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Abstract In this paper, a very general model of impulsive delay differential equations
in n-patches is rigorously derived to describe the impulsive control of population of
a single species over n-patches. The model allows an age structure consisting of
immatures and matures, and also considers mobility and culling of both matures and
immatures. Conditions are obtained for extinction and persistence of themodel system
under three special scenarios: (1) without impulsive control; (2) with impulsive culling
of the immatures only; and (3) with impulsive culling of thematures only, respectively.
In the case of persistence, the persistence level is also estimated for the systems in the
case of identical n patches, by relating the issue to the dynamics of multi-dimensional
maps. Two illustrative examples and their numerical simulations are given to show
the effectiveness of the results. Based on the theoretical results, some strategies of
impulsive culling are provided to eradicate the population of a pest species.
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1 Introduction

In recent years, the study of population dynamics for species with age structure and
spatial structure has attracted increasing attention in the communities of mathemati-
cal biology and applied dynamical systems, see, e.g., Smith and Thieme (1991), So
et al. (2001), Li and Zou (2010), Weng et al. (2010) and Xu (2005). In the real world,
many species have two major life stages: immature and mature stages. Taking a single
species as an example, the consideration of maturation time naturally brings a delay
into the model, leading to a delay differential equation (DDE); further incorporation
of spatial mobility may naturally modify the delayed term to one with both the tem-
poral delay and spatial non-locality. In their earlier work, Smith and Thieme (1991)
formulated a system for the population of a single species living in n-patches with the
maturation age and established the generic convergence of the system by the theory
of monotone dynamical systems. By similar derivations, So et al. (2001) and Weng
et al. (2010) presented two models for a single age-structured species living in two
and three patches, respectively, and investigated the stability and the Hopf bifurcation
of the systems. Xu (2005) further investigated the uniform persistence, global stabil-
ity of equilibria and the Hopf bifurcation for a structured population in two identical
patches.

On the other hand, some real world problems involve abrupt changes of populations
by human’s intervening at some timemoments. For instance, in pest control, in order to
eradicate a pest species, spraying adulticides or larvicides may be exercised at certain
times of the year that coincide with critical stages in the matured pest’s development
or in the larval’s growth. Another good example is harvesting of fish or other animal
species in animal farms, in which a population is typically harvested only at some
discrete times. Population dynamics with such abrupt removals or culls are described
by systems of impulsive differential equations (IDEs). For some fundamental results
on IDEs, a reader is referred to Lakshmikantham et al. (1989), Gopalsamy and Zhang
(1989), Bainov and Stamova (1997), Stamova (2009), Liu and Ballinger (2002), Nieto
(2002), Yan (2009), Yang and Xu (2006) and the references therein.

When applying culling to an age structuredpopulation, there canbe culling of imma-
tures and culling of matures. Simons and Gourley (2006) proposed a stage-structured
population model for species whose adult members are subject to impulsive culls, and
obtained some extinction criteria for their delayed impulsive systems. Later, Terry
(2010a, b) studied a two patch model with an impulsive adult culling regime to control
the pest with different birth functions in one or two patches. Gourley et al. (2007)
derived the impulsive control strategy involving culling of both the immature and the
mature of the host population, and explored the possibility to eradicate vector-borne
diseases via age-structured culling of host. However, to the authors’ best knowledge,
no existing work has discussed the impulsive control for age-structured populations
in multi-patchy environment. Moreover, in some situations , the goal of population
control is not complete eradication of a species, but is, instead, a sustainable harvest-
ing (e.g., in fishery management). In other words, persistence of the age-structured
population in a patchy environment should also be of interest and significance when
applying impulsive culling. In addition, for resource management purpose, it should
also be important to predict or estimate the population in the long time in every patch,
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when the population is persistent. Mathematically, this corresponds to the eventual
lower and upper bounds of solutions to the model systems, and it turns out to be very
challenging since there are few, if not no at all, effective methods in the literature.

Motivated by the above discussions, we rigorously derive amodel for the population
of a single age-structured species living in n-patches, incorporated with impulsive
culling control of the population. The model is very general in the sense that it allows
the control strategy to be implemented in some chosen patches or all patches, and
it allows culling of both immatures and matures. For three special cases, we offer
detailed analysis which leads to some more explicit conditions for extinction and
persistence: (1) non-impulsive control; (2) impulsive culling of the immatures; and
(3) impulsive culling of the matures. In these three cases, the model system reduces to
an autonomous DDE [for (1)], a non-autonomous DDE [for (2)] and a true impulsive
DDE [for (3)] respectively.

The rest of the paper is organized as below. We derive the general model in Sect. 2
and give some preliminaries in Sect. 3. In Sect. 4, we establish the threshold dynamics
on the persistence and extinction for the model. The criteria are helpful in determining
whether or not the culling is needed. In Sect. 5, we discuss extinction when the impul-
sive culling is implemented to immature only; and in the case of periodic culling, we
obtain conditions for persistence of the population. Moreover, by some results on the
dynamics of multi-dimension maps, we give an estimate of persistence level for the
model system in the case of identical patches and with or without culling of the imma-
tures. In Sect. 6, we derive some results on extinction and instability in the case of
culling of the mature only, and show that the extinction (eradication) can be achieved
by choosing some patches to cull. The main ideas used to deal with extinction and
persistence in these sections are closely related to the theories of persistence, mono-
tone dynamical systems and map dynamics, e.g. in Thieme (1993), Smith (1995),
Zhao (2003), Zhao (2017), Yi and Zou (2010), etc. In Sect. 7, we give two illustrative
examples, and present two practical schedules for eradicating a pest species by culling
immatures or immatures respectively. To make the reading smoother, we leave some
proofs to the two appendices.

2 Model description

Consider the population of a single species with age-structure that lives in n patches.
Let ui (t, a) be the population density at time t with age a, di (a) > 0 denote the natural
death rate at age a, pi j (a) ≥ 0 be to the migration rate of the individuals at age a
from patch j to patch i for i = 1, 2, . . . , n. In the absence of culling, by the standard
von-Foester equation, we have

∂ui (t, a)

∂t
+ ∂ui (t, a)

∂a
= −di (a)ui (t, a) +

∑

j �=i

p ji (a)u j (t, a)

−
∑

j �=i

pi j (a)ui (t, a).t, a ≥ 0. (2.1)

Now, assume that a culling strategy is implemented to control the population of the
species by removing some individuals at some pre-scheduled times (see, e.g. Simons
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and Gourley 2006). The culling strength is typically assumed to be proportional to the
population of the present time, meaning that

�ui (tk, a) := ui (t
+
k , a) − ui (t

−
k , a) = −cik(a)ui (t

−
k , a), a ≥ 0, k = 1, 2, . . . ,

(2.2)
with cik(a) being the culling rate at the kth culling time for the population of age a
in patch i . Thus, the population dynamics under culling can governed by a system
obtained by incorporating the above culling terms into (2.1), leading to the following
impulsive system

∂ui (t, a)

∂t
+ ∂ui (t, a)

∂a
= − di (a)ui (t, a) +

∑

j �=i

p ji (a)u j (t, a) −
∑

j �=i

pi j (a)ui (t, a)

−
∑

0<tk≤t

cik(a)ui (t, a)δ(t − tk), t, a ≥ 0, i = 1, 2, . . . , n.

(2.3)
where δ(t) is theDirac delta function. For convenience,we assume ui (tk, ·) = ui (t

+
k , ·)

throughout this paper.
Next, let r > 0 be the age at which an individual becomes a producing adult. For

simplicity, we follow (So et al. 2001) to assume that for i = 1, . . . , n, k = 1, 2, . . .,

di (a) =
{

d(a), 0 ≤ a ≤ r,
di , a > r,

pi j (a) =
{

p(a), 0 ≤ a ≤ r,
pi j , a > r,

cik(a) =
{

ck(a), 0 ≤ a ≤ r,
Cik, a > r.

The adult population in the i th patch is then given by xi (t) = ∫∞
r ui (t, a)da. In

addition to the condition ui (t,∞) = 0, there is also the condition at a = 0: ui (t, 0) =
bi (xi (t)) since the new born individuals are produced by the adults, where bi (·) is
birth function for the species in patch i . Integrating (2.3) w.r.t. a from 0 to r gives

dxi (t)

dt
=

∫ ∞

r

⎡

⎣−∂ui (t, a)

∂a
− di (a)ui (t, a) +

∑

j �=i

p ji (a)u j (t, a)

−
∑

j �=i

pi j (a)ui (t, a) −
∑

0<tk≤t

cik(a)ui (t, a)δ(t − tk)

⎤

⎦ da

= ui (t, r) − di xi (t) +
∑

j �=i

p ji x j (t) −
∑

j �=i

pi j xi (t) −
∑

0<tk≤t

Cik xi (t)δ(t − tk).

For anygiven s ≥ −r , settingU s
i (t) = ui (t, t−s), s ≤ t ≤ s+r anda = t−s ∈ [0, r ],

we have
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dU s
i (t)

dt
= −d(t − s)U s

i (t) +
∑

j �=i

p(t − s)U s
j (t) −

∑

j �=i

p(t − s)U s
i (t)

−
∑

0<tk≤t

ck(t − s)U s
i (t)δ(t − tk).

Denoting U s(t) = U s
1 (t) + · · · + U s

n (t), we get

dU s(t)

dt
= −d(t − s)U s(t) −

∑

0<tk≤t

ck(t − s)U s(t)δ(t − tk). (2.4)

Solving the above linear ODE and noting that U s
j (s) = u j (s, 0) = b j (x j (s)), we

obtain

U s(t) = U s(s) exp

{
−
∫ t−s

0
d(a)da

} ∏

s<tk≤t

[1 − ck(tk − s)]

= exp

(
−
∫ t−s

0
d(a)da

) ∏

s<tk≤t

[1 − ck(tk − s)]
n∑

j=1

b j (x j (s)).

Setting d̂(t − s) = d(t − s) + np(t − s), U s
i (t) then satisfies

dU s
i (t)

dt
= −d̂(t − s)U s

i (t) + p(t − s)U s(t) −
∑

0<tk≤t

ck(t − s)U s
i (t)δ(t − tk). (2.5)

Applying the impulsive version of the constant-variation-formula (see, e.g. Laksh-
mikantham et al. 1989) to the linear inhomogeneous system (2.5), we then obtain

U s
i (t) = U s

i (s) exp

(
−
∫ t

s
d̂(t − ξ)dξ

) ∏

s<tk≤t

[1 − ck(tk − s)]

+
∫ t

s
exp

(
−
∫ t

ξ

d̂(θ − s)dθ

)
p(ξ − s)U s(ξ)

∏

s<tk≤ξ

[1 − ck(tk − s)]dξ

= exp

(
−
∫ t−s

0
d̂(a)da

) ∏

s<tk≤t

[1 − ck(tk − s)] bi (xi (s))

+
∫ t

s
exp

(
−
∫ t−s

ξ−s
d̂(a)da

)
p(ξ − s) exp

(
−
∫ ξ−s

0
d(a)da

)

×
∏

ξ<tk≤t

[1 − ck(tk − s)]
∏

s<tk≤ξ

[1 − ck(tk − s)]dξ

n∑

j=1

b j (x j (s))

= exp

(
−
∫ t−s

0
d̂(a)da

) ∏

s<tk≤t

[1 − ck(tk − s)] bi (xi (s))
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+ exp

(
−
∫ t−s

0
d(a)da

)∫ t−s

0
exp

(
−
∫ t−s

ζ

np(a)da

)
p(ζ )dζ

×
∏

s<tk≤t

[1 − ck(tk − s)]
n∑

j=1

b j (x j (s)).

