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Abstract

Existence of traveling wave fronts for delayed lattice differential equations is establish
Schauder fixed point theorem. The main result is applied to a delayed and discretely diffusive
for the population of Daphnia magna.
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1. Introduction

Traveling wave solutions for lattice differential equations (LDEs) without time dela
have been extensively and intensively studied in the last decade; see [1–9,12,14–16,18–
For delayed lattice differential equations, Wu and Zou [18] recently developed an ite
scheme and used an upper–lower solution method to prove the existence of travelin
fronts of lattice differential equation. Both quasimonotone and weakened quasimono
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nonlinearities were explored in [18]. This technique was used in Zou [23] to a sy
of delayed differential equations on higher dimensional lattices. By the same approa
Hsu et al. [13] generalized the results of [18] for quasimonotone case to more g
equations which include scalar functional differential equations of retarded, advanced
mixed type, but which possess the quasimonotonicity with respect to the delayed
in the nonlinearity. The technique was also employed successfully by Weng et a
to a system of delayed lattice differential equations withglobal interactions, which is
derived from the population’s age structure of the species. Hsu et al. [13] employ
shooting method to obtain the existence of traveling wave solution, which include
functional differential equations of retarded, advanced and mixed type, but which
with the quasimonotonicity with respect to the delayed terms in the nonlinearity.

The approach developed in [18] has computational convenience, since the iteratio
involves solving first order linear ordinary differential equations and generates a mon
sequence that converges to a profile function for the wave front. But the iteration sche
quires the existence of a pair of upper–lower solutions to the wave equation with the
solution being monotonically nondecreasing and converging to the two distinct equilibri
ast → −∞ andt → +∞, respectively. Such requirements on the upper–lower solu
have restricted the applicability of the above approach. Therefore, as far as existe
traveling wave fronts go, it is desirable to relax some restrictions on the upper–lowe
tions.

In this paper, we will consider the existence of traveling wave fronts of the follow
system of delayed differential equations:

d

dt
un(t) = f

(
(un)t

) +
m∑

j=1

aj

[
g
(
un−j (t)

) + g
(
un+j (t)

) − 2g
(
un(t)

)]
,

n ∈ Z, (1.1)

whereZ is the integer lattice,m � 1 is an integer,aj , 1� j � m, are positive real num
bers,g :R → R and f :X → R are given mappings to be specified later, whereX =
C([−τ,0];R) is the Banach space of continuous functions defined on[−τ,0] equipped
with the super-norm,τ � 0 is a given constant. Also, for anyφ ∈ C(R,R), we use the
notationφt to denote the element inX define byφt(s) = φ(t + s) for s ∈ [−τ,0]. When
m = 1, a1 = d , τ = 0 andg(x) = x, system (1.1) becomes

d

dt
un(t) = f

(
un(t)

) + d
[
un−1(t) + un+1(t) − 2un(t)

]
, n ∈ Z, (1.2)

which represents the spatial discretization of the scalar reaction–diffusion equation

∂u(x, t)

∂t
= D

∂2u(x, t)

∂t2 + f
(
u(x, t)

)
.

System (1.2) is a model for population genetics where spatially discrete populations
diploid individuals are considered. System (1.2) is also used to model propagation o
pulses in myelinated axons, where traveling wave fronts are a crucial aspect (see B
Cosner [2]). For results on traveling wave fronts of (1.2), see Britton [3], Chi et al.
Hankerson and Zinner [12], Keener [14], Zinner [20,21], Zinner et al. [22].
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As in [18] and [13], we will tackle the existence via the corresponding wave equa
and using the upper–lower solution technique. Discussed will be both quasimonoto
weakened quasimonotone nonlinearities in the sense of [18]. But, instead of establishin
a monotone sequence convergent to a wave front profile function, we will emplo
Schauder fixed point theorem to the operator used by Wu and Zou [18], in a properl
sen subset in a Banach space inC(R,R) equipped with the exponential decay norm. T
subset is obtained from a pair of upper–lower solutions, which are less restrictive tha
are required in [18] and [13]. This makes searching for the upper–lower solutions
than in [18] and [13]. For example, when the reaction term satisfies the quasimonoto
we will prove that existence of asupersolutionand asubsolution(which may even not be
continuous) satisfying certain conditions willguarantee the existenceof a required pair of
upper–lower solutions stated above; when the reaction term only satisfies the weaken
quasimonotonicity, our existence result could also be less demanding for the uppe
tion, as demonstrated in our example in Section 5 (see Remark 5.1), where a delayed a
discretely diffusive population model for Daphnia magna is considered.

The rest of this paper is organized as follows. In Section 2, we do some preparation n
essary for the later sections. Section 3 is devoted to establishing the existence of tr
wave front solutions in the case of quasimonotone nonlinearities. Section 4 is parallel
Section 3, but deals with the case of weakened quasimonotone nonlinearities. Finally, a
plication of the main results to a delayed and discretely diffusive model for the popu
of Daphnia magna is given in Section 5.

2. Preliminaries

A traveling wave solutionof (1.1) is a solution of the formun(t) = φ(t +nc), wherec is
a given positive constant andφ :R → R is a differentiable function satisfying the followin
mixed functional differential equation:

d

dt
φ(t) = f (φt ) +

m∑
j=1

aj

[
g
(
φ(t + rj )

) + g
(
φ(t − rj )

) − 2g
(
φ(t)

)]
, (2.1)

where rj = jc, j = 1, . . . ,m. If φ is monotone and satisfies the following asympto
boundary condition:

lim
t→−∞φ(t) = φ− and lim

t→+∞φ(t) = φ+, (2.2)

then the corresponding traveling wave solution is called a traveling wave front. Ther
(1.1) has a traveling wave front if and only if (2.1) has a monotone solution onR satisfying
the asymptotic boundary condition (2.2).

Without loss of generality, we assumeφ− = 0 andφ+ = K, therefore condition(2.2)

can be replaced by

lim
t→−∞φ(t) = 0 and lim

t→+∞φ(t) = K. (2.3)

For convenience of statements, we make the following hypothesis:
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(A1) f (0̃) = f (K̃) = 0 with 0< K.
(A2) There exist a positive constantsL > 0 such that∣∣f (φ) − f (ψ)

∣∣ � L‖φ − ψ‖
for φ,ψ ∈ C([−τ,0],R) with 0 � φ(s),ψ(s) � K, s ∈ [−τ,0].

(A3) g : [0,K] → R is continuously differentiable, with 0� g′(x) � g′(0), g(0) = 0.

Here and in the sequel, for anyu ∈ R, ũ will denote the constant function on[−τ,0] taking
the valueu for all s ∈ [−τ,0].

