
J. Math. Anal. Appl. 426 (2015) 563–584
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Modeling cell-to-cell spread of HIV-1 with logistic target cell 
growth ✩

Xiulan Lai ∗, Xingfu Zou
Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 May 2014
Available online 6 November 2014
Submitted by J. Shi

Keywords:
Cell-to-cell transfer
Cell-free virus spread
Hopf bifurcation

In this paper, we consider a model containing two modes for HIV-1 infection and 
spread, one is the diffusion-limited cell-free virus transmission and the other is the 
direct cell-to-cell transfer of viral particles. We show that the basic reproduction 
number is underestimated in the existing models that consider only the cell-free 
virus transmission, or the cell-to-cell infection, ignoring the other. Assuming logistic 
growth for target cells, we find that if the basic reproduction number is greater than 
one, the infection can persist and the Hopf bifurcation can occur from the positive 
equilibrium within certain parameter ranges.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

HIV-1 has two predominant infection modes, the classical cell-free infection and direct cell-to-cell transfer. 
In the classical mode, viral particles released from infected cells travel some distance to find a new target 
cell to infect. Recently, it was revealed that HIV-1 can be transferred from infected cells to uninfected cells 
through direct contact via some structures, for example membrane nanotubes or macromolecular adhesive 
contacts termed virological synapses [6–8]. During this cell-to-cell transfer, many viral particles can be 
simultaneously transferred from infected CD4+ T cells to uninfected ones.

In the preceding paper [4], we incorporated the two modes of transmission into a classic model leading 
to the following model system

dT (t)
dt

= H − dTT (t) − β1T (t)V (t) − β2T (t)T ∗(t),

dT ∗(t)
dt

=
∞∫
0

[
β1T (t− s)V (t− s) + β2T (t− s)T ∗(t− s)

]
e−msf(s)ds− dT∗T ∗(t),
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dV (t)
dt

= γT ∗(t) − dV V (t). (1.1)

Here T (t), T ∗(t) and V (t) represent the concentrations of susceptible CD4+ T cells (target cells), produc-
tively infected T cells and free virus particles at time t respectively. A time delay, s, from the time of initial 
infection until the production of new virions, is considered, and s is assumed to be distributed according 
to a probability distribution f(s). Target cells are infected by free viral particles and infectious cells (pro-
ductively infected cells) at rates β1T (t)V (t) and β2T (t)T ∗(t) respectively. e−ms represents the survival rate 
of infected cells during the time delay s, from the time of the infection to the time when release of viral 
particles starts. Target cells are recruited at a constant rate H. Free viral particles are released by infected 
cells at a rate γT ∗(t). The losing rate of target cells, productively infected cells and free viruses is dTT (t), 
dT∗T ∗(t) and dV V (t) respectively. We found that the basic reproduction number was underestimated by 
some models where only one mode of virus spread was considered. In model (1.1), we assumed that target T 
cells have a constant source term and an exponential death rate. This is mainly for the purpose of reducing 
the difficulty level in analyzing the model, since introduction of delay into the model has already made the 
model an infinite dimensional system.

It is more realistic to assume that the population of the CD4+ T cells has a logistic growth function. 
De Boer and Perelson [3] considered the cell-free virus infection with logistic cell growth by model

dT (t)
dt

= αTT (t)
(

1 − Ttot

Tmax

)
− (β + γ)T (t)V (t),

dI(t)
dt

= βT (t)V (t) − δII(t),

dV (t)
dt

= pI(t) − cV (t), (1.2)

where T (t), I(t) and V (t) represent target cell counts, productively infected T cell counts and free HIV-1 
virus loads at time t respectively. Here, target cells grow at a rate αT and this growth is limited by 
a carrying capacity, Tmax cells. Ttot is the total number of T cells, Ttot = T + I. β is a true infection rate 
and γ combines all other virus-induced depletion of the CD4+ T cells. δI represents the turnover rate of 
productively infected T cells. Virus particles are produced by productively infected cells at a rate p and 
cleared at a per capita rate c. In this model, we see that infected cells are produced only by the route 
that free viruses infect uninfected T cells. Mathematical analysis of this model can be found in [5] when 
γ = 0. Although the notation in [5] is different from that in (1.2) and the model is about HBV, the model 
in [5] has the same properties as model (1.2) mathematically when γ = 0. It was found that when the basic 
reproduction number is less than one, the infection cannot establish. When the basic reproduction number 
is greater than one, the infection can persist and the Hopf bifurcation may occur, that is, (1.2) has periodic 
solutions for some range of parameter values.

Culshaw et al. [2] studied the cell-to-cell spread of HIV-1 by model

dC

dt
= rCC(t)

(
1 − C(t) + I(t)

CM

)
− kIC(t)I(t),

dI

dt
= k′I

t∫
−∞

C(u)I(u)F (t− u)du− μII(t), (1.3)

where C(t) and I(t) represent the concentration of target cells and productively infected cells respectively. 
Target cells assume logistic growth rate. rC indicates the effective reproductive rate of target cells. CM de-
notes the effective carrying capacity of the system. Target cells are infected by productively infected cells 
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at a rate kIC(t)I(t). kI/k′I represents the fraction of infected cells surviving the incubation period. It is 
assumed here that the cells productively infected at time t were infected u time units ago, where u is 
distributed according to a probability distribution F (u). For the corresponding ODE models, the positive 
equilibrium is globally stable, while delay models exhibit Hopf bifurcations. We see that in this model, the 
infection is assumed to spread directly from infected cells to target cells, neglecting cell-free virus infection.

In this paper, we study the virus dynamics which combines diffusion-limited cell-free virus transmission 
and cell-to-cell transfer of HIV-1, and the effects of cell-to-cell transfer of HIV-1 on the virus dynamics with 
logistic target cell growth. We use the same notation as in model (1.1), and consider the following model

dT (t)
dt

= rT (t)
(

1 − T (t) + αT ∗(t)
TM

)
− β1T (t)V (t) − β2T (t)T ∗(t),

dT ∗(t)
dt

= β1T (t)V (t) + β2T (t)T ∗(t) − dT∗T ∗(t),

dV (t)
dt

= γT ∗(t) − dV V (t), (1.4)

where r is a target cell growth rate, and this growth is limited by a carrying capacity of target cells, TM . The 
constant α represents the limitation of infected cells imposed on the cell growth of target cells, generally 
α ≥ 1. In this model, we do not consider any delay effect.

