 3

   19  Page 12 of 45



On final and peak sizes of an epidemic with latency and effect of…

B(t) and F(t) have the explicit expressions (3.10) and (3.11), respectively. Further, we 
also accordingly impose the following initial conditions:

Assumption 4.1 limt→−∞ S(t) = N0 and limt→−∞ U(t) = 0.

This assumption means the total infected population U was negligible in the infinite 
past. Under the Assumptions (3.1) and (4.1), there are hold

 
lim

t→±∞
Pl(t) = P (L(±∞)) = P (0), lim

t→±∞
P ′

l (t) = P ′(L)L′ = 0 and lim
t→±∞

F (t) = 0.  (4.1)

It follows from the expression (3.10) that

 

F (t) = Pl(t)
∫ ∞

τ

φ(a)B(t − a)da

= Pl(t)
∫ ∞

τ

F (t − a)S(t − a)φ(a)da

= Pl(t)
∫ t−τ

−∞
F (η)S(η)φ(t − η)dη.

 (4.2)

The cumulative force-of-infection over (−∞, T ) is

 

Y (T ; −∞) =
∫ T

−∞
F (t)dt

= −
∫ +∞

τ

φ(a)

{∫ T

−∞

dS(t − a)
dt

Pl(t)dt

}
da

= −
∫ +∞

τ

φ(a)

{
Pl(t)S(t − a)|t=T

t=−∞ −
∫ T

−∞
S(t − a)dPl(t)

dt
dt

}
da

= R̂p(T ) + S(−∞)
∫ +∞

τ

φ(a)
{

Pl(−∞) − Pl(T )e−Y (T −a;−∞)
}

da

= R̂p(T ) + Ro − Pl(T )Ĥ(T )

 (4.3)

where

 
R̂p(t) :=

∫ t

−∞
Ĥ(ξ)P ′

l (ξ)dξ, Rp := R̂p(∞)  (4.4)

with

 
Ĥ(t) :=

∫ +∞

τ

φ(a)S(t − a)da =
∫ t−τ

−∞
φ(t − η)S(η)dη. (4.5)

Thus,
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 R̂′
P (t) = P ′

l (t)Ĥ(t),  (4.6)

which indicates Pl(t) and R̂p(t) have same direction of change.
Differentiating Ĥ(t) gives

 
Ĥ′(t) =

∫ ∞

τ

dS(t − a)
dt

φ(a)da = −
∫ ∞

τ

B(t − a)φ(a)da = −C(t) < 0;  (4.7)

We may also use the alternative formula in (4.5) to obtain

 
Ĥ′(t) = −

∫ ∞

τ

φ(a)dS(t − a)
da

da = S(t − τ)φ(τ) +
∫ ∞

τ

φ′(a)S(t − a)da.  (4.8)

Here, we should mention that only for very special φ(a) do the (4.6) and (4.8) reduce 
to explicit differential equations (DEs). For some details on this, see Sect. 5.

Also, a simple calculation leads to

 

Pl(−∞)Ĥ(−∞) = Pl(−∞)
∫ +∞

τ

φ(a)S(−∞)da = Ro;

Pl(∞)Ĥ(∞) = Ros∞.

 (4.9)

Summarizing the above, the properties of Ĥ(t) are given in the following

Lemma 4.1 Ĥ(t) given in (4.5) is strictly decreasing on t ∈ (−∞, ∞) with 
Ĥ(−∞) = Ro

P (0)  and Ĥ(∞) = Ros∞
P (0) .

Before discussing the property of Rp, we give the following Lemma.

Lemma 4.2 Assume that f and g are functions defined on R, satisfying 

(i) g : R → (gm, gM ) ⊆ (0, ∞) be a differentiable, bounded and monotonic func-
tion with 

 
inf
t∈R

g(t) := gm, sup
t∈R

g(t) := gM ;

(ii) f : R → (0, fM ) be a differentiable and bounded function satisfying 

 
f(±∞) = sup

t∈R
f(t) := fM < ∞.

Then
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∫ ∞

−∞
g(t)f ′(t)dt

converges. Moreover, if g is strictly decreasing, then

 
(gm − gM )fM ≤

∫ +∞

−∞
g(t)f ′(t)dt ≤ 0. (4.10)

Proof See Appendix.  □

By the property of function Pl(t) (i.e. P(L)), Lemmas 4.1 and 4.2, we immediately 
have the following theorem.

Theorem 4.1 For Rp is defined in (4.4), there holds

 −Ro < Rp ≤ 0. (4.11)

By (4.3), the CFOI at t = ∞ with t0 = −∞ is

 
Y (∞; −∞) = ln

(
1

s∞

)
= Rp + Ro

(
1 − e−Y (∞;−∞)

)
.  (4.12)

That is

 − ln (s∞) = Rp + Ro(1 − s∞); (4.13)

equivalently,

 
r∞ = Y (∞; −∞)

Ro
+ Rp

Ro
. (4.14)

Remark 4.1 Compared with (1.8) and (1.9) which depend on a single parameter 
R0, (4.12) and (4.14) depend not only on parameter Ro but also Rp. Note that Rp 
accounts for the impact of the fraction function Pl(t) = P (L(t)), which reflects the 
behaviour changes during an epidemic. To some sense, Rp captures the cumulative 
effect of behavioural adaptation/or NPIs over the entire infection window (−∞, ∞) 
on the final size, reflecting both its direction (i.e., whether the effect is beneficial 
or adverse, via the sign) and strength (via the magnitude); Theorem 4.1 shows that 
Rp < 0 confirming the beneficial effect of behavioural adaption/or NPIs, as intui-
tively expected.

Rearranging the final size equation (4.13) yields
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Theorem 4.2 Given that S(−∞) ≈ N0, the final size relation (FSR) of model (3.14) 
is explicitly presented in the form

 s∞ = e−Ro(1−s∞)−Rp ; (4.15)

or equivalently,

 r∞ = 1 − e−Rpe−Ror∞  (4.16)

where R̂p(t) and Rp are defined in (4.4) and s∞ and r∞ are as in (2.7).
From the formula (4.15), we can see the fraction s∞ is necessarily the intersection 
point of the following functions

 q1(x) = e−Ro(1−x), q2(x) = eRpx (4.17)

in the open interval (0, 1). Note that q1(x) is an exponentially growing function and 
q2(x) is an linearly growing function with slope e−Rp  depending on Rp.

Observe that q2(x) is increasing in the parameter Rp, and q2(x) = x when 
Rp = 0. This together with the fact that R0 ≤ 0 implies the following 

(C1) If Ro ≤ 1, q1(x) > x on x ∈ [0, 1), that is q1(x) > q2(x) for any Rp ≤ 0. 
It means there is only one s∞ = 1 ∈ [0, 1]. Therefore, in this case, the final size 
r∞ is close to zero. The same conclusion is also obtained in Brauer (2005), Breda 
et al. (2012) without Rp term.

(C2) If Ro > 1, there exists a critical value Rcr
p  for critical value Rp such that 

(i) when Rp ∈ (Rcr
p , 0), q1(x) and q2(x) have two intersect points 

x∗
1 ∈ (0, 1/Ro) and x∗

2 ∈ (1/Ro, 1);
(ii) when Rp = Rcr

p , there is only one intersect point x∗ = 1/Ro ∈ (0, 1);
(iii) when Rp = 0, there is only one intersect point x∗ ∈ (0, 1/Ro).