Let ρ > 0 and equipC(R,R) with the norm‖ · ‖ defined by|φ|ρ = supt∈R |φ(t)|e−ρ|t |.
Denote

Bρ(R,R) =
{
φ ∈ C(R,R): sup

t∈R

∣∣φ(t)
∣∣e−ρ|t | < ∞

}
.

Then, it is easily seen thatBρ(R,R) is a Banach space.
Denote

C[0,K](R,R) = {
φ ∈ C(R,R): 0 � φ(s) � K, s ∈ R

}
.

Let µ > 0 , which will be specified in Sections 3 and 4. DefineH :B[0,K](R,R) →
Bρ(R,R) by

H(φ)(t) = µφ(t) + f (φt ) +
m∑

j=1

aj

[
g
(
φ(t + rj )

) + g
(
φ(t − rj )

) − 2g
(
φ(t)

)]
.

Via H , we can defineF :C[0,K](R,R) → C[0,K](R,R) by

F(φ)(t) = e−µt

t∫
−∞

eµsH(φ)(s) ds.

It is easy to show that under (A1)–(A3),F :C[0,K](R,R) → C[0,K](R,R) is well defined.
For anyφ ∈ C[0,K](R,R), F(φ) satisfies(

F(φ)
)′ + µF(φ) − H(φ)(t) = 0. (2.4)

Thus, if F(φ) = φ, i.e.,φ is a fixed point ofF , then (2.1) has a solution. If this solutio
satisfies the boundary condition (2.3) and is monotone, then we obtain the existence
traveling wave front solution of (1.1).

As mentioned in the Introduction, we will use a pair of upper–lower solutions of (2.
construct a subset ofC(R,R) in which the Schauder fixed point theorem can be applie
the related operator. To this end, we need to make it clear what upper and lower so
mean.

Definition 2.1. A continuous functionφ :R → [0,K] is called an upper solution of (2.1)
it is differentiable almost everywhere, and satisfies

d

dt
φ(t) � f (φt ) +

m∑
aj

[
g
(
φ(t + rj )

) + g
(
φ(t − rj )

) − 2g
(
φ(t)

)]
, a.e. onR.
j=1
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Lower solutionφ(t) of (2.1) can be similarly defined by reversing the inequality in
above inequality.

Definition 2.2. A functionφ :R → R is called a supersolution of (2.1) if there exist finite
many constantsTi , i = 1, . . . , p, such thatφ(t) is differentiable inR/{Ti, i = 1, . . . , p}
and satisfies

d

dt
φ(t) � f (φt ) +

m∑
j=1

aj

[
g
(
φ(t + r)

) + g
(
φ(t − rj )

) − 2g
(
φ(t)

)]
for t ∈ R/{Ti, i = 1, . . . , p}.

A subsolution of (2.1) is defined by reversing the inequality in the above inequality.

In what follows, we assume that an upper solutionφ̄(t) and a lower solutionφ(t) of
(2.1) are given so that

(H1) 0� φ � φ̄ � K, with limt→−∞ φ = 0, limt→∞ φ̄ = K.
(H2) f (ũ) �= 0 for u ∈ (0, inft∈R φ̄(t)] ∪ [supt∈R φ(t),K).

3. Quasimonotone nonlinearities

In this section, we will consider (2.1) with the following quasimonotonicity:

(QM) There exists a constantµ > 0 such that for anyφ,ψ ∈ X with 0 � φ(s) � ψ(s) � K

for s ∈ [−τ,0], one has

f (ψ) − f (φ) + µ
[
ψ(0) − φ(0)

]
� 2A

[
g
(
ψ(0)

) − g
(
φ(0)

)]
,

whereA = ∑m
j=1 aj .

Without loss of generality, for (QM) we will always chooseµ > 1 andµ > ρ in the rest
of the paper. Assuming (QM), the operatorH defined in Section 2 enjoys the followin
nice properties.

Lemma 3.1 (Wu and Zou [18]).Assume that(A1)–(A3) and(QM) are satisfied. Then

(i) 0 � H(φ)(t) � f (K̃) + µK for φ ∈ C[0,K](R,R).
(ii) H(φ)(t) is nondecreasing int ∈ R, if φ ∈ C[0,K](R,R) is nondecreasing int ∈ R.
(iii) H(φ)(t) � H(ψ)(t) for t ∈ R, if φ,ψ ∈ C[0,K](R,R) are given so thatφ(t) � ψ(t)

for t ∈ R.

As a direct consequence of Lemma 3.1, the operatorF defined in Section 2 also shar
with H the above nice properties. In other words, we have the following lemma.
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Lemma 3.2. Assume that(A1)–(A3) and(QM) hold. Then

(i) 0 � F(φ)(t) � f (K̃) + µK for φ ∈ C[0,K](R,R).
(ii) F(φ)(t) is nondecreasing int ∈ R, if φ ∈ C[0,K](R,R) is nondecreasing int ∈ R.
(iii) F(φ)(t) � F(ψ)(t) for t ∈ R, if φ,ψ ∈ C[0,K](R,R) are given so thatφ(t) � ψ(t)

for t ∈ R.

Next, we further explore the operatorF in Lemmas 3.3–3.5.

Lemma 3.3. Assume that(A1)–(A3) hold. ThenF :C[0,K](R,R) → Bρ(R,R) is continu-
ous with respect to the norm| · |ρ in Bρ(R,R).

Proof. We first prove thatH :C[0,K](R,R) → Bρ(R,R) is continuous. For anyε > 0,
chooseδ > 0 such thatδ < ε/N , whereN = Leρcτ +µ+2Ag′(0)+2g′(0)

∑m
j=1(aj e

ρrj ).
If φ,ψ ∈ C[0,K](R,R) satisfy

|φ − ψ|ρ = sup
t∈R

∣∣φ(t) − ψ(t)
∣∣e−ρ|t | < δ,

then ∣∣H (
φ(t)

) − H
(
ψ(t)

)∣∣
=

∣∣∣∣∣f (φt ) − f (ψt) + µ
(
φ(t) − ψ(t)

) +
m∑

j=1

aj

{[
g
(
φ(t + rj )

) − g
(
ψ(t + rj )

)]

+ [
g
(
φ(t − rj )

) − g
(
ψ(t − rj )

)] + 2
[
g
(
ψ(t)

) − g
(
φ(t)

)]}∣∣∣∣∣
�

∣∣f (φt ) − f (ψt)
∣∣ + µ

∣∣φ(t) − ψ(t)
∣∣ +

m∑
j=1

aj

∣∣g(
φ(t + rj )

) − g
(
ψ(t + rj )

)∣∣

+
m∑

j=1

aj

∣∣g(
φ(t − rj )

) − g
(
ψ(t − rj )

)∣∣ + 2
m∑

j=1

aj

∣∣g(
ψ(t)

) − g
(
φ(t)

)∣∣

�
m∑

j=1

ajg
′(0)

[∣∣φ(t + rj ) − ψ(t + rj )
∣∣∣∣φ(t − rj ) − ψ(t − rj )

∣∣]
+ ∣∣f (φt ) − f (ψt )

∣∣ + (
µ + 2Ag′(0)

)∣∣φ(t) − ψ(t)
∣∣.