For mathematical convenience, we rescale the model (1.4) by

u(t) = T (t)
TM

, w(t) = T ∗(t)
TM

, v(t) = dT∗

γTM
V (t), t̃ = dT∗t,

ρ1 = β1γTM

d2
T∗

, ρ2 = β2TM

dT∗
, δ = r

dT∗
, μ = dV

dT∗
,

then the rescaled model reads

du(t)
dt

= δu(t)
[
1 − u(t) − αw(t)

]
− ρ1u(t)v(t) − ρ2u(t)w(t),

dw(t)
dt

= ρ1u(t)v(t) + ρ2u(t)w(t) − w(t),

dv(t)
dt

= w(t) − μv(t). (1.5)

The rest of the paper is organized as follows. Nonnegativity and boundedness of solutions of system (1.5)
are given in Section 2. Stability of the infection-free equilibrium is discussed in Section 3. Uniform persistence 
of the infection is shown in Section 4. Stability of the positive equilibrium and Hopf bifurcation are analyzed 
in Section 5. The Hopf bifurcation is illustrated numerically in Section 6. In Section 7, we give our conclusion 
and discussion.

2. Nonnegativity and boundedness of solutions

Assume initial conditions for system (1.5) are given as follows:

u(0) = u0 > 0, w(0) = w0 > 0, v(0) = v0 > 0, and u0 + w0 ≤ 1. (2.1)

Since the right hand side functions of (1.5) satisfy the Lipschitz condition, there is a unique solution 
(u(t), w(t), v(t)) ∈ C([0, +∞), R+) to system (1.5) with the initial conditions (2.1).
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Theorem 2.1. Let (u(t), w(t), v(t)) be a solution of system (1.5) satisfying the initial conditions (2.1). Then 
the solution is positive and bounded: 0 < u(t) ≤ 1, 0 < w(t) ≤ 1, 0 < v(t) < v0 + 1

μ , for all t ≥ 0. Moreover, 
u(t) + w(t) ≤ 1, for all t ≥ 0.

Proof. To prove the positivity of solutions, we suppose by contradiction that ti, i = 1, 2, 3, are the first 
times when u(t), w(t), v(t) reach zero respectively, and t0 = min{t1, t2, t3}.

First, if t0 = t1, we assume t1 �= t2 and t1 �= t3. Then u(t1) = 0, w(t1) > 0, v(t1) > 0, and u(t), w(t),
v(t) > 0 for all t ∈ [0, t1). From the first and second equations in (1.5), we observe that

d

dt

[
u(t) + w(t)

]
= δu(t)

[
1 −

(
u(t) + w(t)

)]
− δ(α− 1)u(t)w(t) − w(t), ∀t ∈ [0, t1]. (2.2)

It is easy to see that u(t) + w(t) ≤ 1. In fact, for any t∗ ∈ [0, t1] such that u(t∗) + w(t∗) = 1, we have

d

dt

[
u(t) + w(t)

]∣∣
t=t∗

= −δ(α− 1)u
(
t∗
)
w
(
t∗
)
− w

(
t∗
)
≤ −w

(
t∗
)
< 0. (2.3)

This means u(t) + w(t) ≤ 1, for all t ∈ [0, t1]. Thus we have u(t) < 1 and w(t) < 1, for t ∈ [0, t1]. From the 
third equation in (1.5), we see that

dv(t)
dt

≤ 1 − μv(t),

which means

v(t) ≤ e−μt

[
v(0) + 1

μ

(
eμt − 1

)]
≤ v(0)e−μt + 1

μ
, t ∈ [0, t1]. (2.4)

Again from the first equation in (1.5), we have

du(t)
dt

≥ −
[
ρ1v(t) + (ρ2 + δα)w(t)

]
u(t), t ∈ [0, t1],

thus

u(t) ≥ u(0)e−
∫ t
0 [ρ1v(s)+(ρ2+δα)w(s)]ds, t ∈ [0, t1]. (2.5)

We know from (2.4) and (2.5) that

u(t1) ≥ u(0)e−
∫ t1
0 [ρ1(v(0)e−μs+ 1

μ )+(ρ2+δα)]ds = u(0)e−[v(0)ρ1(1−e−μt1 )+(ρ1
1
μ+ρ2+δα)t1] > 0,

which contradicts u(t1) = 0.
Second, if t0 = t2, w(t2) = 0, u(t2) ≥ 0, v(t2) ≥ 0, and u(t), w(t), v(t) > 0 for t ∈ [0, t2), then from the 

second equation in (1.5), we have

dw(t)
dt

≥ −w(t), t ∈ [0, t2],

thus

w(t2) ≥ w(0)e−t2 > 0,

which is in contradiction to w(t2) = 0. Notice that this case includes all the cases of t2 �= t1 or t2 �= t3 or 
t1 = t2 �= t3 or t2 = t3 �= t1 or t1 = t2 = t3.
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Third, if t0 = t3, v(t3) = 0, u(t3) ≥ 0, w(t3) ≥ 0, and u(t), w(t), v(t) > 0 for t ∈ [0, t3), then from the 
third equation in (1.5), we have

dv(t)
dt

≥ −μv(t), t ∈ [0, t3],

thus

v(t3) ≥ v(0)e−μt3 > 0,

which is in contradiction to v(t3) = 0. This case includes the cases of t3 �= t1 or t3 �= t2 or t3 = t1 �= t2. So 
far we have considered all the cases and found a contradiction for each case. Therefore, there is no such ti, 
i = 1, 2, 3. This means u(t), w(t), v(t) > 0, for t ≥ 0.

With the positivity of the solution (u(t), w(t), v(t)), we know that (2.2), (2.3) and (2.4) hold for all t ≥ 0. 
Therefore,

u(t) + w(t) ≤ 1, v(t) ≤ v(0) + 1
μ
, ∀t ≥ 0.

This completes the proof. �
Furthermore, from (2.4), we see that

v(t) ≤ e−μt

(
v(0) − 1

μ

)
+ 1

μ
.

Therefore, if v(0) ≤ 1
μ , then v(t) ≤ 1

μ for all t ≥ 0.
In fact, we can see from Lemma 4.1 and Lemma 4.2 appearing later, that the set

Y :=
{

(u,w, v) ∈ R
3
∣∣∣ u ≥ 0, w ≥ 0, v ≥ 0, u + w ≤ 1, v ≤ 1

μ

}
,

is invariant for the solution semiflow of (1.5).

