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semiflows are considered. Obtained is a new type of generic quasi-convergence principles
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the state space is order bounded. The generic quasi-convergence principles are then applied
to essentially cooperative and irreducible systems in the forms of ordinary differential
equations and delay differential equations, giving some results of theoretical and practical
significance.
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1. Introduction

In recent years there have been many works dealing with generic properties of strongly monotone dynamical systems
(see [4–8,10–12,15,17–19,21,24–26]). As is known, two key ingredients in the proof of these principal results for mono-
tone dynamical systems are monotonicity and compactness. Consequently, one can improve these results by weakening the
monotonicity or/and compactness assumptions. Recently, inspired by the work of Smith and Thieme [19], Yi and Huang
[24] derived some results on generic quasi-convergence by replacing the classic strongly order-preserving condition with
the essentially strongly order-preserving condition and applied the results to a quasimonotone system of delay differential
equations. An advantage of this new order-preserving property is that it does not require delicate choice of the state space
and the technical ignition assumption required in the classical work.

On the compactness aspect, Hirsch and Smith [7,8] introduced the assumption that the limit sets have infima and
suprema in the state space and proved that the generic quasiconvergence principle holds provided that the strong com-
pactness assumption is replaced by this assumption. As pointed out by Hirsch and Smith in [7,8], under the standard
ordering, this assumption is automatically satisfied in “nice” subsets (every compact subset of such a set has an infimum
and supremum in this set) of the Euclidean space or the space of continuous functions on a compact set. Such nice subsets
include the whole phase space and standard order cone. Therefore, the results of [7,8] can be conveniently applied to sys-
tems of delay differential equations defined in the whole phase space or in its nice subsets, provided the standard ordering is
adopted.

However, due to their practical backgrounds, some differential equations may not be defined in the whole space, neither
are they defined in “nice” subsets of the space. Even if the equations are defined in the whole space or a “nice” subset of
the space, in many cases a nonstandard ordering needs to be adopted in order for the solution semi-flow to be monotone
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(e.g. [8,9,13,14,22]). In such cases, a compact subset may not have an infimum and/or supremum in the space where the
equations are defined, and hence the replacing assumption for compactness in Hirsch and Smith [7,8] does not automatically
hold anymore.

To demonstrate aforementioned possibilities, we consider following system of delay differential equations:

x′(t) = f (xt), (1.1)

where f : Ω → R3 is a continuous map, where r > 0, Ω is the closure of an open subset of C = C([−r,0], R3), and C is the
Banach space equipped with the usual supremum norm and the usual pointwise standard function ordering. Assume also
that for each ϕ ∈ Ω , (1.1) has a unique solution on R1+ satisfying x0 = ϕ . Let

Ω = {
ϕ ∈ C : ϕ : [−r,0] → {

(x, y, z) ∈ R3: y � |x|, z � 0
}}

and choose ζ : [−r,0] �→ (0,2,0) and η : [−r,0] �→ (−4,5,0). Now if Ω1 is a compact subset in Ω such that ζ,η ∈ Ω1, then
it is clear that Ω1 cannot attain its infimum in Ω .

Consider (1.1) again with Ω = C([−r,0], R3) (the whole space), but with ordering induced by the cone C+ =
C([−r,0], {(x, y, z) ∈ R3: z �

√
x2 + y2}). Let ζ : [−r,0] �→ (1,0,0), η : [−r,0] �→ (2,0,0), ξ : [−r,0] �→ (1.5,0,0.5) and

� : [−r,0] �→ (1,1,
√

2). Then Ω1 = {ζ,η} is a compact subset of Ω . A simple computation shows that ξ,� � Ω1. We now
claim that ξ is the minimal element of {ψ ∈ Ω: ψ � Ω1}. Otherwise, there exists ϕ ∈ Ω such that ϕ � Ω1 and ξ > ϕ , and
hence ξ(r1) > ϕ(r1) for some r1 ∈ [−r,0]. Let ϕ(r1) = (a,b, c) ∈ R3. Then by the choice of ϕ and r1, we have ϕ(r1) � ζ(r1),
ϕ(r1) � η(r1) and ξ(r1) > ϕ(r1), that is, c �

√
(a − 1)2 + b2, c �

√
(a − 2)2 + b2, 0.5−c �

√
(a − 1.5)2 + b2 and c �= 0.5. Thus

c � |a − 1|, c � |a − 2| � 1 − |a − 1| and 0.5 − c > 0, a contradiction. Since � − ξ /∈ C+ , Ω1 cannot have its supremum in Ω .
From the above, one can see that seeking more convenient conditions for the compactness part of the generic quasi-

convergence principle still remains an interesting and meaningful problem. Notice that compactness is a concept indepen-
dent of the ordering of the state space, while the concepts of supremum and infimum are related to the ordering. This
motivates us to look for alternative conditions along directions other than that in Hirsch and Smith [7,8].

Recall that when considering a delay differential system of the form (1.1), the following assumptions are typically re-
quired (before Hirsch and Smith [7,8], see [17–20,23,24]) to guarantee strong compactness of the solution semi-flow for the
generic quasi-convergence principle:

(T1) f maps bounded subsets of Ω to bounded subsets of R3, and for each ϕ ∈ Ω, xt(ϕ) is a bounded solution defined for
t � 0.

(T2) For each compact subset A of Ω , there exist T = T A > 0 and a closed, bounded subset B = B A of Ω such that xt(A) ⊂ B
for all t � T .

In this paper, we shall show that (T1) alone is enough to serve the compactness purpose for the generic quasi-convergence
property for (1.1). To this end, in Section 2, we first state some preliminary results; then, we establish a new type of
generic quasi-convergence principles for essentially strongly order-preserving and conditionally set-condensing semi-flows.
In Section 3, we apply our generic quasi-convergence principles to cooperative and irreducible ordinary differential equations
and essentially cooperative and irreducible delay differential equations of the form (1.1). It is amazing and a little bit
surprising that the observation that (T2) can be dropped in this context has been overlooked for such a long time.

2. Main results

Assume that X is an ordered complete metric space with a metric d and a closed partial order relation �. For any
x, y ∈ X , we write x < y if x � y and x �= y. Given two subsets A and B of X , we write A � B (A < B , resp.) if x � y (x < y)
holds for all x ∈ A and y ∈ B . For subsets A and B with A � B , denote [A, B] = {x ∈ X: A � x � B}.

We call X an ordered bounded space provided [a,b] is bounded for any a,b ∈ X with a � b. Clearly, [A, B] is bounded
for any subsets A and B ∈ X such that A � B provided X is an ordered bounded space.

The metric space X is normally ordered if there exists a constant k > 0 such that d(x, y) � kd(u, v) whenever u, v ∈ X
and x, y ∈ [u, v].

A semiflow on X is a continuous map Φ : X × R1+ → X with Φt(x) � Φ(x, t) satisfying

(i) Φ0(x) = x for all x ∈ X ;
(ii) Φt(Φs(x)) = Φt+s(x) for all x ∈ X and t, s ∈ R1+ .

For x ∈ X , O (x) = {Φt(x): t � 0} is the orbit of x, and ω(x) = ⋂
t�0 O (Φt(x)) is the omega limit set of x. As is well

known, if O (x) is compact, then ω(x) is nonempty, compact, connected, and invariant.
Let E = {x ∈ X: Φt(x) = x for all t � 0} be the set of equilibria of Φ . The set of quasi-convergent points is denoted by

Q = {x ∈ X: ω(x) ⊂ E} and the set of convergent points by C = {x ∈ X: ω(x) is a singleton set}.
Let Φ be a semiflow on X . We say Φ is monotone if Φt(x) � Φt(y) whenever x � y and t � 0. For a given monotone

semiflow Φ and fixed t0 � 0, denote x ≺(Φ,t0) y if x � y and Φt0 (x) < Φt0 (y). We shall write ≺ for ≺(Φ,t0) when no
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confusion results. Note that the relations “≺(Φ,t0)” is just “<” when t0 = 0. A monotone semiflow Φ is said to be essentially
strongly order-preserving if for any x, y ∈ X with x ≺ y, there exist T0 � 0 and open sets U and V such that x ∈ U , y ∈ V
and ΦT0(U ) � ΦT0(V ). As pointed out in [24], when t0 = 0, an essentially strongly order-preserving semiflow becomes a
strongly order-preserving semiflow in the sense of Smith and Thieme [19].