It is easily seen that∣∣φ(t − rj ) − ψ(t − rj )
∣∣e−ρ|t | + ∣∣φ(t + rj ) − ψ(t + rj )

∣∣e−ρ|t |

� 2eρrj
∣∣φ(s) − ψ(s)

∣∣
ρ
. (3.1)

Thus, it follows from (3.1) that
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∣∣H (
φ(t)

) − H
(
ψ(t)

)∣∣e−ρ|t |

�
∣∣f (φt ) − f (ψt)

∣∣e−ρ|t | + (
µ + 2Ag′(0)

)∣∣φ(t) − ψ(t)
∣∣e−ρ|t |

+
m∑

j=1

ajg
′(0)

[∣∣φ(t + rj ) − ψ(t + rj )
∣∣ + ∣∣φ(t − rj ) − ψ(t − rj )

∣∣]e−ρ|t |

�
∣∣f (φt ) − f (ψt)

∣∣e−ρ|t | +
(

µ + 2Ag′(0) + 2
m∑

j=1

(aje
ρrj )g′(0)

)∣∣φ(t) − ψ(t)
∣∣
ρ

� L‖φt − ψt‖Xce
−ρ|t | +

(
µ + 2Ag′(0) + 2

m∑
j=1

(aje
ρrj )g′(0)

)∣∣φ(t) − ψ(t)
∣∣
ρ

� L sup
s∈[−cτ,0]

∣∣φ(t + s) − ψ(t + s)
∣∣e−ρ|t |

+
(

µ + 2Ag′(0) + 2
m∑

j=1

(aj e
ρrj )g′(0)

)∣∣φ(t) − ψ(t)
∣∣
ρ

� L sup
θ∈R

∣∣φ(θ) − ψ(θ)
∣∣e−ρ|θ |eρcτ

+
(

µ + 2Ag′(0) + 2
m∑

j=1

(aj e
ρrj )g′(0)

)∣∣φ(t) − ψ(t)
∣∣
ρ

�
(

Leρcτ + µ + 2Ag′(0) + 2
m∑

j=1

(aj e
ρrj )g′(0)

)∣∣φ(t) − ψ(t)
∣∣
ρ

� Nδ < ε.

Therefore,H :C[0,K](R,R) → Bρ(R,R) is continuous.
In order to prove Lemma 3.3, we need to estimate|F(φ)(t) − F(ψ)(t)|. By the defini-

tion of F(φ)(t), we have

∣∣F (
φ(t)

) − F
(
ψ(t)

)∣∣ =
∣∣∣∣∣e−µt

t∫
−∞

eµsH
(
φ(s)

)
ds − e−µt

t∫
−∞

eµsH
(
ψ(s)

)
ds

∣∣∣∣∣
� e−µt

t∫
∞

eµs
∣∣H (

φ(s)
) − H

(
ψ(t)

)∣∣ds

�
∣∣H (

φ(s)
) − H

(
ψ(s)

)∣∣
ρ
e−µt

t∫
−∞

eµs+ρ|s| ds.

(a) If t < 0, we obtain∣∣F (
φ(t)

) − F
(
ψ(t)

)∣∣ � 1

µ − ρ
e−ρt

∣∣H (
φ(s)

) − H
(
ψ(s)

)∣∣
ρ
,

and hence
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t

∣∣F (
φ(t)

) − F
(
ψ(t)

)∣∣e−ρ|t | � 1

µ − ρ

∣∣H (
φ(t)

) − H
(
ψ(t)

)∣∣
ρ
.

(b) If t > 0, it follows that∣∣F (
φ(t)

) − F
(
ψ(t)

)∣∣
� e−µt

[
1

µ − ρ
− 1

µ + ρ
+ 1

µ + ρ
e(µ+ρ)t

]∣∣H (
φ(s)

) − H
(
ψ(s)

)∣∣
ρ
.

Therefore, we have∣∣F (
φ(t)

) − F
(
ψ(t)

)∣∣e−ρ|t |

�
[(

1

µ − ρ
− 1

µ + ρ

)
e−(µ+ρ)t + 1

µ + ρ

]∣∣H (
φ(t)

) − H
(
ψ(t)

)∣∣
ρ

� 1

µ − ρ

∣∣H (
φ(t)

) − H
(
ψ(t)

)∣∣
ρ
.

Thus, by using the fact thatH is continuous inBρ(R,R), it follows thatF is also contin-
uous with respect to the norm| · |ρ . The proof is completed.�

We further assume that the upper–lower solutionsφ̄(t) andφ(t) satisfy

(H3) sups�t φ(s) � φ̄(t) for all t ∈ R.

Then the set

Γ [φ, φ̄] =
{
φ ∈ C[0,K](R,R); (i) φ is nondecreasing inR,

(ii) φ(t) � φ(t) � φ̄(t) for all t ∈ R,

}

is nonempty, since (H3) implies thatφ0 = sups�tφ(s) ∈ Γ [φ, φ̄].

Remark 3.1. If φ ∈ C[0,K](R,R) is nondecreasing, then sups�t φ(s) = φ(t). Therefore,
(H3) is implied by (H1) if eitherφ̄(t) or φ is nondecreasing (assumingφ � φ̄(t) for all
t ∈ R).

Lemma 3.4. If (QM) holds, thenF(Γ [φ, φ̄]) ⊂ Γ [φ, φ̄].

Proof. Sinceφ̄(t) is a upper solution, we have

φ̄′(t) + µφ̄(t) − Hφ̄(t) � 0. (3.2)

By (2.4), we know that

F ′(φ̄) + µF(φ̄) − Hφ̄(t) = 0. (3.3)

Combining (3.2) and (3.3) gives(
F(φ̄) − φ̄

)′ + µ
(
F(φ̄) − φ̄

)
� 0. (3.4)

Let w(t) = F(φ̄) − φ̄, and denoter(t) = w′(t) + µw(t). Then, it follows from (3.4) tha
r(t) � 0. Sincew(t) is bounded on(−∞,∞),
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m, we

ly
w(t) =
t∫

−∞
e−µ(t−s)r ds � 0,

which implies thatF(φ̄) � φ̄. By a similar argument, we can prove thatF(φ) � φ. Com-

bining this with Lemma 3.2(ii), we see thatF(Γ [φ, φ̄]) ⊂ Γ [φ, φ̄]. The proof is com-
pleted. �
Lemma 3.5. If (QM) holds, then the operatorF :Γ [φ, φ̄] → Γ [φ, φ̄] is compact.

