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This paper deals with a mathematical model that describe a genetic regulatory system.
The model has a delay which affects the dynamics of the system. We investigate the
stability switches when the delay varies, and show that Hopf bifurcations may occur within
certain range of the model parameters. By combining the normal form method with the
center manifold theorem, we are able to determine the direction of the bifurcation and
the stability of the bifurcated periodic solutions. Finally, some numerical simulations are
carried out to support the analytic results.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In order to examine the capability of genetic regulatory systems for complex dynamic activity, Smolen [3] proposed a
model in the form of two ordinary differential equations for the transcript factors (TFs). Denoting by TF–A the level of
the transcriptional activators, and by TF–R the level of the protein that represses transcription by binding to TA–REs (the
responsive elements of the TFs) the model is given by the following ode system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d[T F − A]
dt

=
k1, f [T F − A]2

[T F − A]2 + K1,d(1 + [T F − R]/K R,d)
− k1,d[T F − A] + r1,bas,

d[T F − R]
dt

=
k2, f [T F − A]2

[T F − A]2 + K2,d(1 + [T F − R]/K R,d)
− k2,d[T F − R]

(1)

where k1, f is the maximal transcription rate of TF–A, k2, f is the maximal synthesis rate, k1,d and k2,d are degradation
rates, K1,d and K2,d are the dissociation constants of TF–A dimer from TF–REs, r1,bas is a basal rate of synthesis of activator
at negligible dimer concentration, K R,d is the dissociation constant of TF–R monomers from TF–REs. See [3] for detailed
explanation for the model (2) and the parameters.

Using the numerical software AUTO, the authors of [3] numerically observed sustained oscillations for the model (2).
They also suggested the oscillations could be generated by time delays which is ubiquitous in genetic regulatory systems.
Indeed, in the same paper, the authors introduced a delay in to a scalar equation resulted from setting T A − R = 0 in (2),
and also numerically observed oscillations, which partially confirmed their claim that time delays serves as another source
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to generate oscillations or complex transients. In a more recent work, Smolen et al. [4] modified (2) by incorporating a delay
τ into (2) to obtain⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d[T F − A]

dt
=

(
k1, f [T F − A]2

[T F − A]2 + K1,d(1 + [T F − R]/K R,d)

)
(t − τ ) − k1,d[T F − A] + r1,bas,

d[T F − R]
dt

=

(
k2, f [T F − A]2

[T F − A]2 + K2,d(1 + [T F − R]/K R,d)

)
(t − τ ) − k2,d[T F − R]

(2)

where τ is the time between changes in TF–A concentration and the resultant changes in the rate of formation of new TF–A
due to TF–A transcription. Again, sustained oscillations were observed my numeric simulations of (2). No rigorous analysis
has been given for (1) and (2), either in [3] or [4], and thus the simulations were in some sense based on lucks. On the
other hand, Hopf bifurcation analysis on a system is a useful approaches that can provide much information about periodic
solutions near a destabilized steady state, in terms of the system’s parameters. This motivates us to perform a theoretical
analysis on the modified model (2), aiming to obtain certain range for the model parameters within which Hopf bifurcations
occur giving rise to some periodic solutions.

The rest of this paper is organized as below. In Section 2, we simplify the notations in (2), consider existence of a positive
equilibrium and its stability, and show that Hopf bifurcation can occur for some parameter values. We use the delay τ as
the bifurcation parameter, and thus, the obtained result confirms that the delay does cause oscillations in this model. In
Section 3, by using the normal form theory and the center manifold argument presented in Hassard et al. [1], we derive
some formulas that can determine the direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions.
We also perform some numeric simulations, guided by the results obtained in Section 2, to confirm the theoretical results.

In this section, we shall employ the result due to Ruan and Wei [2] to study the stability of the positive equilibrium and
existence of local Hopf bifurcation.

2. Stability and Hopf bifurcation analysis

Through out this paper, we assume K1,d = K2,d . For convenience, we re-label the unknowns and parameters as below:

k1, f = k1, k2, f = k2, k1,d = l1, k2,d = l2, r1,bas = r, K R,d = q, K1,d = K2,d = p,

T F − A = x, T F − R = y.