For a given measure β of noncompactness, a continuous map H : X → X is said to be conditionally set-condensing on X
if β(T B) < β(B) for each bounded subset B in X for which T B is bounded in X and β(B) > 0.

For convenience of statements, we introduce the following assumptions:

(A1) Φ is an essentially strongly order-preserving semiflow on X .
(A2) There exists t1 > 0 such that Φt1 is a conditionally set-condensing map on X .
(A3) For each x ∈ X , O (x) is a bounded subset of X .
(A4) X is an ordered bounded space.
(A5) X is a normally ordered space.

Note that the assumptions (A2) and (A3) imply that every orbit has a compact closure in X , due to the definition of the
conditionally set-condensing map.

If the metric space X is normally ordered, then there exists a constant k > 0 such that d(x, y) � kd(u, v) whenever
u, v ∈ X and x, y ∈ [u, v]. So, for any order interval [a,b] ⊆ X and x ∈ [a,b], we have d(x,a) � kd(a,b) and [a,b] is bounded.
Hence, the assumption (A5) implies (A4).

For x ∈ X , we say that x can be essentially approximated from below (resp. above) if there exists a sequence {xn} ∈ X such
that xn ≺ xn+1 ≺ x (resp. x ≺ xn+1 ≺ xn) and xn → x as n → ∞. In this case we say sequence {xn} essentially approximates x
from below or above. The sequence {xn} is omega compact if

⋃
n�1 ω(xn) has compact closure contained in X .

For x ∈ X , we say that x is a stable point if for every ε > 0 there exists δ > 0 such that d(Φt(x),Φt(y)) < ε for t � 0
whenever y ∈ X and d(x, y) < δ; we say that a stable point x is an asymptotically stable point if there is a neighborhood V
of x with the property that for every ε > 0 there exists Tε > 0 such that d(Φt(x),Φt(y)) < ε if t � Tε and y ∈ V .

Define

X− = {x ∈ X: x can be essentially approximated from below by a sequence of X},
X+ = {x ∈ X: x can be essentially approximated from above by a sequence of X},
Xω− = {x ∈ X: x can be essentially approximated from below by an omega compact sequence of X},
Xω+ = {x ∈ X: x can be essentially approximated from above by an omega compact sequence of X},
S = {x ∈ X: x is stable point},
A = {x ∈ X: x is asymptotically stable point}.

Obviously, Xω+ ⊆ X+ , Xω− ⊆ X− and A ⊆ S.
We need the following proposition which has been proved in Yi and Huang [24].

Proposition 2.1 (Limit set dichotomy). Assume that the assumption (A1) holds and every orbit has compact closure in X. Let x, y ∈ X
satisfy x ≺ y. Then, one of the following holds:

(i) ω(x) < ω(y);
(ii) ω(x) = ω(y) ⊂ E.

Proposition 2.2. Assume that (A1)–(A4) hold. Then X+ ⊆ Xω+ and X− ⊆ Xω− , and hence X+ = Xω+ and X− = Xω− .

Proof. We may assume without loss of generality that x ∈ X− and thus there exists a sequence {xn} in X which essentially
approximates x from below. By Proposition 2.1, we then have ω(x1) = ω(x) or ω(x1) < ω(x). If the former holds, then by
Proposition 2.1 ω(xn) = ω(x) for all positive integers n and hence the sequence {xn} is omega compact. If the latter holds,
then [ω(x1),ω(x)] is bounded since X is ordered bounded space. Applying Proposition 2.1, we can deduce

⋃
n�2 ω(xn) ⊆

[ω(x1),ω(x)], and hence
⋃

n�1 ω(xn) is bounded. By the invariance of the omega set,
⋃

n�1 ω(xn) is invariant. In view of

the definition of conditionally set-condensing,
⋃

n�1 ω(xn) is pre-compact and thus
⋃

n�1 ω(xn) is compact, that is, the
sequence {xn} is also omega compact in this case. Consequently, x ∈ Xω− . This completes the proof. �

Now we are in the position to state and prove the following new generic quasi-convergence principles.