3. Stability of the infection-free equilibrium

For model (1.5), the basic reproduction number is given by

R0 = R01 + R02, R01 = ρ1

μ
, R02 = ρ2.

System (1.5) has three equilibria: the trivial equilibrium E0 = (0, 0, 0), the infection-free equilibrium E1 =
(1, 0, 0) and the positive equilibrium Ē = (ū, w̄, ̄v), where

ū = μ

ρ1 + μρ2
= 1

R0
, w̄ = δ

R0 + δα

(
1 − 1

R0

)
, v̄ = 1

μ
w̄.

We can easily see that for model (1.4), the basic reproduction number is R0 = R01 + R02, where

R01 = TMβ1γ

dT∗dV
, R02 = TMβ2

dT∗
.
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In the following, we consider stability of equilibria for model (1.5).

Theorem 3.1. For system (1.5),

(i) The trivial equilibrium E0 is always unstable;
(ii) If R0 < 1, the infection-free equilibrium E1 is locally asymptotically stable.

If R0 > 1, E1 is unstable.

Proof. To discuss local stability, we consider linearized system of (1.5). The Jacobian matrix of (1.5) at E0
is given by

J0 =

⎛
⎝ δ 0 0

0 −1 0
0 1 −μ

⎞
⎠ ,

which has a positive eigenvalue λ = δ. Therefore, E0 is always unstable.
The Jacobian matrix of (1.5) at E1 is given by

J1 =

⎛
⎝−δ −(δα + ρ2) −ρ1

0 ρ2 − 1 ρ1
0 1 −μ

⎞
⎠ .

We see that it has an eigenvalue λ1 = −δ < 0, and other eigenvalues are given by eigenvalues of the matrix

J10 =
(
ρ2 − 1 ρ1

1 −μ

)
,

that is, the roots of characteristic equation

λ2 + a1λ + a2 = 0, (3.1)

where

a1 = μ + 1 − ρ2,

a2 = μ(1 − ρ2) − ρ1 = μ(1 −R0).

We see that if R0 < 1, then a1 > 0, a2 > 0, and all eigenvalues have negative real parts. If R0 > 1, then 
a2 < 0, and J10 has at least one positive eigenvalue. Therefore, E1 is locally asymptotically stable if R0 < 1, 
and unstable if R0 > 1. �
Theorem 3.2. If R0 < 1, the infection-free equilibrium E1 is globally asymptotically stable.

Proof. We have to prove that limt→+∞(u, w, v) = (1, 0, 0). Since u(t) ≤ 1 for all t ≥ 0, we have

dw(t)
dt

≤ ρ1v(t) + ρ2w(t) − w(t),

dv(t)
dt

≤ w(t) − μv(t).

For the linear cooperative system
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dw̃(t)
dt

= ρ1ṽ(t) + ρ2w̃(t) − w̃(t),

dṽ(t)
dt

= w̃(t) − μṽ(t), (3.2)

there exists a principal eigenvalue λ0 associated with strictly positive eigenvector ξ0 [9]. Given M > 0, it 
follows that the linear system (3.2) admits a solution (w̃(t), ̃v(t)) = Meλ0tξ0. Choosing M > 0 such that 
(w(0), v(0)) ≤ (w̃(0), ̃v(0)), by the comparison principle, it follows that

(
w(t), v(t)

)
≤ Meλ0tξ0, ∀t ≥ 0.

From (3.1), we see that λ0 < 0 if R0 < 1. Therefore, if R0 < 1, we have

lim
t→+∞

w(t) = 0, lim
t→+∞

v(t) = 0.

Then the first equation in (1.5) is asymptotic to the following equation

dũ(t)
dt

= δũ(t)
[
1 − ũ(t)

]
,

which is the logistic equation. Since δ > 0, it is easy to see that limt→+∞ ũ(t) = 1. By the asymptotic 
autonomous semiflow theory (see Corollary 4.3 in [12]), we have

lim
t→+∞

u(t) = 1.

Thus, if R0 < 1, then

(u,w, v) → (1, 0, 0), as t → +∞.

This completes the proof of the theorem. �
4. Uniform persistence of infection

Notice that when u0 = 0, the unique solution of (1.5)–(2.1) is given by

u(t) = 0, w(t) = w0e
−t, v(t) = e−μt

[
v0 + w0

t∫
0

e(μ−1)sds

]
, ∀t > 0. (4.1)

We see that w(t) → 0 and v(t) → 0 as t → +∞. Therefore, if u0 = 0, the system cannot be persistent. To 
discuss the persistence of system (1.5), we consider the following solution space:

X :=
{

(u,w, v) ∈ R
3
∣∣∣ u > 0, w ≥ 0, v ≥ 0, u + w ≤ 1, v ≤ 1

μ

}
,

the interior subspace of X:

X0 :=
{
(u,w, v) ∈ X

∣∣ w > 0 and v > 0
}
,

the boundary of X0:

∂X0 := X\X0 =
{
(u,w, v) ∈ X

∣∣ w = 0 or v = 0
}
,
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and

M∂ :=
{
(u0, w0, v0) ∈ ∂X0

∣∣ Φt(u0, w0, v0) ∈ ∂X0, t ≥ 0
}
,

where Φt is the solution semiflow defined by (1.5).

Lemma 4.1. The sets X and X0 are positively invariant for the solution semiflow Φt defined by (1.5). 
Moreover,

M∂ =
{
(û, 0, 0)

∣∣ 0 < û ≤ 1
}
. (4.2)

Proof. Given (u0, w0, v0) ∈ X, we consider the different cases of w0 and v0:
(i) If w0 = 0 and v0 = 0, then

u(t) = u0

u0 + [1 − u0]e−δt
> 0, w(t) = 0, v(t) = 0, ∀t ≥ 0. (4.3)

(ii) If w0 = 0 and v0 > 0, then

d

dt
w(0) = ρ1u(0)v(0) = ρ1u0v0 > 0.

Thus, for small ε > 0, w(t) > 0 for t ∈ (0, ε). We assume t2 to be the first time when w(t) reaches zero 
other than t = 0. By the same argument as in the proof of Theorem 2.1, we obtain that u(t) > 0, w(t) > 0
and v(t) > 0.

(iii) If w0 > 0 and v0 = 0, then

d

dt
v(0) = w(0) = w0 > 0.

