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Abstract Based on the new findings in a recent experimental study (Lee et al., Nature
467, 82–86, 2010) that antibiotic resistant mutants of bacteria produce indoles to
protect the wild strain bacteria, we propose a mathematical model to describe the
evolution of the wild strain, resistant strain and indoles with limited nutrient. We
distinguish two cases: (i) mutation is negligible and a resistant strain preexists; (ii)
mutation is not negligible. For (i), we establish conditions for co-persistence of both
strains, which indicate that the wild strain can survive with the help from the altruistic
resistant strain, whereas it dies out in the absence of such a benefit. This consolidates
the experimental findings in Lee et al. (Nature 467:82–86 2010). Further analysis
and simulations also reveal some new phenomena not reported in Lee et al. (Nature
467:82–86 2010), that is, periodic oscillations of the populations may occur within
certain range of the parameters, and there exists bistability in the sense that a stable
positive periodic solution coexists with a stable positive equilibrium.
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1 Introduction

The spread of antibiotic resistance has induced difficult and complex problems in
the control of bacteria diseases, and hence, posed significant clinical and societal
challenges. There have been many researches in identifying and understanding the
factors and biological phenomena responsible for the emergence and spread of drug
resistance (see, e.g., Bjedov et al. 2003; Bohannan and Lenski 2000; Cohen et al. 2003;
Dye and Williams 2000; Katouli and Komarova 2011; Kohanski et al. 2010; Komarova
and Wodarz 2005; Lee et al. 2010; Levy and Marshall 2004; Livermore 2003; Smith and
Walker 1998; Smith and Romesberg 2007; Wang et al. 2001). At genetic and molecular
level, selection of naturally occurring resistant mutants and horizontal transfer of
resistance genes play the key roles in the production of resistance strains (Livermore
2003). Within a host, the dynamics of resistance mutations depend crucially on the
competition with the strain of wild type, and the establishment of a resistance strain
is determined by its advantages in fitness costs and benefits (Andersson and Hughes
2011; Levin et al. 1997; Read et al. 2011). At the population level, resistance strains are
transmitted through the interactions of community and health-care facilities, contacts
of human populations, and the agricultural use of antibacterial (zur Wiesch et al. 2011).
Antibiotic treatment can facilitate the selection and spread of antibiotic resistance via
different mechanisms including the modulation of outer membrane impermeability
(Hu et al. 2011), the regulation of efflux pumps (Ma et al. 1993), the stimulation of
the recombinogenic capability of treated bacteria (López et al. 2007), SOS response
(Dörr et al. 2009), and inducing reactive oxygen species (Kohanski et al. 2010).

Mathematical modeling of antibiotic resistance has provided useful insights into
the understanding of underlying phenomena and offered helpful guidance to related
public health decisions (see, e.g., Bonhoeffer et al. 1997; Bootsma et al. 2006; Cohen
and Murray 2004; Colijn et al. 2010; D

′
Agata et al. 2009; Leenheer et al. 2010; Levin

2001; Lipsitch et al. 2000; Sun et al. 2010; Webb et al. 2005, 2006 and the survey
paper Opatowski et al. 2011). For example, by modeling within-host dynamics of
antibiotic resistance, paper D

′
Agata et al. (2008) found that shorter lengths of antibiotic

therapy and early treatment interruption may facilitate resistance selection. Integrating
pharmacokinetic of antibiotic therapies and bacterial population dynamics, Lipsitch
and Levin (1997) analyzed conditions under which high and infrequent doses of an
antibiotic can succeed in preventing the emergence of resistance, and the conditions
for the success of multiple drug treatment. With the aid of mathematical models,
papers Kussell et al. (2005); Levin and Rozen (2006) elucidated influences of non-
inherited resistance. At the population level, paper Austin et al. (1997) studied links of
antibiotic consumptions with the invasion of antibiotic resistance, and paper Lipsitch et
al. (2000) proposed a mathematical model to assess the control measures to prevent the
dissemination of resistant strains in hospital. Furthermore, based upon mathematical
models, paper Colijn et al. (2010) demonstrated that susceptible strain may coexist
with resistance strain through a simultaneous dual transmissions or the stronger intra-
competitions.
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Failure of an antibiotic therapeutics is commonly attributed to massive mutation of
the wild strain bacteria to antibiotic resistant strains. However, in a recent experimental
study (Lee et al. 2010) on the mutation mechanisms of wild-type E. coli facing antibi-
otics, the authors found that the wild strain bacteria can also survive the antibiotics
without mutating, as long as a small number of highly resistant bacteria are present.
Lee et al. (2010) attributed the survival of the wild strain bacteria under antibiotics
to an altruistic behavior of the resistant strain bacteria representing the kin selection.
Indeed, they found that when a continuous culture of E. coli is stressed with quinolone
norfloxacin, highly resistant mutants can produce extraordinary high level of indoles
(a type of signal molecules). These indoles will turn on the drug efflux pumps and
oxidative-stress, which can greatly enhance the survival of the wild strain bacteria.
However, there is a fitness cost for the highly drug resistant mutants for producing
indoles, which is evidenced by the lower population of the mutants in the experiments
conducted in Lee et al. (2010).

In order to better understand the role of the altruistic behavior of the resistant
bacteria observed in Lee et al. (2010), in this paper, we formulate a mathematical
model to mimic the evolution of bacterial populations described in the experimental
study of Lee et al. (2010). Since the bacteria of E. coli in the study of Lee et al. (2010)
are grown in apparatus in laboratory and reside in gut in nature, it is natural to start
with a model of chemostat type. Let S denote the concentration of nutrient, B1 denote
the concentration of the wild strain of bacteria, and B2 denote the concentration of
the antibiotic resistant mutants. In the absence of the altruistic behaviors of resistant
mutants, the dynamics of nutrient, wild strain and resistant strain of bacteria can be
described by (see, e.g., Hsu et al. 1977; Hsu and Waltman 2004; Smith and Waltman
1995)

⎧
⎪⎪⎨

⎪⎪⎩

d S
dt = A − d S − μ1 S

γ1(m1+S)
B1 − μ2 S

γ2(m2+S)
B2,

d B1
dt = (1 − p)

μ1 S
m1+S B1 − (d + ε1)B1,

d B2
dt = μ2 S

m2+S B2 + p μ1 S
m1+S B1 − (d + ε2)B2,

(1.1)

where A is the recruitment rate of nutrient, d is the washout rate of nutrient and
bacteria, mi is the Michaelis–Menten constant, γi is the yield constant representing
the conversion efficiency of nutrient to the biomass of the organism, μi accounts for the
maximal growth rate, ε1 is the death rate of wild bacteria due to antibiotic influences
and ε2 is the death rate of its mutants under the antibiotic stress, and p is the mutation
probability of wild bacteria. Here the backward mutation from the resistant strain to the
wild strain is neglected because there is no evidence in the experimental study of Lee et
al. (2010) showing that such “back” mutations are significant; and in general, “back”
mutations are much rarer than “forward” mutations, because the number of ways to
inactivate one gene out of thousands/millions genes is much greater than the number
of ways to correct a miscopied gene (Mutation rate in Gale Genetics Encyclopedia
2012). We also assume μ2 < μ1 to account for the cost of resistant strain, and assume
ε2 < ε1 to reflect the benefit of antibiotic resistance.