Theorem 2.1. Let (A1)–(A4) hold. Suppose Y is an open and dense subset of X . If Y ⊆ X− ∪ X+ , then Y ⊆ Int Q ∪ Int C, and hence
X = Y = Int Q.
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Proof. By Proposition 2.2, Y ⊆ Xω− ∪ Xω+ . Suppose that x0 ∈ Y \ Int Q. Then there exists xn ∈ Y \Q such that xn → x0 as n → ∞.
Without loss of generality, we may assume that xn ∈ Xω− holds for all n � 1. Since xn /∈ Q, it follows from Propositions 4.1
and 4.3 in [24] that xn ∈ Int C for all n � 1. Therefore, x0 ∈ Int C. This completes the proof. �
Theorem 2.2. Let (A1)–(A3) and (A5) hold. If there exists an open and dense subset Y of X with Y ⊆ X− ∩ X+ , then
A ∪ Int(S ∩ C) = X, and hence X = Int S.

Proof. By Proposition 2.2, we obtain Y ⊆ Xω− ∩ Xω+ . For the sake of contradiction, assume A ∪ Int(S ∩ C) �= X . Then there
exists an open subset U of X such that U ∩ A = ∅ and U ∩ Int(S ∩ C) = ∅. Without loss of generality we may assume U ∈ Y
since Y is an open, dense subset of X . By Y ⊆ Xω− ∩ Xω+ , U ∩ A = ∅ and U ⊆ Y , it follows from Propositions 4.1 and 4.4
in [24] that U ⊂ S ∩ C. Therefore, U ∩ Int(S ∩ C) �= ∅, a contradiction. This completes the proof. �
3. Applications

In this section, we first introduce some concepts and notations which will be used in the rest of this paper. Let K ⊂ Rn

be a cone with nonempty interior and denote by Int K the interior of K in Rn , and by ∂ K the boundary of K in Rn . In what
follows, K ∗ will be used to denote the dual cone of K , i.e., K ∗ = {λ ∈ Rn: λ(x) � 0 for all x ∈ K }. Let n be a positive integer,
r be a positive real number and C = C([−r,0], Rn) denote the Banach space of all continuous mappings ϕ : [−r,0] → Rn .
Also let C+ = C([−r,0], K ) denote all continuous mappings ϕ : [−r,0] → K .

For x, y ∈ Rn , we denote

(i) x �K y iff y − x ∈ K ;
(ii) x <K y iff x �K y and x �= y; and

(iii) x �K y iff y − x ∈ Int K .

For ϕ,ψ ∈ C , we denote

(i) ϕ �K ψ iff ψ − ϕ ∈ C+;
(ii) ϕ <K ψ iff ϕ �K ψ and ϕ �= ψ ; and

(iii) ϕ �K ψ iff ψ − ϕ ∈ Int(C+).

In the following discussion, we shall use � (resp. <, �) to replace �K (resp. <K , �K ) when no confusion results.
We need the following elementary results from [1,2,8,9,22].

Lemma 3.1. Let x ∈ K . Then x ∈ Int K if and only if λ(x) > 0 for all λ ∈ K ∗\{0}.

Lemma 3.2. Let x ∈ K\{0}. Then there exists λ ∈ K ∗ such that λ(x) > 0.

Lemma 3.3. The ordered Banach space Rn (with cone K ) and C (with cone C+) are ordered bounded and normally ordered space.
Hence, so is every subspace of Rn or C .

The conclusions in the following lemma are obvious.

Lemma 3.4. Let X ⊆ Rn (or C ) be an open subset. Then for any x ∈ X there exists a sequence {xn} in X such that xn � xn+1 and xn → x
as n → ∞. Similarly, for any x ∈ X there exists a sequence {xn} in X such that xn � xn+1 and xn → x as n → ∞.

Remark 3.1. In the following discussion, we shall find that for any open subset X of Rn (or C ), every point of X can be
essentially approximated from below and above since “�” (resp. “�”) implies “�” (resp. “≺”).