Like in case (ii), it follows that u(t) > 0, w(t) > 0 and v(t) > 0.
(iv) If w0 > 0 and v0 > 0, from Theorem 2.1, we have u(t) > 0, w(t) > 0 and v(t) > 0.
In summary, sets X and X0 are positively invariant for the solution semiflow Φt defined by (1.5). Next, 

we assume that (u0, w0, v0) ∈ M∂ . This implies that Φt(u0, w0, v0) ∈ ∂X0. Hence, cases (ii), (iii) and (iv) 
cannot occur. That is, w0 = 0 and v0 = 0. This proves (4.2). We complete the proof of the lemma. �

We see that J10 is a quasi-positive matrix. By Corollary 4.3.2 in [9], λ0(u1) = max{Re λ|λ ∈ σ(J10)} is 
an eigenvalue of J10, called the principal eigenvalue, where σ(J10) is the set of eigenvalues of matrix J10. 
From Theorem 3.1, we know that if R0 > 1, then λ0(u1) > 0. By continuity of the principal eigenvalue, we 
have λ0(u1 − η0) > 0, for some η0 > 0.

Lemma 4.2. If R0 > 1, the solution (u(t), w(t), v(t)) of (1.5) with initial value (u0, w0, v0) ∈ X0 satisfies

lim sup
t→∞

∥∥(u(t), w(t), v(t)
)
− (u1, 0, 0)

∥∥ ≥ η0,

where u1 = 1.

Proof. To prove the lemma, we suppose by contradiction that

lim sup
∥∥(u(t), w(t), v(t)

)
− (u1, 0, 0)

∥∥ < η0,

t→∞
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for a solution with some initial value (u0, w0, v0) ∈ X0. Then for this solution, there exists a t0 > 0 such 
that u(t) > u1 − η0, w(t) < η0, v(t) < η0, for t ≥ t0. Thus, from the second equation in (1.5), we have

dw(t)
dt

≥ ρ1(u1 − η0)v(t) + ρ2(u1 − η0)w(t) − w(t), t ≥ t0.

It is easy to see that λ0(u1 − η0) is the principal eigenvalue of the linear cooperative system

dw̃(t)
dt

= ρ1(u1 − η0)ṽ(t) + ρ2(u1 − η0)w̃(t) − w̃(t),

dw̃(t)
dt

= w̃(t) − μṽ(t). (4.4)

Let (ξ1, ξ2)T be the strictly positive eigenvector associated with λ0(u1 − η0), then (w̃, ̃v)T =
eλ0(u1−η0)t(ξ1, ξ2)T is a solution of (4.4). Since w(t0) > 0, v(t0) > 0, there exists a ζ > 0, such that 
(w(t0), v(t0))T ≥ ζ(w̃(t0), ̃v(t0))T . By the comparison principle, we have

(
w(t), v(t)

)T ≥ ζeλ0(u1−η0)t(ξ1, ξ2)T , ∀t ≥ t0. (4.5)

Since λ0(u1 − η0) > 0, it follows from (4.5) that w(t) and v(t) are unbounded. Thus we obtain the contra-
diction and prove the lemma. �
Theorem 4.1. For system (1.5), if R0 > 1, the infection is uniformly persistent with respect to (X0, ∂X0), 
in the sense that there exists an η > 0 such that

lim inf
t→∞

w(t) ≥ η, lim inf
t→∞

v(t) ≥ η. (4.6)

Proof. By Lemma 4.1, X0 is positively invariant for the solution semiflow Φt defined by (1.5). Furthermore, 
Φt is compact and point dissipative. By Theorem 1.1.3 in [16], there is a global attractor A for Φt.

Let M = (1, 0, 0). From the proof of Lemma 4.1, we know that M∂ is the maximal compact invariant 
set in ∂X0. From (4.3), we see that 

⋃
x∈M∂

ω(x) = {M}. Lemma 4.2 implies that M is an isolated invariant 
set in X, and W s(M) ∩X0 = ∅, where W s(M) is the stable set of M . Furthermore, there is no cycle in M∂

from M to M .
Define a continuous function p : X → R+ by

p(x) = min{w0, v0}, ∀x = (u0, w0, v0) ∈ X.

Then from Lemma 4.1, we see that p−1(0, max{1, 1/μ}) ⊂ X0, and that p(x) > 0 for x ∈ X0. Moreover, if 
p(x) > 0, then x ∈ X0. Thus, p is a generalized distance function for the semiflow Φt : X → X. It follows 
from Theorem 3 in [10] that there exists an η > 0 such that

min
x∈ω(y)

p(x) > η, ∀y ∈ X0.

Therefore,

lim inf
t→∞

w(t) ≥ η, lim inf
t→∞

v(t) ≥ η,

which completes the proof of the theorem. �
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Remark 4.1. If R0 > 1, the target cell population u(t) is uniformly weakly persistent in the sense that there 
exists some η > 0 such that

lim sup
t→∞

u(t) ≥ η. (4.7)

In fact, if (4.7) is not true, then by the definition lim supt→∞ u(t) = limt→∞ supτ≥t u(τ), for any ε > 0 there 
exists a t1 > 0 such that supτ≥t1 u(τ) < ε, thus u(t) < ε for t ≥ t1. This means limt→∞ u(t) = 0. In this 
case, the second equation in (1.5) is asymptotic to the following equation

dw̃(t)
dt

= −w̃(t),

which has only one equilibrium w̃ = 0. By the asymptotic autonomous semiflow theory (Corollary 4.3 
in [12]), w(t) → 0 as t → ∞. Similarly, from the third equation in (1.5), v(t) → 0 as t → ∞. These 
contradict (4.6), that is, the uniform persistence of w(t) and v(t).

5. Stability of the positive equilibrium Ē and Hopf bifurcation

In this section we consider stability of the positive equilibrium Ē. Noticing that

δ(1 − 2ū− αw̄) − ρ1v̄ − ρ2w̄ = −δū = − δ

R0
,

ρ1v̄ + ρ2w̄ =
(
ρ1

μ
+ ρ2

)
w̄ = δ(R0 − 1)

R0 + δα
,

μ(1 − ρ2ū) − ρ1ū = μ− (ρ2μ + ρ1)
1
R0

= 0,

the Jacobian matrix of (1.5) at Ē is given by

J̄ =

⎛
⎝ − δ

R0
−( δα

R0
+ ρ2ū) −ρ1ū

ρ1v̄ + ρ2w̄ ρ2ū− 1 ρ1ū

0 1 −μ

⎞
⎠ .