By the above re-labelling, system (2) is translated to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) =
k1x2(t − τ )

x2(t − τ ) + p(1 + y(t − τ )/q)
− l1x(t) + r,

ẏ(t) =
k2x2(t − τ )

x2(t − τ ) + p(1 + y(t − τ )/q)
− l2 y(t).

(3)

Let us firstly consider possible steady state (equilibrium) of system (3), which satisfies the following system of equations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1x2

x2 + p(1 + y/q)
− l1x + r = 0,

k2x2

x2 + p(1 + y/q)
− l2 y = 0.

(4)

For biological reasons, we are only interested in positive solutions of (4). It is very hard, if not impossible, to find an explicit
expression for a positive solution of (4). Therefore, instead of looking for an explicit form of it, we shall prove the existence
in an implicit way by some analysis.

Dividing the two quotient terms in (4), one can express y in terms of x by the following simpler formula:

y =
k2

k1l2
(l1x − r). (5)

Substituting the above expression into the first equation of system (4) gives the following equation for x:

k1x2

x2 + p(1 + k2
k1l2q (l1x − r))

= l1x − r (6)

which further leads to

x3 + U x2 + V x + R = 0 (7)

where
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Fig. 1. f (x) = 0 has a unique positive root under (A0)(i).

U =
pl1k2

k1l2q
− r + k1

l1
, V = p

(
1 − 2k2r

k1l2q

)
, R =

−rp

l1

(
1 − k2r

k1l2q

)
. (8)

The following lemma confirms establishes the existence of a unique positive root of (7) under some conditions.

Lemma 2.1. System (3) has a unique positive equilibrium (x̄, ȳ) under the following assumption:

(A0) R < 0 and one of the conditions holds:
(i) Δ := U 2 − 3V � 0;

(ii) Δ := U 2 − 3V > 0 and −U − √
Δ < 0;

(iii) Δ := U 2 − 3V > 0, −U − √
Δ > 0 and f (−U−√

Δ
3 ) < 0.

Proof. Let f (x) = x3 + U x2 + V x + R . Since f (0) = R < 0 and f (+∞) = +∞, by the intermediate value theorem, f (x) = 0
has at least one positive root. Next we show that this root is unique under (A0), under either of the three conditions in (A0).

Notice that f ′(x) = 3x2 + 2U x + V . If (i) holds, then f ′(x) � min f ′(x) = (3V − U 2)/3 � 0 for all x > 0, implying that the
positive root is unique, as is demonstrated in Fig. 1. If (ii) holds, then f ′(x) has two zeros

x1 =
−U − √

Δ
3

, x1 =
−U +

√
Δ

3

with x1 < 0, meaning that the cubic function f (x) attains its unique local maximum at left-hand side of the vertical axis.
This together with f (0) = R < 0 implies f (x) only has one positive root (see Fig. 2). For case (iii), f ′(x) also has the two
zeros but now with both being positive. Thus, the cubic function f (x) attains its local maximum at x1 > 0 with the value

f (−U−√
Δ

3 ) < 0. Thus, f (x) = 0 also only has one positive root, as is shown in Fig. 3.
We have seen that under (A0), f (x) = 0 has a unique positive real root, denoting it by x̄. Plugging x̄ back either to (5)

or to the first equation in (4) will give a value for y. But since there is no explicit formula for x̄, one cannot confirm that
this value of y is positive from either of these two equations. Thus, we need to seek alternative way to show this. Indeed,
plugging x̄ into the second equation in (4) and rewriting the resulting equation as

y2 +
q

p

(
x̄2 + p

)
y − k2q

l2 p
x̄2 = 0, (9)

one immediately sees that this quadratic equation has two real roots, one is positive and the other is negative. Denoting
the positive one by ȳ. This shows that under the assumption (A0), system (3) has a unique positive equilibrium (x̄, ȳ),
completing the proof. �

In order to determine the stability of (x̄, ȳ), we linearize (3) at (x̄, ȳ) to obtain{
ẋ(t) = −l1x(t) + k1Mx(t − τ ) + k1N y(t − τ ),

ẏ(t) = −l2 y(t) + k2Mx(t − τ ) + k2N y(t − τ ),
(10)

where

M =
2px̄(1 + ȳ/q)

[x̄2 + p(1 + ȳ/q)]2
, N =

(−p/q)x̄2

[x̄2 + p(1 + ȳ/q)]2
.
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Fig. 2. f (x) = 0 has a unique positive root under (A0)(ii).