Proof. By Lemma 3.2(i),F(φ) is uniformly bounded forφ ∈ Γ [φ, φ̄]. Since

0 � F ′(φ)(t) = −µe−µt

t∫
−∞

eµsH(φ)(s) ds + H(φ)(t) = −µF(φ)(t) + H(φ)(t)

� −µF(0)(t) + H(K)(t) � H(K)(t) − H(0)(t) = µK,

we know thatF(φ) is equicontinuous forφ ∈ Γ [φ, φ̄]. But sinceΓ [φ, φ̄] consists of func-
tions defined onR = (−∞,∞) which is not compact, the Ascoli–Arzela lemma canno
applied directly. For each integern > 0, consider the “truncation”Fn of F define by

Fn(φ)(t) =
{

F(φ)(t), t ∈ [−n,n],
F (φ)(−n), t ∈ (−∞,−n),

F (φ)(n), t ∈ (n,+∞).

Obviously,Fn(φ) is also uniformly bounded and equicontinuous forφ ∈ Γ [φ, φ̄]. For each

φ ∈ Γ [φ, φ̄], Fn(φ) has the compact “support”[−n,n]. By the Ascoli–Arzela lemma, w
knowFn :Γ [φ, φ̄] → Γ [φ, φ̄] is compact. Using the estimate

sup
t∈R

∣∣(Fnφ)(t) − (Fφ)(t)
∣∣e−ρ|t | = sup

|t |>n

∣∣(Fnφ)(t) − (Fφ)(t)
∣∣e−ρ|t | � 2Ke−ρn,

we knowFn → F uniformly in Γ [φ, φ̄]. Therefore, by Proposition 2.12 in [19], the lim
operatorF :Γ [φ, φ̄] → Γ [φ, φ̄] is also compact. The proof is completed.�
Theorem 3.1. Assume that(A1)–(A3) and (QM) hold. If (2.1) has an upper solution̄φ
and a lower solutionφ satisfying(H1)–(H3), then(2.1)–(2.3)has a solution, i.e.,(1.2)has
a traveling wave front solution.

Proof. Obviously,Γ [φ, φ̄] is a bounded subset ofBρ(R,R). It is easy to verify tha
Γ [φ, φ̄] is closed and convex. By Lemma 3.3–3.5 and Schauder fixed point theore

know thatF has a fixed pointφ in Γ [φ, φ̄]. In order to prove that this fixed pointφ gives a
traveling wave front, we need to verify the asymptotic boundary condition (2.3). Obvious

0 � φ1 := lim
t→−∞φ(t) = inf

t∈R
φ(t) � inf

t∈R
φ̄(t),

supφ(t) � supφ2 = lim
t→+∞φ(t) =: φ(t) � K.
t∈R t∈R
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Sinceφ̄1 andφ̄2 are zeros off (·), by (H2), we have

φ1 = lim
t→−∞φ(t) = 0, φ2 = lim

t→∞φ(t) = K.

Finally, the fact thatφ(t) ∈ Γ [φ, φ̄] implies thatφ(t) is monotone, and therefore it prese
a traveling wave front. The proof is completed.�
Remark 3.2. Unlike in Wu and Zou [18], we do not require thatφ̄(t) be monotone and
satisfy limt→−∞ φ̄(t) = 0. This brings some convenience in searching for the upper–l
solutions.

Lemma 3.6. Assume that(A1)–(A3) and (QM) hold. Assume(φ, φ̄) is a pair of superso-
lution and subsolution of(2.1)satisfying(H1)–(H3)and

(H4) φ̄(t−) � φ̄(t+) andφ(t+) � φ(t−) for all t ∈ R.

Then,(F (φ(t), F(φ̄(t)) ∈ C[0,K](R,R) is a pair of upper solution and lower solution
(2.1)satisfying(H1)–(H3).

Proof. Let t > −∞ be such that̄φ is continuous att , and letTp < Tp−1 < · · · < T1 be all
the discontinuous points of̄φ in (−∞, t). DenoteTp+1 = −∞. Then, by the definition o
supersolution,̄φ′(s) + µφ̄(s) − H(φ̄(s)) � 0 for s ∈ (Tk+1, Tk), 0� k � p. Hence

F(φ̄)(t) � e−µt

t∫
−∞

eµsφ̄′(s) ds + µe−µt

t∫
−∞

eµsφ̄(s) ds

= e−µt

p∑
j=1

( Tj∫
Tj+1

eµsφ̄′(s) ds

)
+ µe−µt

p∑
j=1

( Tj∫
Tj+1

eµsφ̄(s) ds

)

+ e−µt

t∫
T1

eµs φ̄′(s) ds + µe−µt

t∫
T1

eµsφ̄(s) ds

= φ̄(t) − e−µteµT1φ̄
(
T +

1

) + e−µt

p∑
j=1

[
eµTj φ̄

(
T −

j

) − eµTj+1φ̄
(
T +

j+1

)]

= φ̄(t) + e−µt

p∑
j=1

[
eµTj φ̄

(
T −

j

) − eµTj φ̄
(
T +

j

)] − eµ(Tp+1−t )φ̄
(
T +

p+1

)

= φ̄(t) + e−µt

{
p∑

j=1

eµTj
[
φ̄
(
T −

j

) − φ̄
(
T +

j

)] − eµTp+1φ̄
(
T +

p+1

)}

= φ̄(t) + e−µt

{
p∑

eµTj
[
φ̄
(
T −

j

) − φ̄
(
T +

j

)]}
� φ̄(t).
j=1
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By Lemma 3.1(iii),

F ′(φ̄)(t) + µF(φ̄)(t) − H
(
F(φ̄)

)
(t) � F ′(φ̄)(t) + µF(φ̄)(t) − H(φ̄)(t) = 0,

which implies thatF(φ̄)(t) is a upper solution of (2.1). Similarly, we can also pro
that F(φ)(t) is a lower solution of (2.1). The above also confirms that 0� φ � F(φ) �
F(φ̄) � K. By L’Hospital’s rule, one can easily verify that limt→−∞ F(φ)(t) = 0 and
limt→∞ F(φ̄)(t) = K. Noting that inft∈R F(φ̄)(t) � inft∈R φ̄(t) and supt∈R F(φ)(t) �
supt∈R φ(t), one sees that the pair(F (φ)(t),F (φ̄)(t)) satisfies (H2). For (H3), letφ0(t) =
sups�t φ(t). Thenφ0(t) is nondecreasing andφ(t) � φ0(t) � φ̄(t). By Lemma 3.2 and
Remark 3.1, sups�t F (φ)(s) � sups�t F (φ0)(s) = F(φ0)(t) � F(φ̄)(t), meaning that the

pair (F (φ)(t),F (φ̄)(t)) also satisfies (H3). The proof is completed.�
Combining Lemma 3.6 with Theorem 3.1, we immediately obtain the following re

Theorem 3.2. Assume that(A1)–(A3) and (QM) hold. If (2.1) has a supersolution̄φ(t)

and subsolutionφ(t) satisfying(H1)–(H4), then(2.1)–(2.3)has a solution, i.e.,(1.1)has a
traveling wave front solution.