The critical value Rcr
p  is indeed determined by the two tangential conditions 

q1(x) = q2(x) and q′
1(x) = q′

2(x) which turns out to be

 Rcr
p := ln(Ro) − Ro + 1

which satisfies

 
− (1 − Ro)2

Ro
< Rcr

p ≤ 0

for any Ro > 1. And

 qcr
2 (x) := eRcr

p x (4.18)
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is the tangent line of q1(x) with the tangent point (1/Ro, e1−Ro). See Fig. 2 for a 
illustration.

Remark 4.2 Pl(t) ≡ 1 indicates Rp = 0. In this special case, C2-(ii)–(iii) shows st 
will eventually fall down to a level s∞ below 1/Ro, provided that Ro > 1.

Remark 4.3 For the case (C2)-(i), there are two intersection values x∗
1 and x∗

2. 
Remark 4.2 seems to suggest that x∗

2 should be excluded and x∗
1 is the true value of 

s∞. Another intuition to support this suggestion is that x∗
2 is not s∞ is that Rp impact 

x∗
1 and x∗

2 in totally opposite direction: the larger |Rp| is (note Rp ≤ 0), the larger 
x∗

1 is and the smaller x∗
2 is. Noting that Rp accounts for the effect of the intervention 

or human behaviour changes and precaution induce the fraction Pl(t) should help 
mitigate an epidemic and hence increase the final since s∞. Unfortunately, we cannot 
exclude x∗

2 at present and can only leave it as a conjecture, as stated below.

Conjecture 4.1 If Ro > 1, the final size s∞ satisfies s∞ ≤ 1
Ro

.

It is difficult to prove the conjecture 4.1 here for a general case which is plausible. 
Fortunately, we can prove this conjecture for some special cases, as is done in Theo-
rem 5.1 in the next Section. Notably, in classical SIR models without behavioural 
change, the conclusion of Conjecture 4.1 is both mathematically provable and bio-
logically sound. And 1

Ro
 is the so-called normalized herd immunity threshold, i.e., 

the peak of new infections (Fine et al. 2011). The inequality s∞ ≤ 1
Ro

 reflects that 
active infections still generate secondary cases at a declining rate even after herd 
immunity is achieved until removal or recovery, driving the susceptible population 
below the threshold before the epidemic ends.

Assume that the above conjecture is true, then the dependence of s∞ = x∗
1 on Rp 

leads to the following lemma.

Fig. 2 Demonstration of q1(x) and q2(x)
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Theorem 4.3 (Effectiveness via |Rp|) Suppose Ro > 1 is fixed and s∞ ≤ 1
Ro

, then 
the decrement of Rp(i.e. increment of |Rp|) leads to the increment of s∞, i.e. the 
decrement of the final size r∞. Indeed, the decrement of Rp from 0 to a negative 
value leads to the increment of s∞ with the rate 1/ |Ro − 1

s∞
|.

Proof See the Appendix.  □

As described in Remark 4.1, Rp represents the cumulative effect of behaviour change 
on final size over the entire infection window, and Rp < 0 always hold (see Theorem 
4.1), indicating a beneficial impact on control. Theorem 4.3 shows that |Rp| mea-
sures intervention effectiveness: a greater |Rp| leads to a larger fraction of individu-
als escaping infection under certain conditions.

We have mentioned that adopting the initial time to be at t0 = −∞ brings in some 
convenience in analysis. However, it has an inconvenience for numerical computa-
tion. For convenience simulations that will be done in Sect.5, we explore the scenario 
of adopting initial time at t0 = 0 in the next subsection.

4.2 The case with initial condition given by S(0)

Denote L(0) := L0. According to the property of P(L) described in the Assumption 
1.3, we have

 Pl(0) = P (L0), Pl(∞) = P (L(∞)) = P (0).

For t ≥ τ ,

 

F1(t) = Pl(t)
(∫ t

τ

φ(a)B(t − a)da + G(t)
)

= Pl(t)
(∫ t

τ

−dS(t − a)
dt

φ(a)da + G(t)
)

= Pl(t)
(∫ t

τ

dS(t − a)
da

φ(a)da + G(t)
)

= Pl(t)
(

S(0)φ(t) − S(t − τ)φ(τ) −
∫ t

τ

S(t − a)φ′(a)da + G(t)
)

 (4.19)

where

 
dS(t − a)

dt
= −dS(t − a)

da
= −F (t − a)S(t − a).

For 0 ≤ t < τ

 
F2(t) = Pl(t)

(∫ ∞

τ

β(a)u(0, a − t) σ(a)
σ(a − t)

da

)
= Pl(t)Gτ (t). (4.20)
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In summary,

 
F (t) =

{
F1(t) t ≥ τ ;
F2(t) 0 ≤ t < τ.  (4.21)

In addition

 
lim
t→τ

F2(t) = Pl(τ)
(∫ ∞

τ

β(a)u(0, a − τ) σ(a)
σ(a − τ)

da

)
= Pl(τ)G(τ) = F1(τ), (4.22)

Thus, F(t) is continuous.
Analogously to (4.5) and (4.4), define the following function

 
Ĥ0(t) :=

{ ∫ t

τ
φ(a)S(t − a)da =

∫ t−τ

0 φ(t − η)S(η)dη t ≥ τ
0 t < τ

 (4.23)

 
Řp(t) :=

∫ t

τ

Ĥ0(a)P ′
l (a)da, t ≥ τ  (4.24)

 
R̂c(t) := N0

∫ t

τ

Pl(a)φ(a)da, t ≥ τ  (4.25)

 
R̂g(t) :=

∫ t

τ

Pl(a)G(a)da, t ≥ τ  (4.26)

 
R̂op(t) := S0

N0
R̂c(t) + Řp(t) + R̂g(t), t ≥ τ  (4.27)

and use the notations

 H0 := Ĥ0(∞), Rpp := Řp(∞), Rc := R̂c(∞), Rg := R̂g(∞), Rop := R̂op(∞). (4.28)

The following properties hold:

 
Ĥ0(τ) = 0, H0 = Ros∞

P (0)
, Pl(∞)H0 = Ros∞,

 R̂c(τ) = 0, Řp(τ) = 0, R̂g(τ) = 0, R̂op(τ) = 0,

and

 

Rc

Ro
=

∫ ∞
τ

Pl(a)φ(a)da

P (0)
∫ ∞

τ
φ(a)da

≤ 1.

Differentiating H0(t) leads to
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H′
0(t) = φ(t)S(0) +

∫ t

τ

φ(a)dS(t − a)
dt

da = φ(t)S(0) −
(

F1(t)
P (t)

− G(t)
)

= φ(τ)S(t − τ) +
∫ t

τ

φ′(a)S(t − a)da.