Evaluating at s = t − r yields

ui (t, r) = Ut−r
i (t) = exp

(
−
∫ r

0
d̂(a)da

) ∏

t−r<tk≤t

[1 − ck(r − (t − tk))] bi (xi (t − r))

+ exp

(
−
∫ r

0
d(a)da

)(∫ r

0
exp

(
−
∫ r

ζ
np(a)da

)
p(ζ )dζ

)

×
∏

t−r<tk≤t

[1 − ck(r − (t − tk))]
n∑

j=1

b j (x j (t − r)).

Note that

∫ r

0
exp

(
−
∫ r

ζ

np(a)da

)
p(ζ )dζ = 1

n

[
exp

{
−
∫ r

ζ

np(a)da

}]ζ=r

ζ=0

= 1

n

[
1 − exp

(
−
∫ r

0
np(a)da

)]
.

Thus,

ui (t, r) = 1

n
exp

(
−
∫ r

0
d(a)da

) ∏

t−r<tk≤t

[1 − ck(r − (t − tk))]

×
[
1 + (n − 1) exp{−

∫ r

0
np(a)da}

]
bi (xi (t − r))

+ 1

n
exp

(
−
∫ r

0
d(a)da

) ∏

t−r<tk≤t

[1 − ck(r − (t − tk))]

×
[
1 − exp{−

∫ r

0
np(a)da}

] n∑

j �=i

b j (x j (t − r)).

Therefore, we obtain the impulsive delay model

dxi (t)

dt
= −di xi (t) + ∑

j �=i
p ji x j (t) − ∑

j �=i
pi j xi (t)

+ 1
n αγ (t)[1 + (n − 1)β]bi (xi (t − r))
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+ 1
n αγ (t)[1 − β]

n∑
j �=i

b j (x j (t − r))

− ∑
0<tk≤t

Cik xi (t)δ(t − tk), (2.6)

where

α = exp

(
−
∫ r

0
d(a)da

)
, β = exp

(
−
∫ r

0
np(a)da

)
,

γ (t) =
∏

t−r<tk≤t

[1 − ck(r − (t − tk))]. (2.7)

The right hand side of (2.6) can be biologically explained as below. The first line on
the right side accounts for instantaneous death rate and migration in and out rates for
matured individuals in patch i , and the third line explains the total loss rate of matured
individuals in patch i up to time t due to culling of the matures. As for the second
line on the right side of (2.6), it is the rate at which patch i gains matured individuals.
Rewriting it as

βγ (t)αbi (xi (t − r)) +
n∑

j=1

1

n
(1 − β)γ (t)αb j (x j (t − r)),

we find that it consists of two parts: the first part is nothing but the individuals born r
time units ago in patch i who have survived immature period (including natural death
and culling) and have remained in patch i (with probability β); and the second part
adds up all individuals born r time units ago in all patches survived immature period
who have once left the birth patch (with probability 1 − β), but find themselves in
patch i (with probability 1/n) when becoming mature (i.e., at age a = r ).

Equation (2.6) can be rewritten as the matrix form
{ d

dt x(t) = −(D + L)x(t) + αγ (t)Sb(x(t − r)), t �= tk,
�x(t+k ) = x(t+k ) − x(t−k ) = −Ck x(t−k ), k ∈ N ,

(2.8)

where x(t) = (x1(t), x2(t), . . . , xn(t))T , b(x(t)) = (b1(x1(t)), b2(x2(t)), . . . ,
bn(xn(t)))T , L = P0 − P ,
Ck = diag{C1k, C2k, . . . , Cnk}, D = diag{d1, d2, . . . , dn},
P0 = diag{∑n

j �=1 p1 j ,
∑n

j �=2 p2 j , . . . ,
∑n

j �=n pnj }, and

P =

⎡

⎢⎢⎢⎣

0 p21 · · · pn1
p12 0 · · · pn2
...

...
. . .

...

p1n p2n · · · 0

⎤

⎥⎥⎥⎦ ,

S = 1

n

⎡

⎢⎢⎢⎣

1 + (n − 1)β 1 − β · · · 1 − β

1 − β 1 + (n − 1)β · · · 1 − β
...

...
. . .

...

1 − β 1 − β · · · 1 + (n − 1)β

⎤

⎥⎥⎥⎦ .
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Throughout this paper, we will assume that the functions bi (·), i = 1, 2, ·, n,

satisfy those common properties for a birth function (see e.g., Rost and Wu 2007; Liz
and Rost 2010):

(H1) bi (0) = 0 and bi (s) > 0 for s > 0; there is a unique ηi > 0 such that b′
i (s) > 0

if 0 ≤ s < ηi , b′
i (ηi ) = 0, b′

i (s) < 0 if s > ηi , b′′
i (s) < 0 if 0 ≤ s ≤ ηi ; and

lims→∞ bi (s) = 0;

In the rest of this paper, z = (z1, z2, . . . , zn)T ∈ Rn+, we will use B ′(z) to denote
the diagonalmatrix diag{b′

1(z1), b′
2(z2), . . . , b′

n(zn)} and use b′(z) to denote the vector
(b′

1(z), b2(z), . . . , b′
n(z))T .

There are some familiar examples of birth functions satisfying (H1), among which
are the birth functions used in the Nicholson’s blowflies model (Gurney et al. 1980)
and the Mackey–Glass model (Mackey and Glass 1977). For the culling terms, based
on the biological meanings, we assume the following

(H2) the culling rates satisfy ck(·), Cik ∈ [0, 1), ck is continuous function defined
on [0, r ], and culling moments {tk, k ∈ N } satisfy 0 < t1 < · · · < tk < tk+1 <

. . . , limk→∞ tk = ∞.

Remark 2.1 The parameters in (2.7) have their biological meanings. di , pi j and Cik

are the natural death rate, migration rate and culling rate of the mature in patch i ,
respectively. α is the probability that an immature individual can survive natural death,
β is the probability that an individual immature is in the patch of birth when becoming
mature, while γ (t) is probability of an immature individual surviving the culling
during the time [t − r, t]. Clearly, α, β, γ (·) ∈ (0, 1].
Remark 2.2 In the absence of culling, that is, ck(·) = 0 and Ck ≡ 0, the model (2.8)
reduces to a system of continuous autonomous delay differential equations which has
been explored by some researchers, see e.g., Ivanov and Sharkovsky (1992), Rost and
Wu (2007), Liz and Rost (2010), Xu (2005), and Smith and Thieme (1991). When
Ck ≡ 0, (2.8) becomes a system of non-autonomous delay differential equations with
piecewise continuous parameter γ (t). When ck(·) = 0, (2.8) remains an impulsive
system of delay differential equations, and for the special cases of n = 1, 2, the
extinctionproblemhasbeen studied inSimons andGourley (2006) andTerry (2010a, b)
respectively.

3 Preliminaries

In this section, we first introduce some definitions and notations that will be used in
the sequel. Then, we present the preliminary results.

As usual, Rn is the n-dimensional Euclidian space and Rm×n denotes the set of
all m × n real matrices and N consists of all natural numbers. Let R+ = [0,∞)

and Rn+ = R+ × · · · × R+. Also denote by E the n × n identity matrix, and let
en = (1, . . . , 1)T ∈ Rn .

LetC := C[ [−r, 0], Rn] be theBanach space of all continuous functions on [−r, 0]
equipped with the sup norm given by ‖φ‖ = max1≤i≤n sup−r≤s≤0 |φi (s)|. The space
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C contains the cone C+ := {φ ∈ C : φi (s) ≥ 0, s ∈ [−r, 0], i = 1, 2, . . . , n} and its
interior C◦+ := {φ ∈ C+ : φi (s) > 0, s ∈ [−r, 0], i = 1, 2, . . . , n}.

For the purpose of dealingwith impulses at the tk , k = 1, . . ., we need the following
set:

PC[I, Rn] �=
{
ψ : I → Rn : ψ(t) is right continuous at all t ∈ I ;ψ(t−) exists for all

t ∈ (t0,∞) with ψ(t−) = ψ(t) for all but points tk ∈ (t0,∞)

}

where I ⊂ R is an interval. Especially when I = [−r, 0], we denote PC :=
PC( [−r, 0], Rn) with the same norm as in C .

For Rn , we use the natural entry-wise partial ordering: for x = (x1, . . . , xn)T ,
y = (y1, . . . , yn)T ∈ Rn , x ≤ y means xi ≤ yi for i = 1, . . . , n; x < y means
xi < yi for all i = 1, . . . , n. The partial ordering in Rm×n is defined similarly.

For any z ∈ Rn , we use z∗ to denote the constant function on [−τ, 0] taking value
z. For z, Z ∈ Rn with z ≤ Z , define the order interval [z, Z ] = {x ∈ Rn : z ≤ x ≤ Z}
and [z, Z ]∗ := {φ ∈ C : φ(s) ∈ [z, Z ], s ∈ [−r, 0]}. In PC , order interval is defined
in a similar way.

A matrix A = (ai j )n×n is said to be (1) a non-negative matrix if A ≥ 0; (2) a
quasi-positive matrix if A �= 0 and ai j ≥ 0, i �= j ; (3) a row (column) stochastic
matrix if it is non-negative and its row (column) sum is 1; (4) a Laplacian matrix if it
is quasi-positive and its row (column) sum is 0; (5) a nonsingular M-matrix if −A is
quasi-positive and all the leading principle minors of A are positive.

As is customary, we use ρ(·) to denote the spectral radius of a matrix (or one of a
linear operator if no confusion). The following lemma can be found in Berman and
Plemmons (1979).

Lemma 3.1 Let V be a nonsingular M-matrix and W be a non-negative matrix. Then
H = W − V is a non-singular M-matrix if and only if one of the following conditions
holds

(1) ρ(V −1W ) = ρ(W V −1) < 1;
(2) H−1 exists and H−1 ≥ 0;
(3) there exists a positive vector ξ ∈ Rn such that Hξ > 0 (or ξ T H > 0).

Especially, H is a nonsingular M-matrix if it is row or column strictly dominant
diagonal, that is, Hen > 0 or H T en > 0.