Remark 3.3. From the proof of Theorem 3.1, we know that supersolution and subsol
may have finite many discontinuous points, and thus, one can expect that search
such a pair of supersolution and subsolution would be easier than searching for a
upper and lower solutions required in Theorem 3.1.

4. Nonquasimonotone nonlinearities

The quasimonotonicity condition (QM) plays an important role in Section 3. But
many models arising from practical problems, (QM) may not be satisfied. In this se
we will relax (QM) to a weaker condition (QM∗) which is given below:

(QM∗) there exists a constantµ > 0 such that for anyφ,ψ ∈ X with 0 � φ(s) �
ψ(s) � K and[φ(s) − ψ(s)]eµs nondecreasing ins ∈ [−τ,0], one has

f (φ) − f (ψ) + µ
[
φ(0) − ψ(0)

]
� 2A

[
g
(
φ(0)

) − g
(
ψ(0)

)]
,

whereA = ∑m
j=1 aj .

Parallel to Lemmas 3.1–3.3, we can establish the following Lemmas 4.1–4.3.

Lemma 4.1 (Wu and Zou [18]).Assume that(A1)–(A3) and (QM∗) hold. Then for any
φ(t) satisfying

(I) φ(t) is nondecreasing inR; and0 � φ(t) � K,
(II) eµt [φ(t + s) − φ(s)] is nondecreasing int ∈ R for everys > 0,

the following hold:
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(i) H(φ)(t) � 0,
(ii) H(φ)(t) is nondecreasing int ∈ R,
(iii) H(ψ)(t) � H(φ)(t) for t ∈ R if ψ ∈ C(R,Rn) satisfies that0 � ψ(t) � φ(t) � K

and thateµt [φ(t) − ψ(t)] is nondecreasing int ∈ R.

Lemma 4.2. Assume that(A1)–(A3) and(QM∗) hold. Then for anyφ(t) satisfying

(I) φ(t) is nondecreasing inR; and0 � φ(t) � K,
(II) eµt [φ(t + s) − φ(s)] is nondecreasing int ∈ R for everys > 0,

we have

(i) F(φ)(t) � 0,
(ii) F(φ)(t) is nondecreasing int ∈ R,
(iii) F(ψ)(t) � F(φ)(t) for t ∈ R if ψ ∈ C(R,Rn) satisfies that0 � ψ(t) � φ(t) � K

and thateµt [φ(t) − ψ(t)] is nondecreasing int ∈ R.

Note that the continuity of the mapF :C[0,K](R,R) → Bρ(R,R) does not depen
on (QM) and thus remains true. Similar to Section 3, we now construct a subs
C[0,K](R,R). For this purpose, in the rest of this section, we assume that there are an
solutionφ̄(t) and a lower solutionφ(t) satisfying (H1)–(H2) and the following addition
assumption:

(H5) The setΓ ∗[φ(t), φ̄(t)] is nonempty, where

Γ ∗[φ(t), φ̄(t)
] =




φ ∈ C(R,R);

(i) φ(t) is nondecreasing inR,

(ii) φ(t) � φ(t) � φ̄(t),

(iii ) eµt [φ̄(t) − φ(t)] andeµt [φ(t) − φ(t)]
are nondecreasing int ∈ R.

(iv) eµt [φ(t + s) − φ(t)] is nondecreasing
in t ∈ R for everys > 0




.

Lemma 4.3. Assume that(A1)–(A3) and(QM∗) hold. ThenΓ ∗[φ, φ̄] is closed, bounded
convex subset ofBρ(R,R).

Proof. Boundedness and convexity can be easily shown by their definitions. We next
thatΓ ∗[φ, φ̄] is closed. Assumeφn ∈ Γ ∗[φ, φ̄] andφn → φ in norm| · |ρ , i.e.,

lim
n→+∞ sup

t∈R

∣∣φn(t) − φ(t)
∣∣e−ρ|t | = 0.

By φn ∈ Γ ∗[φ, φ̄], we know that for anyt1, t2 ∈ R with t1 � t2,

eµt2
[
φn(t2 + s) − φn(t2)

]
� eµt1

[
φn(t1 + s) − φn(t1)

]
,

eµt2
[
φ̄(t2) − φn(t2)

]
� eµt1

[
φ̄(t1) − φn(t1)

]
,

eµt2
[
φn(t2) − φ(t2)

]
� eµt1

[
φn(t1) − φ(t1)

]
.
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Taking limit n → ∞, we have

eµt2
[
φ(t2 + s) − φn(t2)

]
� eµt1

[
φ(t1 + s) − φn(t1)

]
,

eµt2
[
φ̄(t2) − φ(t2)

]
� eµt1

[
φ̄(t1) − φ(t1)

]
,

eµt2
[
φ(t2) − φ(t2)

]
� eµt1

[
φ(t1) − φ(t1)

]
,

which implies thatφ(t) satisfies (iii) and (iv) ofΓ ∗[φ, φ̄]. It is easy to show thatφ(t) satis-

fies (i) ofΓ ∗[φ, φ̄]. Henceφ ∈ Γ ∗[φ, φ̄] and therefore,Γ ∗[φ, φ̄] is closed. This complete
the proof. �
Lemma 4.4. If (QM∗) holds, thenF(Γ ∗[φ, φ̄]) ⊂ Γ ∗[φ, φ̄] .

Proof. Let φ(t) ∈ Γ ∗[φ, φ̄]. By Lemma 4.2(ii),F(φ)(t) is nondecreasing int ∈ R.
Lemma 4.2(iii) implies

F(φ)(t) � F(φ)(t) � F(φ̄)(t).

Repeating the proof of Lemma 3.4 gives

F(φ̄)(t) � φ̄(t), F (φ)(t) � φ(t).