The corresponding characteristic equation is

λ3 + b1λ
2 + b2λ + b3 = 0, (5.1)

where

b1 = δ

R0
+ μ + 1 − ρ2

R0
= δ

R0
+ μ + R01

R0
> 0,

b2 = δ

R0
(1 − ρ2ū + μ) + μ(1 − ρ2ū) − ρ1ū + (ρ1v̄ + ρ2w̄)

(
δα

R0
+ ρ2ū

)

= δ

R0

(
1 + μ− ρ2

R0

)
+ δ(R0 − 1)

R0 + δα

(
δα

R0
+ ρ2

R0

)

= δ
(
μ + R01

)
+ δ R02 + δα (R0 − 1) > 0,
R0 R0 R0 R0 + δα
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b3 = δ

R0
(1 − ρ2ū)μ + ρ1ū(ρ1v̄ + ρ2w̄) − ρ1ū

δ

R0
+ μ(ρ1v̄ + ρ2w̄)

(
δα

R0
+ ρ2ū

)

= (ρ1v̄ + ρ2w̄)
[
ρ1ū + μ

(
δα

R0
+ ρ2ū

)]

= δ(R0 − 1)
R0 + δα

(
δα

R0
+ 1

)
μ

= δμ

R0
(R0 − 1) > 0,

b1b2 − b3 = δ

R0

{(
δ

R0
+ μ + R01

R0

)[(
μ + R01

R0

)
+ R02 + δα

R0 + δα
(R0 − 1)

]
− μ(R0 − 1)

}

= δ

R0

{(
δ

R0
+ R01

R0

)[(
μ + R01

R0

)
+ R02 + δα

R0 + δα
(R0 − 1)

]
+ μ

(
μ + R01

R0

)
− μ

R01

R0 + δα
(R0 − 1)

}

= δ

R0

{(
δ

R0
+ R01

R0

)
R02 + δα

R0 + δα
(R0 − 1) + δ

R0

(
μ + R01

R0

)
+
(
μ + R01

R0

)2

− μ
R01

R0 + δα
(R0 − 1)

}

= δμ

ρ1 + μρ2

{(
δμ

ρ1 + μρ2
+ ρ1

ρ1 + μρ2

)
ρ2 + δα

ρ1 + μρ2 + μδα
(ρ1 + μρ2 − μ)

+ δμ

ρ1 + μρ2

(
μ + ρ1

ρ1 + μρ2

)
+

(
μ + ρ1

ρ1 + μρ2

)2

− ρ1

ρ1 + μρ2 + μδα
(ρ1 + μρ2 − μ)

}
.

We denote

b1(p)b2(p) − b3(p) = G(p)F (p),

where

p = (ρ1, ρ2, μ, δ, α),

G(p) = δμ

(ρ1 + μρ2)3(ρ1 + μρ2 + μδα) ,

F (p) = (δμ + ρ1)(ρ1 + μρ2)(ρ2 + δα)(ρ1 + μρ2 − μ) + δμ
[
μ(ρ1 + μρ2) + ρ1

][
(ρ1 + μρ2) + μδα

]
+

[
μ(ρ1 + μρ2) + ρ1

]2[(ρ1 + μρ2) + μδα
]
− ρ1(ρ1 + μρ2)2(ρ1 + μρ2 − μ).

We see that if R0 > 1, then bi > 0, i = 1, 2, 3. Thus, if b1b2 − b3 > 0 then Ē is locally asymptotically 
stable by the Routh–Hurwitz criterion, and if b1b2 − b3 < 0, Ē is unstable. Since G(p) > 0, the sign of 
b1(p)b2(p) − b3(p) is determined by the sign of F (p). If there is a p̄ = (ρ̄1, ρ̄2, μ̄, ̄δ, ᾱ) such that F (p̄) = 0, 
then there is a Hopf bifurcation at Ē, by Theorem 2 in [14]. In fact, when p = p̄, we have b3(p̄) = b1(p̄)b2(p̄), 
and further the characteristic equation (5.1) has a negative root λ̄1 = −b1(p̄) and a pair of pure imaginary 
roots λ̄2,3 = ±i

√
b2(p̄).

First, we consider the Hopf bifurcation at Ē choosing ρ1 as the bifurcation parameter, that is, the 
parameters (ρ2, μ, δ, α) are fixed at (ρ̄2, μ̄, ̄δ, ᾱ) while ρ1 changes near ρ̄1. Then F (p) is a function of ρ1, 
which can be expressed in the following form

F (ρ1) = −ρ4
1 +

(
δα + ρ2 + 1 − 3μρ2 + μ2 + 3μ

)
ρ3
1

+
(
3μ3ρ2 + μ3δα + δμρ2 + δμ2 + 2ρ2

2μ + 2δαμρ2 + δμ + δ2μα + 6μ2ρ2 + 2μ2δα− 3ρ2
2μ

2)ρ2
1

+
(
δαμ2ρ2

2 + 2δμ2ρ2
2 + δ2μ3α + 2δ2μ2αρ2 − ρ2

2μ
2 + 2δμ3ρ2 − δαμ2ρ2 + 2μ4ρ2δα
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+ 3μ4ρ2
2 + ρ3

2μ
2 + 3μ3ρ2

2 − μ3ρ3
2 + 2μ3ρ2δα

)
ρ1

− δ2μ3αρ2 + μ5ρ3
2 + δμ3ρ3

2 + b2μ3αρ2
2 − δμ3ρ2

2 + δμ4ρ2
2 + μ5ρ2

2δα + δ2μ4ρ2α,

where we omit the bar of (ρ̄2, μ̄, ̄δ, ᾱ) for notational convenience. We see that if ρ1 = 0, then R0 = ρ2 > 1, 
and

F (0) = μ3ρ2(ρ2 + δα)
[
δ(ρ2 − 1) + μ2ρ2 + δμ

]
> 0.

On the other hand, limρ1→+∞ F (ρ1) = −∞. Therefore, F (ρ1) = 0 has at least one positive root.

Proposition 5.1. Assume that parameters (ρ2, μ, δ, α) are fixed. If R0 > 1 and F (ρ1) > 0, then Ē is locally 
asymptotically stable. If there exists a critical value ρ̄1 > 0 such that R0 > 1 and F (ρ̄1) = 0, then a Hopf 
bifurcation occurs at Ē when ρ1 passes through the critical value ρ̄1.

By the similar arguments, we can obtain the following results about different bifurcation parameters.

