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In this paper, we study a within-host age-structured model with mutation and back 
mutation, which is in the form of partial differential equations with double-infections 
by two strains of viruses. For the case that the production rates of viruses are 
gamma distributions, the PDE model is transformed into an ODE one. To explore 
the effect of mutations, we analyze our model without mutations first. In this case, 
two strains of viruses are proved to die out when both of the individual reproductive 
numbers are less than one; otherwise, their evolution will comply with competitive 
exclusion principle meaning that the stronger one will survive finally. Then, the 
mutations are considered in the model. We verify that there may exist a coexistence 
equilibrium which is globally asymptotically stable under some specific conditions 
about mutation rates. Therefore, mutations can lead to coexistence of two strains.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Viruses using RNA (ribonucleic acid) as their genetic material are called RNA viruses. Because of their 
high infection rates, RNA viruses can cause extraordinary tough human diseases, such as HIV, hepati-
tis C, SARS and influenza [9]. Mathematical models have been used to study the diseases caused by RNA 
viruses, particularly HIV, for over 25 years [8,10,11]. Results from mathematical models on virus dynam-
ics within-host virus have been fruitful. In particular, these results conclude, if there are two strains of 
viruses in a single host competing for the same type of T-cells as their host cells, the competition exclusion 
principle generically holds in the sense that either both strains go to extinction (when the basic repro-
duction ratios are less than one), or one strain (the one with larger basic reproduction ratio) will win the 
competition. Here, the word generically means except that the two basic reproduction ratios are identical 
which can barely hold since these two ratios depend on a large number of model parameters (see example 
in [4]).
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However, mutations may alter the previous competitive balance. In general, viral RNA polymerase 
lacks the proof-reading ability [12], so RNA viruses have higher mutation rates than DNA viruses. Un-
der the natural selection, their short generation times and relatively high mutation rates can help RNA 
viruses quickly adapt to changes in their host environment. It is difficult for scientists to develop ef-
fective vaccines to prevent diseases caused by RNA viruses [17]. For this reason, people would like to 
know more about mutation. There are many good research results, but most of them only study the im-
pact of forward mutation. Generally, the backward mutations rarely survive in natural state. Recently, 
some researches showed that the impact of backward mutants cannot be neglected for drug resistance 
surveillance [13,16,20]. Therefore, two directions of mutations, forward and backward, are considered in this 
paper.

Ordinary differential equations models are used in [4], for which a unique coexistence equilibrium is 
found and its global asymptotical stability is explored when mutations are treated as small perturbations. 
However, adopting ordinary differential equations is a bit too idealized and simple for studying the viral 
evolution in hosts. This is mainly because that treating the production rate of new virus particles (virions) 
by an infected cell as a constant (independent of the infection age) would have neglected some important 
processes in virus replication. Indeed, it is known that viral proteins and unspliced viral RNA accumulate 
within the cytoplasm of an infected cell, and thus, they actually ramps up [2,6,18]. Therefore, infection age 
should be incorporated into the model. Motivated by the age-structured model⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
dt = s− dT (t) − kT (t)V (t),

∂T ∗

∂a
+ ∂T ∗

∂t
= −δ(a)T ∗(a, t),

dV
dt =

∞∫
0

p(a)T ∗(a, t)da− cV (t),

T ∗(0, t) = kV1(t)T (t), t ≥ 0

(1.1)

in [7], we extend the research by introducing a mutant strain of the virus into this age-structured model. 
More realistic representations about RNA virus infections will be allowed in our age-structured model. 
Meanwhile, the effect of forward and backward mutations between the wild strain and mutant strain on 
viral evolution is also considered in our work.

The rest of this paper is organized as follows. In the next section, we present the formulation of 
mathematical model. In Sections 3 and 4, we choose the Gamma distributions for the two kernels in 
the PDE model and utilize the linear chain trick to transform the partial differential equation model 
to an ordinary differential equations model, for which we work out the basic reproductive number. In 
Section 5, we study the equilibria and their respective stability in two situations, one is without mu-
tations and the other is with mutations. Finally, we end this paper by a brief discussion about our 
results.

2. Model

Denote by T (t) the population of the susceptible host cells, by Vi(t) the population of viral strain i
(i = 1, 2), and let T ∗

i (a, t) be the population of the target cells infected by viral strain i with infection age 
a at time t. Uninfected cells are produced at constant rate b, and die at rate d. After infection at constant 
rate βi by strain i, they progress to the productively infected class. There are two death rates in this class: 
one is a constant background death rate mi; and the other is an infection dependent mortality rate μi(a). 
The infected cells can produce virus at an infection dependent rate pi(a). Free viruses are cleared at a 
constant rate ci. Meanwhile, we suppose that the forward and backward mutations happen between the two 
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Fig. 2.1. The flow chart of the model (2.1).

viral strains at rate ε1 and ε2, respectively. The corresponding transmission diagram is shown in Fig. 2.1. 
Translating the diagram in Fig. 2.1 into equations, our model takes the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
dt = b− dT (t) − β1T (t)V1(t) − β2T (t)V2(t),

∂T ∗
1

∂a
+ ∂T ∗

1
∂t

= −
(
μ1(a) + m1

)
T ∗

1 (a, t),

∂T ∗
2

∂a
+ ∂T ∗

2
∂t

= −
(
μ2(a) + m2

)
T ∗

2 (a, t),

dV1

dt = (1 − ε1)
∞∫
0

p1(a)T ∗
1 (a, t)da + ε2

∞∫
0

p2(a)T ∗
2 (a, t)da− c1V1(t),

dV1

dt = (1 − ε2)
∞∫
0

p2(a)T ∗
2 (a, t)da + ε1

∞∫
0

p1(a)T ∗
1 (a, t)da− c2V2(t),

T ∗
1 (0, t) = β1V1(t)T (t),

T ∗
2 (0, t) = β2V2(t)T (t), t ≥ 0.