Denote by C the concentration of the antibiotic and assume that it is a constant.
Then, the killing rates to both wild and mutant strains of bacteria should be a non-
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decreasing function of C . In light of Austin and Anderson (1999), Levin et al. (1997),
and Torella et al. (2010), we take the following forms for εi (C):

εi (C) = ki C

ai + C
, i = 1, 2. (1.2)

Note that mutation is usually considered as the consequence of errors during the DNA
replication process. Recent studies indicate that a mutation rate can increase by several
orders of magnitude under antibiotic stress (Kepler and Perelson 1998; Kohanski et al.
2010; Nash 2001) and may attain its maximum at an intermediate drug concentration
level (Nash 2001). This means that the mutation may be adapted by the antibiotic
stress. Motivated by these facts and the work of Barrett et al. (2006), we assume that
the mutation rate is described by the Weibull distribution:

p = pr + pa
k0

λ0

(
C

λ0

)k0−1

exp

{

−
(

C

λ0

)k0
}

, (1.3)

which is versatile to accommodate various shapes. Here in (1.3), pr is the random
mutation coefficient, pa is the adaptive coefficient, k0 > 0 is the shape parameter and
λ0 > 0 is the scale parameter of the distribution.

We now incorporate the altruistic behaviors of the resistant strain into the model
(1.1). Let I denote the concentration of indoles produced by resistant bacteria. In
general, the rate at which the bacteria of wild strain absorb the indoles is dependent on
the concentration of indoles, denoting it by a(I ). It is reasonable to assume that a(I )
is increasing and saturating. For concreteness, we choose a(I ) = ηI/(1 + hI ) with
η/h giving the maximum absorb rate. We suppose that the probability by which the
bacteria are protected by the indoles in unit time is proportional to the concentration
of absorbed indoles and it takes the maximum value 1 when I becomes infinity, which
leads to the protection probability hI/(1 + hI ). As a consequence, the probability of
the bacteria being unprotected is 1/(1+hI ). Thus, the death rate of the wild strain due
to the combined effects of antibiotic stress and indole’s protection is ε1(C)/(1 + hI ).
Furthermore, we assume that the production rate of indoles by the resistant bacteria
is αB2, where α is a proportional constant. We introduce an extra mortality rate ε3
for the resistance bacteria to account for the cost for producing indoles, and assume
that ε4 is the natural decaying rate of indoles. Incorporating the above ingredients into
(1.1), we arrive at the following model:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d S
dt = A − d S − μ1 S

γ1(m1+S)
B1 − μ2 S

γ2(m2+S)
B2,

d B1
dt = (1 − p)

μ1 S
m1+S B1 −

(
d + ε1

1+hI

)
B1,

d B2
dt = μ2 S

m2+S B2 + p μ1 S
m1+S B1 − (d + ε)B2,

d I
dt = αB2 − (d + ε4)I − ηI B1

1+hI ,

(1.4)

where ε = ε2 + ε3, and the dependence of p, ε1 and ε on C is omitted for simplicity
of notations.
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Modeling the role of altruism of antibiotic-resistant bacteria 1321

For biological reason, we are only interested in non-negative initial values for (1.4).
Given a set of non-negative initial values, by a standard argument, one can easily show
that the model (1.4) has a unique solution satisfying the given initial conditions, and
the solution remains non-negative for all those t ≥ 0 in its existence interval.

The rest of this paper is organized as follows. In Sect. 2, we analyze (1.4) for the
special case p = 0 to focus on the pure interactions of the two bacteria strain and
the indoles. In Sect. 3, by allowing p > 0, we explore the influences of mutations on
the coexistence of the wild strain and the resistant strain. Our analysis and numeric
simulations to the model can not only explain the experimental findings that a small
number of resistant mutants can enhance the survival capacity of the whole population
in stressful environment, but can also predict the existence of periodic fluctuations of
bacteria populations and even the occurrence of bistability in the sense that a stable
positive periodic solution coexists with a stable positive equilibrium. We conclude the
paper with some discussions on biological implications of the mathematical results
obtained in Sects. 2 and 3, as well as some related problems for future work on this
topics.

2 Dynamics without mutation

In this section, we consider the case p = 0 to focus on the interaction of the two
strains and indoles, which can be considered as an approximation of the case when
mutation rate from the wild type to the resistant type is so weak (mutation is rare) that
we can ignore it. Indeed, it is estimated that the mutation rate for untreated wild-type
E. coli is approximately 1.5 × 10−8 per cell generation (Kohanski et al. 2010), and
the mutation rates from sensitive type to resistance type are often on the order of 10−6

to 10−9 (Lipsitch and Levin 1997). In the chemostat setting, this corresponds to the
scenario that the resistance bacteria are brought into the chemostat from outside, and
in reality can be the situation that an host is infected by both the wild strain and the
drug resistant strain of bacteria. Setting p = 0 in (1.4), we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d S
dt = A − d S − μ1 S

γ1(m1+S)
B1 − μ2 S

γ2(m2+S)
B2,

d B1
dt = μ1 S

m1+S B1 −
(

d + ε1
1+hI

)
B1,

d B2
dt = μ2 S

m2+S B2 − (d + ε)B2,
d I
dt = αB2 − (d + ε4)I − ηI B1

1+hI .

(2.1)

Clearly (2.1) has the bacterium-free equilibrium E0 = (S0, 0, 0, 0) where S0 =
A/d. The basic reproduction number of strain Ri in the absence of strain j, j �= i is
denoted by Ri which can be calculated by a standard procedure (see, e.g., Diekmann
et al. 1990; van den Driessche and Watmough 2002). Indeed, the B ′

1(t) and B ′
2(t)

equations in the linearization of (2.1) at E0 are

d B1

dt
= μ1S0

m1 + S0 B1 − (d + ε1)B1,
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d B2

dt
= μ2S0

m2 + S0 B2 − (d + ε)B2,

from which we immediately obtain

R1 = μ1S0

(m1 + S0)(d + ε1)
, R2 = μ2S0

(m2 + S0)(d + ε)
.