Proposition 5.2. Assume that parameters (ρ1, μ, δ, α) are fixed. If R0 > 1 and F (ρ2) > 0, then Ē is locally 
asymptotically stable. If there exists a critical value ρ̄2 > 0 such that R0 > 1 and F (ρ̄2) = 0, then a Hopf 
bifurcation occurs at Ē when ρ2 passes through the critical value ρ̄2. Here, F (p) is a function of ρ2:

F (ρ2) =
(
ρ1μ

2 + μ5 + μ3δ − μ3ρ1
)
ρ3
2

+
(
μ2δαρ1 + δ2μ3α− ρ1μ

2 + 3μ3ρ1 + 2ρ2
1μ− μ3δ + δμ4 + 2δμ2ρ1 + μ5δα + 3μ4ρ1 − 3μ2ρ2

1
)
ρ2
2

+
(
2μ3ρ1δα + δμρ2

1 + 2ρ1δ
2μ2α + 2ρ2

1μδα + 2μ4ρ1δα + δ2μ4α− δ2μ3α− μ2δαρ1 + ρ3
1

+ 3μ3ρ2
1 + 6μ2ρ2

1 − 3μρ3
1 + 2δμ3ρ1

)
ρ2

+ ρ3
1 + δμρ2

1 + δ2μαρ2
1 + μ2ρ3

1 + μ3ρ2
1δα− ρ4

1 + δ2μ3ρ1α + 2μ2ρ2
1δα + δμ2ρ2

1 + 3μρ3
1 + ρ3

1δα,

where we also omit the bar of (ρ̄2, μ̄, ̄δ, ᾱ) for notational convenience.

6. Numerical simulation

We choose the baseline parameters in model (1.4) as r = 0.1, TM = 1000, dT∗ = 0.4, γ = 850 and dV = 3
[1,11]. Then for model (1.5), we have δ = 0.25, μ = 7.5. We set α = 1.2 and use ρ1 and ρ2 as bifurcation 
parameters.

Notice that if ρ1 = 0, then R0 = ρ2 and

b1b2 − b3 = δ

ρ2
2

[
δ(ρ2 − 1) + δμ + μ2ρ2

]
.

Thus, if R0 = ρ2 > 1, b1b2 − b3 > 0. Therefore, Ē is locally asymptotically stable for all δ, α, μ > 0, ρ2 > 1
and ρ1 = 0. This is the case when there is only cell-to-cell transmission, which is considered by Culshaw 
et al. [2] for α = 1.

When ρ1 > 0, the surface F (ρ1, ρ2) is shown in Fig. 1. We see that Ē is also locally asymptotically stable, 
when ρ1 and ρ2 satisfy R0 > 1, ρ1 < ρ̄1 and ρ2 < ρ̄2, where (ρ̄1, ρ̄2) is at the intersection curve of the two 
surfaces in Fig. 1, F (ρ̄1, ρ̄2) = 0.

First, we consider ρ1 as a bifurcation parameter. Assume β2 = 0.65 × 10−3, then ρ2 = 1.625. When the 
parameters are fixed at δ = 0.25, α = 1.2, μ = 7.5 and ρ2 = 1.625, F (ρ1) = 0 has a positive root ρ1 =
79.98204093, a negative root ρ1 = −13.50810411 and a pair of conjugate complex roots ρ1 = −10.68071841 ±
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Fig. 1. The surface of F (ρ1, ρ2), when δ = 0.2, α = 1.2, μ = 10.

Fig. 2. The function F (ρ1) has only a positive root ρ̄1 = 79.98204093.

0.2299679133i (see Fig. 2). Thus ρ̄1 = 79.98204093 is a critical value for bifurcation. Since R0 ≥ ρ2 > 1, we 
see that if 0 ≤ ρ1 < ρ̄1, Ē is locally asymptotically stable, while it is unstable if ρ1 ≥ ρ̄1 (see Fig. 3 and 
Fig. 4). When ρ1 = ρ̄1, there is a Hopf bifurcation, and a family of periodic solutions bifurcates from Ē (see 
Fig. 5).

When ρ1 = ρ̄1, J̄ has a pair of pure imaginary eigenvalues λ = ±0.4531462285i and a negative real eigen-
value λ = −8.3881137969. In the following, we determine the bifurcation direction and stability, magnitudes 
and periods of the bifurcated periodic solutions by applying the normal form theory and Maple program 
developed by Yu [13] using computer algebra system. First we transform the fixed point to the origin and 
let ρ1 = ρ̄1 + ε, and then transform the Jacobian matrix of system (1.5) evaluated at the trivial equilibrium 
solution to Jordan canonical form. By the linear transformation⎛

⎝ u

w

v

⎞
⎠ =

⎛
⎝ ū

w̄

v̄

⎞
⎠ + P

⎛
⎝x1

x2
x3

⎞
⎠ , (6.1)

where
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Fig. 3. Trajectories of system (1.5), when ρ1 = 20. We have R0 = 4.291666666, and Ē is locally asymptotically stable, where 
Ē = (0.233009709, 0.041759907, 0.005567988).

⎛
⎝ ū

w̄

v̄

⎞
⎠ =

⎛
⎝ 0.08137178429

0.01824228214
0.002432304285

⎞
⎠ , P =

⎛
⎝ 0.9127757680 0.0000000000 0.4946210560

0.0025286175 −0.4048829165 −0.5771230032
−0.0029139233 −0.0538083311 0.6498300164

⎞
⎠ ,

system (1.5) is transformed to

dxi

dτ
= Fi(x1, x2, x3; ε), i = 1, 2, 3, (6.2)

where

F1 = 0.4531462284x2 + ε(−0.0001967387 − 0.0019711916x1 + 0.0043523250x2

− 0.053757844x3) + ε
(
0.0488215521x1x2 − 0.5881732311x1x3 + 0.0264557501x3x2

+ 0.0026438705x2
1 − 0.3194996052x2

3
)

+ O(ε)

− 0.0206649222x2
1 − 46.2688096803x1x3 + 4.6229780433x1x2

− 25.0663848848x2
3 + 2.5051303527x3x2,



X. Lai, X. Zou / J. Math. Anal. Appl. 426 (2015) 563–584 577
Fig. 4. Trajectories of system (1.5), when ρ1 = 70. We have R0 = 10.958333333, and Ē is locally asymptotically stable, where 
Ē = (0.091254753, 0.020179391, 0.002690585).