Next, we introduce some notations related to multi-dimensional maps. For an inter-
val I = [a, b] in R, the hyper-square generated by I is denoted by I = [a, b]n =
[a, b] × · · · [a, b]. For F(·) = ( f1(·), f2(·), . . . , fn(·))T : I → Rn , denote

F(I) =
⋃

x∈I
F(x), fi (I) =

⋃

x∈I
fi (x), i = 1, 2, . . . , n,

F〈I〉 = [ā, b̄]n, where ā = min
1≤i≤n

inf{ fi (I)}, b̄ = max
1≤i≤n

sup{ fi (I)},

123



Z. Yang et al.

F j (I) =
j︷ ︸︸ ︷

F(F(· · · F(I) · · · )), F j 〈I〉 =
j︷ ︸︸ ︷

F〈F〈· · · F〈I〉 · · · 〉〉,
I(F) =

∞⋂

j=1

F j (I), I〈F〉 =
∞⋂

j=1

F j 〈I〉.

I(F) is called the ω-limit set of the multi-dimensional map F on I. Clearly, F(I) ⊂
F〈I〉, I(F) ⊂ I〈F〉. In fact, F〈I〉 can be viewed as the “minimal” hyper-square that
includes F(I), and I〈F〉 is an estimate of I(F) for F on I.

Consider the following system of delay differential equations

d

dt
u(t) = −Au(t) + ÃF(u(t − r)), t ≥ 0,

u(s) = φ(s), s ∈ [−r, 0], φ ∈ C+, (3.1)

where F(·) = ( f1(·), f2(·), . . . , fn(·))T : Rn → Rn is continuous, A is a non-singular
M matrix, Ã is non-negative and A−1 Ã is a row stochastic matrix. We assume that
(3.1) has a unique solution which exists for all t ≥ 0 and is denoted by u(t, φ) in Rn

and ut (φ) in C .
Following the main idea developed in Yi and Zou (2010) for the case of one-

dimensional map (see also Ivanov and Sharkovsky 1992; Rost and Wu 2007; Liz and
Rost 2010), we can obtain the following lemmas on dynamics of multi-dimensional
map F on a hyper-square versus dynamics of (3.1). The proofs are given in “Appendix
A”.

Lemma 3.2 Let I = [a, b]n ⊂ Rn be invariant for F (i.e., F(I) ⊂ I), and u(t, φ)

be the solution of (3.1) with the initial function φ ∈ C. If φ ∈ C([−r, 0], I), then
ut (φ) ∈ C([−r, 0], I), t ≥ 0.

Lemma 3.3 Let I = [a, b]n ⊂ Rn and u(t, φ) be the solution of (3.1) with the initial
functionφ ∈ C. If limt→∞ dist (u(t, φ), I) = 0, then limt→∞ dist (u(t, φ), I〈F〉) = 0,
where the distance dist (u, I) = inf y∈I{‖u − y‖} for u ∈ Rn.

Remark 3.1 When A is a diagonal matrix with positive diagonal elements and Ã = A
in (3.1), onemay estimate I〈F〉 by some hyper-rectangles by a similar proof. The above
results show that the (eventual) boundedness of systems can be estimated by dynamics
of multi-dimensional map F .

For any given φ ∈ PC , a function x(t) ∈ PC[[−r,+∞), Rn] is called a solution
of (2.8) through (0, φ), if x(t) satisfies the initial condition x(s) = φ(s), s ∈ [−r, 0],
and satisfies Eq. (2.8) for t ≥ 0. For the fundamental theory on the existence and
uniqueness of solutions to an initial value problem of impulsive type, a reader is
referred to Lakshmikantham et al. (1989), Stamova (2009) and the reference therein.
As usual, if (2.8) has a unique solution, we shall also use x(t, φ) or xt (φ) or simply
x(t) to denote the solution, if no confusion occurs. An element z∗ in C is called an
equilibrium of (2.8), if x(t) = z is a solution of (2.8).

Considering the biological background,we first address thewell-posedness of (2.8).
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Theorem 3.1 Let (H1)–(H2) hold. If the initial conditions satisfy

x(t) = φ(t) ≥ 0, t ∈ [−r, 0], φ ∈ PC, (3.2)

then (2.8) has a unique solution which exists globally and is non-negative and (even-
tually uniformly) bounded.

Proof By (H1)–(H2) and the fundamental theory in Lakshmikantham et al. (1989),
Stamova (2009), we know that (2.8) has a unique solution x(t, φ) existing in a maxi-
mum interval J = [0, tmax). Note that D+L is quasi-positive, and hence e−(D+L)(t−s)

is a non-negative for t ≥ s. For any t ∈ [0, t1) ∩ J , we have

x(t) = e−(D+L)tφ(0) +
∫ t

0
e−(D+L)(t−s)αγ (s)Sb(x(s − r)) ds. (3.3)

Combining this with the nonnegative properties of α, S, γ (·), b(·) and φ(·), we then
conclude that x(t, φ) ≥ 0 for t ∈ [0, t1) ∩ J . When tmax > t1, x(t+1 ) = (E −
C1)x(t−1 ) ≥ 0 from (H2). Similarly, when t ∈ [t1, t2) ∩ J ,

x(t) = e−(D+L)(t−t1)x(t+1 ) +
∫ t

t1
e−(D+L)(t−s)αγ (s)Sb(x(s − τ))ds ≥ 0.

By an induction, we have x(t, φ) ≥ 0 for any t ∈ J . Set x̃(t) = x1(t) + x2(t) + · · · +
xn(t), d̂ = max1≤i≤n{di }, b̂ = max1≤i≤n{bi (ηi )}. Note that α, γ (·) ∈ (0, 1], L is a
Laplacian matrix and S is an stochastic matrix. Thus, for t ∈ J we have

dx̃(t)

dt
≤ −d̂ x̃(t) + b̂, t �= tk, x̃(t+k ) ≤ x̃(t−k ).

By the impulsive-type comparison theorem with V (x(t)) = x̃(t) in Stamova (2009,
Theorem 1.23), x̃(t) is (eventually uniformly) bounded. This implies the nonnegative
solution x(t, φ) is (eventually uniformly) bounded, and therefore, J = [0,∞) (see,
e.g., Stamova 2009; Liu and Ballinger 2002). The proof is completed. ��

Remark 3.2 From the proof, we can see that if we further assume φi (0) > 0, i =
1, 2, . . . , n, then the solution actually remains strictly positive: x(t) > 0, t ≥ 0.
Obviously, the non-negativity preserving property of (2.8) also holds when the initial
functions is continuous: φ ∈ C+ ⊂ PC . For convenience of discussion, we will
assume the initial function φ is continuous unless otherwise specified.

4 Extinction and persistence when there is no culling

When determining whether or not an impulsive culling should be implemented, it is
necessary to investigate the dynamics of system (2.6) in the absence of culling, i.e.,
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when ck(·) = Cik = 0, k ∈ N . In this case, (2.8) reduces to the following system of
autonomous delay differential equations

ẋ(t) = −(D + L)x(t) + αSb(x(t − r)). (4.1)

The following proposition identifies an invariant and attracting interval for (4.1).

Proposition 4.1 For any z = (z1, . . . , zn)T ≥ αSb(η) = αS(b1(η1), . . . , bn(ηn))
T ,

the set [0, (D + L)−1z]∗ is a positively invariant set and also globally attracting set
for (4.1).

Proof Let x(t) = x(t, φ) be a solution of (4.1) with x(s) = φ(s), s ∈ [−r, 0], φ ∈
C+. From the unimodal property of b, we have ẋ(t) ≤ −(D + L)x(t) + z. Consider
its comparison system

ẏ(t) = −(D + L)y(t) + z, y(0) =
(

sup
s∈[−r,0]

φ1(s), . . . , sup
s∈[−r,0]

φn(s)

)T

.

which has the solution y(t) = e−(D+L)t [y(0)− (D + L)−1z]+ (D + L)−1z. Since L
is a Laplacian matrix, all the eigenvalues of D + L are positive and (D + L)−1 ≥ 0.
Then

lim sup
t→∞

x(t) ≤ lim
t→∞ y(t) = (D + L)−1z.

Moreover, if φ(s) ∈ [0, (D + L)−1z] for s ∈ [−r, 0], we have x(t) ≤ y(t) =
(D + L)−1z. The above implies the conclusion, completing the proof. ��

It turns out that system (4.1) has the threshold dynamics with respect to species
extinction and persistence, as is shown in the next theorem.

Theorem 4.1 Assume that L is irreducible. Let R = ρ(α(D + L)−1SB ′(0)).
(i) If R < 1, then the equilibrium 0∗ of (4.1) is globally asymptotically stable in C+.

(ii) If R > 1, the trivial equilibrium 0∗ of (4.1) is unstable. Moreover, system (4.1) has
at least one positive equilibrium and is uniformly persistent in C◦+, that is, there
is a positive number δ > 0 such that for any φ ∈ C◦+

lim inf
t→∞ xi (t, φ) ≥ δ, i = 1, 2, . . . , n. (4.2)

The above result is a special case of Theorem 5.1 in Sect. 5 and we omit the proof
here.

Remark 4.1 From Theorem 4.1, R plays a threshold role in determining whether
the population goes to extinction or remains persistent under the assumption that
the dispersion matrix L is irreducible. In fact, R is nothing but the socalled basic
reproduction number for the species governed by (4.1) [see, e.g., Van den Driessche
and Watmough (2002) for a discussion on this topic].
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We point out that the above theorem does not cover the critical value R = 1;
moreover, it gives no information about the persistence level ( i.e., the lower eventual
bound x(t)) or even an estimate for δ in (4.2), although an estimate of eventual upper
bound is obtained in Proposition 4.1, which helps to obtain the attracting region for
solutions in the interior C◦+.

To gain some more insights, we consider a special case of (4.1): the case with
identical patches, i.e., when

d1 = d2 = · · · = dn, LT = L , b1(s) = b2(s) = · · · = bn(s). (4.3)

In such a case, (4.1) further reduces to

ẋ(t) = −(D + L)x(t) + DF(x(t − r)), t ≥ 0, (4.4)

where D = d1E and F(u) = d−1
1 αSb(u). Note that (D + L) is a non-singular

M-matrix since it is column strictly dominant diagonal. Moreover, (D + L)en =
d1en = Den , thus (D + L)−1Den = en implying that (D + L)−1D is indeed
a stochastic matrix. In order to apply the results in Lemmas 3.2 and 3.3 to (4.4),
we need to identify appropriate hyper-square(s) for this multi-dimensional map F .
Note that F(u) = ( f1(u), f2(u), . . . , fn(u))T , where u = (u1, u2, . . . , un)T and
fi (u) = d−1

1 α
∑n

j=1 Si j b1(u j ) = ∑n
j=1 Si j g(u j ). This suggest that we focus on the

corresponding one-dimension map g [due to (4.3)]:

g(s) = d−1
1 αb1(s), s ≥ 0. (4.5)

Let I = [a, b] ⊂ R+ and I = [a, b]n ⊂ Rn+. From the continuity of g, we assume
g attains the minimum and the maximum at m and M on [a, b], respectively. Noting
S = (Si j ) is the stochastic matrix, then for all i

min
u∈I fi (u) =

n∑

j=1

Si j g(m) = g(m), max
u∈I fi (u) =

n∑

j=1

Si j g(M) = g(M).