Hence

φ(t) � F(φ)(t) � φ̄(t),

which implies thatF(φ)(t) satisfying (ii) ofΓ ∗[φ, φ̄].
Next, we will verify the fourth condition ofΓ ∗[φ, φ̄] for F(φ). For anys > 0, we have

eµt
[
F(φ)(t + s) − F(φ)(t)

] = e−µs

t+s∫
−∞

eµθH(φ)(θ) dθ −
t∫

−∞
eµθH(φ)(θ) dθ

= e−µs

t∫
−∞

eµ(ξ+sH (φ)(ξ + s) dξ −
t∫

−∞
eµθH(φ)(θ) dθ

=
t∫

−∞
eµθ

[
H(φ)(θ + s) − (H(φ)(θ)

]
dθ.

By Lemma 4.1, we obtain

d

dt

[
eµt

(
F(φ)(t + s) − F(φ)(t)

)] = eµt
[
H(φ)(t + s) − H

(
φ(t)

)]
� 0,

which implies (iv) ofΓ [φ, φ̄]∗ holds forF(φ).
Repeating the proof of Proposition 4.1 in Wu and Zou [18], we knoweµt [φ̄(t) −

F(φ)(t)] andeµt [F(φ) − φ(t)] are nondecreasing int ∈ R. Thus,F(φ)(t) ∈ Γ ∗[φ, φ̄],
and thereforeF(Γ ∗[φ, φ̄)) ⊂ Γ ∗(φ, φ̄]. �
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Lemma 4.5. If (QM∗) holds, thenF :Γ [φ, φ̄]∗ → Γ [φ, φ̄]∗ is compact.

The proof is similar to that of Lemma 3.5 and hence is omitted here.
Now, by Lemmas 3.3 and 4.3–4.5, the Schauder’s fixed point theorem, and the

argument as in the proof of Theorem 3.1, we obtain the following result.

Theorem 4.1. Assume that(A1)–(A3)and(QM∗) hold. If (2.1)has an upper solution̄φ(t)

and a lower solutionφ(t) satisfying(H1), (H2)and (H5), then(2.1)–(2.3)has a solution,
i.e., (1.1)has a traveling wave front solution.

Remark 4.1. Comparing with the results in nonquasimonotone case of Wu and Zou
we do not require that the upper solutionφ̄(t) belongs to the profileΓ ∗, in which the
upper solution is required to be satisfiedeµt [φ̄(t + s) − φ̄(t)] is nondecreasing int ∈ R

for all s > 0, and limt→−∞ φ̄(t) = 0. This brings some convenience in searching for
upper–lower solutions.

5. An example

Consider the following lattice differential equation with time delay:

d

dt
un(t) = d

[
un+1(t) − 2un(t) + un−1(t)

] + un(t)

(
1− un(t − τ )

1+ γ un(t − τ )

)
,

n ∈ Z. (5.1)

System (5.1) can be considered as the spatial discretization of the reaction diffusion equ
tion

∂u(x, t)

∂t
= d

∂2u(x, t)

∂x2 + u(x, t)

(
1− (x, t − τ )

1+ γ u(x, t − τ )

)
, (5.2)

which has been used to model the population of Daphnia magna (see, e.g., Feng
[10], Gourley [11] and references cited therein).

If γ = 0, system (5.1) becomes

d

dt
un(t) = d

[
un+1(t) − 2un(t) + un−1(t)

] + un(t)
[
1− un(t − τ )

]
, n ∈ Z, (5.3)

which was also proposed as a model for propagation of nerve pulses in myelinated
where the membrane is excitable only at spatially discrete sites (see, e.g., Bell [1], B
Cosner [2], Chi et al. [6], Keener [14], Zinner [20–22] Wu and Zou [18] and refere
cited therein).

Substitutingun(t) = φ(t + cn) into (5.1) leads to

φ′(t) = d
[
φ(t + c) + φ(t − c) − 2φ(t)

] + φ(t)

(
1− φ(t − τ )

1+ γφ(t − τ )

)
. (5.4)

We are interested in solutions of (5.4) satisfying

lim φ(t) = 0, lim φ(t) = 1. (5.5)

t→−∞ t→∞
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Forφ ∈ C([−τ,0],R), denote

f
(
φ(x)

)
(x) = φ(x)(0)

(
1− φ(x)(−τ )

1+ γφ(x)(−τ )

)
.

Obviously, (A1)–(A3) are satisfied for this functionalf with k = 1. We verify thatf
satisfies(QM∗).

Lemma 5.1. Whenτ � 0 is sufficiently small,f (φ) satisfies(QM∗).

Proof. For anyφ,ψ ∈ C([−τ,0],R) with 0 � ψ(s) � φ(s) � 1 andeµs [φ(s) − ψ(s)]
nondecreasing ins ∈ [−τ,0], we have

f (φ) − f (ψ) = φ(0)

(
1− φ(−τ )

1+ γφ(−τ )

)
− ψ(0)

(
1− ψ(−τ )

1+ γψ(−τ )

)

= (φ(0) − ψ(0))[1− γφ(−τ )ψ(−τ ) − φ(−τ )]
(1+ γφ(−τ ))(1+ γψ(−τ ))

+ γ (φ(0)ψ(−τ ) − ψ(0)φ(−τ )) − ψ(0)[φ(−τ ) − ψ(−τ )]
(1+ γφ(−τ ))(1+ γψ(−τ ))

� (φ(0) − ψ(0))[1− γφ(−τ )ψ(−τ ) − φ(−τ )]
(1+ γφ(−τ ))(1+ γψ(−τ ))

+ −γ eµτ (φ(0) − ψ(0)) − ψ(0)eµτ (φ(0) − ψ(0))

(1+ γφ(−τ ))(1+ γψ(−τ ))

= (φ(0) − ψ(0))[1− γφ(−τ )ψ(−τ ) − φ(−τ ) − ψ(0)eµτ − γφ(0)eµτ ]
(1+ γφ(−τ ))(1+ γψ(−τ ))]

� (φ(0) − ψ(0))[−γ − (1+ γ )eµτ ]
(1+ γφ(−τ ))(1+ γψ(−τ ))

�
[−γ − (1+ γ )eµτ

](
φ(0) − ψ(0)

)
.