3.1. Ordinary differential equations

Consider the autonomous systems of ordinary differential equations of the form

x′(t) = f
(
x(t)

)
, (3.1)

where f : U → Rn is continuous and U ⊂ Rn with the ordering in Rn generated by the cone K . We assume that for every
x0 ∈ U , (3.1) has a unique solution x(t) for t ∈ R1+ with x(0) = x0. Write φt(x0)(φ(t, x0)) for the solution of the initial value
problem (3.1) with φ(0, x0) = x0. In this subsection, we assume that U is the closure of an open subset D of Rn , and for
x, y ∈ U with x < y there exist sequences xn, yn ∈ D satisfying xn < yn , xn → x and yn → y as n → ∞.
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We need the following cooperative and irreducible assumptions.

(M) For every x, y ∈ U and λ ∈ K ∗\{0}, x � y and λ(x) = λ(y) imply λ( f (x)) � λ( f (y)).
(I) If x, y ∈ U with x � y and y − x ∈ ∂ K \ {0}, then there exists λ ∈ K ∗ such that λ(y − x) = 0 and λ( f (y) − f (x)) > 0.

Definition 3.1. We say that f is cooperative and/or irreducible in U , if f satisfies the assumption (M) and/or (I).

Theorem 3.1. Let f satisfy the assumption (M). Then φ is a monotone semiflow. If, in addition, the assumption (I) also holds, then φ is
a strongly monotone semiflow.

Proof. The first assertion follows from Proposition 1.5 in [22] and the continuity of φ. �
We next prove the second assertion. Suppose that x, y ∈ U with x > y and set It = {λ ∈ K ∗: λ(φt(x) − φt(y)) > 0} for

t � 0. Then by Lemma 3.2, we know that It is not empty for every t � 0. We will show that It = K ∗\{0} for all t � 0.
Otherwise, there exists δ > 0 such that K ∗\Iδ �= {0}, and thus by the assumption (I), λ( f (φ(δ, x))− f (φ(δ, y))) > 0 for some
λ ∈ K ∗\Iδ . It follows from (3.1) that

λ
(
φ′(δ, x) − φ′(δ, y)

) = λ
(

f
(
φ(δ, x)

) − f
(
φ(δ, y)

))
> 0.

Hence, by λ(φ(δ, x) − φ(δ, y)) = 0, there exists sufficiently small ε > 0 such that

λ
(
φ(δ − ε, x) − φ(δ − ε, y)

)
< 0,

from which one can conclude that φ(δ − ε, x) − φ(δ − ε, y) /∈ K , a contradiction to the first assertion. Thus, the second
assertion follows from Lemma 3.1.

Remark 3.2. If f : U → Rn is continuously differentiable, Theorem 3.1 has already been obtained in [8,9].

In order to apply Theorem 2.2 to (3.1), we also need the following assumption which corresponds to (T1) for the case of
ordinary differential equations.

(TO1) The positive semiorbit of every solution of (3.1) is bounded.

The main result of this subsection is the following.

Theorem 3.2. Assume that f satisfies the assumptions (M), (I) and (TO1). Then the set of stable quasiconvergent points for (3.1)
contains a subset which is open and dense in U .

Proof. Let φ : R1+ × U → U be the solution semiflow for (3.1). It follows from Theorem 3.1 that Φ is a strongly order-
preserving semiflow in U . By the assumption (TO1), Φ is compact. It follows from Lemma 3.4 and Remark 3.1 that D ⊆
U− ∩ U+ , and thus Theorem 3.2 follows from Theorem 2.2. This completes the proof. �
Remark 3.3. According to Proposition 2.2 and Theorem 3.1, we know that the assumption (TO1) actually implies the strong
compactness for the solution semiflow generated by system (3.1) provided the assumptions (M) and (I) hold. Hence, the
results of Theorem 3.14 [8] may hold when we drop the condition “U = AC ∪ BC” in Theorem 3.14 [8].

3.2. Delay differential equations

In this subsection, for a given r > 0 and cone K in Rn , denote C = C([−r,0], Rn) and consider the ordering in C induced
by the cone C([−r,0], K ).