 (4.29)

The sign of H′
0(t) is not clear. Unfortunately, it seems not direct to get the boundary 

of Rpp, which is different from the Rp defined by (4.4) in Sect. 4.1.
Assume that T > τ > 0,

 

Y (T ; 0) := ln
(

S(0)
S(T )

)
=

∫ T

0
F (t)dt =

(∫ τ

0
F2(t)dt +

∫ T

τ

F1(t)dt

)

= Y (τ ; 0) + Y (T ; τ) = Y0(T ; 0) + S0

N0
R̂c(T ) − Pl(T )Ĥ0(T ) + Řp(t)

 (4.30)

where

 

Y0(T ; 0) :=
∫ T

0
Pl(t)G⋄(t)dt =

∫ τ

0
Pl(t)Gτ (t)dt +

∫ T

τ

Pl(t)G(t)dt

= Y (τ ; 0) + R̂g(t)

=
∫ T

τ

φ(a)
{∫ a

0

Pl(t)u0(a − t)
σ(a − t)

dt

}
da

+
∫ ∞

T

φ(a)

{∫ T

0

Pl(t)u0(a − t)
σ(a − t)

dt

}
da

=
∫ ∞

τ

φ(a)

{∫ T

0

Pl(t)u0(a − t)
σ(a − t)

dt

}
da

−
∫ T

τ

φ(a)

{∫ T

a

Pl(t)u0(a − t)
σ(a − t)

dt

}
da.

 (4.31)

with

 
Y (τ ; 0) =

∫ τ

0
Pl(t)Gτ (t)dt =

∫ τ

0
Pl(t)

{∫ ∞

τ−t

u0(η)φ(η + t)
σ(η)

dη

}
dt. (4.32)

Y0(T ; 0) is the something that occurred before time t = 0.
Letting T tend to infinity, we get
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Y0(∞; 0) =
∫ ∞

τ

φ(a)
{∫ ∞

0

Pl(t)u0(a − t)
σ(a − t)

dt

}
da

−
∫ ∞

τ

φ(a)
{∫ ∞

a

Pl(t)u0(a − t)
σ(a − t)

dt

}
da

=
∫ ∞

τ

φ(a)
{∫ a

0

Pl(a − η)u0(η)
σ(η)

dη

}
da.

 (4.33)

Furthermore,

 
Y (t; τ) = R̂g(t) + S0

N0
R̂c(t) − Pl(t)Ĥ0(t) + Řp(t) = R̂op(t) − Pl(t)Ĥ0(t) (4.34)

and

 

Y (∞; 0) = Y0(∞; 0) + S(0)
∫ ∞

τ

φ(a)Pl(a)
{

1 − Pl(∞)
Pl(a)

e−Y (∞;0)
}

da

+
∫ ∞

τ

{∫ t

τ

φ(a)S(t − a)da

}
P ′

l (t)dt

= Y0(∞; 0) + Rpp + S0

N0
Rc − Pl(∞)H0

= Rpp +
(

1 − s∞

N0

)
Ro −

∫ ∞

τ

φ(a) {P (0)N0 − S(0)P (I(a))

−
∫ a

0

Pl(t)u0(a − t)
σ(a − t)

dt

}
da

= Rpp + S0

N0

(
Rc

Ro
− e−Y (∞;0)

)
Ro + Y0(∞; 0).

 (4.35)

Correspondingly,

 
Y (∞; τ) = Rop − Ro

S(τ)
N0

e−Y (∞;τ).  (4.36)

We collect our findings into the following theorem.

Theorem 4.4 Given the initial condition S(0) = S0, the final size relation of the 
model (3.14) is

 
Y (∞; 0) = Rpp + S0

N0

(
Rc

Ro
− e−Y (∞;0)

)
Ro + Y0(∞; 0) (4.37)

where Y0(∞; 0) is given in (4.33). Moreover, the following form also holds:
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Y (∞; τ) = Rop − Ro

S(τ)
N0

e−Y (∞;τ);

equivalently,

 0 = ln(s∞) + (Rop − Ro) + Ror∞ − ln(s(τ)).

where R̂op(t) and Rop are given in (4.27) and (4.28).

Remark 4.4 In Brauer (2008) and Breda et al. (2012), Y0(∞; 0) is set to 0. Letting 
Y0(∞; 0) ↓ 0 in (4.35), we obtain

 
Y (∞; 0) = Rpp + S0

N0

(
Rc

Ro
− e−Y (∞;0)

)
Ro ≤ Rpp + S0

N0

(
1 − e−Y (∞;0)

)
Ro, (4.38)

Note that Rg  reflects the contribution from those already in the infected class at time 
t = 0 to the cumulative force-of-infection through the epidemic. When the initial 
fraction of infectors N0−S0

N0
 is small, then Rg  is small and hence, can be safely omit-

ted. Thus,

 R̂op(t) − Řp(t) ≈ R̂c(t) (4.39)

which leads to the following result:

Corollary 4.1 If N0−S0
N0

 is small i.e. N0−S0
N0

= ϵ for 0 < ϵ ≪ 1, then

 
Y (∞; 0) = Rpp +

(
Rc

Ro
− e−Y (∞;0)

)
Ro

or

 
− ln (s∞) ≈ Rpp + Ro

[
Rc

Ro
− s∞

]
< Rpp + Ror∞.

In what follows, we consider a special case of “survival" probability (probability of 
staying in the infected class). For such a special case, we can obtain more explicit and 
possibly more useful results.

Consider

 
γ(a) =

{
γ1, a ∈ [0, τ),
γ2, a ∈ [τ, ∞).  (4.40)

With this piecewise constant recovery rate function γ(a), the “survival" probability 
function σ(a) becomes
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σ(a) =

{
e−γ1a, a ∈ [0, τ)
Vτ e−γ2a, a ∈ [τ, ∞)  (4.41)

where

 Vτ := V (τ) = e(γ2−γ1)τ

with

 V (t) = e(γ2−γ1)t, t ∈ [0, τ ]. (4.42)

Accordingly,

 
TE = 1

γ1
− e−γ1τ τ

1 − e−γ1τ
≥ 0, TI = Vτ (γ2τ + 1)e−γ2τ

γ2e−γ1τ
= τ + 1

γ2
.

Obviously,

 
lim

γ1→0
TE = τ

2
, lim

γ1→∞
TE = 0.

Accordingly,

 
φ(a) =

{
0, a ∈ [0, τ),
β(a)Vτ e−γ2a, a ∈ [τ, ∞).  (4.43)

By computing, we get

 

Gτ (t) = σ(t)
∫ τ

τ−t
u0(η)β(η + t) 1

V (η) dη + σ(t)
Vτ

∫ ∞
τ

u0(η)β(η + t)dη t < τ,

G(t) = σ(t)
∫ τ

0 u0(η)β(η + t) 1
V (η) dη + σ(t)

Vτ

∫ ∞
τ

u0(η)β(η + t)dη t ≥ τ.
 (4.44)

In reality, the initial age density function u0(a) can have various situations. In the 
sequel, we will discuss two situations: continuous and discretely centred.

Assumption 4.2 The initial infection-age distribution u0(a) is continuous and 
satisfies

 

∫ τ

0
u0(a)da = E0,

∫ ∞

τ

u0(a)da = I0. (4.45)

For the continuous initial density function, we have

Lemma 4.3 If u0(a) satisfies the Assumption 4.2, and

1 3

Page 23 of 45    19 



T. Cheng, X. Zou

 
φ(a) =

{
0, a ∈ [0, τ),
βVτ e−γ2a, a ∈ [τ, ∞),  (4.46)

then the following final size inequality holds:

 
Y (∞; τ) ≤ Ro

(
max

{
1

Vτ
, 1

}
− S(τ)

N0
e−Y (∞;τ)

)
+ Rpp. (4.47)

Especially, if γ1 = 0,

 
Y (∞; τ) ≤ Ro

(
1 − S(τ)

N0
e−Y (∞;τ)

)
+ Rpp. (4.48)

Proof See the Appendix.  □

Assumption 4.3 The initial infection-age distribution u0(a) is discretely centred, 
meaning that u0(a) = 0 for all a except for finite many values of a.