If we choose

µ > 1+ 2γ, (5.6)

then, for sufficiently smallτ , (5.6) implies

µ � γ + (1+ γ )eµτ . (5.7)

Thus

f (φ) − f (ψ) + µ
(
φ(0) − ψ(0)

)
�

[
µ − γ − (1+ γ )eµτ

](
φ(0) − ψ(0)

)
� 0,

and this completes the proof.�
In order to apply Theorem 4.1, we need to find a pair of upper and lower solutio

(5.4) required by the theorem. Note that by letting

φ(ct) ⇒ φ(t) and c−1 ⇒ c, (5.8)

Eq. (5.4) is transformed to the following equivalent equation:
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nd
(5.9)

er
cφ′(t) = d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] + φ(t)

(
1− φ(t − cτ)

1+ γφ(t − cτ)

)
. (5.9)

Indeed, (5.9) corresponds to the traveling wave solutions of (5.1) with the formun(t) =
φ(n + ct). Thus, in what follows, we will work on (5.9) for a required pair of upper a
lower solutions. To this end, the following result about the characteristic equation of
at 0 will be employed.

Lemma 5.2 [18, Proposition 4.3].Let ∆(λ) = cλ − 1 − d[eλ + e−λ − 2], λ ∈ R, where
d > 0. Then there existsc∗ = c∗(d) > 0 such that

(i) if c < c∗, ∆(λ) has no real zeros;
(ii) if c = c∗, ∆(λ) has precisely one double zeros;
(iii) if c > c∗, ∆(λ) have exactly two real zeros0 < λ1 < λ2, and∆(λ) > 0 for all λ ∈

(λ1, λ2).

From now on, we will assumec > c∗ and useλ1 andλ2 to construct the upper and low
solutions.

Let α ∈ (0,1) (to be specified later). ForM > 1 andε > 0, denotet∗ = 1
ε

ln 1
M

and
define

φ̄(t) =
{

eλ1t , t � 0,

1, t > 0,
φ(t) =

{
α(1− Meεt)eλ1t , t � t∗,
0, t > t∗.

Let γ > 0 be given andε be such that

0 < ε < min{ln2, λ1, λ2 − λ1}. (5.10)

For sufficiently smallτ � 0, chooseM > 1 such that

M >
α(γ + 1)e−λ1cτ

∆(λ1 + ε)
. (5.11)

Noticing thatλ1 > 0 andd > 1
1−e−λ1

, direct calculation shows that1
λ1

ln d−1
d

+ 1 > 0. It
follows that

Lemma 5.3. Assumed > 1
1−e−λ1

and letτ � 0 be sufficiently small. Then̄φ(t) is an upper
solution of (5.9).

Proof. Assumeτ is sufficiently small such thatcτ � 1, and 0< τ < τ ∗ = 1
c

[ 1
λ1

ln d−1
d

+1
]
.

Since 0� φ̄(t − cτ) � 1, 1
1+γ φ̄(t−cτ)

< 1 and thus,

cφ̄′(t) − d
[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)[1− φ̄(t − cτ)]
1+ γ φ̄(t − cτ)

� cφ̄′(t) − d
[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)
[
1− φ̄(t − cτ)

]
.

We have five cases to verify.
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t

is
(i) For t > 1, φ̄(t) = φ̄(t + 1) = φ̄(t − 1) = φ̄(t − cτ) = 1. Obviously,

cφ̄′(t) − d
[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)
[
1− φ̄(t − cτ)

] = 0.

(ii) For cτ < t � 1, φ̄(t) = φ̄(t + 1) = φ̄(t − cτ) = 1, φ̄(t − 1) = eλ1(t−1), and hence,

cφ̄′(t) − d
[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)
[
1− φ̄(t − cτ)

]
= −d

[
φ̄(t − 1) − 1

] = d
[
1− eλ1(t−1)

]
> 0.

(iii) For 0 < t < cτ , φ̄(t) = φ̄(t + 1) = 1, φ̄(t − 1) = eλ1(t−1), and φ̄(t − cτ) =
eλ1(t−cτ) < 1. Sinced > 1

1−e−λ1
> 1, 0< τ < τ ∗ and 0< t < cτ , we havecτ < cτ ∗ =

1
λ1

ln d−1
d

+ 1. Direct calculation shows that 1− d
d−1eλ1(t−1) � 0. Therefore,

cφ̄′(t) − d
[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)
[
1− φ̄(t − cτ)

]
� cφ̄′(t) − d

[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)

= −d[−1+ eλ1(t−1)] − 1= (d − 1)

[
1− d

d − 1
eλ1(t−1)

]
� 0.

(iv) For −1 < t � 0, φ̄(t) = eλ1t , φ̄(t + 1) = 1, andeλ1(t+1) > 1. From Lemma 5.2, i
follows that

cφ̄′(t) − d
[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)
[
1− φ̄(t − cτ)

]
� cφ̄′(t) − d

[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)

= cλ1e
λ1t − d[1+ eλ1(t−1) − 2eλ1t ] − eλ1t

� cλ1e
λ1t − d[eλ1(t+1) + eλ1(t−1) − 2eλ1t ] − eλ1t

= eλ1t
[
cλ1 − d(eλ1 + e−λ1 − 2) − 1

] = 0.

(v) For t � −1, we have

cφ̄′(t) − d
[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)
[
1− φ̄(t − cτ)

]
� cφ̄′(t) − d

[
φ̄(t + 1) + φ̄(t − 1) − 2φ̄(t)

] − φ̄(t)

= cλ1e
λ1t − d[eλ1(t+1) + eλ1(t−1) − 2eλ1t ] − eλ1t

= eλ1t
[
cλ1 − d(eλ1 + e−λ1 − 2) − 1

] = 0.

Combining with the above (i)–(v), we know thatφ̄(t) is an upper solution of (5.9), and th
completes the proof. �
Lemma 5.4. Letε > 0 andM > 0 be such that(5.10)–(5.11)hold, andτ � 0 be sufficiently
small. Then,φ(t) is a lower solution of(5.3).

Proof. Assumecτ � 1. We verify the conclusion in the following five cases.
(i) For t > 1+ t∗, φ(t − 1) = φ(t) = φ(t + 1) = φ(t − cτ) = 0. Obviously,

cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t)[1− φ(t − cτ)]
1+ γφ(t − cτ)

= 0.
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(ii) For t∗ + cτ < t < 1+ t∗, φ(t + 1) = φ(t − cτ) = φ(t) = 0. It follows that

cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t)[1− φ(t − cτ)]
1+ γφ(t − cτ)

= −αd[1− Meε(t−1)]eλ1(t−1) < 0.

(iii) For t∗ < t � t∗ + cτ , φ(t) = φ(t + 1) = 0. SinceMeε(t−1) < Meεt∗ = 1, we have

cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t)[1− φ(t − cτ)]
1+ γφ(t − cτ)

= −dα[1− Meε(t−1)]eλ1(t−1) < 0.