Consider the following autonomous systems of delay differential equations

x′(t) = F (xt), (3.2)

where F : Ω → Rn is continuous and Ω ⊂ C is the closure of an open subset Π ⊆ C . We assume that a solution of (3.2) with
x0 = ϕ , for ϕ ∈ Ω , exists for R1+ and is unique. We write xt(ϕ)(x(t,ϕ)) for the solution of the initial value problem (3.2)
with x0 = ϕ . In the following, we shall assume that for ϕ,ψ ∈ Ω with ϕ < ψ there exist sequences ϕn,ψn ∈ Π satisfying
ϕn � ψn , ϕn → ϕ and ψn → ψ as n → ∞.

We begin by introducing the following monotonicity condition.

(MD) For every ϕ,ψ ∈ Ω and λ ∈ K ∗ \ {0}, ϕ � ψ and λ(ϕ(0)) = λ(ψ(0)) imply λ(F (ϕ)) � λ(F (ψ)).

The following comparison principle for (3.2) follows from the continuity of xt(ϕ) and Theorem 4.1 in [8].
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Theorem 3.3. Assume that F satisfies assumption (MD). Then for any ϕ,ψ ∈ Ω with ϕ � ψ , we have xt(ϕ) � xt(ψ) for all t ∈ R1+ .

Remark 3.4. Assumption (MD) reduces to the assumption (H) in [16] when K = Rn+ .

We will introduce an assumption ensuring that whenever λ(x(t1,ψ) − x(t1,ϕ)) > 0 for some t1 ∈ [0,∞) and some
λ ∈ K ∗ , it follows that λ(x(t,ψ) − x(t,ϕ)) > 0 for all t ∈ [t1,∞), that is,

(PD) For λ ∈ K ∗ , there exists a continuous mapping αλ : Ω × Ω → R1 such that λ(F (ψ) − F (ϕ)) � αλ(ϕ,ψ)λ(ψ(0) − ϕ(0)).

Lemma 3.5. Let (PD) hold. Then, for any ϕ , ψ ∈ Ω and λ ∈ K ∗ with ψ � ϕ and λ(ψ(0)−ϕ(0)) > 0, we have λ(x(t,ψ)− x(t,ϕ)) > 0
for all t ∈ R1+ .

Proof. Clearly, assumption (PD) implies assumption (MD). Then, by Theorem 3.3, we obtain xt(ψ) � xt(ϕ) for all t ∈ R1+. It
follows from (3.2) and assumption (PD) that

λ
(
x′(t,ψ) − x′(t,ϕ)

) = λ
(

F
(
xt(ψ)

) − F
(
xt(ϕ)

))
� α

(
xt(ϕ), xt(ψ)

)
λ
(
x(t,ϕ) − x(t,ψ)

)
.

Therefore,

λ
(
x(t,ψ) − x(t,ϕ)

)
� λ

(
ψ(0) − ϕ(0)

)
e
∫ t

0 α(xs(ϕ),xs(ψ))ds > 0

for all t ∈ R1+. This completes the proof. �
We introduce the following irreducibility assumption.

(ID) Suppose that ϕ , ψ ∈ Ω with ϕ � ψ . Denote D ≡ {λ ∈ K ∗: λ(ψ(θ) − ϕ(θ)) > 0, θ ∈ [−r,0]}. If D �= ∅ and D �= K ∗\{0},
then there exists λ ∈ K ∗\D such that either λ(ψ(0) − ϕ(0)) > 0 or λ(F (ψ) − F (ϕ)) > 0.

Theorem 3.4. Assume that the assumptions (PD) and (ID) hold. Then for any ψ , ϕ ∈ Ω with ψ > ϕ , either x(t,ψ) = x(t, φ) for
all t ∈ R1+ or x(t,ψ) � x(t,ϕ) for all t ∈ [(n + 1)r,∞). Hence, xt(·) is an essentially strongly order-preserving semiflow with t0 =
(n + 2)r.

Proof. By Theorem 3.3, we then have x(t,ψ) � x(t,ϕ) for all t ∈ [−r,∞) and thus either x(t,ψ) = x(t,ϕ) for all t ∈ [0, r] or
x(s0,ψ) > x(s0,ϕ) for some s0 ∈ [0, r] holds. If the former holds, then x(t,ψ) = x(t,ψ) for all t ∈ [0,∞) and the conclusion
follows.