F2 = −0.4531462284x1 + ε(−0.0004372035 − 0.0043804908x1 + 0.0096719770x2

− 0.1194636492x3) + ε
(
0.1084939488x1x2 − 1.3070710312x1x3 + 0.0587914287x3x2

+ 0.0058753550x2
1 − 0.7100096645x2

3
)

+ O(ε)

+ 0.4616677914x2
1 − 102.6557485267x1x3 + 10.0041479776x1x2

− 55.7633503054x2
3 + 5.4211148132x3x2,

F3 = −8.3881137969x3 + ε(−0.0000370843 − 0.0003715599x1 + 0.0008203919x2

− 0.0101330897x3) + ε
(
0.0092026229x1x2 − 0.1108677664x1x3 + 0.0049867790x3x2

+ 0.0004983566x2
1 − 0.0602241070x2

3
)

+ O(ε)

+ 0.0381351380x2
1 − 8.7077514501x1x3 + 0.8491105307x1x2

− 4.7298128146x2
3 + 0.4601217101x3x2.

It is easy to see that the Jacobian matrix of system (6.2) at x = (0, 0, 0) is in the Jordan canonical form
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Fig. 5. Trajectories of system (1.5), when ρ1 = 80. We have R0 = 12.291666667, and the Hopf bifurcation occurs at Ē, and there 
is a stable limit cycle. Here Ē = (0.081355932, 0.018239128, 0.002431884).

J =

⎛
⎝ 0 0.4531462284 0

−0.4531462284 0 0
0 0 −8.3881137969

⎞
⎠ . (6.3)

The general normal form can be written in polar coordinates as

dr

dτ
= r

(
ν0ε + ν1r

2) + O
(
ε2r, εr3, r5),

dθ

dτ
= ω0 + τ0ε + τ1r

2 + O
(
ε2, εr2, r4).

For system (6.2), ω0 = 0.4531462284 corresponds to the pair of the pure imaginary eigenvalues. ν0 and τ0
can be found from linear analysis. By the theory in [15], we have

ν0 = 1
2

(
∂2F1

∂x1∂ε
+ ∂2F2

∂x2∂ε

)∣∣∣∣
ε=0, xi=0

= (0.0048359885 + 0.0542469744x1 + 0.0293957144x3)|xi=0

= 0.0048359885,
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Fig. 6. The function F (ρ2) has only one positive root ρ̄1 = 24.06639452.

τ0 = 1
2

(
∂2F1

∂x2∂ε
− ∂2F2

∂x1∂ε

)∣∣∣∣
ε=0, xi=0

= (0.0021902454 − 0.0542469744x2 + 0.6535355156x3 − 0.0058753550x1)|xi=0

= 0.0021902454.

On the other hand, ν1 and τ1 are determined by nonlinear analysis. Applying the Maple program developed 
in [13] to system (6.2), setting ε = 0, we obtain

ν1 = −0.09674296998, τ1 = −2.380920393.

Therefore, the normal form of the system (6.2) up to the third order is given by

dr

dτ
= r

(
0.0048359885ε− 0.09674296998r2),

dθ

dτ
= 0.4531462284 + 0.0021902454ε− 2.380920393r2. (6.4)

System (6.4) has equilibrium solutions r̄ = 0 and r̄2 = 0.0499880095ε. The solution r̄ = 0 corresponds to 
the equilibrium solution Ē of the original system (1.5). Linearization of the equation dr/dτ indicates that 
r̄ = 0 (Ē) is stable for ε < 0, that is ρ1 < ρ̄1. When ε increases from negative values and crosses zero, 
a Hopf bifurcation occurs and the amplitude of the periodic solution is given by

r̄ = 0.2235799845
√
ε, ε > 0.

Since ν1 < 0, the Hopf bifurcation is supercritical and the bifurcation limit cycle is stable. The amplitude 
of the bifurcating limit cycle is r̄ = 0.2235799845

√
ε, and the frequency is

ω = 0.4531462284 − 0.1168272258ε.

Similarly, if we fix δ = 0.25, α = 1.2, μ = 7.5 and ρ1 = 70, F (ρ2) = 0 has only one positive root 
ρ̄2 = 24.06639452 (see Fig. 6) and two negative roots ρ2 = −9.466977953 and ρ2 = −10.77608331. Thus 
ρ̄2 = 24.06639452 is a critical value of bifurcation. When 0 ≤ ρ2 < ρ̄2, Ē is locally asymptotically stable 
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Fig. 7. Trajectories of system (1.5), when ρ2 = 1. We have R0 = 10.333333333, and Ē is locally asymptotically stable, where 
Ē = (0.096774194, 0.021235716, 0.002831429).

(see Fig. 7), while it is unstable if ρ2 ≥ ρ̄2. When ρ2 = ρ̄2, there is a Hopf bifurcation, and a family of 
periodic solutions bifurcates from Ē (see Fig. 8).

Let ρ2 = ρ̄2 + ε and the linear transformation (6.1) with
⎛
⎝ ū

w̄

v̄

⎞
⎠ =

⎛
⎝ 0.0299403637

0.0071963462
0.0009595128

⎞
⎠ , P =

⎛
⎝−0.0074850909 −0.7295387145 −2.0958254600

0.2403560052 −0.2794433946 2.0958254600
0 1 −7.5000000000

⎞
⎠ ,

then system (1.5) is transformed to

dxi

dτ
= Fi(x1, x2, x3; ε), i = 1, 2, 3, (6.5)

where

F1 = 0.4832999609x2 + ε(−0.0002317009 − 0.0069984666x1 + 0.0138985043x2

+ 0.0068913568x3) + ε
(
0.2597749886x1x3 + 0.1053782781x3x2 − 0.0009634203x2

1

+ 0.0655698598x2
3 + 0.4178786217x1x2

)
+ O(ε)
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Fig. 8. Trajectories of system (1.5), when ρ2 = 25. We have R0 = 34.333333333, and the Hopf bifurcation occurs at Ē, and there 
is a stable limit cycle. Here Ē = (0.029126214, 0.007008232, 0, 0009344309783).