Fig. 3. f (x) = 0 has a unique positive root under (A0)(iii).
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The characteristic equation of (10) is

λ2 +
(
l1 + l2 − k2Ne−λτ − k1Me−λτ

)
λ + l1l2 − l1k2Ne−λτ − l2k1Me−λτ = 0. (11)

When τ = 0, Eq. (11) becomes

λ2 + β1λ + β0 = 0, (12)

where

β0 = l1l2 − l1k2N − l2k1M and β1 = l1 + l2 − k2N − k1M.

The signs of β0 and β1 play an important role in determine the locations of the roots of (12). For β0 , we can show that
β0 > 0 as below. Consider the function

H(x) =
k1x2

x2 + p(1 + k2
k1l2q (l1x − r))

− l1x + r.

Obviously, H(x) = 0 is equivalent to f (x) = 0, and hence H(x) = 0 also has the unique positive root x̄. This, together with
the fact that H(0) = r > 0 and H(∞) = −∞ implies that H ′(x̄) < 0. Now

H ′(x) =

pk2l1
l2q x2 + 2k1 p(1 − k2r

k1l2q )x

[x2 + p(1 + k2
k1l2q (l1x − r))]2

− l1.

Substituting x̄ into the above equation and noting that ȳ = k2
k1l2

(l1 x̄ − r), we easily see that H ′(x̄) < 0 reduces to β0 > 0.
The following lemma follows directly from the fact that β0 > 0.

Lemma 2.2. The following hold:

(I) If β1 > 0, then all roots of (12) have negative real parts.
(II) If β1 < 0, then all roots of (12) have positive real parts.

(III) If β1 = 0, (12) has a pair of purely imaginary roots ±i
√

β0 .

Note that N and M depend on k1 and k2 via x̄ and ȳ. Thus, the sign of β1 , in general, cannot be explicitly determined.
The following numeric example shows that both cases of (I) and (II) are possible.

Example 1. Consider the same parameter values as used in Paul Smolen [3]:

k2 = 0.3, l1 = 1, l2 = 0.2, p = 10, q = 0.2, r = 0.4.

When τ = 0, the systems (3) becomes the following ordinary differential equations:⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) =
k1x2(t)

x2(t) + 10(1 + 5y(t))
− x(t) + 0.4,

ẏ(t) =
0.3x2(t)

x2(t) + 10(1 + 5y(t))
− 0.3y(t).

(13)

By numeric calculations, we can obtain β1 = l1 + l2 −k2N −k1M = 0 at k1 = 9.9211 or 10.8337. For k1 = 9.9211, the equilib-
rium of system (13) is (x̄, ȳ) = (1.3638, 0.1457); for k1 = 10.8337, the equilibrium of system (10) is (x̄, ȳ) = (3.1987, 0.3875).
When k1 < 9.9211 or k1 > 10.8337, we have β1 > 0; when 9.9211 < k1 < 10.8337, we have β1 < 0. The conclusions (I)–(III)
in Lemma 2.2 shows that Hopf bifurcation occurs when k1 either increase to pass 9.9211 or decrease to pass 10.8337. These
results are summarized in the following theorem.

Theorem 2.3. Consider system (13):

(i) The unique positive equilibrium (x̄, ȳ) is asymptotically stable when k1 < 9.9211 or k1 > 10.8337.
(ii) The equilibrium (x̄, ȳ) is unstable when 9.9211 < k1 < 10.8337.
(iii) System (13) undergoes a Hopf bifurcation at (x̄, ȳ) when k1 increase to pass the value 9.9211 or decrease to pass the value 10.8337.