Setting

λ1 = m1 (d + ε1)

μ1 − d − ε1
, λ2 = m2 (d + ε)

μ2 − d − ε
,

it is easy to verify that

R1 > 1 iff μ1 > d + ε1 and S0 > λ1, (2.2)

R2 > 1 iff μ2 > d + ε and S0 > λ2. (2.3)

When R2 < 1, since

d B2

dt
≤ (μ2 − d − ε)B2,

it follows that population B2 will go extinct if μ2 < d + ε. In the case that S0 < λ2,
we see from Wolkowicz and Lu (1992, Lemma 2.2) that population B2 will also go to
extinction. When R2 > 1, (2.1) admits equilibrium E2 = (λ2, 0, B20, I2), where

B20 = γ2d(S0 − λ2)

d + ε
, I2 = αB20

d + ε4
.

At E2, one can define the B2-mediated reproduction number for strain B1 by

R12 = μ1λ2

(m1 + λ2)(d + ε1/(1 + hI2))
,

which accounts for the expected number of offsprings produced by a single wild
bacterium during its life time when the population of resistant type is fixed at B20 and
the indole level is fixed at I2. It is easy to verify that

⎧
⎪⎨

⎪⎩

R12 < 1 iff μ1λ2
m1+λ2

< d + ε1(d+ε4)
d+ε4+hαB20

,

R12 > 1 iff μ1λ2
m1+λ2

> d + ε1(d+ε4)
d+ε4+hαB20

.

(2.4)

If R1 < 1 and the resistant strain is absent (implied by B2(0) = 0), it is easy to see
that the wild strain will go extinct. On the other hand, R1 > 1 implies the existence
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of equilibrium E1 = (λ1, B10, 0, 0), where B10 = γ1d(S0 − λ1)/(d + ε1). At E1, we
can also define the B1-mediated reproduction number for strain B2 by

R21 = μ2λ1

(m2 + λ1)(d + ε)
.

It is easy to show that

R21 < 1 iff 0 < λ1 < λ2,

R21 > 1 iff λ1 > λ2 > 0. (2.5)

Next, we consider the local stability of E1 and E2, which gives the thresholds for
small invasions of wild strain and resistant strain respectively.

Theorem 2.1 The following statements hold:

(i) Assume R1 > 1. Then E1 is asymptotically stable if R21 < 1, and is unstable if
R21 > 1;

(ii) Assume R2 > 1. Then E2 is asymptotically stable if R12 < 1 and is unstable if
R12 > 1.

Proof The Jacobian matrix of (2.1) at E1 is

J1 =

⎡

⎢
⎢
⎢
⎣

−d − B10(μ1−d−ε1)
(m1+λ1)γ1

− d+ε1
γ1

− μ2λ1
(m2+λ1)γ2

0
B10(μ1−d−ε1)

m1+λ1
0 0 ε1h B10

0 0 μ2λ1
m2+λ1

− d − ε 0
0 0 α −d − ε4 − ηB20

⎤

⎥
⎥
⎥
⎦

.

The upper-left 2×2 block matrix in J1 is stable by (2.2), and the stability of the lower-
right 2 × 2 block matrix is fully determined by the sign of μ2λ1/(m2 + λ1) − d − ε.
Thus, (i) follows from (2.4). Similarly, we can show that E2 is asymptotically stable if
R12 < 1 and it is a saddle if R12 > 1, proving (ii) (also a special case of Theorem 3.1
in Sect. 3). ��

The following theorem gives conditions on the persistence of bacteria populations.

Theorem 2.2 The following statements hold:

(i) If either R1 > 1 and R2 < 1, or R2 > 1 and R12 > 1, then population B1
is uniformly persistent, i.e., there exists a ζ > 0 such that positive solutions of
(2.1) satisfy lim inf

t→∞ B1(t) > ζ.

(ii) If R2 > 1 and R21 > 1, then population B2 is uniformly persistent.
(iii) Assume that R2 > 1, R21 > 1 and R12 > 1. Then both B1(t) and B2(t) are

uniformly persistent.

Proof We only give the proof of (i), since the proof of (ii) is similar and (iii) is a direct
consequence of (i) and (ii).
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By the form of (2.1), it is easy to see that solutions of (2.1) with nonnegative initial
values are nonnegative, and the solutions with positive initial values are positive. Set

V0 = S + γ1 B1 + γ2 B2.

Then we have

dV0

dt
≤ A − dV0. (2.6)

This, together with the last equation in (2.1), implies that nonnegative solutions of
(2.1) exist for all forward times. The inequality (2.6) also leads to

V0(t) ≤ A

d
+ 1, for all large t.

On the other hand, the non-negativity of solutions leads to

d I

dt
≤ αB2 − (d + ε4)I ≤ α

γ2

(
A

d
+ 1

)

− (d + ε4)I, (2.7)

which implies that the I (t) component of a nonnegative solution of (2.1) is also
ultimately bounded.

Let us consider the case where R1 > 1 and R2 < 1. We have B2(t) → 0 as
t → ∞ because R2 < 1 implies I (t) → 0 as t → ∞. It follows from the techniques
of Wang and Zhao (2004) and Xiao and Zou (2008) that positive solutions of (2.1)
satisfy S(t) → λ1 and B1(t) → B10 as t → ∞, implying the uniform persistence of
population B1.

Now we consider the case that R2 > 1 and R12 > 1. Set

X = R4+ = {(S, B1, B2, I ) : S ≥ 0, B1 ≥ 0, B2 ≥ 0, I ≥ 0},
X0 = {(S, B1, B2, I ) ∈ X : B1 > 0},
Y = X/X0 = {(S, 0, B2, I ) : S ≥ 0, B2 ≥ 0, I ≥ 0}.

It then suffices to show that (2.1) is uniformly persistent with respect to (X0, Y ). First,
it is easy to see that both X and X0 are positively invariant. Further, (2.6) and (2.7)
imply that system (2.1) is point dissipative.