(iv) For t∗ − 1 < t � t∗, φ(t) = α(1− Meεt)eλ1t , φ(t + 1) = 0. It follows that

cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t)[1− φ(t − cτ)]
1+ γφ(t − cτ)

= cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t) + (1+ γ )φ(t − cτ)φ(t)

1+ γφ(t − cτ)

� cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t) + (1+ γ )φ(t − cτ)φ(t)

= αeλ1t
{[

cλ1 − 1− d(e−λ1 − 2)
] − Meεt

[
c(ε + λ1) − 1− d(e−(λ1+ε) − 2)

+ α(1 + γ )(1− Meεt)(1− Meε(t−cτ))eλ1(t−cτ)
]}

� αeλ1t
{
deλ1 + α(1+ γ )eλ1(t−cτ)[1− Meεt ]

− Meεt
[
c(λ1 + ε) − 1− d(e−(λ1+ε) − 2)

]}
.

By (5.10) andt∗ − 1 < t < t∗ < 0, we have

e−ε = e−εMeεt∗ = Meε(t∗−1) < Meεt < Meεt∗ = 1, eλ1t � eεt � eεt∗ = 1

M
.

By (5.10) and (5.11) and Lemma 5.1, it follows that

c(λ1 + ε) − 1− d(e−(λ1+ε) − 2) > deλ1+ε > 0.

Hence, we obtain

cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t)[1− φ(t − cτ)]
1+ γφ(t − cτ)

� αeλ1t
{
deλ1 + α(1+ γ )eλ1(t−cτ)[1− e−ε]

− e−ε
[
c(λ1 + ε) − 1− d(e−(λ1+ε) − 2)

]}
� αeλ1t−ε

{
α(1 + γ )eε+λ1(t−cτ)[1− e−ε]

− [
c(λ1 + ε) − 1− d(e−(λ1+ε) + eλ1+ε − 2)

]}
� αeλ1t−ε

{
(1+ γ )

α
eε−λ1cτ [1− e−ε] − ∆(ε + λ1)

}

M
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-

� α

M
eλ1t−ε

{
α(1 + γ )e−λ1cτ [eε − 1] − M∆(ε + λ1)

}
� α

M
eλ1t−ε

{
α(1 + γ )e−λ1cτ − M∆(ε + λ1)

}
� 0.

(v) If t � t∗ − 1 < 0, by (5.10) and (5.11), we have

cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t)[1− φ(t − cτ)]
1+ γφ(t − cτ)

� cφ′(t) − d
[
φ(t + 1) + φ(t − 1) − 2φ(t)

] − φ(t) + (1+ γ )φ(t − cτ)φ(t)

= αeλ1t
[
cλ1 − 1− d(e−λ1 + eλ1 − 2)

]
− αMe(ε+λ1)t

[
c(ε + λ1) − 1− d(eλ1+ε + e−(λ1+ε) − 2)

]
+ α2(1+ γ )(1− Meεt)eλ1t (1− Meε(t−cτ))eλ1(t−cτ)

� −αMe(ε+λ1)t∆(λ1 + ε) + (γ + 1)αeλ1(t−cτ)

= αe(ε+λ1)t
{−M∆(λ1 + ε) + α(γ + 1)e−λ1cτ

}
� 0.

Combining the above, we see thatφ is a lower solution of (5.9), and the proof is com
pleted. �

For aforementionedλ1 and ε > 0, chooseµ � λ1 (in addition to (5.6)) andα ∈( µ
2(λ1+µ)

,1
) ⊂ (0,1). Let M � 0 be large such that (5.11) holds and

√
2 − 1 < αM <

M − 1.

Lemma 5.5. For the parameters chosen as above,Γ ∗[φ, φ̄] is nonempty.

Proof. We claim thatφ̃(t) = α

1+αe−λ1t is in the setΓ ∗[φ, φ̄]. In fact,

φ̃′(t) = α2λ1e
−λ1t

[(1+ αe−λ1t ]2 > 0

implies thatφ̃(t) is nondecreasing inR. Also

φ̄(t) − φ̃(t) = eλ1t − α

1+ αe−λ1t
= eλ1t

1+ αe−λ1t
> 0,

which impliesφ̃(t) � φ̄(t). By Proposition 4.6(ii) and (iii) in [18], we know that̃φ(t) �
φ(t) andeµt [φ̃(t) − φ(t)] is nondecreasing int ∈ R. By Proposition 4.5(ii) in [18], we

know thateµt [φ̃(t + s) − φ̃(t)] is nondecreasing for alls > 0.
Next, we will verify thateµt [φ̄(t)− φ̃(t)] is nondecreasing int ∈ R. Fort > 0, φ̄(t) = 1,

and hence

d

dt

{
eµt

[
φ̄(t) − φ̃(t)

]} = d

dt

{
eµt

[
1− α

1+ αe−λ1t

]}

= eµt {(1− α)µ + α(2µ − αµ − λ1α)e−λ1t + µα2e−2λ1t }
[1+ αe−λ1t ]2

� eµt {α[µ(1− α) + λ1(1− α)]e−λ1t }
−λ1t 2 > 0.
[1+ αe ]
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For t � 0, φ̄(t) = eλ1t , and hence

d

dt

{
eµt

[
φ̄(t) − φ̃(t)

]} = d

dt

{
eµt

[
eλ1t − α

1+ αe−λ1t

]}

= (λ1 + µ)e(λ1+µ)t {(µ + λ1) + α[2α(µ + λ1) − µ]e−λ1t }
[1+ αe−λ1t ]2 > 0.

Therefore,eµt [φ̄(t) − φ̃(t)] is nondecreasing int ∈ R.
From the above, see thatφ̃(t) ∈ Γ ∗[φ, φ̄], and this completes the proof.�
Lemma 5.5 verifies (H5). (H1) and (H2) can be easily verified for this pair of uppe

lower solutions. Now, applying Theorem 4.1, we obtain the following result.

Theorem 5.1. Assumeτ > 0 is sufficiently small. Then for everyc > c∗ (c < 1/c∗), (5.2)
has a traveling wave front solution of the formun(t) = φ(n + ct) (un(t) = φ(t + cn))

connecting0 and1.

Remark 5.1. When the nonlinear reaction term only satisfies the weakened qua
monotonicity(QM∗), the corresponding main theorem in [18] (Theorem 4.1) requires th
the upper solution̄φ be such thateµt [φ̄(t + s) − φ̄(t)] is nondecreasing int ∈ R for all
s > 0. This is a very demanding condition, and makes searching for the upper solu
hard job. But our Theorem 4.1 drops this condition, and thus allows us to choose s
piecewise functions, as is shown in the above example.
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