The above results are numerically confirmed, as illustrated in Figs. 4–6.
In the rest of the paper we assume that β1 > 0 holds, hence (x̄, ȳ) is stable when τ = 0. We will explore how the time

delay τ affects the dynamics of (3). It is well known (see, e.g. [2]) that a root λ = λ(τ ) of (11) depends on τ continuously;
if it will ever leave the left half plane and enter the right half plane on the complex plane as τ increases, it must cross the
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Fig. 4. Phase plots for system (13) with k1 = 9.89, k2 = 0.3, l1 = 1, l2 = 0.2, p = 10, q = 0.2, r = 0.4.

Fig. 5. Phase plots for system (13) with k1 = 10, k2 = 0.3, l1 = 1, l2 = 0.2, p = 10, q = 0.2, r = 0.4.

Fig. 6. Phase plots for system (13) with k1 = 11, k2 = 0.3, l1 = 1, l2 = 0.2, p = 10, q = 0.2, r = 0.4.

purely imaginary axis, and this is exactly the situation where Hopf bifurcation occurs. So, we need to explore the possibility
of purely imaginary roots of (11) as τ increases. For convenience of notations, we denote

A = l21 + l22 − (k2N + k1M)2, B = (l1l2)
2 − (l1k2N + l2k1M)2.
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Lemma 2.4. Assume that

(A1) A < 0 and A2 − 4B > 0

hold. Then Eq. (11) has a pair of purely imaginary roots ±iω j , j = 1, 2, at τ = τ
j

n , j = 1, 2 and n = 0, 1, 2, . . . , where

τ
j

0 =

⎧⎨
⎩

− 1
ω j

arctan δ, if δ < 0,

1
ω j

(π − arctan δ), if δ > 0,

τ
j

n = τ
j

0 +
nπ

ω j
, n = 1, 2, . . . , j = 1, 2,

ω1 =

√
−A − √

A2 − 4B

2
, ω2 =

√
−A +

√
A2 − 4B

2
,

δ =
k2N((ω j)

2 + l21) + k1M((ω j)
2 + l22)

k2Nl2((ω j)
2 + l21) + k1Ml1((ω j)

2 + l22)
. (14)

Proof. Substituting λ = iω (ω > 0) into Eq. (11) yields

−ω2 +
[
l1 + l2 − (k2N + k1M)(cosωτ − i sinωτ)

]
iω + l1l2 − (l1k2N + l2k1M)(cosωτ − i sinωτ) = 0.

Separating the real and imaginary parts leads to

ω(k2N + k1M) cosωτ − (l1k2N + l2k1M) sinωτ = ω(l1 + l2),

ω(k2N + k1M) sinωτ + (l1k2N + l2k1M) cosωτ = −ω2 + l1l2. (15)

Squaring and adding both equations of (12) results in the equation,

ω4 + Aω2 + B = 0. (16)

Obviously, if (16) has no positive solution for ω2 , then (11) cannot have purely imaginary roots. Now, under the assumption
(A1), (16) has two positive solutions for ω:

ω1 =

√
−A − √

A2 − 4B

2
, ω2 =

√
−A +

√
A2 − 4B

2

with ω1 < ω2 . Let

τ
j

0 =

⎧⎨
⎩

− 1
ω j

arctan δ, if δ < 0,

1
ω j

(π − arctan δ), if δ > 0,

and define

τ
j

n = τ
j

0 +
nπ

ω j
, n = 1, 2, . . . , j = 1, 2,

then (τ
j

n ,ω j) solves Eq. (15). This means that iω j is a root of Eq. (11) when τ = τ
j

n (n = 0, 1, 2, . . . , j = 1, 2). This completes
the proof. �

The following lemma verifies the transversality condition.

Lemma 2.5. Let λ(τ ) = α(τ ) + iω(τ) be the root of Eq. (11) satisfying α(τ
j

n ) = 0 and ω(τ
j

n ) = ω j . If

(A2) 1
(ω j)

2+l22
+ 1

(ω j)
2+l21

>
(k1 M+k2 N)2

(k1 M+k2 N)2(ω j)
2+(k1l2 M+k2l1 N)2

holds, then

α′(τ j
n
)
> 0.
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Proof. Substituting λ(τ ) into (11) and differentiating both sides with respect to τ gives

(
dλ

dτ

)−1

= − 1

λ(λ + l2)
− 1

λ(λ + l1)
+

k1M + k2N

λ[λ(k1M + k2N) + (k2l1N + k1l2M)] − τ

λ
.