Notice that there are two equilibria E0 and E2 in Y for (2.1). Let us consider

⎧
⎪⎨

⎪⎩

d S
dt = A − d S − μ2 S

γ2(m2+S)
B2,

d B2
dt = μ2 S

m2+S B2 − (d + ε)B2,
d I
dt = αB2 − (d + ε4)I,

(2.8)

which describes the dynamics of (2.1) in Y . Notice that R2 > 1. Using similar
arguments to those in Hsu et al. (1977) and Wolkowicz ans Lu (1992), we see that
E0

2 = (λ2, B20, I2) is globally stable for the solutions (S(t), B2(t), I (t)) of (2.8) with
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B2(0) > 0, S(0) ≥ 0, I (0) ≥ 0. Furthermore, if Y0 = {(S, 0, I ) : S ≥ 0, I ≥ 0},
it is easy to see that Y0 is positively invariant for (2.8) and the solutions of (2.8) in
Y0 approach E0

0 = (S0, 0, 0) as t → ∞ and become unbounded as t → −∞. These
facts indicate that equilibria E0 and E2 are acyclic in Y .

To show that E0 and E2 is isolated in X , it suffices to verify that E0 and E2 are
hyperbolic. The Jacobian matrix of (2.1) at E2 is

J2 =

⎡

⎢
⎢
⎢
⎢
⎣

−d − μ2 B20
(m2+λ2)γ2

+ μ2 λ2 B20

γ2 (m2+λ2)2 − μ1 λ2
(m1+λ2)γ1

− μ2 λ2
(m2+λ2)γ2

0

0 μ1 λ2
m1+λ2

− d − ε1
1+hI2

0 0
(

μ2
m2+λ2

− μ2 λ2

(m2+λ2)2

)
B20 0 0 0

0 − η I2
1+hI2

α −d − ε4

⎤

⎥
⎥
⎥
⎥
⎦

. (2.9)

Clearly, J2 has an eigenvalue �2 = μ1 λ2
m1+λ2

− d − ε1
1+hI2

, which is positive because
R12 > 1, and has an eigenvalue �4 = −(d + ε4) < 0. The other two eigenvalues of
J2 are determined by the matrix:

J20 =
⎡

⎣
−d − μ2 B20

(m2+λ2)γ2
+ μ2 λ2 B20

γ2 (m2+λ2)2 − μ2 λ2
(m2+λ2)γ2(

μ2
m2+λ2

− μ2 λ2

(m2+λ2)
2

)
B20 0

⎤

⎦ .

Since R2 > 1, direct calculations lead to tr(J20) < 0 and det(J20) > 0. Thus, the
eigenvalues of J20 have negative real part. Hence, E2 is hyperbolic. Similarly, one can
verify that E0 is hyperbolic. Therefore, we have verified that E0 and E2 are isolated
in X and {E0, E2} is an acyclic covering.

We now show that W s(E2) ∩ X0 = ∅ where W s(E2) denotes the stable manifold
of E2. Suppose not. Then there is a solution of (2.1) such that

lim
t→∞(S(t), B1(t), B2(t), I (t)) → (λ2, 0, B20, I2). (2.10)

As a consequence, it follows from the second equation of (2.1) that

d B1

dt
≥ B1

[
μ1(λ2 − ξ)

m1 + λ2 − ξ
− d − ε1

1 + h(I2 − ξ)

]

:= B1q(ξ) (2.11)

where ξ > 0 is sufficiently small. Since R12 > 1, one can restrict ξ > 0 small enough
such that q(ξ) > 0. Then (2.11) implies that B1(t) → ∞ as t → ∞. This contradicts
the fact that positive solutions are ultimately bounded. Therefore, W s(E2) ∩ X0 = ∅.
Similarly, we can verify W s(E0)∩X0 = ∅, where W s(E0) denotes the stable manifold
of E0.

In summary, the conditions of Thieme (1993, Theorem 4.6) (see also Hirsch 2001,
Theorem 4.3 and Remark 4.3, or Butler et al. 1986; Zhao 2003) are satisfied. Therefore,
we conclude that system (2.1) is uniformly persistent with respect to (X0, Y ). This
proves the uniform persistence of population B1. ��
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Remark 2.3 The second set of conditions in Theorem 2.2(i) deserve more discussions.
The condition R2 > 1 means that B2 strain can persist in the absence of B1 strain,
and R12 > 1 implies that B2 strain can help B1 strain survive by its altruistic behavior
even if R1 < 1, which means that B1 strain faces a strong antibiotic stress. This
theorem clearly supports the experimental results in Lee et al. (2010): altruism of the
antibiotic-resistant strain can help the wild strain survive the antibiotic (under certain
ranges of parameters).

By Theorem 2.1, E2 is locally asymptotically stable under the conditions R2 >

1 and R12 < 1. In the next theorem, we show that E2 actually can be globally
asymptotically stable under some extra conditions.

Theorem 2.4 Assume that R2 > 1 and R12 < 1. Then E2 is globally asymptotically
stable in the set D1 = {(S, B1, B2, I ) : S > 0, B1 ≥ 0, B2 > 0, I > 0} if

αA

(d + ε4)dγ2
<

ε1 − ε

hε
(2.12)

and

{
μ1m2
μ2m1

≤ 1, if m2 ≥ m1,
(m2d+A)μ1
(m1d+A)μ2

≤ 1, if m1 > m2.
(2.13)

Proof We define a Lyapunov function by

V1 =
(

1 − d + ε

μ2

)

(S − λ2) − m2(d + ε)

μ2
ln

S

λ2
+ 1

γ1
B1

+ 1

γ2

(

B2 − B20 − B20 ln
B2

B20

)

. (2.14)

Calculating the derivative of V1 along solutions of (2.1) in D1, we obtain

dV

dt
= A − d S − μ1S

γ1(m1 + S)
B1 − μ2S

γ2(m2 + S)
B2

−(d + ε)

[

(A − d S)
/ μ2S

m2 + S
− μ1S

m1 + S

/ γ1μ2S

m2 + S
B1 − 1

γ2
B2

]

+ μ1S

γ1(m1 + S)
B1 − 1

γ1

(

d + ε1

1 + hI

)

B1 + μ2S

γ2(m2 + S)
B2 − d + ε

γ2
B2

− B20

γ2

(
μ2S

m2 + S
− d − ε

)

= (A − d S)

(

1 − (d + ε)/
μ2S

m2 + S

)

− B20

γ2

(
μ2S

m2 + S
− d − ε

)

+ 1

γ1

(

(d + ε)
μ1S

m1 + S

/ μ2S

m2 + S
− d − ε1

1 + hI

)

B1. (2.15)
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In view of (2.6) and the last equation of (2.1), one can assume, for the simplicity of
notations, that for large t ,

S(t) ≤ S0, B1(t) ≤ S0

γ1
, B2(t) ≤ S0

γ2
, I (t) ≤ αS0

γ2(d + ε4)
. (2.16)

Note that (2.13) leads to

μ1S

m1 + S

/ μ2S

m2 + S
≤ 1, for 0 ≤ S ≤ S0. (2.17)

It follows from (2.16), (2.17) and (2.12) that

(d + ε)
μ1S

m1 + S

/ μ2S

m2 + S
− d − ε1

1 + hI
< 0 (2.18)

for all large t . Consequently

dV1

dt
≤ (A − d S)

(

1 − (d + ε)
/ μ2S

m2 + S

)

− B20

γ2

(
μ2S

m2 + S
− d − ε

)

� F(S).