From the continuity of fi on Rn+, fi (I) = g([a, b]), i = 1, 2, . . . , n, and so

F〈I〉 =
n︷ ︸︸ ︷

g([a, b]) × g([a, b]) · · · × g([a, b]),

F j 〈I〉 =
n︷ ︸︸ ︷

g j ([a, b]) × g j ([a, b]) · · · × g j ([a, b]) .

Therefore,

I〈F〉 =
∞⋂

j=1

g j ([a, b]) ×
∞⋂

j=1

g j ([a, b]) · · · ×
∞⋂

j=1

g j ([a, b])

= I(g) × I(g) · · · I(g) = [I(g)]n . (4.6)
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According to Rost andWu (2007), Liz and Rost (2010), and Ivanov and Sharkovsky
(1992), we have the following proposition for map g on interval I since g actually
satisfies the same unimodal condition (H1) as b1 does.

Proposition 4.2 Let g be defined in (4.5) and R̂ := g′(0) = d−1
1 αb′

1(0), a0 =
g(g(η1)), b0 = g(η1).

(i) If R̂ ≤ 1, then I(g) = ⋂∞
j=1 g j (I ) = {0} for any closed interval I = [0, b] ⊂

R+ with g(I ) ⊂ I .
(ii) If R̂ > 1 and w0 ≤ η1, where w0 is the unique positive fixed point of g, then

I(g) = {w0} for any closed interval I = [a, b] ⊂ R+\{0} with w0 ∈ [a, b] and
g(I ) ⊂ I , provided that g(a) ≤ g(b).

(iii) If R̂ > 1 and w0 > η1, then [a0, b0] is invariant for g and I(g) ⊂ [a0, b0] for
any closed interval I = [a, b] ⊂ R+\{0} containing [a0, b0].

Combining Lemmas 3.2, 3.3, Proposition 4.2 and (4.6), we have

Theorem 4.2 Assume that L is irreducible. Let R̂, a0, b0, w0, g be defined in Propo-
sition 4.2.

(i) If R̂ ≤ 1, then the equilibrium 0∗ of (4.4) is globally asymptotically stable in C+;
(ii) If R̂ > 1, then the equilibrium 0∗ of (4.4) is unstable. Moreover,

(ii-1) when w0 ≤ η1, then the equilibrium W∗ = (w0, w0, . . . , w0)
T∗ of (4.4) is

globally asymptotically stable in Co+;
(ii-2) when w0 > η1, then [a0, b0]n∗ is an invariant and attracting set for system (4.4)

in Co+.

Proof Firstly by (4.3) and Proposition 4.1, we observe that for given φ ∈ C+, we
have

lim sup
t→∞

x(t, φ) ≤ (D + L)−1αSb(η) = d−1
1 αb1(η1)en = b0en, (4.7)

since Sen = en and (D + L)−1en = d−1
1 en .

Case (i): R̂ ≤ 1. Let I = [0, b0] and I = [0, b0]n . By (4.7), φ ∈ C+,
limt→∞ dist (x(t, φ), I) = 0. It follows from Lemma 3.3 and (4.6) that

lim
t→∞ dist (x(t, φ), I〈F〉) = dist (x(t, φ), [I(g)]n) = 0.

From Proposition 4.2-(i), [I(g)]n = (0, 0, . . . , 0)T , and thus, 0∗ is globally attractive
in C+. In addition, for any ε > 0, [0, ε] is an invariant set of g, and hence [0, ε]n is
invariant for F since

F([0, ε]n) ⊂ F〈[0, ε]n〉 = [g([0, ε])]n ⊂ [0, ε]n .

Then, by Lemma 3.2, xt (φ) ∈ [0, ε]n∗ for t ≥ 0 if φ ∈ [0, ε]n∗, which implies 0∗ is
stable. Therefore, 0∗ is globally asymptotically stable.
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Case (ii): R̂ > 1. Since R̂ is a positive eigenvalue of (D + L)−1αSB ′(0) with
the eigenvector en , R ≥ R̂ > 1. By Theorem 4.1-(ii), the system (4.1) is uniform
persistent and (4.2) holdswith some δ > 0.Let I = [δ, b0] ⊂ R+\{0} and I = [δ, b0]n .
Then, limt→∞ dist (x(t, φ), I) = 0 for φ ∈ C◦+. We have the following sub-cases.

Case (ii-1): w0 ≤ η1. Clearly, W∗ is an equilibrium of (4.4) and w0 ∈ [δ, b0]. From
Proposition 4.2-(ii), [I(g)]n = W = (w0, w0, . . . , w0)

T . It follows from Lemma 3.3
that

lim
t→∞ dist (x(t, φ), I〈F〉) = dist (x(t, φ), W ) = 0, φ ∈ C◦+.

So, the equilibrium W∗ is globally attractive in C◦+. Next we prove that W∗ is stable.
When w0 < η1, [w0 − ε,w0 + ε]n is an invariant set of F for sufficiently small ε > 0,
according to Proposition 4.2-(ii) and (4.6). This implies W∗ is stable by Lemma 3.2.
When w0 = η1, for any given ε ∈ (0, w0), one can find δ1, δ2 (by (H1)) satisfying

0 < w0 − ε ≤ δ1 < w0 < δ2 ≤ w0 + ε, g(δ1) = g(δ2)

≥ max{g(w0 − ε), g(w0 + ε)}.
Take δ0 := min{w0 − δ1, δ2 − w0} > 0. Noting that [δ1, δ2] is an invariant set of
g according to Proposition 4.2-(ii), [δ1, δ2]n is an invariant set of F . For any φ ∈
[w0 − δ0, w0 + δ0]n∗, we have φ ∈ [δ1, δ2]n∗. It follows from Lemma 3.2 that xt (φ) ∈
[δ1, δ2]n∗ ⊂ [w0 − ε,w0 + ε]n∗, t ≥ 0, implying that W∗ is stable.

Case (ii)-2: w0 > η1. By Proposition 4.2-(iii), [I(g)]n ⊂ [a0, b0]n . It follows from
Lemma 3.3 that

lim
t→∞ dist (x(t, φ), I〈F〉) = dist (x(t, φ), [a0, b0]n) = 0, φ ∈ C◦+,

which implies that [a0, b0]n∗ is a globally attracting set inC◦+. Since [a0, b0] is invariant
for g,

F([a0, b0]n) ⊂ F〈[a0, b0]n〉 = [g([a0, b0])]n ⊂ [a0, b0]n,

It follows from Lemma 3.2 that xt (φ) ⊂ [a0, b0]n∗, t ≥ 0 whenever φ ∈ [a0, b0]n∗. So,
[a0, b0]n∗ is also an invariant set of (4.4). The proof is completed. ��
Remark 4.2 For the persistent case (ii) in Theorem 4.2, we have actually obtained
estimates for the eventual bound of solutions; particularly the lower bound serves as
an estimate of the persistence level. The method of finding estimates may also be
applied when other types of birth functions are adopted.

5 Extinction and persistence when culling immatures only

In this section, we consider the scenario of culling immatures only. This is represented
by the conditions ck ∈ (0, 1) but Ck = 0, k ∈ N , which reduce (2.8) to

ẋ(t) = −(D + A)x(t) + αγ (t)Sb(x(t − r)). (5.1)

123



Z. Yang et al.

This is a non-autonomous system of DDEs, as γ (t) given in (2.7) is time dependent.
Clearly, γ ∈ PC[R+, (0, 1]] and γ ∞ := lim supt→∞ γ (t), γ∞ := lim inf t→∞ γ (t)
exist. The following proposition establishes more information about r(t), and its proof
is given in “Appendix B”.

Proposition 5.1 The following statement about γ (t) hold.

(i) Assume that there are 0 < τ1 < τ2 and 0 ≤ σ1 < σ2 such that τ1 ≤ tk − tk−1 ≤
τ2 and 0 ≤ σ1 ≤ ck(·) ≤ σ2 < 1. Then (1 − σ2)

r/τ1+1 ≤ γ∞ ≤ γ ∞ ≤
(1 − σ1)

r/τ2−1.

(ii) If ck(·) ≡ c(constant) and the impulsive moments have equidistance, that is
tk+1 = tk + T, k ∈ N, then the mean value of γ (t), t ∈ [0, T ]

γ̄ =
⎧
⎨

⎩

1 − r
T c, T > r,

1 − c, T = r,
(1 − c)� r

T �+1( r
T − � r

T �) + (1 − c)� r
T �(1 − r

T + � r
T �), T < r,

where, for any real number η, �η� denotes the maximal integer that is no larger
than η.

In reality,periodic culling is often a commonpractice. For (5.1), this can be achieved
by assuming that

tk+q = tk + T, ck+q(a) = ck(a), ∀a ∈ [0, r ], ∀k ∈ N , (5.2)

where constants T > 0 and q ∈ N . Indeed, condition (5.2) implies that γ (t)
is a T -periodic function. To see this, we assume that there are m + 1 impul-
sive moments ts1 , ts1+1, . . . , ts1+m in (t − r, t], and m + 1 impulsive moments
ts1+q , ts1+1+q , . . . , ts1+m+q in (t + T − r, t + T ]. Then,

γ (t + T ) =
∏

t+T −r<tk≤t+T

[1 − ck(r − (t + T − tk))]

=
m∏

j=0

[1 − cts1+q+ j (r − (t + T − tts1+q+ j ))]

=
m∏

j=0

[1 − cts1+ j (r − (t + T − tts1+ j − T ))] = γ (t).

Especially, when T = r and ck(·) = c, we have γ (t) ≡ (1 − c)q , and (5.1) becomes
autonomous.

For (5.1) with (5.2), we shall show that there is a threshold between extinction and
persistence. We will achieve this by employing the results on basic reproduction ratio
for a class of periodic delay systems recently obtained in Zhao (2017).

Linearizing (5.1) at its trivial equilibrium, we obtain a T -periodic linear delay
system

u̇(t) = −(D + L)u(t) + αγ (t)SB ′(0)u(t − r). (5.3)
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As in Zhao (2017), we let X = C+, X0 = C◦+, ∂ X0 = X \ X0, and CT be the ordered
Banach space of all continuous and T -periodic functions from R to Rn . Setting

F(t)φ = αγ (t)SB ′(0)φ(−r), φ ∈ X, V (t) ≡ D + L ,

we easily see that F and V satisfy assumptions (H1) and (H2) given in Zhao (2017) if
L is irreducible. Following the procedure in Zhao (2017), we define a linear operators
on CT by

[Lφ](t) =
∫ ∞

0
e−(D+L)sαγ (t − s)SB ′(0)φ(t − s − τ)ds, t ∈ R, φ ∈ CT . (5.4)

Furthermore, we define the Poincaré map U : X → X associated with (5.3) by
U(φ) = uT (φ), where uT (φ) = u(T + s, φ) and u(·, φ) is the unique solution of (5.3)
satisfying u0 = φ ∈ X . Denote the spectral radius of U by ρ(U). By a similar proof
to that for Xu and Zhao (2005, Proposition 2.1), we then have

Proposition 5.2 Assume that L is irreducible and the periodic culling (5.2) is adopted.
Then ρ(U) is a positive eigenvalue of U , and there is a T -periodic positive function

v(t) such that v(t)e
ln ρ(U)

T t is a solution of (5.3).