(2.1)

System (2.1) will be reduced into DDE. By the method of characteristics, the following two partial 
differential equations with boundary conditions

∂T ∗
1

∂a
+ ∂T ∗

1
∂t

= −
(
μ1(a) + m1

)
T ∗

1 (a, t), ∂T ∗
2

∂a
+ ∂T ∗

2
∂t

= −
(
μ2(a) + m2

)
T ∗

2 (a, t),

T ∗
1 (0, t) = β1V1(t)T (t), T ∗

2 (0, t) = β2V2(t)T (t), t ≥ 0,

can be solved and their corresponding solutions are:

T ∗
1 (a, t) =

{
β1V1(t− a)T (t− a)σ1(a), t ≥ a,

0, t < a,
(2.2)

T ∗
2 (a, t) =

{
β2V2(t− a)T (t− a)σ2(a), t ≥ a,

0, t < a,
(2.3)

where σ1(a) = e−
∫ a
0 (μ1(ξ)+m1)dξ and σ2(a) = e−

∫ a
0 (μ2(ξ)+m2)dξ. Substituting (2.2) and (2.3) into the equa-

tions for V1 and V2 in (2.1), we obtain
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
dt = b− dT (t) − β1T (t)V1(t) − β2T (t)V2(t),

dV1

dt = β1(1 − ε1)
t∫

0

p1(a)T (t− a)V1(t− a)σ1(a)da + β2ε2

t∫
0

p2(a)T (t− a)V2(t− a)σ2(a)da− c1V1(t),

dV2

dt = β2(1 − ε2)
t∫

0

p2(a)T (t− a)V2(t− a)σ2(a)da + β1ε1

t∫
0

p1(a)T (t− a)V1(t− a)σ1(a)da− c2V2(t).

(2.4)

For convenience, μi(a) is assumed to be a constant μi, leading to σi(a) = e−(μi+mi)a for i = 1, 2. System 
(2.4) can also be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
dt = b− dT (t) − β1T (t)V1(t) − β2T (t)V2(t),

dV1

dt = β1(1 − ε1)
t∫

0

p1(t− a)e−(μ1+m1)(t−a)T (a)V1(a)da

+ β2ε2

t∫
0

p2(t− a)e−(μ2+m2)(t−a)T (a)V2(a)da− c1V1(t),

dV2

dt = β2(1 − ε2)
t∫

0

p2(t− a)e−(μ2+m2)(t−a)T (a)V2(a)da

+ β1ε1

t∫
0

p1(t− a)e−(μ1+m1)(t−a)T (a)V1(a)da− c2V2(t).

(2.5)

3. Equivalent ODE system under Gamma distribution

For convenience to show our main idea, we assume that two strains have the same natural death rate 
and infection remove rate, i.e., μ1 = μ2 = μ and m1 = m2 = m. Moreover, according to the properties 
of production rate, we select the Gamma distribution as used in [21], which can approximate many other 
frequently used distributions, for p1(a) and p2(a):

p1(a) = p2(a) = pα,n(a) = an−1

(n− 1)!αn
e−

a
α , (3.1)

where n > 1 is an integer and α ∈ R
+. Denote

α̂ = α

1 + (μ + m)α,

leading to

[
1 + (μ + m)α

]n =
(
α

α̂

)n

.

We can rewrite the last two equations in (2.5) as:

dV1

dt = (1 − ε1)
(
α̂

α

)n
t∫
B1(a)pα̂,n(t− a)da + ε2

(
α̂

α

)n
t∫
B2(a)pα̂,n(t− a)da− c1V1,
0 0
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dV2

dt = (1 − ε2)
(
α̂

α

)n
t∫

0

B2(a)pα̂,n(t− a)da + ε1

(
α̂

α

)n
t∫

0

B1(a)pα̂,n(t− a)da− c2V2,

where Bi(t) = βiVi(t)T (t), i = 1, 2.
Let

xj(t) = α̂

(
α̂

α

)n
t∫

0

B1(a)pα̂,j(t− a)da, yj(t) = α̂

(
α̂

α

)n
t∫

0

B2(a)pα̂,j(t− a)da,

for j = 1, 2, . . . , n. Then, for j ∈ {2, . . . , n},

dxj(t)
dt = α̂

(
α̂

α

)n
t∫

0

(j − 1)(t− a)j−2

(j − 1)!α̂j
e−

(t−a)
α̂ B1(a)da− α̂

(
α̂

α

)n
t∫

0

(t− a)j−1

(j − 1)!α̂j+1 e
− (t−a)

α̂ B1(a)da

= 1
α̂

[
xj−1(t) − xj(t)

]
.

Similarly, for j = 2, . . . , n,

dyj(t)
dt = 1

α̂

[
yj−1(t) − yj(t)

]
.

When j = 1, there are

x1(t) = α̂

(
α̂

α

)n
t∫

0

B1(a)
1
α̂
e−

(t−a)
α̂ da,

y1(t) = α̂

(
α̂

α

)n
t∫

0

B2(a)
1
α̂
e−

(t−a)
α̂ da,

and differentiating the above leads to

dx1(t)
dt = β1

(
α̂

α

)n

V1(t)T (t) − 1
α̂
x1(t),

dy1(t)
dt = β2

(
α̂

α

)n

V2(t)T (t) − 1
α̂
y1(t).

Thus, with p1(a) and p2(a) specified by (3.1), the system (2.5) is equivalent to the following system of 
ordinary differential equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
dt = b− dT − β1TV1 − β2TV2,

dx1

dt
= β1

(
α̂

α

)n

V1T − 1
α̂
x1,

dx2

dt = 1
α̂

(x1 − x2),

...
dxn

dt = 1
α̂

(xn−1 − xn),

dy1

dt = β2

(
α̂

α

)n

V2T − 1
α̂
y1

dy2

dt = 1
α̂

(y1 − y2),

...
dyn
dt = 1

α̂
(yn−1 − yn),

dV1

dt = (1 − ε1)
α̂

xn + ε2
α̂
yn − c1V1,

dV2

dt = (1 − ε2)
α̂

yn + ε1
α̂
xn − c2V2.

(3.2)

Thus, in the rest of this paper, we only need to study the above ODE system.
For a nonnegative initial set, it is easy to prove that the corresponding solution of (3.2) remains nonneg-

ative (e.g. by [14, pp. 81, Theorem 2.1]).