(2.19)

Next, we show that F(S) satisfies

F(S) < 0, for 0 < S ≤ S0 and S �= λ2. (2.20)

Using the transformation

u = μ2S

m2 + S
, or equivalently S = um2

μ2 − u

with 0 < u < μ2, we obtain

F(S) =
(

A − dm2u

μ2 − u

) (

1 − d + ε

u

)

− B20

γ2
(u − d − ε)

= − (d + ε − u)
(
γ2 Aμ2 − (γ2 A + γ2 dm2 + B20 μ2) u + B20 u2

)

(μ2 − u) uγ2
. (2.21)

Substituting B20 = γ2(A − dλ2)/(d + ε) with λ2 = (d + ε)m2/(μ2 − d − ε) into
(2.21) leads to

F(S) = − (d + ε − u)2 L(u)

(μ2 − u) u(μ2 − ε − d)(d + ε)
(2.22)

where

L(u) = [A(ε + d − μ2) + dm2(d + ε)]u + Aμ2(μ2 − ε − d).
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This, together with (2.3), implies that L(u) > 0 for 0 < u < μ2. It follows that F(S)

satisfies (2.20). Moreover, (2.22) also implies that F(s) = 0 if and only u = d + ε,
that is, S = λ2.

Set

D01 =
{

(S(t), B1(t), B2(t), I (t)) : dV1

dt
= 0

}

.

From the above we know that dV1
dt = 0 implies S(t) = λ2. Then the third equation

of (2.1) implies that B2(t) is a constant. As a consequence, it follows from the first
equation of (2.1) that B1(t) is also a constant. Since d B1(t)

dt = 0, we have

[
μ1S

m1 + S
−

(

d + ε1

1 + hI

)]

B1 =
[

μ1λ2

m1 + λ2
−

(

d + ε1

1 + hI

)]

B1 = 0. (2.23)

Note that R2 > 1 implies that λ2 < S0. From (2.17) and (2.18) it follows that

μ1λ2

m1 + λ2
−

(

d + ε1

1 + hI

)

< 0.

Hence, (2.23) leads to B1 = 0. Then from the right-hand of (2.1) we further obtain
B2 = B20. Using B1 = 0 and B2 = B20, we see, from the last equation of (2.1), that
I (t) → I2 as t → ∞. Thus, the largest invariant set of (2.1) contained in D01 is {E2}.
By the Lyapunov–LaSalle theorem (Hale and Verduyn Lunel 1993), all solutions of
(2.1) in D1 approach E2 as t → ∞.

Parallel to Theorem 2.4, we have the following theorem on the global asymptotic
stability of E1.

Theorem 2.5 Assume that R1 > 1 and R21 < 1. Then E1 is globally stable in the
set D2 = {(S, B1, B2, I ) : S > 0, B1 > 0, B2 ≥ 0, I > 0} if the following condition
holds:

{
α ε1h

γ1η
+ (d+ε1)μ2m1

γ2μ1m2
< d+ε

γ2
, if m1 ≥ m2,

α ε1h
γ1η

+ (d+ε1)μ2(m1d+A)
γ2μ1(m2d+A)

< d+ε
γ2

, if m1 > m2.
(2.24)

Proof Define a Lyapunov function by

V2 =
(

1 − d + ε1

μ1

)

(S − λ1) − m1(d + ε1)

μ1
ln

S

λ1
+ 1

γ2
B2

+ 1

γ1

(

B1 − B10 − B10 ln
B1

B10

)

+ ε1h

γ1η
I. (2.25)
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Calculating the derivative of V2 along solutions of (2.1) in D2, we obtain

dV2

dt
= A − d S − μ1S

γ1(m1 + S)
B1 − μ2S

γ2(m2 + S)
B2

−(d + ε1)

[

(A − d S)
/ μ1S

m1 + S
− 1

γ1
B1 − μ2S

m2 + S

/ γ2μ1S

m1 + S
B2

]

+ μ1S

γ1(m1 + S)
B1 − 1

γ1

(

d + ε1

1 + hI

)

B1

− B10

γ1

(
μ1S

m1 + S
− d − ε1

1 + hz

)

+ μ2S

γ2(m2 + S)
B2 − d + ε

γ2
B2

+ ε1h

γ1η

(

αB2 − (d + ε4)I − ηI B1

1 + hI

)

≤ (A − d S)

(

1 − (d + ε1)
/ μ1S

m1 + S

)

− B10

γ1

(
μ1S

m1 + S
− d − ε1

)

−(d + ε4)
ε1h

γ1η
I +

(

(d + ε1)
μ2(m1 + S)

γ2μ1(m2 + S)
− d + ε

γ2
+ α

ε1h

γ1η

)

B2.

(2.26)

As discussed in the proof of Theorem 2.4, we can confine ourselves to the set described
in (2.16). Then it is easy to see that (2.24) implies

(d + ε1)
μ2(m1 + S)

γ2μ1(m2 + S)
− d + ε

γ2
+ α

ε1h

γ1η
< 0, for 0 < S ≤ S0. (2.27)

Let

G(S) = (A − d S)

(

1 − (d + ε1)
/ μ1S

m1 + S

)

− B10

γ1

(
μ1S

m1 + S
− d − ε1

)

.

By similar discussions to those in the proof of Theorem 2.4, we see that

G(S) < 0, for 0 < S ≤ S0 and S �= λ2. (2.28)

Set

D02 =
{

(S(t), B1(t), B2(t), I (t)) : dV2

dt
= 0

}

.