Now, denote the spectral radius of the operator L by R̄ = ρ(L). Combining with
Proposition 5.2 and Theorem 2.1 in Zhao (2017), then we have the threshold dynamics
for (5.1) as follows.

Theorem 5.1 Assume that L is irreducible and the periodic culling (5.2) is adopted.

(i) If R̄ < 1, then the trivial equilibrium 0∗ of (5.1) is globally asymptotically stable
in C+.

(ii) If R̄ > 1, then the system (5.1) is uniformly persistence in C◦+ and there exists a
positive T -periodic solution.

Proof In the case where R̄ < 1, it follows from Theorem 2.1 in Zhao (2017) that
ρ(U) < 1, where U is the Poincaré map associated with (5.3). For any given φ ∈ X ,
let x(t) = x(t, φ) ≥ 0∗ be the solution of (5.1) with the initial condition x(s) =
φ(s), s ∈ [−r, 0]. From (H1), b(z) = B ′(ξ)z ≤ B ′(0)z for z ∈ Rn+ where ξ ∈ (0, z),
and hence,

ẋ(t) ≤ −(D + L)x(t) + γ (t)αSB ′(0)x(t − r). (5.5)

According to Proposition 5.2, there is a positive T -periodic function v(t) =
(v1(t), v2(t), . . . , vn(t)) such that ū(t) = e−μtv(t) is a positive solution of
(5.3), where μ = − ln(ρ(U))

T > 0. Let vmin = mini {mins∈[0,T ] vi (s)}, vmax =
maxi {maxs∈[0,T ] vi (s)}. Note that (5.3) is cooperative and irreducible, and φ(s) ≤
‖φ‖
vmin

ū(s), s ∈ [−r, 0]. By the comparison theorem, we have 0 ≤ x(t) ≤ ‖φ‖
vmin

ū(t) ≤
vmax
vmin

‖φ‖e−μt en, t ≥ 0. This implies that the origin x = 0 is globally asymptotically

(exponentially) stable when R̄ < 1.
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In the casewhere R̄ > 1, it follows fromTheorem2.1 inZhao (2017) thatρ(U) > 1.
Let x(t, φ) be the unique solution of the T -periodic system (5.1) with φ ∈ C+. Then
x(t, φ) satisfies

x(t, φ) = e−(D+L)tφ(0) +
∫ t

0
e−(D+L)tαγ (s)Sb(x(s − r))ds.

Let�(t) be the solution semi-flowon X generated by (5.1) which is T − periodic, i.e.,
�(t)φ = xt (φ) for φ ∈ X . The Poincaré map corresponding to�(t) : X → X is then
given by Pφ = �(T )φ. Thus, Pm(φ) = �(mT ), m ∈ N . Note that γ (t) ∈ (0, 1] is
T -periodic,P is eventually uniformly bounded (point dissipative, byTheorem3.1with
Ck = 0). Clearly, X0 is open in X and forward invariant under �, and the boundary
∂ X0 consists of functions φ ∈ X with φi (0) = 0 for at least i ∈ {1, 2, . . . , n}. Next,
we verify the following two claims.

Claim 1 Let M∂ := {φ ∈ ∂ X0 : P j (φ) ∈ ∂ X0,∀ j ≥ 0}, then M∂ = {0∗}. It
suffices to show that φ ≡ 0∗ if φ ∈ M∂ . Assume for the sake of contradiction
that φ ∈ M∂ but φ �≡ 0∗. Let x(t) := x(t, φ) and consider the scalar function
x̃(t) := x1(t) + x2(t) + · · · + xn(t). Then, ˙̃x(t) ≥ −dM x̃(t) + f (t), t ≥ 0, where
f (t) := αγ (t)

∑n
j=1 b j (x j (t − r)) and dM := max1≤ j≤n{d j }. Noting that γ (t) >

0, α > 0 and φ �≡ 0, we have f (s0) > 0 for some s0 ∈ [0, r ]. Thus, x̃(r) ≥
e−dM r x̃(0) + ∫ r

0 e−dM (r−s) f (s)ds > 0. Furthermore,

x̃(t) ≥ e−dM (t−r) x̃(r) +
∫ t

r
e−dM (t−s) f (s)ds > 0, t ≥ r. (5.6)

However, we can show x(mT ) = 0 for all m = 1, 2, . . .. If not so, there is an
integer k ∈ {1, 2, . . . , n} and m0 such that xk(m0T ) > 0 and thus, the set S2 = {i :
xi (m0T, φ) > 0} is non-empty. On the other hand, by x(mT ) = [Pmφ](0) and the
fact that φ ∈ M∂ , we know that the set S1 = {i : xi (m0T, φ) = 0} is also non-empty.
Obviously the {1, 2, . . . , n} = S1 ∪ S2. Now for any j ∈ S1, there is an l ∈ S2 such
that p jl > 0 since the matrix L is irreducible. From the j th equation in (2.6) with

Ci = 0 for i = 1, . . . , n, we have
dx j (t)

dt ≥ −[d j +∑
i �= j p ji ]x j (t)+ pl j xl(t), which

leads to x j (t) ≥ ∫ t
m0T exp(−[d j + ∑

j �=i pi j ](t − s))pl j xl(s) ds, for t ≥ m0T .

This implies that there exists an ε1 > 0 such that x j (t, φ) > 0 for any j ∈ S1 and
t ∈ (m0T, m0T +ε1). Noting that xi (m0T, φ) > 0, i ∈ S2, we can find an ε2 > 0 such
that xi (t, φ) > 0 for any i ∈ S2, t ∈ (m0T, m0T + ε2). This implies that x(t, φ) > 0
for t ∈ (m0T, m0T + ε) where ε = min{ε1, ε2}. a contradict to φ ∈ M∂ . Thus,
x(kT ) = [P jφ](0) ≡ 0 for all k = 1, 2, . . ., which contradicts (5.6). Therefore, we
have φ ≡ 0∗ and Claim 1 holds.

Let η = (η1, η2, . . . , ηn)T and η0 := min1≤i≤n ηi , and denote by Uθ the Poincaré
map of the following linear periodic system

ẏ(t) = −(D + L)y(t) + γ (t)αSB ′(θen)y(t − r) (5.7)

which is a perturbation of (5.3). Since ρ(Uθ ) → ρ(U) > 1 as θ → 0, we can choose
a small enough θ0 ∈ (0, η0) such that ρ(Uθ0) > 1. Note that lim‖φ‖→0 ‖xt (φ)‖ = 0
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holds uniformly for t ∈ [0, T ]. Thus, there is δ ∈ (0, η0) such that ‖xt (φ)‖ < θ0 for
all t ∈ [0, T ] whenever ‖φ‖ < δ. Next, we shall show that

Claim 2 for any given φ ∈ X0,

lim sup
n→∞

‖Pnφ‖ = lim sup
n→∞

‖�(nT )φ‖ ≥ δ. (5.8)

If this is not true, then there are φ ∈ X0 and K > 1 such that such that ‖�(nT )φ‖ < δ

for all n ≥ K . Now for any t ≥ K T , there are integer m ≥ K and t̂ ∈ [0, T ] such that
t = mk + t̂ . Thus, ‖�(t)φ‖ = ‖�(t̂)�(mT )φ‖ < θ0 for all t ≥ K T , implying that
is x(t) := x(t, φ) < θ0en, t ≥ K T and x(t − r) = x(t − r, φ) < θ0en, t ≥ K T + r .
By the fact that θ0en ≤ η and the monotonicity of b′

i (·) in [0, ηi ], i = 1, 2, . . . , n,
we then have b(x(t − r)) = b′(ξ)x(t − r) ≥ B ′(θ0en)x(t − r), t ≥ K T + r, where
ξ ∈ (0, θ0en). Accordingly,

ẋ(t) ≥ −(D + L)x(t) + γ (t)αSB ′(θ0en)x(t − r), t ≥ K T + r,

which suggests the following cooperative linear system as an comparison system for
(5.1)

ẏ(t) = −(D + L)y(t) + γ (t)αSB ′(θ0en)y(t − r). (5.9)

Applying Proposition 5.2 to (5.9) with B ′(0) replaced by B ′(θ0en) in (5.3), we know
that there is a positive T -periodic function v̂(t) such that û(t) = eνt v̂(t) is a positive

solution of (5.9), where ν = ln(ρ(Uθ0 ))

T > 0. For φ ∈ X0, we can choose a small enough
κ > 0 such that y(t, φ) ≥ κ û(t), t ∈ [K T, K T + r ]. By the comparison theorem, we
have x(t, φ) ≥ y(t, φ) ≥ κeνt v̂(t), t ≥ K T +r. This leads to x(t) → ∞ as t → ∞,
a contradiction to the boundedness of solution x(t). Thus, the claim (5.8) holds.

From the above claims, it follows that {0∗} is one (and the only one) isolated invari-
ant set in ∂ X0, and M∂ := {φ ∈ ∂ X0 : Pn(φ) ∈ ∂ X0} = {0∗} and W s(0∗) ∩ X0 = ∅.
By the acyclicity theorem (Zhao 2003, Theorem 1.3.1), P is uniformly persistent
with respect to X0. Moreover, by Zhao (2003, Theorem 3.1.1), the T -periodic solu-
tion semiflow �(t) is uniformly persistent with respect to X0 = C0+. Further more,
by Theorem 1.3.6 in Zhao (2003), system (5.1) has at least one positive T -periodic
solution in X0 = C0+, and the proof is completed. ��
Remark 5.1 Generally, it is very difficult (if not impossible) to explicitly obtain the
spectral radius of a linear operator associated with periodic linear delayed system,
and even numeric computation is non trivial at all. According to Corollary 2.1 in
Zhao (2017) and the properties of the spectral radius, we can, however, establish the
following estimation for R̄

ρ(αγ∞SB ′(0)(D + L)−1) ≤ R̄ = ρ(L) ≤ ρ(αγ ∞SB ′(0)(D + L)−1).