At τ = τ
j

n , λ = iω j and hence,

(
dλ

dτ

)−1∣∣∣∣
λ=iω j ,τ=τ

j
n

=
1

(ω j)
2 − iω jl2

+
1

(ω j)
2 − iω jl1

+
k1M + k2N

(−ω j)
2(k1M + k2N) + iω j(k2l1N + k1l2M)

− τ
j

n

iω j
.

Taking out the real part, one then obtains

(
α′(τ j

n
))−1

=
1

(ω j)
2 + l22

+
1

(ω j)
2 + l21

− (k1M + k2N)2

(k1M + k2N)2(ω j)
2 + (k1l2M + k2l1N)2

which is positive by (A2). This completes the proof. �
Summarizing the above analysis and applying the Hopf bifurcation theorem for functional differential equations (see, e.g.,

[1]), we obtain the following theorem.

Theorem 2.6. Assume that β1 > 0, and (A1) and (A2) hold. Then (x̄, ȳ) is asymptotically stable for τ ∈ [0,τ0) with τ0 = min{τ 1
0 ,τ 2

0 },

and it becomes unstable for τ > τ0 . System (3) undergoes Hopf bifurcations around (x̄, ȳ) as τ increases to pass τ = τ
j

n for j = 1, 2
and n = 0, 1, 2, . . . , where τ

j
n , j = 1, 2 and n = 0, 1, 2, . . . , are defined by (14).

Although there is a sequence of critical values for the bifurcation parameter τ , only at the smallest one τ0 = min{τ 1
0 ,τ 2

0 }
it is possible for the bifurcated periodic solution to be stable and hence numerically observable. In the next section, we will
investigate the direction of the Hopf bifurcation and the stability of the bifurcated periodic solution near the first critical
value τ0 .

3. Direction and stability of the Hopf bifurcation

In this section we shall study the direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions
near τ0 , by using the algorithm developed in Hassard et al. [1] which is based on the normal form and center manifold
theory.

Let τ = τ0 + μ. Then μ = 0 is the Hopf bifurcation value for system (3) in terms of the new bifurcation parameter μ.
Let X(t) = x(t) − x̄, Y (t) = y(t) − ȳ, t = sτ and still denote X(t), Y (t) by x(t), y(t), sτ by t . System (3) can be written as

ẋ(t) = τ

[
k1(x(t − 1) + x̄)2

(x(t − 1) + x̄)2 + p(1 + (y(t − 1) + ȳ)/q)
− l1

(
x(t) + x̄

)
+ r

]
,

ẏ(t) = τ

[
k2(x(t − 1) + x̄)2

(x(t − 1) + x̄)2 + p(1 + (y(t − 1) − ȳ)/q)
− l2

(
y(t) + ȳ

)]
. (17)

Choose the phase space as C = C([−1, 0], R2). For any φ ∈ C let

Lμ(φ) = (τ0 + μ)

[
−l1 0

0 −l2

][
φ1(0)

φ2(0)

]
+ (τ0 + μ)

[
k1M k1N

k2M k2N

][
φ1(−1)

φ2(−1)

]

def
= (τ0 + μ)Bφ(0) + (τ0 + μ)Cφ(−1)

and

F (μ,φ) = (τ0 + μ)

⎡
⎢⎢⎢⎢⎣

k1
2 (M1x2(t − 1) + 2Q 1x(t − 1)y(t − 1) + N1 y2(t − 1)) + k1

6 (M2x3(t − 1)

+ 3Q 2x2(t − 1)y(t − 1) + 3R2x(t − 1)y2(t − 1) + N2 y3(t − 1)) + O (x4(t − 1), y4(t − 1))

k2
2 (M1x2(t − 1) + 2Q 1x(t − 1)y(t − 1) + N1 y2(t − 1)) + k2

6 (M2x3(t − 1)

+ 3Q 2x2(t − 1)y(t − 1) + 3R2x(t − 1)y2(t − 1) + N2 y3(t − 1)) + O (x4(t − 1), y4(t − 1))