Lemma 3.1. The system (3.2) is dissipative, i.e. there is a forward-invariant compact set Γ ⊂ R
2n+3
+ such 

that every solution eventually enters Γ .

Proof. Adding equations about dT
dt , dx1

dt and dy1
dt in (3.2) gives

d
dt

[
T +

(
α

α̂

)n

x1 +
(
α

α̂

)n

y1

]
= b− dT − αn

α̂n+1 (x1 + y1) ≤ b− d∗
[
T +

(
α

α̂

)n

x1 +
(
α

α̂

)n

y1

]
,

where d∗ = min{d, 1α̂}. Thus, lim supt→∞[T + (αα̂ )nx1 + (αα̂ )ny1] ≤ b
d∗ . Similarly, we can obtain that

lim sup
t→∞

(V1 + V2) ≤
b

cα̂d∗

(
α̂

α

)n

, lim sup
t→∞

T ≤ b

d
,

and

lim sup
t→∞

(xj + yj) ≤
b

d∗

(
α̂

α

)n

, j = 2, 3, · · · , n.

Consequently, the feasible region is given by:

Γ =

⎧⎪⎨⎪⎩
(T, x1, x2, . . . , xn, y1, y2, . . . , yn, V1, V2) ∈ R

(2n+3)
+ |

T ≤ b
d , T + (αα̂ )nx1 + [1 + (μ + mα)]ny1 ≤ b

d∗ ,

xi + yi ≤ b
d∗ ( α̂α )n, V1 + V2 ≤ b

cα̂d∗ ( α̂α )n, i = 2, . . . , n

⎫⎪⎬⎪⎭ . (3.3)

It can be verified that Γ is positively invariant with respect to (3.2). Now, dissipativity follows because all 
upper bounds above are independent of the initial condition. �
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In addition to the above set Γ , we will also refer to the set

H :=
{
(T, x1, y1, x2, y2, . . . , xn, yn, V1, v2) ∈ R

(2n+3) ∣∣ T, xi, yi, V1, V2 > 0, i = 1, 2, . . . , n
}
,

in the remainder of the paper.

4. Basic reproductive number

The infection-free equilibrium of the system (3.2) is

E0 =
(
b

d
, 0, 0, . . . , 0

)
. (4.1)

The basic reproductive number of the model is closely related to the stability of the E0.
Typically, next generation matrix is utilized to calculate reproductive number for ODE models (see 

example in [19]). To reveal some special relation of the two viral strains for the model (3.2), we choose an 
alternative approach developed in [3] to calculate this important number.

Following [3], we now rewrite (3.2) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT
dt = b− dT − β1TV1 − β2TV2,

dx
dt = Ax + β1TV1B,

dy
dt = Ay + β2TV2B,

dV
dt = D1x + D2y − CV,

(4.2)

where x = (x1, x2, . . . , xn)T , y = (y1, y2, . . . , yn)T , V = (V1, V2)T , C = (c1, 0; 0, c2), B = ( α̂α )ne1(n),

D1 =
(

0 0 · · · (1−ε1)
α̂

0 0 · · · ε1
α̂

)
, D2 =

( 0 0 · · · ε2
α̂

0 0 · · · (1−ε2)
α̂

)
,

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
α̂ 0 0 · · · · · · 0

1
α̂ − 1

α̂ 0 · · · · · · 0
0 1

α̂ − 1
α̂ · · · · · · 0

...
...

. . . . . .
...

...
...

...
...

. . . . . .
...

0 0 0 · · · · · · − 1
α̂

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and e1(n) = (1, 0, . . . , 0)T .
During the mean duration of its lifetime, a virion of the strain 1 can actually generate a Dirac input 

bβ1/c1d in the second controlled system x′ = Ax + β1TV1B (see demonstration in [3]). This input then 
generates secondary viruses given by formula:

bβ1

c1d

+∞∫
0

D1e
tABdt = bβ1

c1d
D1
(
−A−1)B.

Since
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−A−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α̂ 0 0 · · · · · · 0
α̂ α̂ 0 · · · · · · 0
α̂ α̂ α̂ · · · · · · 0
...

...
...

. . .
...

...
...

...
...

...
...

...
α̂ α̂ α̂ · · · · · · α̂

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

we obtain

D1
(
−A−1)B =

(
(1 − ε1)( α̂α )n

ε1( α̂α )n
)
.

Therefore, based on the input bβ1/c1d, two fractions of offsprings for strains 1 and 2 respectively are given 
by

R11 = (1 − ε1)
(
α̂

α

)n
bβ1

c1d
, R12 = ε1

(
α̂

α

)n
bβ1

c1d
, (4.3)

both of which result from viral strain 1.
Similarly, the numbers of offspring of strains 1 and 2 produced by a single virion of strain 2 are given 

respectively by

R21 = ε2

(
α̂

α

)n
β2b

c2d
, R22 = (1 − ε2)

(
α̂

α

)n
β2b

c2d
. (4.4)

Now, assume that a single viral particle is brought into a host, and let p (q) be the probability that the 
initial invasion is caused by a virion of strain 1 (strain 2). So, p + q = 1, and all new viruses resulted from 
this virion are distributed among the two strains by the following formula:(

R11 R12
R21 R22

)(
p

q

)
=
(
pR11 + qR12
pR21 + qR22

)
.

Therefore, the total number of new viruses resulted from an initial virion is the L1 norm of the above vector, 
i.e., ∣∣∣∣( pR11 + qR12

pR21 + qR22

)∣∣∣∣
1

= (pR11 + qR12) + (pR21 + qR22)

= p(R11 + R21) + q(R12 + R22) = pR1 + qR2,

where

R1 = R11 + R12 = β1b

c1d

(
α̂

α

)n

, R2 = R21 + R22 = β2b

c2d

(
α̂

α

)n

, (4.5)

account for the individual reproductive numbers of strain 1 and strain 2 virus respectively. Thus, the basic 
reproductive number corresponding to the model (3.2) is obtained by taking the maximum over all possible 
initial distributions:

R0 = max
p+q=1

∣∣∣∣(R11 R12
R21 R22

)(
p

q

)∣∣∣∣
1

=
∣∣∣∣(R11 R12

R21 R22

)∣∣∣∣
1

= max{R11 + R12,R21 + R22} = max{R1,R2}.
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5. Equilibria and their stability

In this section, we will prove the existence of other equilibria for system (3.2) and analyze their stability.
The following theorem discusses the stability of the infection-free equilibrium E0.