For example, if all initial infectives have infection-age τ  at t = 0, and all the infected 
but not infective have infection-age āl ∈ (0, τ) at t = 0 then the initial infection-age 
distribution is

 
u0(a) =

{
I0, for a = τ,
E0, for a = āl,
0, Otherwise.

 (4.49)

The Assumption 4.3 on u0(a) indicates G⋄(t) ≡ 0, R̂g(t) ≡ 0 and Y0(t; 0) ≡ 0, 
Y (τ ; 0) ≡ 0. Further,

 
R̂op(t) = S0

N0
R̂c(t) + Řp(t), (4.50)

Therefore, we have

 Y (t; 0) = Y (t; τ) = R̂op(t) − Pl(t)Ĥ0(t), (4.51)

and thus, the limit of Y (t, τ) as t → ∞ reduces to

 

Y (∞; τ) = Rpp +
(

1 − S(τ)
N0

e−Y (∞;τ)
)

Ro

−
∫ ∞

τ

φ(a) {P (0)N0 − S(0)P (I(a))} da

= Rpp +
(

S0

N0

Rc

Ro
− S(τ)

N0
e−Y (∞;τ)

)
Ro ≤ Rpp + Ro (s0 − s∞) .

 (4.52)
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Summarizing the above, we have the following conclusion.

Lemma 4.4 If u0(a) satisfies the Assumption 4.3, then the final size relation is,

 
− ln (s∞) = Rpp + S0

N0
Rc − Ros∞ − ln

(
S(τ)
N0

)
. (4.53)

Remark 4.5 If Pl(t) ≡ 1, then

 Řp(t) ≡ 0, R̂c(t) ≡ R̂o(t).

Moreover,

 
Rc = Ro, Rop = S0

N0
Ro,

and the final size equation (4.53) for s∞ is transformed to the formula (1.1) for r∞.
We point out that when Pl(t) ≤ 1, in our numerical simulations for the special models 
presented in the next section, we observe that the inequality Rop ≤ Ro (correspond-
ing to Theorem 4.1 in Sect. 4.1) always holds. See, Figs. 3b and 7. Unfortunately, we 
are unable to prove this inequality for the general model.

Fig. 3 aRo ∈ [0, 3]; bh ∈ [0, 1], Ro = 3. Other parameters are τ = 4, γ1 = 0, γ2 = 1
7 , N0 = 300,

E0 = 5, I0 = 5, R(0) = 0
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5 Some applications and numerical simulations: reduction to DEs

In this section, we demonstrate the theoretical results established in the preceding 
sections by some particular simple examples that can reduce the model to DE models. 
We will also present some numerical simulation results to illustrate the theoretical 
results.

We begin with, as a preparation, the following Lemma, which is parallel to the 
Lemma 4.2 but is only on the half line [0, ∞).

Lemma 5.1 Assume that 
(i) g : [0, ∞) → [0, ∞) is differentiable, bounded and strictly increasing with 

g(0) = 0 ( hence g(t) ∈ [0, gM ) where gM := supt∈[0,∞) g(t) = g(∞) );

(ii) f : [0, ∞) → [0, ∞) is differentiable and bounded, and satisfies 
f(t) ≤ f(∞) =: fM < ∞.

Then,

 
0 ≤

∫ ∞

0
f ′(t)g(t)dt ≤ gM fM . (5.1)

Proof See the Appendix.  □

We now choose two particular simple forms for the kernel function ϕ(a) to explore 
the impact of Pl(t) on the final size, reflected by the relation between s∞ and RP  
or Rop.

The first one is the one given in (4.43) with β(a) = β (constant), which is rewrit-
ten below as

 
φ1(a) :=

{
0, a ∈ [0, τ)
βe(γ2−γ1)τ e−γ2a, a ∈ [τ, ∞),  (5.2)

For this kernel, The corresponding basic reproductive number is

 
Ro = P (0)N0

∫ ∞

τ

φ1(a)da = φ1(τ)P (0)N0

γ2
= {PL(0)N0βσ(τ)}(TI − τ). (5.3)

Remark 5.1 The special case of γ1 → 0 corresponds to the scenario that a pre-
infectious individual cannot recover before getting infectious. In this case, the latent 
period τ  makes no difference in Ro.

The second form is taken from Champredon et al. (2018) and is given by
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φ2(a) :=

{
β ϵ

ϵ−γ̄ (e−γ̄a − e−ϵa), if γ̄ ≠ ϵ,

βγ̄ae−γ̄a, if γ̄ = ϵ,
a ∈ (0, ∞). (5.4)

With this kernel, the basic reproduction number of the model is

 
Ro = βP (0)N0

γ̄
. (5.5)

5.1 The case φ(a) = φ1(a)

For this kernel, u(t, τ) is determined to be

 u(t, τ) = B(t − τ)σ(τ) = φ(τ)SP (t − τ)I(t − τ). (5.6)

The formulas (4.7) and (4.8) lead to

 −βI(t) = φ(τ)S(t − τ) − γ2Ĥ(t) (5.7)

which establishes an explicit expression for Ĥ(t) as

 
Ĥ(t) = φ(τ)

γ2
S(t − τ) + β

γ2
I(t) (5.8)

Also, the model (3.14) for this kernel reduces to

 




S′(t) = −βI(t)SP (t)
E′(t) = βI(t)SP (t) − γ1E − φ(τ)I(t − τ)SP (t − τ)
I ′(t) = −γ2I + φ(τ)I(t − τ)SP (t − τ)
R′(t) = γ1E + γ2I

 (5.9)

In summary, the integrated model reads

 





S′(t) = −βIPl(t)S
E′(t) = βI(t)SP (t) − γ1E − φ(τ)I(t − τ)SP (t − τ)
I ′(t) = −γ2I + βe−γ1τ I(t − τ)P (I(t − τ))S(t − τ)
R̂′

P (t) = P ′
l (t)Ĥ(t).

 (5.10)

For the scenario of t0 = −∞, the initial condition is

 (S(−∞), E(−∞), I(−∞), Ĥ(−∞), R̂p(−∞)) = (N0, 0, 0, Ro/P (0), 0).

and for the scenario t0 = 0, the initial condition is
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S(0) = S0, E(0) = E0 =

∫ 0

−∞
E′(t)dt, I(0) = I0 =

∫ 0

−∞
I ′(t)dt (5.11)

and

 
R̂p(0) =

∫ 0

−∞
Ĥ(t)P ′

l (t)dt (5.12)

which is difficult to determine.
Although the theoretical results for the scenario that t starts from the infinite past 

described in Sect. 4.1 are more brief and straightforward, it is not easy to verify these 
conclusions by numerical simulation.

In the rest of this section, we will choose P (L) = e−hL with h ≥ 0 and use the 
results in Sect. 4.2 to show the numerical results.

5.1.1 The case τ > 0 with t0 = 0

We consider a particular initial density specified below.

 

u0(a) =




E0

τ
a ∈ [0, τ), a ∈ [0, τ),

integral on [τ, ∞) with contraint
∫ ∞

τ

u0(η)dη = I0.
 (5.13)

Then for t ∈ [0, τ),

 
u(t, τ) = E0

τ
σ(t) = E0

τ
e−γ1t, (5.14)

and, accordingly

 
Gτ (t) =

{
βσ(t)

Vτ

(
1−V (t)
γ1−γ2

E0
τ + I0

)
γ1 ̸= γ2,

βσ(t)
(

E0t
τ + I0

)
γ1 = γ2.