− 0.0069840861x2
1 − 57.1550777084x1x3 + 14.0708577570x1x2

− 14.4126015770x2
3 + 3.5483096890x3x2,

F2 = −0.4832999610x1 + ε(−0.0004807986 − 0.0145223983x1 + 0.0288405483x2

+ 0.0143001366x3) + ε
(
0.5390546324x1x3 + 0.2186686613x3x2 − 0.0019991770x2

1

+ 0.1360628938x2
3 + 0.8671327754x1x2

)
+ O(ε)

+ 0.4526901833x2
1 − 118.5331112012x1x3 + 28.9297201243x1x2

− 29.9198000655x2
3 + 7.2953339441x3x2,

F3 = −7.7869284856x3 + ε(−0.0000303249 − 0.0009159543x1 + 0.0018190263x2

+ 0.0009019358x3) + ε
(
0.0339991640x1x3 + 0.0137918334x3x2 − 0.0001260918x2

1

+ 0.0085817362x2
3 + 0.0546916540x1x2

)
+ O(ε)

+ 0.0276954677x2
1 − 7.4762260736x1x3 + 1.8251427125x1x2

− 1.8870738072x2
3 + 0.4602542135x3x2.
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It is easy to see that the Jacobian matrix of system (6.5) at x = (0, 0, 0) is in the Jordan canonical form

J =

⎛
⎝ 0 0.4832999610 0

−0.4832999610 0 0
0 0 −7.7869284856

⎞
⎠ . (6.6)

For system (6.5), ω0 = 0.4832999610 corresponds to the pair of the pure imaginary eigenvalues. ν0 and τ0
can be derived from linear analysis similarly to the previous case, then we have

ν0 = 1
2

(
∂2F1

∂x1∂ε
+ ∂2F2

∂x2∂ε

)∣∣∣∣
ε=0, xi=0

= (0.0144202741 + 0.1093343306x3 + 0.4335663877x1)|xi=0

= 0.0144202741,

τ0 = 1
2

(
∂2F1

∂x2∂ε
− ∂2F2

∂x1∂ε

)∣∣∣∣
ε=0, xi=0

= (0.0072611992 − 0.2695273162x3 + 0.0019991770x1 − 0.4335663877x2)|xi=0

= 0.0072611992.

On the other hand, ν1 and τ1 are determined by nonlinear analysis. Applying the Maple program developed 
in [13] to system (6.2) again, setting ε = 0, we obtain

ν1 = −0.2039007979, τ1 = −21.07423997.

Therefore, the normal form of the system up to the third order is given by

dr

dτ
= r

(
0.0144202741ε− 0.2039007979r2),

dθ

dτ
= 0.4832999610 + 0.0072611992ε− 21.07423997r2. (6.7)

System (6.7) has equilibrium solutions r̄ = 0 and r̄2 = 0.2039007979ε. The solution r̄ = 0 corresponds to the 
equilibrium solution Ē of the original system (1.5). Linearization of the equation dr/dτ indicates that r̄ = 0
(Ē) is stable for ε < 0, that is ρ2 < ρ̄2. When ε increases from negative to cross zero, a Hopf bifurcation 
occurs and the amplitude of the periodic solution is

r̄ = 0.2659360998
√
ε, ε > 0.

Since ν1 < 0, the Hopf bifurcation is supercritical and the bifurcation limit cycle is stable. The amplitude 
of the bifurcating limit cycle is r̄ = 0.2235799845

√
ε, and the frequency is

ω = 0.4832999610 − 1.4831513940ε.

7. Conclusion and discussion

In this paper, we considered the direct cell-to-cell transfer of HIV-1 in addition to cell-free virus trans-
mission by mathematical modeling. We found that the basic reproduction number R0 is larger than that 
of previous models which just considered cell-free virus spread mode. In fact, R0 is the sum of the basic 
reproduction number determined by cell-free virus infection, R01, and that determined by cell-to-cell infec-
tion, R02. When applying models considering only cell-to-cell transmission or infection by cell-free viruses 



X. Lai, X. Zou / J. Math. Anal. Appl. 426 (2015) 563–584 583
to experimental data, parameters are always estimated to be an average of the effect of both modes of 
transmission. Thus, the estimate of R0 based on a model neglecting cell-to-cell transmission is not the exact 
basic reproductive number of the model with infection by cell-free mode, but an average of both modes of 
infections.

When only cell-free spread of HIV-1 is considered, we have β2 = 0 in (1.4), and the model (1.4) becomes 
the model (1.2) with γ = 0 or the model considered in [5]. We see from the analysis in [5] that the basic 
reproduction number is R01 = TMβ1γ

dT∗dV
. When R01 < 1, the infection cannot establish. When R01 > 1, the 

infection can persist, and for some large β1 the Hopf bifurcation occurs, that is a family of periodic solutions 
bifurcates from the positive equilibrium Ē. This property is very similar to the case when cell-to-cell transfer 
is considered simultaneously. However, the basic reproduction number R01 is only a part of R0, the basic 
reproduction number of (1.4), that is, the case when both transmission modes exist. On the other hand, we 
see from Fig. 1 that the bifurcation critical point ρ̄1 decreases as ρ̄2 increases. Therefore, the bifurcation 
critical point β̄1 decreases as β̄2 increases. That means the periodic solution occurs for smaller infection rate 
of cell-free mode β1, when cell-to-cell transfer establishes compared with the case when only cell-free mode 
is considered.

In contrast, when only cell-to-cell transfer is considered, β1 = 0 in (1.4). We know from the analysis 
in [2] that the basic reproduction number is R02 = TMβ2

dT∗ . The infection cannot establish if R02 < 1, while 

it persists if R02 > 1. Furthermore, the positive equilibrium Ē is stable if R02 > 1, and there are no Hopf 
bifurcation and periodic solutions. Since R02 is only a part of R0, the basic reproduction number is also 
underestimated when only the cell-to-cell mode is considered. The dynamical behavior of the system is very 
different from the case when both infection modes are considered where the Hopf bifurcation and periodic 
solutions occur for some values of infection rates β1 and β2, that is, for some ρ1 and ρ2.

The nonlinear term, say the logistic growth of target cells, leads to the Hopf bifurcation and periodic 
solutions of the system for some range of parameter values. With stable periodic solutions, the concentration 
of infected cells and virus load cannot stabilize at a constant level, but show oscillations. This is important 
for experimental or clinic estimation of virus load. Due to the periodic oscillation, lower (or higher) virus 
load detected at a moment does not indicate the same lower (or higher) load for a long time. The oscillations 
of viral load levels in the plasma are also plausible under the effects of immune responses or delays in the 
virus infection dynamics [1].

In the model (1.5), we do not consider any delay effects, such as the delay from the time of initial infection 
until the production of new virions. Culshaw et al. [2] considered this delay for the cell-to-cell infection model 
and found that there is a Hopf bifurcation for some critical values of the delay time. For the model (1.5), if 
we consider delay effects, there may be Hopf bifurcations for some delay time. This needs further study.
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