Theorem 5.1. If R0 < 1, the infection-free equilibrium E0 is globally asymptotically stable on R2n+3
+ .

Proof. Let us consider the stability of infection-free equilibrium E0 in Γ under the condition R0 < 1. We 
construct a Lyapunov function as follows:

V = T0

(
T

T0
− ln T

T0
− 1
)

+
(
α

α̂

)n
{

n∑
i=1

(xi + yi) + V1 + V2

}
.

Calculating the derivative of V along trajectories of (3.2), we obtain:

dV
dt = dT

dt

(
1 − T0

T

)
+
(
α

α̂

)n[
β1

(
α̂

α

)n

V1T − c1V1 + β2

(
α̂

α

)n

V2T − c2V2

]
= b− dT − b

T0

T
+ dT0 + β1V1T0 + β2V2T0 − c1

(
α

α̂

)n

V1 − c2

(
α

α̂

)n

V2

= b

(
2 − T

T0
− T0

T

)
+
[
β1

(
α̂

α

)n
b

dc1
− 1
](

α

α̂

)n

c1V1 +
[
β2

(
α̂

α

)n
b

dc2
− 1
](

α

α̂

)n

c2V2

= b

(
2 − T

T0
− T0

T

)
+ (R1 − 1)

(
α

α̂

)n

c1V1 + (R2 − 1)
(
α

α̂

)n

c2V2.

Notice that 2 −T/T0 −T0/T ≤ 0 and the equality holds if and only if T = T0. Thus, if R0 < 1, then dVdt ≥ 0
and dV

dt = 0 if and only if T = T0, V1 = 0 and V2 = 0. Thus, dV
dt ≤ 0 if R0 < 1; and dV

dt = 0 is if and 
only if (T, x, y, V ) is at E0. Consequently, we can conclude that the virus free equilibrium E0 is globally 
asymptotically stable in H. �

When R0 > 1, then either R1 > 1 or R2 > 1. If R1 > 1, there is a single-strain equilibrium E1 =
(T̂ 1, ̂x1

1, . . . , ̂x
1
n, 0, . . . , V̂ 1

1 , 0) given by

T̂ 1 = c1
β1

(
α

α̂

)n

, x̂1
l = α̂f

(
T̂ 1)( α̂

α

)n

, l = 1, . . . , n, V̂ 1
1 = f(T̂ 1)

c1

(
α̂

α

)n

, (5.1)

where f(T̂ 1) = b − dT̂ 1. In parallel, if R2 > 1, there is another single-strain equilibrium E2 =
(T̂ 1, 0, . . . , 0, ŷ2

1 , . . . , ŷ
2
n, 0, V̂ 2

2 ) given by

T̂ 2 = c2
β2

(
α

α̂

)n

, ŷ2
l = α̂f

(
T̂ 2)( α̂

α

)n

, l = 1, . . . , n, V̂ 2
2 = f(T̂ 2)

c2

(
α̂

α

)n

, (5.2)

where f(T̂ 2) = b − dT̂ 2. In the sequel, we will discuss the stability of E1 and E2, and the existence of 
a positive (coexistence) equilibrium. To study the effect of mutations, we distinguish the case when the 
mutations are absent and the case when the mutations are present.

5.1. In the absence of mutations

First, let us consider the case ε1 = ε2 = 0. Since R1 and R2 depend on many model parameters, the 
critical case R1 = R2 is sensitive in the sense that a small change of any model parameter would destroy 
this identity. Thus, for practical purpose, we exclude this case in our discussion.
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Note that Ri = b/(dT̂ i) for i = 1, 2. Thus

R1 > R2 iff T̂ 1 < T̂ 2. (5.3)

The following theorem establishes the global stability of E1 or E2, depending on which strain has larger 
basic reproduction number.

Theorem 5.2. Assume that R0 > 1.

(i) If R1 > R2 and R1 > 1, then E1 is globally asymptotically stable with respect to positive initial 
conditions.

(ii) If R2 > R1 and R2 > 1, then E2 is globally asymptotically stable with respect to positive initial 
conditions.

Proof. We only need to prove (i), since (ii) is parallel to (i). We construct the following Lyapunov function 
on H:

L = T̂ 1
(

T

T̂ 1
− ln T

T̂ 1
− 1
)

+
(
α

α̂

)n
[

n∑
i=1

x̂1
i

(
xi

x̂1
i

− ln xi

x̂1
i

− 1
)

+ V̂ 1
1

(
V1

V̂ 1
1

− ln V1

V̂ 1
1

− 1
)

+
n∑

i=1
yi + V2

]
.

The derivative of L along the trajectories of (3.2) is calculated as below:

dL
dt = dT

dt

(
1 − T̂ 1

T

)
+
(
α

α̂

)n
[
ẋ1

(
1 − x̂1

1
x1

)
+

n∑
i=2

ẋi

(
1 − x̂1

i

x

)
+ V̇1

(
1 − V̂ 1

1
V1

)
+

n∑
i=1

ẏ + V̇2

]

= f(T )
(

1 − T̂ 1

T

)
− (β1TV1 + β2TV2)

(
1 − T̂ 1

T

)
+
(
α

α̂

)n[
β1V1T

(
α̂

α

)n

− 1
α̂
x1 − β1V1T

(
α̂

α

)n
x̂1

1
x1

+ 1
α̂
x̂1

1 + 1
α̂

(x1 − x2) −
1
α̂

x̂1
2

x2
x1 + 1

α̂
x̂1

2 + 1
α̂

(x2 − x3)

− 1
α̂

x̂1
3

x3
x2 + 1

α̂
x̂1

3 + · · · + 1
α̂

(xn−1 − xn) − 1
α̂

x̂1
n

xn
xn−1 + 1

α̂
x̂1
n − 1

α̂

V̂ 1
1
v1

xn + cV̂ 1
1

+ 1
α̂
xn − c1V1 + β2V2T

(
α̂

α

)n

− 1
α̂
y1 + 1

α̂
(y1 − y2) + · · · + 1

α̂
(yn−1 − yn) + 1

α̂
yn − c2V2

]