We next assume the latter case. Let

Mt = {
λ ∈ K ∗: λ

(
x(t,ψ) − x(t,ϕ)

)
> 0

}
,

for all t ∈ [0,∞). By Lemma 3.5, we have Mt ⊆ Ms , 0 � t � s. Again by the choice of s0, Ms0 �= ∅ and hence Mt �= ∅ for all
t ∈ [s0,∞). We claim that if t1 � 0 and Mt1 �= K ∗ \ {0}, then Mt1 � Mt1+r . If this is not true, then Mt1+r+θ = Mt1 for all
θ ∈ [−r,0] and thus by (ID) there exists λ ∈ K ∗\Mt1+r such that

λ
(
x(t1 + r,ψ) − x(t1 + r,ϕ)

) = 0

and

λ
(

F
(
xt1+r(ψ)

))
> λ

(
F
(
xt1+r(ϕ)

))
.

From (3.2) and the continuity of F , it follows that there exists ε > 0 such that

λ
(
x(t1 + r − ε,ψ) − x(t1 + r − ε,ϕ)

)
< 0.

This yields a contradiction and thus, our claim follows.
Let Vk = Mkr for all nonnegative integer k. We shall show Vn+1 = K ∗\{0}. Otherwise,

∅ �= V 1 � V 2 � · · · � Vn+1 �= K ∗\{0}.
Let V 0

k = (K ∗\{0})\Vk , where 0 � j � n. Then

∅ �= V 0
n+1 � V 0

n � · · · � V 0
2 � V 0

1 .

Choose λ1 ∈ V 0
n+1, λ2 ∈ V 0

n \V 0
n+1, . . . , λn ∈ V 0

2\V 0
3 , λn+1 ∈ V 0

1\V 0
2 . Clearly, {λi}n+1

i=1 is linearly dependent, that is, there exist

c1, c2, . . . , cn+1 not all zero such that
∑n+1

i=1 ciλi = 0. Let i0 = sup{i: ci �= 0}. Then

λi0 = ci0−1
λi0−1 + ci0−2

λi0−2 + · · · + c2
λ2 + c1

λ1.
−ci0 −ci0 −ci0 −ci0
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From λi0−1, λi0−2, . . . , λ1 ∈ V 0
n+2−i0

and the definition of V 0
n+2−i0

, it follows that λi0 ∈ V 0
n+2−i0

, a contradiction to the choice
of λi0 . Therefore, the theorem follows from Lemma 3.1. This completes the proof. �
Remark 3.5. If P = Rn+ , then Theorem 3.4 reduces to [24, Theorem 2.2].

Remark 3.6. Note that Hirsch and Smith in [8] propose a stronger assumption than (ID) and introduce some sufficient
conditions to guarantee the property of strongly order-preserving of (3.2).

We next apply Theorem 2.2 to (3.2). To this end, we also need the following assumption corresponding to (T1) for the
case of n-dimensional delay differential equations (3.2).

(TD1) F maps bounded subsets of Ω to bounded subsets of Rn, and the positive semiorbit of every solution of (3.2) is
bounded.

The main result of this subsection is the following.

Theorem 3.5. Assume that F satisfies the assumptions (PD), (ID) and (TD1). Then Ω contains an open and dense subset of stable
quasi-convergent points.

Proof. Define Φ : R1+ × Ω → Ω by Φ(t,ϕ) = xt(ϕ). It follows from Theorem 3.4 that Φ is an essentially strongly monotone
semiflow in Ω with t0 = (n + 2)|r|. By the assumption (TD1), Theorem 3.6.1 in Hale [3] implies that Φr+1 is a conditionally
completely continuous map and hence Φr+1 is a conditionally set-condensing map. Note that Lemma 3.4 and Remark 3.1
imply Π ⊆ Ω− ∩ Ω+ , and thus Theorem 3.5 follows from Theorem 2.2. This completes the proof. �
Remark 3.7. Theorem 3.5 does not require that F satisfies the technical ignition assumption required in the classical work
(see [16,17]).

Remark 3.8. By applying Proposition 2.2 to (3.2), we know that the assumption (TD1) alone can actually assure the strong
compactness for the solution semiflow generated by system (3.2). It is amazing and a little bit surprising that the fact that
the condition corresponding to (T2) can be dropped in this context has been overlooked for such a long time.
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