Clearly, dV2
dt = 0 implies S(t) = λ1, B2(t) = 0 and I (t) = 0. Then the first equation

of (2.1) implies B1(t) = B10. As a consequence, the largest invariant set of (2.1)
contained in D02 is {E1}. It follows from the Lyapunov–LaSalle Theorem (Hale and
Verduyn Lunel 1993) that all solutions in D2 approach E1 as t → ∞. ��

Our next goal is to look for conditions under which there exists a positive equi-
librium for (2.1), accounting for co-existence of the two strains. For this purpose,
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we assume R2 > 1 in the sequel. Otherwise, population B2 may go to extinct, and
consequently, the indole population I is eliminated. To be succinct, we assume that
both strains have the same metabolic parameters, i.e., μ1 = μ2 = μ, m1 = m2 =
m, γ1 = γ2 = γ . Then a positive equilibrium satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A − d S − μS
γ (m+S)

(B1 + B2) = 0,

μS
m+S −

(
d + ε1

1+hI

)
= 0,

μS
m+S − (d + ε) = 0,

αB2 − (d + ε4)I − ηI B1
1+hI = 0.

(2.29)

Solving (2.29) gives a unique positive solution E∗ = (λ2, B∗
1 , B∗

2 , I ∗) where

λ2 = m(d + ε)

μ − d − ε
, I ∗ = ε1 − ε

hε
,

and (B∗
1 , B∗

2 ) is the unique solution of the linear system

{
B1 + B2 = (A−dλ2)γ

d+ε−ηI ∗
1+hI ∗ B1 + αB2 = (d + ε4)I ∗.

(2.30)

Since we have assumed ε1 > ε (see Sect. 1) and μ > d + ε (implied by R2 > 1), it
follows from (2.30) that B∗

1 and B∗
2 are positive if and only if

αhε(A − dλ2)γ > (d + ε4)(ε1 − ε)(d + ε). (2.31)

The Jacobian matrix at E∗ is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

− Aμγ−(B∗
1 +B∗

2 )(d+ε)2

μγ S −d + ε

γ
− d+ε

γ
0

(d+ε)(μ−d−ε)B∗
1

μλ2
0 0

ε2h B∗
1

ε1
(d+ε)(μ−d−ε)B∗

2
μλ2

0 0 0

0 η (ε−ε1)
ε1 h α −α B∗

2 ε1
2+η B∗

1 (ε2 I ∗−ε I ∗ε1)

I ∗ε1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Its characteristic equation is

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (2.32)

where

a1 = λ2μγ [η B∗
1 ε (ε − ε1)I ∗ + αB∗

2 ε2
1 + I ∗ε1

2(Aμγ − (B∗
1 + B∗

2 )(d + ε)2)]
μγ λ2 I ∗ε1

2 ,
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a2 = 1

μγ λ2 I ∗ε1
2 [(B∗

1 + B∗
2 )2 I ∗η ε (d + ε)2(ε1 − ε) + γμB∗

2 (I ∗η ε2λ2(ε − ε1)

+A(ε1
2α − η ε2z + η ε zε1)) + (B∗

1 + B∗
2 )(−λ2ε1

2 yα (d + ε)2

+Aη ε (d + ε)2(ε − ε1) + ε1
2(d + ε)2(μ − d − ε))],

a3 = 1

μγ λ2 I ∗ε1
2 [(B∗

1 + B∗
2 )2ε η I ∗(d + ε)2(ε − ε1)(μ − d)

+γ μ AB∗
2 I ∗η ε2(ε − ε1)

+(B∗
1 + B∗

2 )(I ∗εη(ε1 − ε)(B∗
2 (d + ε)2(μ − d) + εγμA)

+α B∗
2 ε1

2(d + ε)2(μ − d − ε))],
a4 = ε2 B∗

1 B∗
2 (d + ε)2(α hε1 − ε η + η ε1)(μ − d − ε)

γ μλ2ε1
2 .

It is clear that a3 > 0 and a4 > 0. Some algebraic calculations also show that a1 > 0.
By the Routh–Hurwitz criteria, we can obtain the following theorem.

Theorem 2.6 Assume R2 > 1 and (2.31) hold so that E∗ exists. Then E∗ is asymp-
totically stable if

�2 :=
∣
∣
∣
∣
a1 a3
1 a2

∣
∣
∣
∣ > 0 and �3 :=

∣
∣
∣
∣
∣
∣

a1 a3 0
1 a2 a4
0 a1 a3

∣
∣
∣
∣
∣
∣
> 0, (2.33)

and is unstable if either �2 < 0 or �3 < 0.

Due to the complexity of the formulas for a′
i s, i = 1, 2, 3, 4, it is difficult, if not

impossible, to further identify the full range of parameters for (2.33). However partial
ranges are possible. For example, we can show that �2 > 0 when η ≥ 0 is small.
Indeed, when η = 0, direct calculations gives �2 = T2/H2 where H2 is a positive
constant and

T2 = [A(μ − d − ε)2 + dm(d + ε)2]χ,

where

χ = A(μ − d − ε)2(2d + ε4 + ε) − μ(dε − 2dε4 − ε2
4) + d(d + ε)(2d + ε + ε4).

Noting that A > dλ2, it follows that

χ > dλ2(μ − d − ε)2(2d + ε4 + ε) − μ(dε − dε4 − ε2
4) + d(d + ε)(2d + ε + ε4)

= (2d + ε4)(d + ε)(d + ε4)μm > 0.

Hence, T2 > 0, implying that �2 > 0. Since �2 depends continuously on η, we
conclude that �2 > 0 when η ≥ 0 is small. This leads to the following corollary.

Corollary 2.7 Let 0 ≤ η � 1. Assume that R21 > 1 and (2.31) hold so that E∗
exists. Then E∗ is asymptotically stable if �3 < 0 and is unstable if �3 > 0.
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Fig. 1 Periodic solution arising from the Hopf bifurcation when E∗ becomes unstable

Fig. 2 Periodic solution from
the Hopf bifurcation is stable
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Note that �3 = a3�2 − a4a2
1 . Thus, �2 can not cross zero as long as �3 remains

positive. Thus, if �2 and �3 change signs from positive to negative, �3 must change
its sign first. It follows from Yu (2005) that E∗ can only lose its stability through a
Hopf bifurcation, giving rise to periodic solutions surrounding E∗.

Detailed analysis of the Hopf bifurcation via sign change(s) of �3 is lengthy and
quite technical. Since this is not the focus of this paper, we will not further explore here
along this line. But our numeric simulations show that the Hopf bifurcation is possible.
To see this, we take A = 4.9846, d = 0.0035, μ = 3.8799, m = 9.7723, γ =
6.0260, ε4 = 4.0731, h = 5.3871, α = 7.9668 and η = 0.01, and fix a1 = a2 =
1, k1 = 10, k2 = 1.46, ε3 = 0.001. Then �3 changes signs as antibiotic concentration
C varies. Indeed, E∗ is asymptotically stable when 0 ≤ C < 2.4213, and it becomes
unstable when C > 2.4213, giving rise to a stable periodic solution (see Figs. 1, 2).