= f(T )
(

1 − T̂ 1

T

)
+ β1V1T̂

1 + β2V2T̂
1 +

(
α

α̂

)n[
n

α̂
x̂1
n − β1V1T

(
α̂

α

)n
x̂1

1
x1

− 1
α̂

x̂1
2

x2
x1 −

1
α̂

x̂1
3

x3
x2 − · · · − 1

α̂

x̂1
n

xn
xn−1 −

V̂ 1
1
V1

xn + c1V̂
1
1 − c1V1 − c2V2

]

= f(T )
(

1 − T̂ 1

T

)
+ β2V2T̂

1 − c2

(
α

α̂

)n

V2 + x̂1
n

α̂

(
α

α̂

)n[
(n + 1)

− V1T x̂
1
1

V̂ 1
1 T̂

1x1
− x1

x2
− x2

x3
− x3

x4
− · · · − xn−1

xn
− V̂ 1

1 xn

V1x̂1
n

]

= f(T )
(

1 − T̂ 1

T

)
+ β2V2T̂

1 − β2V2T̂
2 − f

(
T̂ 1)(1 − T̂ 1

T

)
+ x̂1

1
α̂

(
α

α̂

)n[
(n + 2)

− T̂ 1

T
− V1T x̂

1
1

ˆ 1 ˆ1
− x1

x
− x2

x
− x3

x
− · · · − xn−1

x
− V̂ 1

1 xn

V x̂1

]

V1 T x1 2 3 4 n 1 n
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=
(
f(T ) − f

(
T̂ 1))(1 − T̂ 1

T

)
+ β2V2

(
T̂ 1 − T̂ 2)+ x̂1

1
α̂

(
α

α̂

)n[
(n + 2) − T̂ 1

T

− V1T x̂
1
1

V̂ 1
1 T̂

1x1
− x1

x2
− x2

x3
− x3

x4
− · · · − xn−1

xn
− V̂ 1

1 xn

V1x̂1
n

]
.

It is obvious that

[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
= d
(
T̂ 1 − T

)(
1 − T̂ 1

T

)
≤ 0.

The second term of the right side in the expression of dL
dt is also nonpositive. Moreover, the relation of 

arithmetic and geometric means implies that

T̂ 1

T
+ V1T x̂

1
1

V̂ 1
1 T̂

1x1
+ x1

x2
+ x2

x3
+ x3

x4
+ · · · + xn−1

xn
+ V̂ 1

1 xn

V1x̂1
n

≥ (n + 2).

Thus, we have proved dL
dt ≤ 0; and dL

dt = 0 if and only if the state is at the equilibrium E1, implying that 
E1 is globally asymptotically stable in H. �

This theorem shows that when the basic reproduction number is larger than 1, then competition exclusion 
would be the generic result in the absence of mutations, implying that coexistence is generally impossible. 
Taking (i) in Theorem 5.2 as an example, if R1 > R2 and R1 > 1, then regardless of whether R2 < 1 or 
R2 > 1, E1 is globally asymptotically stable, which means that strain 1 will win the competition. Therefore 
there is no coexistence equilibrium.

5.2. With the effect of mutations

In this section, we investigate the effect of the mutations by assuming that ε1 > 0 and ε2 > 0. Let 
ε = (ε1, ε2), so ε �= 0 in this case. The first result along this line is that the coexistence equilibrium becomes 
possible due to the presence of mutations.

Theorem 5.3. Assume ε1 > 0 and ε2 > 0, and suppose c1 �= c2. If one of the following conditions holds, then 
system (3.2) will have a unique positive equilibrium Ē:

(i) R1 > 1 and R2 > 1;
(ii) R2 < 1 but R1 > 1 + c2k

c1
(1 − R2);

(iii) R1 < 1 but R2 > 1 + c1k
c2

(1 − R1),

where k is a positive constant to be determined by a quadratic equation in the proof of the theorem.

Proof. If a positive equilibrium exists, its components are given by

x̄n = x̄n−1 = · · · = x̄1 = α̂β1T̄ V̄1

(
α̂

α

)n

, ȳn = ȳn−1 = · · · = ȳ1 = α̂β2T̄ V̄2

(
α̂

α

)n

,

T̄ = b

d + β1V̄1 + β2V̄2
,

with V̄1 and V̄2 being determined by
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
β1(1 − ε1)b

(d + β1V̄1 + β2V̄2)

(
α̂

α

)n

V̄1 + β2ε2b

(d + β1V̄1 + β2V̄1)

(
α̂

α

)n

V̄2 = c1V̄1,

β2(1 − ε2)b
(d + β1V̄1 + β2V̄2)

(
α̂

α

)n

V̄2 + β1ε1b

(d + β1V̄1 + β2V̄2)

(
α̂

α

)n

V̄1 = c2V̄2.

(5.4)

By simplification, Eqs. (5.4) can be rewritten as

⎧⎪⎪⎨⎪⎪⎩
(R11 − 1)c1c2V̄1V̄2 + R21c

2
2V̄

2
2 − c1c2V̄1V̄2

(
β1

d
V̄1 + β2

d
V̄2

)
= 0,

R12c
2
1V̄

2
1 + (R22 − 1)c1c2V̄1V̄2 − c1c2V̄1V̄2

(
β1

d
V̄1 + β2

d
V̄2

)
= 0.

(5.5)

Because V̄1 �= 0, subtracting the second equation in (5.5) from the first one leads to

R21c
2
2

(
V̄2

V̄1

)2

+ (R11 − R22)c1c2
(
V̄2

V̄1

)
− R12c

2
1 = 0. (5.6)

Setting z = V̄2/V̄1, Eq. (5.6) becomes a quadratic equation

a2z
2 + a1z + a0 = 0, (5.7)

where

a0 = −R12c
2
1, a1 = (R11 − R22)c1c2, a2 = R21c

2
2.