 (5.15)

 
G(t) =

{
βσ(t)

Vτ

(
1−Vτ

γ1−γ2

E0
τ + I0

)
γ1 ̸= γ2,

βσ(t)(E0 + I0) γ1 = γ2.
 (5.16)

 
R̂g(t) =

{
1

N0Vτ

(
1−Vτ

γ1−γ2

E0
τ + I0

)
R̂c(t) γ1 ̸= γ2,

E0+I0
N R̂c(t) γ1 = γ2.

 (5.17)

The disease dynamics for t ∈ [0, τ ] is then governed by the ODE system
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


S′(t) = −βI(t)SP (t)
E′(t) = βI(t)SP (t) − γ1E − E0

τ e−γ1t

I ′(t) = −γ2I + E0
τ e−γ1t

 (5.18)

For t ≥ τ ,

 u(t, τ) = σ(τ)B(t − τ) = βe−γ1τ I(t − τ)SP (t − τ).

Plugging the above calculations into (5.9), we obtain

 




S′(t) = −βI(t)SP (t)
E′(t) = βI(t)SP (t) − γ1E − βe−γ1τ I(t − τ)SP (t − τ)
I ′(t) = −γ2I + βe−γ1τ I(t − τ)SP (t − τ)
Ĥ′

0(t) = φ(τ)S(t − τ) − γ2Ĥ0(t)
R′

op(t) =
(

Ĥ′
0(t) + Ĥ0(t) P ′

l (t)
Pl(t) + βI(t)

)
Pl(t)

t ∈ [τ, ∞). (5.19)

with the new and translated initial condition (S(τ), E(τ), I(τ), Ĥ0(τ), R̂op(τ)) =
(Sτ , Eτ , Iτ , 0, 0) with (S(τ), E(τ), I(τ)) = (Sτ , Eτ , Iτ ) determined by solving the 
ODE system (5.18) on [0, τ ].

By simulating the system (5.19) with the particular L(t) = I(t), it is easy to 
numerically verify the FSR given in the Theorem 4.4. Figure 3 shows the numeric 
results with the parameter values specified in the caption. From Fig. 3, we observe 
the following. 

(a). If Ro is fixed, an increase in h from 0 increases s∞ (i.e. decreases the final size 
r∞); for fixed h ≥ 0, s∞ decrease as Ro increase; Further, s∞ < 1/Ro holds, 
which confirms the Conjecture 4.1.

(b). Ro − Rop > 0. This inequality can be theoretically proved for the SIR model 
(5.20) (the case of τ = 0), see Lemma 5.2 below. In addition, s∞ decreases (or 
the final size r∞ increases) as Rop increases.

Unfortunately, all the rigid proof of these aforementioned numerical results (shown 
in Fig. 3) is not easy for the model (5.19).

5.1.2 The special case τ ≡ 0 and t0 = 0

If τ ≡ 0, the model (3.14) reduces to the SIR model

 

{
S′(t) = −βI(t)SP (t)
I ′(t) = −γ̄I + βI(t)SP (t)
R′(t) = γ̄I

 (5.20)

for which the basic reproduction number is
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Ro = βP (0)N0

γ̄
. (5.21)

By simple calculations, we can obtain the explicit formulas for functions Ĥ0(t), 
R̂c(t) and Řp(t) as

 

Ĥ0(t) = β

γ2
S(t) + β

γ2
I(t) − φ(t)N0

γ2

= Ro

P (0)
(1 − σ(t)) − Ro

P (0)
r(t)

 (5.22)

with Ĥ0(0) = 0 and Ĥ0(∞) = Ros∞/P (0);

 

R̂c(t) = βN0

∫ t

0
σ(a)Pl(a)da

= − Ro

P (0)

∫ t

0
σ′(a)Pl(a)da;

 (5.23)

and

 
Řp(t) = −R̂c(t) + Ro

P (0)
Pl(t)(1 − σ(t)) − Ro

P (0)

∫ t

0
r(t)P ′

l (t)dt. (5.24)

Corresponding to the Assumption 4.2, we give the following assumption:

Assumption 5.1 
∫ ∞

0 u(0, η)dη = I0.

Under Assumption 5.1, we obtain

 
G⋄(t) = G(t) = β

∫ ∞

t

u(0, a − t)e−γ2tda = βe−γ2t

∫ ∞

0
u0(η)dη = βe−γ2tI0 = φ(t)I0, (5.25)

where G(t) is the total infectivity of the infected population at t = 0 at time t.

 
Y0(t; 0) = R̂g(t) = I0

N0
R̂c(t) (5.26)

Then

 

R̂op(t) = R̂c(t) + Řp(t)

= Ro

P (0)
Pl(t)(1 − σ(t)) − Ro

P (0)

∫ t

0
r(t)P ′

l (t)dt
 (5.27)

Using the Lemma 5.1, we get
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∫ t

0
r(t)P ′

l (t)dt > 0.

Then the following result holds

Lemma 5.2 For model (5.20) with Pl(t) = P (I(t)) under the Assumption 5.1, 
Ro − Rop > 0 holds, see Fig. 7.

According to the theorem (4.4), we get the following inequality of the FSR of the 
model (5.20)

 − ln(s∞) = Ror(∞) + (Rop − Ro) − ln (s0) < Ror(∞) − ln (s0) , (5.28)

which includes

 
Y (∞, 0)

Ro
< r∞. (5.29)

Based on numerical simulation, system (5.20) in this Subsect. 5.1.2 exhibits similar 
qualitative features to system (5.20) in Subsect. 5.2. For brevity, the related figures 
and results are omitted here and included in the Appendix. In fact, the model pro-
posed in Sereno et al. (2022) is similar to (5.20). To some extent, the work (Sereno 
et al. 2022) validates our modelling and results through real-world applications.

5.2 The case φ(a) = φ2(a)

If choosing the kernel φ(a) = φ2(a) and letting τ = 0, the model (3.13) reduces to 
(Details in the Appendix)

 




S′(t) = −βSP I
E′(t) = −ϵE + βSP I
I ′(t) = −γ̄I + ϵE
R′(t) = γ̄I

 (5.30)

For this kernel, the basic reproduction number Ro of (3.14) has the same expression 
as (5.3) with τ = 0.

Functions Ĥ(t) and R̂p(t) have the following forms:

 
Ĥ(t) = −β

γ̄
R(t), R̂p(t) =

∫ t

0
P ′

l (a)Ĥ(a)da (5.31)

Since

 SP (t) = Pl(t)S ≤ S(t) ≤ S(0), t ≥ 0,

and accordingly,
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sP (t) := SP (t)

N0
≤ s(t) ≤ s(0), t ≥ 0.

Remark 5.2 It needs to be emphasized that we choose L(t) = U(t) in this Subsect. 
5.2 to make the following theoretical analysis much easier. However, in practice, U0 
is not easy to assess due to the difficulty of obtaining and tracking E0 in the early 
stages of epidemics.

Calculations lead to

 
U ′(t) = Pl(t)SβI − γ̄I = Ro

(
sP (t)
P (0)

− 1
Ro

)
γ̄I ≤ Ro

(
sP (t)
P (0)

− 1
Ro

)
γ̄U  (5.32)

 
U ′′(t) = Ro

(
s′

P (t)
P (0)

)
γ̄I + Ro

(
sP (t)
P (0)

− 1
Ro

)
γ̄I ′.  (5.33)

With the above preparation for this kernel, we then obtain the following results for 
the reduced model (5.30).