⎤
⎥⎥⎥⎥⎦

where
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M1 =
2

x̄2 + p(1+ ȳ)
q

− 10x̄2

[x̄2 + p(1+ ȳ)
q ]2

+
8x̄4

[x̄2 + p(1+ ȳ)
q ]3

,

N1 =
2x̄2 p2

[x̄2 + p(1+ ȳ)
q ]3q2

,

Q 1 = − 2x̄p

[x̄2 + p(1+ ȳ)
q ]2q

+
4x̄3 p

[x̄2 + p(1+ ȳ)
q ]3q

,

M2 = − 24x̄

[x̄2 + p(1+ ȳ)
q ]2

+
72x̄3

[x̄2 + p(1+ ȳ)
q ]3

− 48x̄5

[x̄2 + p(1+ ȳ)
q ]4

,

N2 = − 6x̄2 p3

[x̄2 + p(1+ ȳ)
q ]4q3

,

R2 =
4x̄p2

[x̄2 + p(1+ ȳ)
q ]3q2

− 12x̄3 p2

[x̄2 + p(1+ ȳ)
q ]4q2

,

Q 2 = − 2p

[x̄2 + p(1+ ȳ)
q ]2q

+
20x̄2 p

[x̄2 + p(1+ ȳ)
q ]3q

− 24x̄4 p

[x̄2 + p(1+ ȳ)
q ]4q

.

By the Riesz representation theorem, there exists a matrix whose components are bounded variation function
η(θ ,μ) : [−1, 0] → R22

in θ ∈ [−1, 0] such that

Lμφ =

0∫
−1

dη(θ ,μ)φ(θ) for φ ∈ C . (18)

In fact, if we choose

η(θ ,μ) =

⎧⎪⎨
⎪⎩

(τ0 + μ)B, θ = 0,

0, θ ∈ (−1, 0),

−(τ0 + μ)C , θ = −1,

then (18) is realized.
For φ ∈ C1([−1, 0], R2), define

A(μ)φ =

{
dφ(θ)/dθ , θ ∈ [−1, 0),∫ 0
−1 dη(t,μ)φ(t), θ = 0,

R(μ)φ =

{
0, θ ∈ [−1, 0),

F (μ,φ), θ = 0.

Then system (17) can be rewritten in the following form:

u̇t = A(μ)ut + R(μ)ut , (19)

where ut = u(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (C2)∗), define

A∗ψ(s) =

{−dψ(s)/ds, s ∈ (0, 1],∫ 0
−1 dT η(t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0], C2) and ψ ∈ C([0, 1], (C2)∗), define

〈ψ ,φ〉 = ψ̄(0)φ(0) −
0∫

−1

θ∫
0

ψ̄(ξ − θ)dη(θ)φ(ξ)dξ

where η(θ) = η(θ , 0). Then A∗ and A(0) are adjoint operators. Let q(θ) and q∗(s) are eigenvector of A and A∗ corresponding
to iτ0ω0 and −iτ0ω0 , respectively. By direct computation, we obtain that

q(θ) = (1, E)T eiω0τ0θ , q∗(s) =
1

D̄
(1, F )eiω0τ0s,
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where

E =
iω0τ0 + l1 − k1Me−iω0τ0

k1Ne−iω0τ0
, F =

k1Neiω0τ0

−iω0τ0 + l2 − k2Neiω0τ0
,

D = 1 + E F̄ + (k1M + F̄ k2M + Ek1N + E F̄k2N)τ0e−iω0τ0 .

Moreover, 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0.
Using the same notation as in Hassard et al. [1], we first compute the coordinates for describing the center manifold £0

at μ = 0. Let ut be the solution of Eq. (17) when μ = 0. Define z(t) = 〈q∗, ut〉 and W (t, θ) = ut(θ) − 2 Re{z(t)q(θ)}. On the
center manifold £0 , we have W (t, θ) = w(z, z̄, θ), where

W (z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ W30(θ)

z3

6
+ · · · ,

z and z̄ are local coordinates for center manifold £0 in the direction of q∗ and q̄∗ . Noticing that W is real, if ut is real, we
only need to consider real solutions. For a solution ut ∈ £0 of (17), since μ = 0, we have