One more interesting observation from simulations is that the model (2.1) may admit
the coexistence of a stable positive equilibrium and a stable periodic solution. To see
this, we fix A = 5.0683, d = 0.5701, μ = 3.9010, m = 2.5580, γ = 7.5510, ε4 =
0.0207, h = 0.4812, α = 6.8250, η = 0.01, and ε1 = 10C/(1 + C), ε2 =
1.373C/(1 + C), ε3 = 0.001, Then E∗ is stable for 0 < C < 9.8143 and becomes
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Fig. 3 Subcritical bifurcation
curve where the lower part with
dots marked denotes the
unstable branch and the upper
part is the stable branch
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unstable when C > 9.8143. With the aid of Mactone package (Dhooge et al. 2003),
we find a subcritical Hopf bifurcation, shown in Fig. 3. Specifically, there are two
branches in the bifurcation curve when 6.709 < C < 9.8143. The upper branch
represents a family of stable periodic solutions, which coexist with stable positive
equilibrium E∗. Therefore, the dynamics of populations in model (2.1) can evolve to
a stable periodic solution, or tend to the stable positive equilibrium, depending upon
initial values.

3 Impact of mutation

In this section, we consider influences of mutation rate p on evolutionary behaviors
of two bacteria strains described by (1.4). Unlike the case p = 0 where B2(0) = 0
implies B2(t) = 0 for all t ≥ 0 and I (t) → 0 as t → ∞, positive p can activate B2(t)
and I (t), even if B2(0) = 0. Indeed, if p > 0, then a standard argument shows that
S(0) ≥ 0, B1(0) > 0, B2(0) ≥ 0 and I (0) ≥ 0 imply that S(t), B1(t), B2(t) and
I (t) are strictly positive for t > 0.

E0 = (S0, 0, 0, 0) remains the bacterium-free equilibrium of (1.4), and equilibrium
E2 = (λ2, 0, B20, I2) still exists if R2 > 1. At E2, the B2-mediated reproduction
number for strain B1 is modified to

Rp
12 = (1 − p)μ1λ2

(m1 + λ2)[d + ε1/(1 + hI2)] .

The stability/instability of E2 is closely related to extinction/persistence of the wild
strain, and we address it in the next theorem.

Theorem 3.1 Assume that R2 > 1. Then boundary equilibrium E2 of (1.4) is asymp-
totically stable if Rp

12 < 1, and is unstable if Rp
12 > 1.
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Proof The Jacobian matrix of (1.4) at E2 is

⎡

⎢
⎢
⎢
⎢
⎣

− A
λ2

+ (d+ε)2 B20
γ2 μ2 λ2

− μ1 λ2
(m1+λ2)γ1

− d+ε
γ2

0

0 (1−p)μ1 λ2
m1+λ2

− d − ε1
1+hI2

0 0
(

d + ε − (d+ε)2

μ2

)
B20
λ2

pμ1 λ2
m1+λ2

0 0

0 − η I2
1+hI2

α −(d + ε4)

⎤

⎥
⎥
⎥
⎥
⎦

.

Its characteristic equation can be written as

(λ + d + ε4) [(1 + hI2)(m1 + λ2)λ + ξ ] Q2(λ) = 0, (3.1)

where

ξ = m1(d + dhI2 + ε1) + [I2h(d − μ1 + pμ1) − μ1 + pμ1 + d + ε1] λ2,

Q2(λ) = γ1 γ2 μ2 λ2λ
2 + λγ1[μ2γ2 A − B20 (d + ε)2]

+B20γ2 (d + ε)2 (μ2 − d − ε) .

Equation (3.1) has an eigenvalue λ = −(d + ε4). Note that (2.3) implies that the last
term of Q2(λ) is positive. Moreover, direct calculations give

μ2γ2 A − B20 (d + ε)2 = γ2
A(μ − d − ε)2 + dm2(d + ε)2

μ − d − ε
> 0.

Thus, all roots of the equation Q2(λ) = 0 have negative real parts. As a consequence,
we are left to consider the sign of ξ . Set

κ = (1 − p)
μ1λ2

m1 + λ2
−

(

d + ε1

1 + hI2

)

.

After some algebraic computations, we obtain

κ = ξ(m1 + λ2)[−(d + ε)(d + ε4) − hγ2(A − dλ2)α],

which means that κ has the opposite sign of ξ . Consequently, all roots of (3.1) have
negative real parts if κ < 0 (i.e., Rp

12 < 1), and (3.1) admits a positive root if κ > 0
(i.e., Rp

12 > 1), completing the proof. ��
The following two theorems present impacts of mutations on the co-survival of the

two strains.

Theorem 3.2 Assume that R2 > 1 and Rp
12 > 1. Then population B1 and population

B2 in (1.4) are uniformly persistent.

Theorem 3.3 Let (1 − p)R1 > 1 and R2 < 1. Then population B1 and population
B2 in (1.4) are uniformly persistent.
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The proofs of these theorems are similar to that of Theorem 2.2, and are thus
omitted.

Remark 3.4 The above theorems show the influence of mutation rate p > 0. Com-
paring Theorem 3.2 with Theorem 2.2(iii), one finds that the condition R21 > 1 is
no longer needed in Theorem 3.2 to guarantee the persistence of both strains B1 and
B2. This is due to the positive mutation rate. Indeed, R2 > 1 and Rp

12 > 1 imply that
B1 is uniformly persistent, providing a long term source for mutation. This, together
with a positive mutation rate p, guarantees the persistence of B2 strain. Theorem 3.3
means that a small mutation rate p is beneficial to the coexistence of strain B1 and B2
when R1 > 1 and R2 < 1, where the resistant strain B2 dies out in the absence of the
mutation.