Note that if ε1 = 0 = ε2, then R12 = 0 = R21, i.e. a0 = 0 = a2, and thus, (5.7) cannot have a positive 
root, unless R11 = R22 (which will be assumed to not hold), i.e. (3.2) cannot have a positive equilibrium. 
But now, we have assumed ε1 > 0 and ε2 > 0, implying R21 > 0 and R12 > 0. Hence a0 < 0 and a2 > 0, 
implying that the quadratic equation (5.7) has one positive root, denoting it by k, corresponding to a 
nonzero solution (V̂1, V̂2) of (5.5) with V̄1, V̄2 having the same sign.

Substituting V̄2 = kV̄1 into (5.5) gives

⎧⎪⎪⎨⎪⎪⎩
R11c1V̄1 + R21c2kV̄1 − c1V̄1

(
1 + β1

d
V̄1 + β2

d
kV̄1

)
= 0,

R12c1V̄1 + R22c2kV̄1 − c2kV̄1

(
1 + β1

d
V̄1 + β2

d
kV̄1

)
= 0,

from which, we obtain the following expression for V̄1:

V̄1 = [(R1 − 1)c1 + (R2 − 1)c2k]d
(c1 + kc2)(β1 + kβ2)

. (5.8)

Therefore, V̄1 > 0 provided that at least one of the three conditions stated in the theorem holds. The proof 
is completed. �

We have proved the existence of the positive equilibrium Ē as ε changes. Furthermore, we begin the 
analysis with the two boundary equilibria E1 and E2 to investigate the origin of the equilibrium Ē. Denoting 
the vector field of system (3.2) by g(X, ε), we find that g(Ei, 0) = 0, where i = 1, 2. Then, if ∂g

∂X (Ei, 0) is 
invertible, we can establish a unique equilibrium Ei(ε) near Ei by implicit function theorem for small ε. We 
verify this condition below.
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Proposition 5.1. Assume the equilibrium Ei exists (i.e., Ri > 1). Then, ∂g
∂X (Ei, 0) is invertible for i = 1, 2, 

respectively.

Proof. Firstly, we consider the situation for E1. The Jacobian matrix of linearized system (3.2) at E1 is 
given by

J =
(
J1(n) J2(n)

0 J4(n)

)
,

where

J1(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β1( α̂α )nV̂ 1
1 0 0 · · · 0 −β1T̂

1

β1( α̂α )nV̂ 1
1 − 1

α̂ 0 · · · 0 β1( α̂α )nT̂ 1

0 1
α̂ − 1

α̂ · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · − 1

α̂ 0
0 0 0 · · · 1

α̂ −c1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n+1)×(n+1)

,

J2(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 −β2T̂
1

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n+1)×n

,

and

J4(n) =

⎛⎜⎜⎜⎜⎜⎝
− 1

α̂ 0 · · · 0 β1( α̂α )nT̂ 1

1
α̂ − 1

α̂ · · · 0 0
...

...
. . .

...
...

0 0 · · · − 1
α̂ 0

0 0 · · · 1
α̂ −c2

⎞⎟⎟⎟⎟⎟⎠
n×n

.

Then, det(J) = det(J1(n)) det(J4(n)). It means that, if both det(J1(n)) and det(J4(n)) do not equal zero, 
the determinant of J at E1 is nonzero. Next, we will prove that neither det(J1(n)) nor det(J4(n)) is zero.

Indeed, direct calculation of the determinants give

det
(
J1(n)

)
=
(
− 1
α̂

)(n−2)

det

⎛⎝−d− β1V̂ 1
1 0 −β1T̂

1

β1V̂ 1
1 ( α̂α )n − 1

α̂ β1T̂
1( α̂α )n

0 1
α̂ −c1

⎞⎠ = (−1)(n−1)β1V̂1c1
α̂(n−1) �= 0

and

det
(
J4(n)

)
=
(
− 1
α̂

)(n−2)

det
(
− 1

α̂ β1T̂
1( α̂α )n

1
α̂ −c2

)
= (−1)(n−2) c2 − c1

α̂(n−1) �= 0

under the assumption c1 �= c2. Therefore, the determinant of Jacobian matrix J is nonzero at E1.
In the same way, we can demonstrate that det(J) �= 0 at E2. Hence, ∂g

∂X (Ei, 0) are invertible for all 
i = 1, 2. �
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When R2 < 1, only E1 exists in yhr absence of mutations. Obviously, the positive equilibrium Ē bifurcates 
from the equilibrium E1 when mutation happens. However, the situation about the origin of Ē becomes 
more complicated when R2 > 1. Next, we will analyze the case when (5.3) holds (i.e., R1 > R2) to find out 
whether Ē is equal to E1(ε) or E2(ε).

Define a mutation matrix

P (ε) = I + Q(ε),

where

Q(ε) =
(
−ε1 ε1
ε2 −ε2

)
.

Note that in the equilibrium equations, x̄n = x̄n−1 = . . . = x̄1 and ȳn = ȳn−1 = . . . = ȳ1, and the rest of 
the equations except for the first one can be simplified to

KV̄ T̄ − ST̄ ∗ = 0, (5.9)

P (ε)NT̄ ∗ −MV̄ = 0, (5.10)

where

K =
[
β1( α̂α )n 0

0 β2( α̂α )n
]
, S =

[ 1
α̂ 0
0 1

α̂

]
, M =

[
c1 0
0 c2

]
.

Substitute ST̄ ∗ = KV̄ T̄ into (5.10), we obtain[
U(ε) − 1

T̄

]
V̄ = 0,

where

U(ε) =
[ β1(1−ε1)

c1
( α̂α )n β2ε2

c2
( α̂α )n

β1ε1
c1

( α̂α )n β2(1−ε2)
c2

( α̂α )n

]
.