Theorem 5.1 For system (5.30), s∞ satisfies s∞ ≤ 1
Ro

. Moreover, if Pl(t) = P (U), 
s∞ < 1

Ro
.

Proof See the Appendix.  □

Moreover,

Lemma 5.3 If U ′(tm) = 0, then U ′′(tm) ≤ 0.

Proof See the Appendix.  □

Remark 5.3 Lemma 5.3 indicates that if U has a critical point, it must be a local maxi-
mum. Further, the continuous differentiability of U implies that U(t) has, at most, a 
single peak U(tm). In other words, if U ′(0) < 0 then Umax = U(0); if U ′(0) > 0, 
then there exits tm > 0 such that U ′(tm) = 0 and Umax = U(tm) and tm is the pre-
cisely the time at which the fraction of infected individuals reaches the peak Umax. 
Unfortunately, we are unable to determine the peak size analytically.

In summary, we have the following Theorem.

Theorem 5.2 (Peak time and size) Consider Pl(t) = P (U). Then, U ′(0) ≥ 0 (which 
is equivalent to P ′

l (0) ≥ 0) if and only if sP (0) ≥ P (0)
Ro

. Moreover, 

(I) When Ro < 1, then U ′(t) < 0 for all t > 0, the maximum value of U(t) is 
attained at t0 = 0, that is, Umax = I(0) + E(0);

(II) When Ro > 1, then 
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(a) if sP (0) > P (0)
Ro

, there exists a tm > 0 such that U ′(tm) = 0. Accordingly, 

s(tm) = 1
Ro

P (0)
P (Umax)  where Umax = U(tm);

(b) if sP (0) < P (0)
Ro

, then U ′(t) < 0 for all t > 0, the maximum value occurs at 

t0 = 0, that is, Umax = I0 + E0.

Remark 5.4 (See Fig. 5) From Theorem (5.2)-(II), since tm is the threshold for U ′(t), 
the value

 
S(tm) = P (0)

P (Umax)
N0

Ro

is indeed the threshold for herd immunity (HIT), i.e. the value of S under which U 
can no longer increase (Fine et al. 2011). Thus, the involvement of Pl(t) leads to the 
increment of herd immunity threshold compared with the classical herd immunity 
level N0/Ro, since P (0)/P (Umax) > 1.
The following result is a direct result of Lemma 5.1.

Theorem 5.3 (See Fig. 4b) For (5.30), Rp = R̂p(∞) < 0 always holds.

Recall that the CFOI over period [0, t] of the model (5.30) is

 
Y (t; 0) = βPl(t)R(t)

γ̄
+ R̂p(t) (5.34)

Moreover, pluging t = ∞ into the above fomula (5.34) deduces the FSR of the model 
(5.30) to

Fig. 4 Ro = 3, γ̄ = 1
20 , ϵ = 1

14 , h ∈ [0, 5] and N0 = 300, E0 = 5, I0 = 5, R(0) = 0
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ln s0

s∞
= Ror(∞) + Rp.

which can be rewritten as

 ln s∞ = R0s∞ + [ln s0 − Ro − Rp]

The equation clearly shows that s∞ is decreasing in Rp, implying the NPIs or behav-
iour changes reflected by the fraction function Pl(t) = P (L(t)) can increase the final 
size s∞ provided that Rp is no less than the minimal (critical) value Rcr

p , where

 Rcr
p = 1 + ln s0 − R0 + ln R0.

The above conclusion is obtained for (5.30) by analyzing its CFOI; similar results 
have also been discussed in Theorems 5.1 and 4.3 for other cases of the model. In 
summary, we have the following theorem.

Theorem 5.4 (See Fig. 4b) For any fixed Ro > 1 is fixed, Rp decrease if and only if 
s∞ increase (i.e. r∞ decrease).

We point out that, by its definition, Rp (hence s∞) actually depends on several things, 
including R0 through the kernel ϕ(a) and Pl(t) = P (L(t)). However, the depen-
dence is generally very difficult to analyze. In Figs. 4 and 5, we present some numeri-
cal results to demonstrate such dependence. To this end, we choose L(t) = I(t) and 
P (L) = e−hL = e−hI . Figure 4a shows the relationships between h and Rp. By 
altering the non-biological parameter h, one can adjust the efficacy of NPIs (i.e. the 
value of Rp). Figure 5 focuses the impact of the basic reproduction number Ro on 
both Rp and s∞. Figure 5b is parallel and also is similar to Fig. 3a, and the explana-

Fig. 5 Ro ∈ [0, 6], γ̄ = 1
20 , ϵ = 1

14 , h = 0.2 and N0 = 300, E0 = 5, I0 = 5, R(0) = 0
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tion of Fig. 5b is omitted here. In Theorem 5.2 and Remark 5.4, the theoretical results 
for the peak epidemic size of the case L = U  are presented. In practice, the number 
of the exposed class E is sometimes more difficult to collect precisely, whereas the 
mathematical analysis of the case L = I  is relatively complicated.

Figure 6 aims to present some numeric simulations on how the final size and peak 
size are impacted by the choice of L(t) and h in the fraction function P (L) = e−hL. 
The comparison is between L = I  and L = U  with different values of h. The numeric 
results seem to suggest that, in controlling peak size and final size, the effectiveness 
of Non-pharmaceutical and Non-biological precautions when applying only the num-
ber of I(t) to measure the severity level L(t) is not as good as when considering all 
infected numbers (i.e. U(t)), but it is still better than no precaution (i.e. h = 0).

6 Discussion

In this paper, we aim to explore the final epidemic size for general epidemics charac-
terized by infection age, focusing on the effect of behaviour changes on the epidemic 
size. We employ the renewal equation approach, the power of which seems to be 
under-estimated in the literature. Our results show that the final size relation depends 
on both Ro and Rp (or Rop) with Rp (or Rop) accounting for the effect of behaviour 
changes. In addition, by the approach in Breda et al. (2012), we figure out the relation 
of the final size to the CFOI. As described in Remark 4.1, behaviour change alters 

Fig. 6 Ro = 5, γ̄ = 1
20 , ϵ = 1

14  and N0 = 2000, E0 = 5, I0 = 5, R(0) = 0. Here, h = 0 repre-
sents the scenario without behavioural adaptation, where h serves as the flexibility index with which 
the population adaptively responds to the severity of epidemics. A larger h means stronger behaviour 
response. The extreme points of the curves represent the peak size, imax, while the x-axis value at 
these extreme points corresponds to the herd immunity threshold, s(tm). Additionally, the leftmost 
zero points, which lie to the left of x = s(tm), correspond to s∞, or equivalently, 1 − r∞
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this relation via introducing the parameter Rp, in contrast to the results in Breda et al. 
(2012).

The assumption that time extends along the entire axis (t0 = −∞) simplifies 
mathematical analysis but makes numerical simulations impractical. By adopting this 
extension, some researchers are able to establish relatively more theoretical conclu-
sions, but they can obtain fewer quantitative simulating results (Breda et al. 2012; 
Brauer 2008; Diekmann and Inaba 2023). Limiting the time starting from a finite 
value (t0 > −∞), we repeat, in Sect. 4.2, the derivations and inductions in great 
detail to overcome the stumbling block in numerical simulations. Section 4.2 places 
more emphasis on the contribution of initial states than Sect. 4.1, through incorporat-
ing the term R̂g(t) or Rg .