Especially, when γ (·) = 1 (i.e., cik(·) = 0), system (5.1) reduces to (4.1). Hence,
Theorem 4.1 can be viewed as a special case of Theorem 5.1.
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Remark 5.2 If the periodic culling strategy (5.2) is adopted with T = r , ck(·) = c,
we have γ (t) ≡ (1 − c)q , where q is the number of culling moments within a period
[0, T ). In this case, (5.1) also reduces to an autonomous delay system of the form (4.1)
with the parameter α replaced by α̃ := (1− c)qα. Thus, all results in Sect. 4 hold for
this special case of (5.1), with R̂ replaced by R̃ := d−1

1 α̃b′
1(0) = (1−c)qd−1

1 αb′
1(0),

g(s) replaced by g̃(s) := d−1
1 α̃b1(s) = (1− c)q g(s), b0 replaced by b̃0 := g̃(η1) and

a0 replaced by ã0 = g̃(b̃0). In such a scenario, we can easily see the impact of the
culling strength c and the culling frequency q by looking at the effect of the constant
multiple (1−c)q . We point out that although both g(s) and g̃(s) attain their maxima at
the same ηi and share the inflection point, their respective unique positive fixed points
are different, with that of g̃(s) smaller than that of g(s). Also, for the conclusion in
Theorem 4.2 (ii)-2), the attracting invariant interval [a0, b0]n∗ has been pushed toward
the left by the factor (1−c)q to [ã0, b̃0]n∗ which is closer to 0∗. In particular, sufficiently
large culling strength c ∈ (0, 1) and sufficiently large culling frequency q can always
bring R̃ = (1 − c)qR̂ to a value that is less than 1, and hence, by Theorem 4.2, the
species can be eventually eradicated.

The following theorem gives an explicit sufficient condition for the extinction of the
species represented by (5.1), meaning success of this general culling strategy (culling
immatures only).

Theorem 5.2 Assume that

αb′
max lim sup

t→∞

∫ t

0
e−d̂(t−s)γ (s)ds < 1, (5.10)

where d̂ = min1≤i≤n di , b′
max = max1≤i≤n b′

i (0). Then the equilibrium 0∗ of (5.1) is
globally attractive in C+. Particularly, if the culling is T -periodic [i.e., (5.2) holds],
then the conclusion holds provided that (5.10) is replaced by

(1 − e−d̂T )−1T γ̄ αb′
max < 1, where γ̄ := 1

T

∫ T

0
γ (s)ds. (5.11)

Proof The supremum limit on the left side of (5.10) is well-defined since

∫ t

0
e−d̂(t−s)γ (s)ds ≤

∫ t

0
e−d̂(t−s) ≤ 1

d̂
.

For any given φ ∈ C+, let x̃(t) = ∑n
j=1 x j (t, φ). Since bi (xi ) = b′

i (ξ)xi ≤ b′
maxxi

where ξ ∈ [0, xi ], we have ˙̃x(t) ≤ −d̂ x̃(t) + γ (t)αb′
max x̃(t − r). This leads to

x̃(t) ≤ e−d̂t x̃(0)+∫ t
0 e−d̂(t−s)γ (s)αb′

max x̃(s −r)ds.By Theorem 3.1, we can assume
x̃(t) ≤ σ for all t ≥ −r and let σ̂ := lim supt→∞ x̃(t). Thus, for any ε > 0, there is
an large enough T0 such that x̃(t) ≤ σ̂ +ε for all t ≥ T . Accordingly, when t > T +r ,
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x̃(t) ≤ e−d̂t x̃(0) +
∫ T0

0
e−d̂(t−s)γ (s)αb′

max x̃(s − r)ds

+αb′
max(σ̂ + ε)

∫ t

T0
e−d̂(t−s)γ (s)ds

≤ e−d̂t x̃(0) + αb′
maxσ

∫ T0

0
e−d̂(t−s)ds + αb′

max(σ̂ + ε)

∫ t

0
e−d̂(t−s)γ (s)ds

≤ e−d̂t x̃(0) + αb′
maxσ d̂−1(ed̂T0 − 1)e−d̂t + αb′

max(σ̂ + ε)

∫ t

0
e−d̂(t−s)γ (s)ds.

Taking the supremum limit in the above gives σ̂ = lim supt→∞ x̃(t) ≤ αb′
max(σ̂ +

ε) lim supt→∞
∫ t
0 e−d̂(t−s)γ (s)ds. Letting ε → 0+, we then obtain σ̂ ≤ σ̂ αb′

max

lim supt→∞
∫ t
0 e−d̂(t−s)γ (s)ds. By (5.10), we conclude that σ̂ = 0 and so

limt→∞ x̃(t) = 0.
When γ is T -periodic, then we find k ∈ N such that (k − 1)T ≤ t < kT and

∫ t

0
e−d̂(t−s)γ (s)ds ≤

k∑

j=1

∫ t−( j−1)T

t− jT
e−d̂(t−s)γ (s)ds ≤

k∑

j=1

e−d̂( j−1)T
∫ T

0
γ (s)ds

Here we have used the identity
∫ T
0 γ (t − s)ds = ∫ T

0 γ (s)ds since γ (s) is T -periodic.

The above inequality together with (5.11) leads to lim supt→∞
∫ t
0 e−d̂(t−s)γ (s)ds ≤

(1− e−d̂T )−1T γ̄ < (αb′
max)

−1, which implies (5.10) holds, and thus, the conclusion
for the case of periodic culling holds. The proof is completed. ��

6 Extinction when culling matures only

In this section, we discuss the scenario of culling matures only, as opposed to that of
culling immatures only in Sect. 5. This means that we will assume in this section that
ck(·) = 0 but Ck �= 0 for k ∈ N , implying γ (t) ≡ 1. In this case, the model (2.8)
reduces to the following system of autonomous delay impulsive differential equations

{ d
dt x(t) = −(D + P0)x(t) + Px(t) + αSb(x(t − r)), t �= tk,
x(t+k ) = [E − Ck]x(t−k ), k ∈ N ,

(6.1)

where E is the n × n identity matrix. In the sequel, for a diagonal matrix
A = diag{a1, a2, . . . , an} with ai > 0, i = 1, 2, . . . , n, we use ln A to denote
diag{ln a1, ln a2, . . . , ln an}.

The following result is on the stability/instability of the extinction equilibrium 0∗
for (6.1).

Theorem 6.1 Assume that L is irreducible.

(i) If there are a positive number τ1 and a diagonal matrices ϒ1 with

tk − tk−1 ≤ τ1 and 0 ≤ ϒ1 ≤ Ck for all k ∈ N . (6.2)
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such that ρ([(D + P0 − ln(E−ϒ1)
τ1

)(E − ϒ1)]−1(P + αSB ′(0))) < 1, then the
equilibrium 0∗ of (6.1) is globally exponentially stable in PC+.

(i) If there are a positive number τ2 and a diagonal matrices ϒ2 with

0 < τ2 ≤ tk − tk−1 and Ck ≤ ϒ2 < E for all k ∈ N . (6.3)

such that ρ((D + P0 − ln(E−ϒ2)
τ2

)−1(E − ϒ2)(P + αSB ′(0))) > 1, then the
equilibrium 0∗ is unstable.

Proof It can be verified that the following variation of parameter formula is valid:

x(t) = K (t, 0)x(0) +
∫ t

0
K (t, s)(Px(s) + αSb(x(s − r)))ds, t ≥ 0, (6.4)

where K (t, s), t, s ≥ 0 is Cauchy matrix of linear impulsive system

{
ẋ(t) = −(D + P0)x(t), t ≥ 0,
x(t+k ) = (E − Ck)x(t−k ), k ∈ N .

(6.5)

According to the representation of Cauchy matrix (see Lakshmikantham et al. 1989,
p. 74), we have

K (t, s) = e−(D+P0)(t−s)
∏

s<tk≤t

(E − Ck), (6.6)

which, together with (6.2), leads to K (t, s) ≤ e−(D+P0)(t−s)(E − ϒ1)
t−s
τ1

−1 ≤
e
−(D+P0− ln(E−ϒ1)

τ1
)(t−s)

(E − ϒ1)
−1, t ≥ s ≥ 0. Letting D̄ = D + P0 − ln(E−ϒ1)

τ1
, we

then have for t ≥ 0

x(t) ≤ e−D̄t (E − ϒ1)
−1x(0) +

∫ t

0
e−D̄(t−s)(E − ϒ1)

−1(Px(s)

+αSB ′(0)x(s − r))ds. (6.7)

By ρ([D̄(E −ϒ1)]−1(P+αSB ′(0))) < 1 and Lemma 3.1, we know that D̄(E −ϒ1)−
(P+αSB ′(0)) is a non-singularmatrix and so is D̄−(E−ϒ1)

−1(P+αSB ′(0)). Thus,
there exists a vector Z = (z1, z2, . . . , zn)T > 0 satisfying [D̄ − (E − ϒ1)

−1(P +
αSB ′(0))]Z > 0. By continuity, for small λ > 0, we have [D̄ − (E − ϒ1)

−1P −
eλτ (E − ϒ1)

−1αSB ′(0) − λE]Z > 0, meaning that

(E − ϒ1)
−1[P + eλτ αSB ′(0)]Z < (D̄ − λE)Z . (6.8)

Set

κ = max1≤i≤n{(1 − ϒ
(i)
1 )−1}‖φ‖

min1≤i≤n{zi } ,
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where ϒ1 = diag{ϒ(1)
1 , ϒ

(2)
1 , . . . , ϒ

(n)
1 }. From 0 ≤ ϒ1 < E , it follows that (E −

ϒ1)x(t) ≤ Ex(t) = x(t) = φ(t) for t ∈ [−r, 0]. Thus,

x(t) ≤ (E − ϒ1)
−1φ(t) ≤ κ Z ≤ κ Ze−λt , −r ≤ t ≤ 0. (6.9)

In the following, we shall prove that

x(t) < κ Ze−λt , t ≥ 0. (6.10)

If this is not true, by the estimate (6.9) and x(t) ∈ PC[[0,∞), Rn+], there must be an
integer l and t∗ > 0 satisfying

xl(t
∗) ≥ El(κ Ze−λt∗), x(t) < κ Ze−λt , t < t∗, (6.11)

where the n-dimension row vector El = (
︷ ︸︸ ︷
0, . . . , 0, 1

l

, 0, . . . , 0).
The latter inequality implies

x(s − r) ≤ κ Ze−λ(s−r), 0 ≤ s < t∗. (6.12)

By (6.7), (6.8), (6.9) and (6.12), we have

xl (t
∗) ≤ El

(
e−D̄t∗κ Z +

∫ t∗

0
e−D̄(t∗−s)(E − ϒ1)

−1[Pk Ze−λs + eλτ αSB ′(0)κ Ze−λ(s−r)]ds

)

= El

(
e−D̄t∗κ Z +

∫ t∗

0
κe−D̄t∗ e(D̄−λI )s(E − ϒ1)

−1[P + αSB ′(0)eλτ ]Zds

)

< El

(
e−D̄t∗κ Z +

∫ t∗

0
κe−D̄t∗ e(D̄−λE)s(D̄ − λE)Zds

)

= El

(
e−D̄t∗κ Z + κe−D̄t∗ [e(D̄−λE)t∗ − E]Z

)
= El

(
κe−λt∗ Z

)
.