Finally, the problem about a positive solution becomes the existence of positive eigenvalue associated with 
positive eigenvector of matrix U(ε). Calculating

∣∣∣∣ β1(1−ε1)
c1

( α̂α )n − λ −β2ε2
c2

( α̂α )n

−β1ε1
c1

( α̂α )n β2(1−ε2)
c2

( α̂α )n − λ

∣∣∣∣ = 0, (5.11)

we obtain the two eigenvalues of U(ε) as

λ1(ε) =
[β1
c1

(1 − ε1) + β2
c2

(1 − ε2)] +
√

[β1
c1

(1 − ε1) + β2
c2

(1 − ε2)]2 + 4β1β2
c1c2

(1 − ε1 − ε2)
2(αα̂ )n , (5.12)

and

λ2(ε) =
[β1
c1

(1 − ε1) + β2
c2

(1 − ε2)] −
√

[β1
c1

(1 − ε1) + β2
c2

(1 − ε2)]2 + 4β1β2
c1c2

(1 − ε1 − ε2)
α n

. (5.13)
2( α̂ )
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Because of λ1(ε) > 0 > λ2(ε), the principle eigenvalue is λ1(ε) which generates a positive eigenvector by 
Perron–Frobenius theorem. In addition, it is easy to find that λ1(0) = T̂ 1 and λ2(0) = T̂ 2. Thus, E2(ε) is 
nonpositive, i.e., the unique positive equilibrium Ē equals E1(ε) when R1 > R2 > 1.

In the following, we apply Lyapunov function method to analyze the stability of the equilibrium Ē.

Theorem 5.4. Assume that R1 > R2 > 1. Then, Ē is globally asymptotically stable in H′ for all sufficiently 
small ε1 and ε2.

Proof. We will use the same Lyapunov function

L = T̂ 1
(

T

T̂ 1
− ln T

T̂ 1
− 1
)

+
(
α

α̂

)n
[

n∑
i=1

x̂1
i

(
xi

x̂1
i

− ln xi

x̂1
i

− 1
)

+ V̂ 1
1

(
V1

V̂ 1
1

− ln V1

V̂ 1
1

− 1
)

+
n∑

i=1
yi + V2

]

as before. Calculating dL
dt along the trajectories of system (3.2), we have

dL
dt =

[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
+ β2V2

(
T̂ 1 − T̂ 2)+ x̂1

1
α̂

(
α

α̂

)n[
(n + 2) − T̂ 1

T

− V1T x̂
1
1

V̂ 1
1 T̂

1x1
− x1

x2
− x2

x3
− x3

x4
− · · · − xn−1

xn
− V̂ 1

1 xn

V1x̂1
n

]
−
(
α

α̂

)n
V̂ 1

1
V1

(
−ε1
α̂

xn + ε2
α̂
yn

)

=
[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
− x̂1

1
α̂

(
α

α̂

)n[
T̂ 1

T
+ V1T x̂

1
1

V̂1T̂ 1x1
+ x1

x2
+ x2

x3
+ x3

x4

+ · · · + xn−1

xn
+ (1 − ε1)

V̂ 1
1 xn

V1x̂1
n

− (n + 2)(1 − ε1)
1

n+2

]
− β2V2

(
T̂ 2 − T̂ 1)

+ 1
α̂

(n + 2)
[
1 − (1 − ε1)

1
n+2
](α

α̂

)n

x̂1
n − 1

α̂

(
α

α̂

)n

ε2yn

≤
[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
− x̂1

1
α̂

(
α

α̂

)n[
T̂ 1

T
+ V1T x̂1

V̂ 1
1 T̂

1x1
+ x1

x2
+ x2

x3
+ x3

x4

+ · · · + xn−1

xn
+ (1 − ε1)

V̂ 1
1 xn

V1x̂1
n

− (n + 2)(1 − ε1)
1

n+2

]
− β2V2

(
T̂ 2 − T̂ 1)

+ 1
α̂

(n + 2)
[
1 − (1 − ε1)

1
n+2
](α

α̂

)n

x̂1
n.

When (5.3) holds, we can find εa, η > 0 such that V1(t) + V2(t) > η for all ε ∈ (0, εa] and all sufficiently 
large t by Lemma 5 in [4]. Let γ = β2(T̂ 2 − T̂ 1), then

β2
(
T̂ 2 − T̂ 1)V2 = γV2 ≥ γ(η − V1).

So, the following inequality holds in Γ for ε1 ∈ (0, εa]:

dL
dt ≤

[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
− x̂1

1
α̂

(
α

α̂

)n[
T̂ 1

T
+ V1T x̂

1
1

V̂ 1
1 T̂

1x1
+ x1

x2
+ x2

x3

+ x3

x4
+ · · · + xn−1

xn
+ (1 − ε1)

V̂ 1
1 xn

V1x̂1
n

− (n + 2)(1 − ε1)
1

n+2

]
− γη + γV1

+ 1 (n + 2)
[
1 − (1 − ε1)

1
n+2
](α

)n

x̂1
n
α̂ α̂
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By the relation of arithmetic and geometric means, we then obtain

− x̄1

α̂

(
α

α̂

)n[
T̂ 1

T
+ V1T x̂

1
1

V̂ 1
1 T̂

1x1
+ x1

x2
+ x2

x3
+ x3

x4
+ · · · + xn−1

xn
+ (1 − ε1)

V̂ 1
1 xn

V1x̂1
n

− (n + 2)(1 − ε1)
1

n+2

]
≤ 0,

i.e.,

dL
dt ≤

[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
− γη + γV1 + 1

α̂
(n + 2)

[
1 − (1 − ε1)

1
n+2
](α

α̂

)n

x̂1
n

for all ε ∈ (0, εa].
Next, choose εb > 0 such that

1 − ε1 ∈
(

1
2 , 1
]
,

1
α̂

(n + 2)
[
1 − (1 − ε1)

1
n+2
](α

α̂

)n

x̂1
n − γη ≤ −γη

4

for all ε1 ∈ (0, εb]. Let ε̄ = min(εa, εb). Thus, for any ε ∈ [0, ̄ε], we obtain that

dL
dt ≤

[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
− γη

4 + γV1.

Choose N > 0 sufficiently large such that

−γη

4 + γV1 < N

for all solutions of (3.2) in Γ and all ε ∈ (0, ̄ε]. Meanwhile, let δ1 > 0 be such that

[
f(T ) − f

(
T̂ 1)](1 − T̂ 1

T

)
< −(N + 1),

for all T < δ1 and all ε ∈ (0, ̄ε].
At last, choose a δ2 > 0 such that

−γη

4 + γV1 < −γη

8

for all V1 < δ2 and all ε1 ∈ (0, ̄ε]. Now, denote

Γ̂δ =
{
(T, x1, y1, x2, y2, . . . , xn, yn, V1, V2) ∈ H ∩ Γ : T ≥ δ1, V1 ≥ δ2

}
.