The theorems on the FSR in Sect. 4 provide theoretical support for estimating the 
magnitude of the epidemic through the estimate of the basic reproduction number 
Ro as well as the intervention effect term Rp which is not easy to determine. In 
Sect. 5, by choosing two particular and simple forms for kernel function φ(a), we 
are led to a differential equation for R̂p(t) or R̂op(t) [see the last equation of (5.10) 
or 5.19], which can be analyzed and simulated easily. Further research is needed to 
analyze Rp so that more information can be gathered on the impact of fraction func-
tion Pl(t) = P (L(t)) on the final size.

As mentioned in the previous sections, the Conjecture 4.1 is analytically challeng-
ing, although its conclusion is essential and biologically meaningful. It is certainly 
worth working on. Thus, an immediate research project is to establish sufficient con-
ditions under which the Conjecture 4.1 holds.

Section 5 shows that for some special cases as dealt with in Sects. 5.20 and 5.2, 
the framework of the general infection-age model (3.14) reduced to simpler forms 
that can actually offer some information about the herd immunity threshold (HIT), 
the peak size (PZ) and the calendar time tm. In this Section, we partially answer the 
(Q1) posed at the beginning, both theoretically and numerically, showing that behav-
ioural adaption can effectively reduce (resp. increase) the final size r∞ (resp. increase 
s∞), PZ and HIT in concrete cases (see for instance Figs. 5 and 8 along with their 
descriptions). However, for the general case of the general model (3.14), it is very 
challenging to analyze the HIT and PZ. More mathematical techniques are needed 
to theoretically obtain information on the HIT and PZ for the general model (3.14).

As introduced earlier, following (Cheng and Zou 2022, 2024), we adopt the notion 
of “practically susceptible population” and consider susceptibility at the popula-
tion level. In fact, more reasonably, adaptive behaviour changes are heterogeneous 
due to different cultures, societal norms, economic costs, etc. Some recent work 
(Almeida et al. 2021; Berestycki et al. 2023; Diekmann and Inaba 2023; Tkachenko 
et al. 2021), and references therein take into account heterogeneity in both infection 
risk and social mechanisms. For example, Diekmann and Inaba (2023) incorporate 
separable static heterogeneity into compartmental models using RE methods with 
less focus on the final size equation/relation. In reality, humans’ behaviour response 
to infection risk exhibits adaptive/or dynamic heterogeneity, which compartmental 
models do not accurately capture. Additionally, the RE method is more powerful for 
generalization than compartmental models. The theoretical derivations of the final 
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size relation by RE-methods, coupled with individual-level heterogeneity of adaptive 
behaviour change, are often mathematically challenging but meaningful.

In summary, we believe this work first provides a general and plausible framework 
for estimating the final epidemic size when considering Non-pharmaceutical inter-
ventions and/or psychological effects. From a mathematical point of view, this work 
generalizes the force of infection described in Cheng and Zou (2022) to reflect the 
above-mentioned effects and derives the corresponding REs. As is seen, the incor-
poration of Non-pharmaceutical interventions and/or psychological effects results in 
REs with time-varying kernels. It is the time-varying nature of the kernel that makes 
the model novel, the analysis more difficult, and the results more interesting both 
mathematically and biologically.

Appendix

The derivation of model (3.14)

 

E′(t) =
∫ τ

0

∂u(t, a)
∂t

da =
∫ τ

0
−γ(a)u(t, a) − ∂u(t, a)

∂a
da

= −
∫ τ

0
γ(a)u(t, a)da − u(t, τ) + u(t, 0)

= −
∫ τ

0
γ(a)u(t, a)da − u(t, τ) + B(t)

I ′(t) =
∫ ∞

τ

∂u(t, a)
∂t

da = −
∫ ∞

τ

γ(a)u(t, a)da −
∫ ∞

τ

∂u(t, a)
∂a

da

= −
∫ ∞

τ

γ(a)u(t, a)da − u(t, ∞) + u(t, τ)

= −
∫ ∞

τ

γ(a)u(t, a)da + u(t, τ)

 (.1)

Proof of Theorem 3.1  
d(S + U)

dt
= −

∫ ∞

0
γ(a)u(t, a)da = −

∫ ∞

0
B(t − a)σ(a)γ(a)da (.2)

which is strictly negative, S + U  is strictly decreasing and positive. Therefore, 
limt→∞

d(S+U)
dt = 0, that is, U(∞) = 0. Further, since I(t), E(t) > 0 for all t < ∞, 

E(∞) = 0, I(∞) = 0.  □

Proof of Lemma 4.3 Under the Assumption 4.2 of u0(a), then

 
min

{
1

Vτ
, 1

}
GM (t) ≤ G(t) ≤ max

{
1

Vτ
, 1

}
GM (t)

where
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GM (t) = (E0 + I0)φ(t)

∫ ∞
0 u0(η) β(η+t)

β(t) dη∫ ∞
0 u0(η)dη

, t ≥ τ. (.3)

Moreover, particularly, if β(a) ≡ β,

 

∫ t

τ

Pl(a)GM (a)da = E0 + I0

N0
R̂c(t),  (.4)

 
min

{
1

Vτ
, 1

}
N0 − S0

N0
R̂c(t) ≤ R̂g(t) ≤ max

{
1

Vτ
, 1

}
N0 − S0

N0
R̂c(t)  (.5)

and

 

min
{

1
Vτ

, 1
}

R̂c(t) ≤
(

min
{

1
Vτ

, 1
}

E0 + I0

N0
+ S0

N0

)
R̂c(t) ≤ R̂op(t) − R̂p(t)

≤
(

max
{

1
Vτ

, 1
}

E0 + I0

N0
+ S0

N0

)
R̂c(t) ≤ max

{
1

Vτ
, 1

}
R̂c(t)

≤ max
{

1
Vτ

, 1
}

R̂o(t).

 (.6)

This inequality implies (4.47).  □

Proof of Lemma 4.2 For any a < b, with the help of the second mean value theo-
rem for integrals (Roman et al. 2012; Dixon 1929), there exists ξa,b ∈ [a, b], which 
depend on the choice of a, b, such that

 

∫ b

a

g(t)f ′(t)dt = g(a)
∫ ξa,b

a

f ′(t)dt + g(b)
∫ b

ξa,b

f ′(t)dt

= g(a) (f(ξa,b) − f(a)) + g(b) (f(b) − f(ξa,b)) .

 (.7)

Further, we get the following inequalities:

 

g(a) (f(ξa,b) − f(a)) + g(b) (f(b) − f(ξa,b))
< g(a) (f(ξa,b) − f(a)) + g(b) (fM − f(ξa,b))
< gM (fM − f(a)) + gM (fM − f(ξa,b))
< gM (fM − f(a)) < gM fM

 (.8)

and

1 3

   19  Page 38 of 45



On final and peak sizes of an epidemic with latency and effect of…

 

g(a) (f(ξa,b) − f(a)) + g(b) (f(b) − f(ξa,b))
= f(ξa,b) (g(a) − g(b)) + g(b)f(b) − g(a)f(a)
> fM (gm − gM ) + g(b)f(b) − g(a)f(a)
> fM (gm − gM ) − g(a)f(a)
> fM (gm − gM ) − gM fM = fM (gm − 2gM )

 (.9)

Let a → −∞ and b → ∞,

 
fM (gm − 2gM ) <

∫ +∞

−∞
g(t)f ′(t)dt < gM fM .