This contradicts (6.11), and hence, (6.10) holds.
Let

M = max1≤i≤n{(1 − ϒ
(i)
1 )−1}

min1≤i≤n{zi } Z .

Then, there holds x(t) ≤ Me−λt‖φ‖, t ≥ 0, proving (i).
For (ii), first we note that the local stability of the zero solution of (6.1) is equivalent

to that of its linearized impulsive delayed system:

{
ẋ(t) = −(D + P0)x(t) + Px(t) + αSB ′(0)x(t − r), t �= tk,
x(t+k ) = [E − Ck]x(t−k ), k ∈ N .

(6.13)

The solution of (6.13) can be expressed as x(t) = K (t, 0)x(0) + ∫ t
0 K (t, s)(Px(s) +

αSB ′(0)x(s − r))ds, t ≥ 0, where K (t, s) is given in (6.6), by which and (6.3), we
further obtain
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K (t, s) ≥ e−(D+P0)(t−s)(E − ϒ2)
t−s
τ2

+1 ≥ e
−(D+P0− ln(E−ϒ2)

τ2
)(t−s)

(E − ϒ2), t ≥ s ≥ 0.

Thus, for t ≥ 0,

x(t) ≥ e
−(D+P0− ln(E−ϒ2)

τ2
)t
(E − ϒ2)x(0)

+
∫ t

0
e
−(D+P0− ln(E−ϒ2)

τ2
)(t−s)

(E − ϒ2)(Px(s) + αSB ′(0)x(s − r))ds.

(6.14)

Observe that the right-hand side of (6.14) is the solution of

ẏ(t) = −
(

D + P0 − ln(E − ϒ2)

τ2

)
y(t) + (E − ϒ2)(Py(t) + αSB ′(0)y(t − r)),

(6.15)
with initial condition y(s) = x(s), s ∈ [−r, 0]. Noticing that (6.15) is a cooperative
linear DDE system, and hence, the stability/instability of the trivial equilibrium for
(6.15) is equivalent to that of the corresponding ODE system (see Smith 1995):

ẏ(t) =
[
−
(

D + P0 − ln(E − ϒ2)

τ2

)
+ (E − ϒ2)(P + αSB ′(0))

]
y(t). (6.16)

Now, if ρ((D + P0 − ln(E−ϒ2)
τ2

)−1(E − ϒ2)(P + αSB ′(0))) > 1, the trivial equilib-
rium 0∗ is unstable for (6.16), and so is for (6.15). This, together with (6.14) and a
comparison argument, implies that 0∗ is also unstable for (6.13), and hence for (6.1).
The proof is completed. ��

Combining Lemma 3.1 and Theorem 6.1, we immediately obtain the following
more explicit sufficient conditions on extinction of population.

Corollary 6.1 Assume that impulsive culling satisfies

Cik ≥ δi , δi ∈ [0, 1), tk − tk−1 ≤ τ, i = 1, 2, . . . , n, k ∈ N ,
ln(1 − δi )

τ

< di +
∑

j �=i

p ji − 1

1 − δi

∑

j �=i

pi j

− α

n(1 − δi )

⎡

⎣(1 − β)
∑

j �=i

b′
j (0) + (1 − (n − 1)β)b′

i (0)

⎤

⎦ . (6.17)

Then the equilibrium 0∗ of (6.1) is globally exponentially stable in PC+.

Next, we show that under some mild condition, the impulsive delayed system (6.1)
may be reduced to a delayed system without impulses, but with the impulsive effects
reflected in some time dependent parameters. To this end, we define
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X (t) =
∏

0<tk≤t

(E − Ck); χ(t) =
∏

0<tk≤t

(1 − θk),

�(t) =
∏

0<tk≤t

(1 − θk)
−1

∏

0<tk≤t−r

(1 − θk), (6.18)

where θk = max1≤i≤n(Cik) and θk = min1≤i≤n(Cik).

Proposition 6.1 Assume that (D + L)Ck = Ck(D + L), k ∈ N. Then x(t) is the
solution of (6.1) if and only if y(t) := X−1(t)x(t) is the solution of the following DDE
system without impulses:

ẏ(t) = −(D + L)y(t) + αX−1(t)Sb(X (t − r)y(t − r)), t ≥ 0. (6.19)

The proof of this proposition is given in “Appendix B”.
Taking advantage of Proposition 6.1, we can derive some further condition that

ensures the extinction of the population.

Theorem 6.2 Assume that (D + L)Ck = Ck(D + L), k ∈ N. Let �(t) and χ(t) be
defined in (6.18), and let d̂ = min1≤i≤n di , b′

max = max1≤i≤n b′
i (0). If

− d̂t + ln χ(t) +
∫ t

0
αb′

max(0)�(s)χ(s)ed̂r ds → −∞, as t → ∞, (6.20)

then the equilibrium 0∗ of (6.1) is globally attractive in PC+.

Proof Let x(t) be the solution of (6.1) with the initial φ ∈ C+. By (6.18), y(t) =
(X (t))−1x(t) satisfies (6.19). Let x̃(t) = x1(t) + x2(t) + · · · + xn(t) and ỹ(t) :=
y1(t)+· · ·+ yn(t). Noticing that L is a Laplacian matrix and S is a doubly stochastic
matrix, we then have the following estimate:

˙̃y(t) = eT
n ẏ(t) = −eT

n (D + L)y(t) + eT
n αX−1(t)Sb(X (t − r)y(t − r))

≤ −
n∑

j=1

d̂ y j (t) + eT
n αX−1(t)SB ′(0)X (t − r)y(t − r)

≤ −d̂ ỹ(t) + �(t)χ(t)αb′
max(0)ỹ(t − r),

which leads to ỹ(t) ≤ e−d̂t n‖φ‖ + ∫ t
0 αb′

max(0)�(s)χ(s)e−d̂(t−s) ỹ(s − r)ds. By the

Grownwall inequality with delay, we then obtain ỹ(t) ≤ n‖φ‖e−d̂t exp{∫ t
0 αb′

max(0)

�(s)χ(s)ed̂r ds}, implying

x̃(t) = eT
n x = eT

n X (t)y(t) ≤ χ(t)ỹ(t)

≤ n‖φ‖χ(t)e−d̂t exp

{∫ t

0
αb′

max(0)�(s)χ(s)ed̂r ds

}
.

Therefore, x̃(t) → 0 as t → ∞, provided that (6.20) holds. The proof is completed.
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The following corollary is a direct consequence of Theorem 6.2.

Corollary 6.2 Assume that Ck = θk E (scaler matrix) for k ∈ N and let d̂ and b′
max be

given in Theorem 6.2. If there are constants θ, θ̂ , τ, τ̂ such that the impulsive cullings
satisfy

0 ≤ θ̂ ≤ θk ≤ θ < 1, 0 < τ̂ ≤ tk − tk−1 ≤ τ, k ∈ N ,

−d̂ + ln(1−θ̂ )
τ

+ αb′
maxed̂r (1 − θ̂ )−

r
τ̂
−1 < 0, (6.21)

then the equilibrium 0∗ of (6.1) is globally exponentially stable in PC+.
The above corollary can be obtained if we note that

−d̂t + ln χ(t) +
∫ t

0
αb′

max(0)�(s)ed̂r ds

≤
[
−d̂ + ln(1 − θ̂ )

τ
+ αb′

maxed̂r (1 − θ̂ )−
r
τ̂
−1

]
t − ln(1 − θ̂ ).

7 Illustration examples and discussion on culling strategies

In this section, we first present two concrete examples and its simulations to illustrate
the effectiveness of the results.

Example 7.1 Consider the adult population in n identical patches with culling imma-
ture

ẋi (t) = −d1xi −
n∑

j=1

Li j x j (t) + αγ (t)
n∑

j=1

Si j b1(x j (t − r)), (7.1)

where d1 > 0, r > 0, α ∈ (0, 1], L = (Li j ) and S = (Si j ) are Laplacian matrix and
stochasticmatrix, respectively, and the birth function b1(s) = μs

ν+sm , μ, ν > 0, m > 1.
Take the T -periodic culling with the culling rate ck(·) = c and times of culling q in

every periodic T = r . Then γ (t) ≡ (1− c)q . Denote γ := (1− c)q , � := αμ
d1ν

, � :=
m

m−1 . Since b′
1(s) = μν+μ(1−m)sm

(ν+sm )2
, we have the parameters defined in Theorem 5.2 as

follows:

R̃ = γ�, η1 = m

√
ν

m − 1
, w0 = m

√
(γ� − 1)ν, b0 = γ�η1

�
,

a0 = (m − 1)(γ�)2�m−1η1

(m − 1)�m + (γ�)m
,

where η1 is the maximum point of b1(s), and w0 is the unique positive fixed point of
g̃(s) := γαd−1

1 b1(s) if it exists ( i.e. γ� > 1). Letting W = (w0, w0, . . . , w0)
T and

I = [a0, b0]n , the regime of culling the immature and the corresponding dynamical
behaviors can be showed in Table 1 by Theorem 5.1 and Remark 5.2.
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Table 1 Dynamical behavior of
(7.1) with culling parameters γ

x(t) → 0 x(t) → W x(t) → I

(1) � ∈ (0, 1] γ ∈ (0, 1] – –

(2) � ∈ (1, �] γ ∈ (0, 1
�

] γ ∈ ( 1
�

, 1] –

(3) � ∈ (�, ∞) γ ∈ (0, 1
�

] γ ∈ ( 1
�

,
�
�

] γ ∈ (
�
�

, 1]γ = 1 corresponds to no culling
step
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(a) c=0
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1 (c) c=0.48
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0

0.5

1
(d) c=0.6

x
2

x
2

x
1

x
2

x
2

x
1

x
1

x
1

Time t

x(t)→ (0.85,0.85)T

x(t)→ [1.6×10−4,1.64]2

x(t)→ (0,0)T

x(t)→ [0.0011,1.48]2

Fig. 1 The time response of state variable x(t) = (x1(t), x2(t))
T of (7.1) with the culling rate: a c = 0

(no culling); b c = 0.1; c c = 0.48; d c = 0.6; where x(s) = (0.8, 0.3)T , s ∈ [−5, 0]. While c and d give
convergent dynamics, a and b show oscillations of x1(t) and x2(t) between 1.6 × 10−4 and 1.64

Taking n = 2, r = 5, d1 = 1, α = 0.5, μ = 4, ν = 1, m = 20, L11 = −L12 =
−L21 = L22 = 0.05, S11 = S22 = 0.8, S12 = S21 = 0.2, we have � = 2 > � =
20/19. Figure 1a shows the persistence for the system without culling (i.e. c = 0).
Let times of culling q = 1, and the culling rate c = 0.1, 0.48, 0.6, Fig. 1b–d show the
corresponding dynamical properties given in Case (3) of Table 1 for the system (7.1)
with culling parameters, respectively.