If (T, x1, y1, x2, y2, . . . , xn, yn, V1, V2) ∈ (H ∩Γ ) \ Γ̂δ and all ε ∈ (0, ̄ε], at least one of following results holds:

(i) T < δ1, then dL
dt ≤ −(N + 1) + N = −1;

(ii) V1 < δ2, then dL
dt ≤ −γη

8 .

Therefore, for all (T, x1, y1, x2, y2, . . . , xn, yn, V1, V2) ∈ (H ∩ Γ ) \ Γ̂δ and all ε ∈ (0, ̄ε], there holds

dL
dt ≤ 0.

Note that the positive equilibrium Ē depends on ε = (ε1, ε2), and so does the Lyapunov function L. It is 
easy to see that the nonnegative function L(T, x1, y1, . . . , xn, yn, V1, V2, ε) is continuous and bounded on set 
Γ̂δ × (0, ̄ε] an it can reach a finite positive maximum:
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ρ := max
Γ̂δ×(0,ε̄]

L(T, x1, y1, . . . , xn, yn, V1, V2, ε) > 0.

Define a new set

Γδ =
{
(T, x1, y1, x2, y2, . . . , xn, yn, V1, V2) ∈ H ∩ Γ : L(T, x1, y1, . . . , xn, yn, V1, V2, ε) ≤ ρ, ∀ε ∈ (0, ε̄]

}
.

So, there holds Γ̂δ ⊂ Γδ ⊂ H ∩ Γ and Γδ is closed which can be implied by the continuity of L. Obviously 
Γδ is compact.

In the following, we need to show that all solutions of (3.2) in H enter and remain in Γδ for all large 
time. Because Γ is an absorbing set for all ε ≥ 0, without loss of generality, we need to prove this for all 
solutions in Γ (instead of in H).

Let Φ(t) = (T, x1, y1, x2, y2, . . . , xn, yn, V1, V2) ∈ Γ be a solution of (3.2) for some fixed ε ∈ [0, ̄ε]. It is 
easy to verify that the inequality dL

dt ≤ 0 holds in set Γ \ Γ̂δ. Because of L ≥ 0, there exists a t0 ≥ 0 such 
that Φ(t0) ∈ Γ̂δ ⊂ Γδ. Next, we will prove that Φ(t) ∈ Γδ for all t ≥ t0. For the sake of contradiction, let us 
assume that there is a t1 > t0 such that Φ(t1) /∈ Γδ. Then there should be a t2 ∈ [t0, t1) such that Φ(t2) ∈ Γδ

and Φ(t) /∈ Γδ for all t ∈ (t2, t1]. On the one hand, we have

L
(
Φ(t2), ε

)
≤ ρ < L

(
Φ(t1), ε

)
by definition of Γδ. On the other hand, however, for all t ∈ (t2, t1], we have Φ(t) /∈ Γδ and consequently 
Φ(t) /∈ Γ̂δ so that d

dtL(Φ(t), ε) = dL
dt < 0. This contradiction shows that Φ(t) ∈ Γδ for all t ≥ t0.

Let us define

H′ =
{

(T, x1, y1, x2, y2, . . . , xn, yn, V1, v2) ∈ R
(2n+3)

∣∣∣ T +
∑
i

xi + V1 > 0, i = 1, 2, . . . , n
}

⊃ H.

Since E1(0) ∈ IntH′ is globally asymptotically stable in H′ for ε = 0 when R1 > R2 > 1. The condition 
(H1) of Corollary 2.3 in [15] holds. As a result, Ē (or E1(ε)) is globally asymptotically stable in H′ for all 
ε ∈ (0, ̄ε] if R1 > R2 > 1. �
6. Discussion and conclusion

In this paper, we study the effect of mutations on the evolution of two viral strains through proposing a 
within-host age-structured model. Comparing with the ordinary differential system in [4], our age-structured 
model better presented the biology of RNA viruses infection. Meanwhile, the corresponding analysis of the 
model becomes harder. Fortunately, under some assumptions, we are able to restore the information about 
viral infection age to new variables by which the age-structured model is transformed into an ODE model 
with discrete stages. We treat the resulting stage model as a controlled system to gain its corresponding 
basic reproductive number for the model. In this way, the process that begins with viral attachment and 
ends with the release of new viruses is better understood. When mutation is absent, unlike in [7] where 
only numerical simulations were presented, here an analytical proof about global stabilities of two boundary 
equilibria without the effects of mutations is given in this paper. Moreover, we demonstrate that the evolution 
of two viral strains would comply with competitive exclusion principle, meaning that the stronger one 
would survive finally when both boundary equilibria exist. Furthermore, when both forward and backward 
mutations are present, the existence and stability of a unique positive equilibrium are discussed. We also offer 
a mathematical explanation on how these two strains coexist with the help of small mutation rates. Moreover, 
we show that the coexisting equilibrium would be globally asymptotically stable when the mutation rates 
are a small.
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We point out some general models of multi-strain virus with infected cell age structure have also been 
proposed and discussed in P. Magal et al. [5] and Browne [1]. But our model allows both forward and 
backward mutations, which makes the analysis a challenging job, and in mean time, demonstrates some 
thing that cannot be observed in [1,5].

In real world, mutation rates cannot always be fixed in viral evolution. When a mutation rate changes 
as times goes by, how would it affect the viral evolution? Moreover, when mutation rates exceed the critical 
values in our paper, will the stability of the related equilibria change or not? Although we found that the 
stability remains unchanged in our numeric simulations, we cannot assert that it is globally asymptotically 
stable with any values of mutations. Rigorous mathematical proof/disproof is needed, but it seems to be 
very challenging. For viral evolution, the environmental selection is another significant factor. Even for a 
small change in environment, it might alter the direction of viral evolution. Hence, it worthwhile to take 
into consideration natural selection in a model. We leave these for possible future research projects.
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