Moreover, if g : R → (gm, gM ) is strictly decreasing,

 

g(a) (f(ξa,b) − f(a)) + g(b) (f(b) − f(ξa,b))
= f(ξa,b) (g(a) − g(b)) + g(b)f(b) − g(a)f(a)
> g(b)f(b) − g(a)f(a)

 (.10)

holds. Hence,

 
(gm − gM )fM ≤

∫ +∞

−∞
g(t)f ′(t)dt.

Choose a = −b < 0 < b and there exists ξb ∈ [−b, b] such that

 

∫ b

−b

g(t)f ′(t)dt

≤ g(−b) (f(ξb) − f(−b)) + g(−b) (fM − f(ξb))
= g(−b) (fM − f(−b))

 (.11)

Let b → +∞,

 

∫ ∞

−∞
g(t)f ′(t)dt ≤ 0. (.12)

 □

Proof of Lemma 4.3 If choosing another set of parameters and keeping Ro the same, 
we get

 

−∆Rp = ln(s∞ + ∆s∞) + Ro(1 − (s∞ + ∆s∞)) + Rp

= ln
(

1 + ∆s∞

s∞

)
− Ro∆s∞

 (.13)
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Moreover, if ∆s∞
s∞

 is small, we find by straightforward Taylor expansion that

 

∆Rp = −
(

∆s∞

s∞
+ O

(
∆s∞

s∞

)
− Ro∆s∞

)

≈
(

Ro − 1
s∞

)
∆s∞

 (.14)

or

 
lim

∆s∞→0

∆Rp

∆s∞
= Ro − 1

s∞
 (.15)

 □

Proof of Lemma 5.1  

∫ b

0
f ′(t)g(t)dt = g(0)

∫ ξb

0
f ′(t)dt + g(b)

∫ b

ξb

f ′(t)dt

= g(0) [f(ξb) − f(0)] + g(b)[f(b) − f(ξb)]
= g(b)[f(b) − f(ξb)]

 (.16)

 
g(b)f(b) >

∫ b

0
f ′(t)g(t)dt > g(b)f(b) − fM g(b)  (.17)

Let b → ∞,

 
gM fM ≥

∫ ∞

0
f ′(t)g(t)dt ≥ gM fM − fM gM = 0. (.18)

 □

Proof of the Theorem 5.1 Suppose to the contrary s∞ > 1
Ro

, which indicates that 
there exists a δ > 0 such that s∞ = 1

Ro
+ δ and then s(t) ≥ 1

Ro
+ δ for all t ≥ 0 

owing to the decrement of s(t). Since limt→∞ sP (t) = Pl(∞)s∞ = P (0)s∞ and 
δ > 0, for given (P (0)δ)/2 there exists t̄0 ∈ [0, ∞) such satisfying

 
|sP (t) − P (0)s∞| <

P (0)δ
2

for all t ≥ t̄0. Thus, we have

 
sP (t) >

P (0)
Ro

+ P (0)δ
2
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and

 
U ′(t) = Ro

(
sP (t)
P (0)

− 1
Ro

)
γ̄I >

Roγ̄Iδ

2

for all t ≥ t̄0. Then, for all t ≥ t̄0, we have

 U(t) > U(t0)e
Roγ̄δ

2

∫ t

t0

I(t)
U(t) dt

> U(t0)

which means U(∞) = +∞, it contradicts with U(∞) = 0. Thus, s∞ ≤ 1
Ro

 holds.
Moreover, if Pl(t) = P (U), s∞ < 1

Ro
. Suppose to the contrary s∞ = 1

Ro
 i.e. 

S∞ = N0
Ro

. Then

 
dU

dS
= −

Ro

(
sP (t)
P (0) − 1

Ro

)
γ̄

βN0sP (t)
= −

(
sP (t) − P (0)

Ro

)

sP (t)

 

d

dS

dU

dS
= − d

dsP




(
sP (t) − P (0)

Ro

)

sP (t)


 dsP

dS

= −P (0)
Ro

1
s2

P

dsP

dS
= −P (0)

Ro

1
s2

P

[
dPl

dU

dU

dS
s + Pl

N0

] (.19)

which means d2U
dS2 < 0 if dU

dS ≤ 0.

 

dU

dS

∣∣∣∣
S=S∞

=

(
P (U(S∞))s∞ − P (0)

Ro

)

P (U(S∞))s∞
=

Ro

(
P (U(S∞))

Ro
− P (0)

Ro

)

P (U(S∞))
= 0.

Thus, there is a δ > 0 such that for any S(t) ∈ [S∞, S∞ + δ), dU
dS < 0. And hence, 

U(S∞) = 0 > U(S∞ + δ/2), a contradiction.  □

Proof of Lemma 5.3 Since U(t) > 0 for all t ∈ [0, ∞), U ′(tm) = 0 tells

 
sP (tm)
P (0)

− 1
Ro

= 0.

Then, we have
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U ′′(tm) = Ro

(
s′

P (tm)
P (0)

)
γ̄I(tm)

= Ro

(
P ′(U)U ′(tm)s(tm) + P (U(tm))s′(tm)

P (0)

)
γ̄I(tm)

= Ro

(
P (U(tm))s′(tm)

P (0)

)
γ̄I(tm) ≤ 0

 (.20)

 □

The details in reduction of the model (5.30)
Inspired by Diekmann and Inaba (2023), we rewrite φ2(a) as a vector form

 φ2(a) = β(a)T eBaId2×1 (.21)

where

 
β(a) :=

(
0
β

)
, Id2×1 :=

(
1
0

)
, γ(a) := B =

[
−ϵ 0
ϵ −γ̄

]
.

The infected density u(t, a) on infection-age a corresponding to the kernel 
φ(a) = φ2(a) is a two-dimensional vector:

 
u(t, a) =

(
ue(t, a)
ui(t, a)

)
,

which is different from the Eq. (2.1):

 

(
∂

∂t
+ ∂

∂a

)
u(t, a) = Bu(t, a)  (.22)

with boundary condition u(t, 0) = [u0
e(t), 0]T . The age densities of total infected 

individuals u(t, a) := ||u(t, a) ||1 = ue(t, a) + ui(t, a). Further, denote

 
E(t) =

∫ +∞

0
ue(t, a)da, I(t) =

∫ +∞

0
ui(t, a)da.

exposed and infectious individuals, respectively. Further, simple calculations lead to 
the model (5.30)

The figure and results of model (5.20) in Subsect. 5.1.2
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Fig. 8 Parameters are Ro = 4.5, γ2 = 1
7 , N0 = 1000, I0 = 5, R(0) = 0. The two figures demon-

strate that as h increases, the peak size reduces sequentially, the threshold for herd immunity(HIT) 
increases sequentially (see the extreme points of these three curves), and the final size increases (see 
the three leftmost zero points on the x-axis). Additionally, regardless of changes in h, the threshold for 
practically susceptible fraction smax

P  remains at 1/Ro, which actually is the classical herd immunity 
level without behavioural adaption

 Fig. 7 h ∈ [0, 2], Ro = 3. Other parameters are γ2 = 1
7 , N0 = 300, E0 = 5, I0 = 5, R(0) = 0
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