123



Z. Yang et al.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

Time t

x 1

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

Time t

x 2

0 100 200 300 400 500 600 700 800 900 1000
0

5

Time t
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Fig. 2 The time response of state variable x(t) = (x1(t), x2(t), x3(t))
T of (7.2) without impulsive control,

where x(s) = (2, 0.6, 0.8)T , s ∈ [−60, 0]

Example 7.2 Consider the adult population in non-identical patches

ẋi (t) = −di xi −
n∑

j=1

Li j x j (t) + α

n∑

j=1

Si j b j (x j (t − r)), (7.2)

where the birth function bi (s) = μi se−νi s, μi , νi > 0, and take n = 3, α = 0.6, r =
60, d1 = 0.1, d2 = 0.2, d3 = 0.15, μ1 = 0.5, μ2 = 1, μ3 = 4, ν1 = 1, ν2 =
0.8, ν3 = 0.9, L11 = 3, L12 = −0.15, L13 = −0.5, L21 = −0.15, L22 = 2, L23 =
−0.5, L31 = −0.15, L32 = −0.5, L33 = 1, Sii = 0.4, Si j = 0.3, i, j = 1, 2, 3, i �=
j .
Since b′

i (0) = μi , we have R = ρ(α(D + L)−1B ′(0)) = 9.2 > 1 given in
Theorem 4.1. Thus, System (7.2) is persistent, as is confirmed by numeric results in
Fig. 2.

Our results can help us design feasible culling strategies, depending on the tech-
nologies or means available for culling immatures or matures. For example, assume
there is means available for culling immatures. Then, based on the results in Sect. 5
(noting that ρ(sαSB ′(0)(D + L)−1) is monotone function of s), we may propose the
following feasible culling strategy to eradicate the species:

Strategy 1 (culling immatures for extinction)

Step 1) Choose a large enough integer K . compute γ j = jh, j = 1, . . . , K − 1
and R j = ρ(γ jαSB ′(0)(D + L)−1), where h = 1/K .

Step 2) Find the maximum integer M := max{ j : R j < 1} and γM ,
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Fig. 3 The time response of state variable x(t) = (x1(t), x2(t), x3(t))
T of (7.2) with impulsive culling in

patch 2 and patch 3, C2k = 0.3, C3k = 0.4, tk − tk−1 = 0.12, k ∈ N , where x(s) = (2, 0.6, 0.8)T , s ∈
[−60, 0]

Step 3) Let impulsive culling be at tk − tk−1 ≤ τ2 and choose ck(·) ≥ c. Determine
τ2 and c such that Let impulsive culling be tk = tk−1 + T and ck(·) = c.
Determine T and c such that (1 − c)

r
T −1 ≤ γM .

Similarly, if a technology for culling immatures is available, then by the results in
Sect. 6, the following culling strategy will be feasible:

Strategy 2 (culling matures for extinction)

Step 1) For every i , computing �i = di + ∑
j �=i p ji − ∑

j �=i pi j − α
n [(1 −

β)
∑

j �=i b′
j (0) + (1 − (n − 1)β)b′

i (0)];
Step 2) Select the patches i ∈ � := {i |�i ≤ 0} for culling matures;
Step 3) Take the impulsive culling rate Cik ≥ δi , δi ∈ (0, 1) for all k ∈ N , i ∈ �;
Step 4) Determinate the impulsive moments {tk} such that tk − tk−1 ≤ τ :=

mini∈�{�̄−1
i ln(1 − δi )}, where �̄i := di + ∑

j �=i p ji − 1
1−δi

∑
j �=i pi j −

α
n(1−δi )

[(1 − β)
∑

j �=i b′
j (0) + (1 − (n − 1)β)b′

i (0)], i ∈ �.

Remark 7.1 In Step 2), when � = ∅, there is no need to implement culling in any
patches. In fact, this means all �i > 0 for all i = 1, 2, . . . , n, which implies R <

1 in Theorem 4.1, and so the equilibrium 0∗ of (5.1) without impulsive culling is
exponentially stable.
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Remark 7.2 In Step 4), τ is well-defined since �̄i < 0, i ∈ � from �i ≤ 0 and
0 < δi < 1, which guarantees (6.21) holds for i ∈ �. For i /∈ �, (6.21) also holds
because �i > 0 and γi = 0, which means that no culling is taken in the patches
i /∈ �. According to Corollary 6.1, the extinction of population is achieved by using
the above steps.

To demonstrate this, let us implement Strategy 2 to (7.2). We firstly compute �1 =
0.08,�2 = −0.85,�3 = −2.08. Then, we only choose matures in patch 2 and patch
3 to cull. Taking the culling rates C2k ≥ 0.3, C3k ≥ 0.4, then we determine the
impulsive moments satisfying tk − tk−1 ≤ 0.12. Figure 3 shows the results of this
strategy, confirming the extinction of (7.2) under the given impulsive control.
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8 Appendices

Appendix A

Proof of Lemma 3.2. Note that e−At is non-negative matrix for t ≥ 0 since A is a
non-singular M-matrix. We first show that the conclusion holds for t ∈ [0, r ]. Noting
that φ ∈ C([−r, 0], I), F(I) ⊂ I, then F(φ(s − r)) ∈ I for s ∈ [0, r ]. Combining this
with A−1 Ãen = en and the fact that e−As, s ≥ 0 and Ã are non-negative matrices, we
obtain

u(t, φ) = e−Atφ(0) +
∫ t

0
e−A(t−s) ÃF(φ(s − r))ds ≥ e−At aen

+
∫ t

0
e−A(t−s)ds Ãaen

= e−At aen + (E − e−At )A−1 Ãaen = aen, t ∈ [0, r ].

Similarly, we have u(t, φ) ≤ ben for t ∈ [0, r ]. By mathematical induction, we can
deduce that u(t) ∈ I for all [(n − 1)r, nr ], n = 1, 2, . . .. The proof is completed. ��
Proof of Lemma 3.3 It suffices to prove the following claims.

Claim 1. If the solution u(t, φ) ∈ J0 for all t ≥ T , where some constant T ≥
0, J0 = [c0, d0]n ⊂ Rn , then limt→∞ dist (u(t, φ), F〈J0〉) = 0.

Assume that F〈J0〉 = [c̄0, d̄0]n ⊂ Rn . Since u(t, φ) ∈ C([−r, 0], J0), for t ≥ T ≥
0, F(u(t, φ)) ⊂ F(J0) ⊂ [c̄0, d̄0]n . Furthermore,

u(t, φ) = e−Atφ(0) +
∫ t

0
e−A(t−s) ÃF(u(s − r))ds ≥ e−At c0 +

∫ t

0
e−A(t−s)ds Ãc̄0en

= e−At c0 + (E − e−At )A−1 Ãc̄0en = e−At c0 + (E − e−At )c̄0en .
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Note e−At → 0 as t → ∞ since A is a non-singular M matrix. Thus
lim inf t→∞ u(t, φ) ≥ c̄0en . Similarly, we have lim supt→∞ u(t, φ) ≤ d̄0en . Thus,
limt→∞ dist (u(t, φ), F〈J0〉) = 0.

Claim 2. If limt→∞ dist (u(t, φ), J〉) = 0, where J = [c, d]n ⊂ Rn , then
limt→∞ dist (u(t, φ), F〈J〉) = 0.

For any small enough number ε, we define Jε = [c + ε, d + ε]n . Since
limt→∞ dist (u(t, φ), J) = 0, there exists a T such that u(t, φ) ∈ Jε for t ≥ T .
Then limt→∞ dist (u(t, φ), F〈Jε〉) = 0 from Claim 1. From the continuity of F , we
have F〈Jε〉 → F〈J〉 as ε → 0+. Thus limt→∞ dist (u(t, φ), F〈J〉) = 0.

From Claim 2, limt→∞ dist (u(t, φ), F〈J〉) = 0, and so limt→∞
dist (u(t, φ), F〈F〈J〉〉) = 0. By an induction, we have limt→∞ dist (u(t, φ), F j 〈J〉)
= 0, j = 1, 2, . . .. From thedefinitionof I〈F〉,weobtain that limt→∞ dist (u(t, φ), I〈F〉)
= 0. The proof is completed. ��

Appendix B

Proof of Proposition 5.1 For s < l, denote the number of impulsive moments in (s, l]
by l(s, t). From 0 < τ1 ≤ tk − tk−1 ≤ τ2, we have r

τ2
− 1 ≤ l(t − r, t) ≤ r

τ1
+ 1. By

0 ≤ σ1 ≤ ck(·) ≤ σ2 < 1, we easily obtain the conclusion (i).
When ck(·) ≡ c and tk+1 = tk + T, k ∈ N , we have three cases.
Case 1: T > r . In this case we have l(s − r, s) = 1 if s ∈ [tk, tk + r) while

l(s − r, s) = 0 if s ∈ [tk + r, tk+1). Thus,

γ (t) =
{

(1 − c), t ∈ [tk, tk + r),

1, t ∈ [tk + r, tk+1).

Case 2: T = r . In this case, we have l(s − r, s) = 1 for all s. Hence, γ (t) ≡ 1− c
and γ̄ = 1 − c.

Case 3: T < r . In this case, when t ∈ [tk, tk + r − � r
T �T ), l(t − r, t) = � r

T � + 1

and γ (t) = (1 − c)� r
T �+1; when t ∈ [tk + r − � r

T �T, tk+1), l(t − r, t) = � r
T � and

γ (t) = (1 − c)� r
T �. Therefore,

γ (t) =
{

(1 − c)� r
T �+1, t ∈ [tk, tk + r − � r

T �T ),

(1 − c)� r
T �, t ∈ [tk + r − � r

T �T, tk + T ).

From the above cases, we easily obtain the mean as given in the conclusion (ii) of
Proposition 5.1. The proof is completed. ��
Proof of Proposition 6.1. Since D + L and Ck are commutable, D + L and X (t)
(hence X−1(t)) are also commutable. Suppose x(t) is the solution of (6.1) and let
y(t) = X−1(t)x(t). Note that X (t) is piecewise continuous having jumps at tk, k =
1, 2, . . .. Thus, for t �= tk ,

ẏ(t) = (X (t))−1 ẋ(t) = −(X (t))−1(D + L)x(t) + α(X (t))−1Sb(x(t − r))

= −(D + L)y(t) + α(X (t))−1Sb(X (t − r)y(t − r)),
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and at t = tk ,

y(t+k ) = X−1(t+k )x(t+k ) =
∏

0<t j ≤tk

(E − C j )
−1(E − Ck)x(t−k )

=
∏

0<t j <tk

(E − C j )
−1x(t−k ) = X−1(t−k )x(t+k ) = y(t−k ).

Hence, y(t) = X−1(t)x(t) is continuous at t = tk and differentiable in (tk−1, tk) and
satisfies (6.19). Accordingly, y(t) = X−1(t)x(t) is the solution of (6.19) provided
that x(t) is the solution of (6.1).

The reversed implication can be similarly proved and thus, the proof is completed.
��
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