ż(t) = iω0τ0z(t) + q̄∗(0)F0(z, z̄). (20)

We rewrite this equation as

ż(t) = iω0τ0z(t) + g(z, z̄), (21)

where

g(z, z̄) = q̄∗(0)F0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ · · · . (22)

By (18) and (20), we have

Ẇ = u̇t − żq − ˙̄zq̄ =

{
AW − 2 Re{q̄∗(0)F0q(θ)}, θ ∈ [−1, 0),

AW − 2 Re{q̄∗(0)F0q(θ)} + F0, θ = 0,

:= AW + H(z, z̄, θ),

where F0
def
= F0(z, z̄), and

H(z, z̄, θ) = H20
z2

2
+ H11zz̄ + H02

z̄2

2
+ · · · . (23)

Expanding the above series and comparing the corresponding coefficients, we obtain

(A − 2iω0τ0)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), . . . . (24)

Note that ut = W (t, θ) + zq(θ) + z̄q̄(θ) and q(θ) = (1, E)T eiω0τ0θ , we get

x(t − 1) = ze−iω0τ0 + z̄eiω0τ0 + W (1)(−1), y(t − 1) = zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)(−1),

where

W (1)(−1) = W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄ + W (1)
02 (−1)

z̄2

2
+ · · · ,

W (2)(−1) = W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz̄ + W (2)
02 (−1)

z̄2

2
+ · · · .
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It follows that

F0 = τ0 ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1
2 {M1[ze−iω0τ0 + z̄eiω0τ0 + W (1)

20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2 + · · ·]2

+ 2Q 1[ze−iω0τ0 + z̄eiω0τ0 + W (1)
20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2

+ · · ·][zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]
+ N1[zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)

20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]2}

+ k1
6 {M2[ze−iω0τ0 + z̄eiω0τ0 + W (1)

20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2 + · · ·]3

+ 3Q 2[ze−iω0τ0 + z̄eiω0τ0 + W (1)
20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2

+ · · ·]2[zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]
+ 3R2[ze−iω0τ0 + z̄eiω0τ0 + W (1)

20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2

+ · · ·][zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]2

+ N2[zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]3}

+ O (x4(t − 1), y4(t − 1))

k2
2 {M1[ze−iω0τ0 + z̄eiω0τ0 + W (1)

20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2 + · · ·]2

+ 2Q 1[ze−iω0τ0 + z̄eiω0τ0 + W (1)
20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2

+ · · ·][zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]
+ N1[zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)

20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]2}

+ k2
6 {M2[ze−iω0τ0 + z̄eiω0τ0 + W (1)

20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2 + · · ·]3

+ 3Q 2[ze−iω0τ0 + z̄eiω0τ0 + W (1)
20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2

+ · · ·]2[zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]
+ 3R2[ze−iω0τ0 + z̄eiω0τ0 + W (1)

20 (−1) z2

2 + W (1)
11 (−1)zz̄ + W (1)

02 (−1) z̄2

2

+ · · ·][zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]2

+ N2[zEe−iω0τ0 + z̄ Ēeiω0τ0 + W (2)
20 (−1) z2

2 + W (2)
11 (−1)zz̄ + W (2)

02 (−1) z̄2

2 + · · ·]3}

+ O (x4(t − 1), y4(t − 1))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Comparing the coefficients with (21), we have

g20 =
τ0(k1 + k2 F̄ )

D

(
M1 + 2Q 1 E + N1 E2)e−2iω0τ0 ,

g11 =
τ0(k1 + k2 F̄ )

D
(M1 + Q 1 Ē + Q 1 E + N1 E Ē),

g02 =
τ0(k1 + k2 F̄ )

D

(
M1 + 2Q 1 Ē + N1 Ē2)e2iω0τ0 ,

g21 =
τ0(k1 + k2 F̄ )

D

[
M1
(
W (1)

20 (−1)eiω0τ0 + 2W (1)
11 (−1)e−iω0τ0

)
+ Q 1

(
2W (2)

11 (−1)e−iω0τ0 + W (2)
20 (−1)eiω0τ0 + W (1)

20 (−1)Ēeiω0τ0 + 2W (1)
11 (−1)Ee−iω0τ0

)
+ N1

(
2EW (2)