We now use numerical simulations to explore the combinational effects of adaptive
mutation and protections from altruistic resistant strain on the dynamics of (1.4). For
illustration purpose, we fix A = 0.02, d = 0.1, μ1 = 0.3026, μ2 = 0.17027, γ1 =
γ2 = 0.5×106, m1 = 0.0727, m2 = 0.09, ε1 = 0.15C/(1+C), ε2 = 0.13C/(1+C).
Then R1 > 1 and R21 < 1 when 0 < C < 4.3436 in the absence of the mutation and
the protection from altruistic resistant strain. Thus, B1 population is persistent and B2
population will go extinct for 0 < C < 4.3436. However, when the adaptive mutation
is given by

p = 0.6C0.5 exp(−C1.5)

and the protection from altruistic resistant strain is still absent, B2 population is per-
sistent for 0 < C < 0.6253 and 1.1443 < C < 4.3373 due to the benefit of
mutations, but there is a cost to B1 which can drive the B1 population to extinc-
tion for 0.6253 < C < 1.1443 (see Fig. 4). Now, if we keep the adaptive mutation
rate as above and incorporate the protection of altruistic resistant strain by choosing
ε3 = 0.01, ε4 = 0.02, α = 3, h = 0.48 and η = 0.01. Then the altruistic protection
from the resistance strain to the wild strain helps the survival of the wild strain, which
in return helps its own survival through the mutation from wild type to resistant type
(see Fig. 5).

4 Discussions

In this paper, motivated by the experimental findings in Lee et al. (2010) that the resis-
tant mutants of bacteria produce indoles to protect the wild strain, we have formulated
a dynamical system to mimic the interactions of the populations of the wild strain, the
resistance strain and the indoles. To separate influences of mutation from the inter-
actions of the populations, in Sect. 2 we have neglected the mutation from the wild
strain to the resistant strain and only considered the interaction of the wild strain with
a preexisting resistant strain. We have obtained some explicit threshold conditions for
the persistence of the bacteria populations. Our theoretic results on the model explain
very well the experimental findings in Lee et al. (2010) that the altruistic behaviors of
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Fig. 4 The persistence and extinction of wild strain and resistance strain due to the adaptive mutations
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Fig. 5 The mutation and altruistic behaviors of resistant strain enhance the survival of both wild strain and
resistant strain

the resistant mutants can enhance the survival of the wild type bacteria facing antibi-
otics stress. An obvious advantage of the explicit threshold conditions is that they
may be used to select parameters for experiments to observe the co-persistence of the
bacteria populations of both strains. In Sect. 3, our analysis of the model focuses on
the influence of mutation rate p which is dependent on antibiotic concentration C .
Our analytical results, together with numerical simulations, reveal that the adaptive
mutation can facilitate the survival of resistant strain at the cost of wild strain, and the
altruistic protection from the resistance strain to the wild strain helps the survival of
the wild strain, which in return helps its own survival through the mutation from wild
type to resistant type.

Another implication of Theorems 2.1 and 2.2, in addition to persistence/extinction
conclusion, is that the antibiotic-resistance will increase the threshold of the dosage
(reflected by C ) of the antibiotics for eradicating the bacterial population of wild
strain. Indeed, assuming R2 > 1 (existence of antibiotic-resistance), then the wild
strain dies out if R12 < 1 but becomes persistent if R12 > 1; this together with
the equivalent conditions in (2.4) clearly shows the impact of C (through ε1) on the
threshold value R12 = 1.
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One new phenomenon that is revealed by our model, but was not reported in the
experimental study (Lee et al. 2010), is that the bacteria populations may experience
periodic fluctuations within a certain range of model parameters. This should help
avoid misreading some sample isolates in experiments: a very low count of bacteria
in a sample at some time does not necessarily imply that the outcome of the bacteria
is extinct; in order to obtain reliable information of the population, sampling in a
sufficiently long period should be sought.

Acknowledgments We would like to thank Prof. Lindi Walh and Geoff Wild for their valuable comments
on the model. We are very grateful to the two anonymous referees for their careful reading and valuable
comments on our manuscript which have led to a significant improvement in the presentation in this revised
version.

References

Andersson DI, Hughes D (2011) Persistence of antibiotic resistance in bacterial populations. FEMS Micro-
biol Rev 35:901–911

Austin DJ, Anderson RM (1999) Studies of antibiotic resistance within the patient, hospitals and the
community using simple mathematical models. Philos Trans R Soc Lond B 354:721–738

Austin DJ, Kakehashi M, Anderson RM (1997) The transmission dynamics of antibiotic-resistant bacteria:
the relationship between resistance in commensal organisms and antibiotic consumption. Proc Biol Sci
264:1629–1638

Barrett RDH, MacLean RC, Bell G (2006) Mutations of intermediate effect are responsible for adaptation
in evolving Pseudomonas fluorescens populations. Biol Lett 22:236–238

Bjedov I, Tenaillon O, Gérard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced
mutagenesis in bacteria. Science 300:1404–1409

Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies
of bacteria and bacteriophage. Ecol Lett 3:362–377

Bonhoeffer S, Lipsitch M, Levin BR (1997) Evaluating treatment protocols to prevent antibiotic resistance.
Proc Natl Acad Sci USA 94:12106–12111

Bootsma MC, Diekmann O, Bonten MJ (2006) Controlling methicillin-resistant Staphylococcus aureus:
quantifying the effects of interventions and rapid diagnostic testing. Proc Natl Acad Sci USA 103:5620–
5625

Butler G, Freedman HI, Waltman P (1986) Uniformly persistent systems. Proc Am Math Soc 96:425–430
Cohen T, Sommers B, Murray M (2003) The effect of drug resistance on the fitness of Mycobacterium

tuberculosis. Lancet Infect Dis 3:13–21
Cohen T, Murray M (2004) Modeling epidemics of multidrug-resistant M. tuberculosis of heterogeneous

fitness. Nat Med 10:1117–1121
Colijn C, Cohen T, Fraser C, Hanage W, Goldstein E, Givon-Lavi N, Dagan R, Lipsitch M (2010) What is

the mechanism for persistent coexistence of drug-susceptible and drug-resistant strains of Streptococcus
pneumoniae? J R Soc Interface 7:905–919

EMC D′Agata, Dupont-Rouzeyrol M, Magal P, Olivier D, Ruan S (2008) The impact of different antibiotic
regimens on the emergence of antimicrobial-resistant bacteria. PLoS ONE 3:e4036

D′Agata EMC, Webb GF, Horn MA, Moellering RC, Ruan S (2009) Modeling the invasion of community-
acquired methicillin-resistant Staphylococcus aureusi into the hospital setting. Clinical Infect Dis
48:274–284

Dhooge A, Govaerts W, Kuznetsov YA (2003) MATCONT: a Matlab package for numerical bifurcation
analysis of ODEs. ACM Trans Math Softw 29:141–164

Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduc-
tion ratio R0 in the models for infectious disease in heterogeneous populations. J Math Biol 28:365–382
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