11 (−1)e−iω0τ0 + Ē W (2)
20 (−1)eiω0τ0

)
+ M2e−iω0τ0 + Q 2(Ē + 2E)e−iω0τ0

+ R2
(

E2 + 2E Ē
)
e−iω0τ0 + N2 E2 Ēe−iω0τ0

]
, (25)

where

W20(θ) =
ig20

ω0τ0
q(θ) +

i ḡ02

3ω0τ0
q̄(θ) + E1e2iω0τ0θ , (26)

W11(θ) = − ig11

ω0τ0
q(θ) +

i ḡ11

ω0τ0
q̄(θ) + E2, (27)
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Fig. 7. Delay induced sustained oscillations: numeric simulations of system (3) with k1 = 11, k2 = 0.3, l1 = 1, l2 = 0.2, p = 10, q = 0.2, r = 0.4 and τ =
12 > τ0 = 2.3026.

E1 =

[
2iω0 + l1 − k1Me−2iω0τ0 −k1Ne−2iω0τ0

−k2Me−2iω0τ0 2iω0 + l2 − k2Ne−2iω0τ0

]−1

×
[

k1(M1e−2iω0τ0 + 2Q 1 Ee−2iω0τ0 + N1 E2e−2iω0τ0 )

k2(M1e−2iω0τ0 + 2Q 1 Ee−2iω0τ0 + N1 E2e−2iω0τ0 )

]
,

E2 = −
[

−l1 + k1M k1N

k2M −l2 + k2N

]−1

×
[

k1(M1 + Q 1 Ē + Q 1 E + N1 E Ē)

k2(M1 + Q 1 Ē + Q 1 E + N1 E Ē)

]
.

Solving the above equations to obtain E1 and E2 , and substituting them into (26) and (27), respectively, we can get
W20(θ) and W11(θ). Then g21 can be expressed by the parameters and delay in Eq. (17) Consequently, gij in (25) can be
expressed by the parameters and delays in (17). Thus, we can compute the following quantities:

c1(0) =
i

2ω0

(
g11 g20 − 2|g11|2 − |g02|2

3

)
+

g21

2
, μ2 = − Re(c1(0))

Re(λ′(τ0))
,

γ2 = 2 Re
(
c1(0)

)
, T2 = − Im(c1(0)) + μ2 Im(λ′(τ0)

ω0
, (28)

which determine the properties of bifurcating periodic solutions at the critical value τ0 as below:

(i) μ2 determines the directions of the Hopf bifurcation: if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical
(subcritical) and the bifurcating periodic solutions exist for τ > τ0 (τ < τ0);

(ii) γ2 determines the stability of bifurcating periodic solutions: the bifurcating periodic solutions are stable (unstable) if
γ2 < 0 (γ2 > 0);

(iii) T2 determines the period of the bifurcating periodic solutions: the period increases (decreases) if T2 > 0 (T2 < 0).

4. Numeric simulations

To illustrate the analytical results obtained in Section 3, we will choose parameter values as

k2 = 0.3, l1 = 1, l2 = 0.2, p = 10, q = 0.2, r = 0.4.

When k1 = 11, the equilibrium is given by (x̄, ȳ)
.
= (3.5268, 0.4263), and (A0), (A1) and (A3) are all satisfied. Furthermore,

we have ω0
.
= 0.6656, τ0

.
= 2.3026, g20

.
= 0.6165 − 0.5428i, g11

.
= −0.6120 + 0.3759i, g02

.
= 0.7630 − 0.3044i, and g21

.
=

−6.6747 − 2.8357i, λ′(τ0) = 3.7758 − 6.8184. By (23), we can further compute to obtain

c1(0)
.
= −3.5250 − 1.8938i, μ2

.
= 0.9335, γ2

.
= −7.0501, T2

.
= 12.4083.

Hence we conclude that the bifurcation occurs when τ increases to pass τ0 , the bifurcated periodic solution is orbitally
asymptotically stable, and the period increases as well as τ increase. These are illustrated in Fig. 7. Note that values of all
parameters are taken the same as in Fig. 6, except τ = 12, showing the sustained oscillations are induced by delay.
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