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Abstract

Existence of traveling wave fronts for delayed lattice differential equations is established by
Schauder fixed point theorem. The main result is applied to a delayed and discretely diffusive model
for the population of Daphnia magna.
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1. Introduction

Traveling wave solutions for lattice diffential equations (LDEs) without time delay
have been extensively and intensivelydied in the last decade; see [1-9,12,14-16,18-20].
For delayed lattice differential equations, Wu and Zou [18] recently developed an iterative
scheme and used an upper—lower solution method to prove the existence of traveling wave
fronts of lattice differential equation. Blo quasimonotone and weakened quasimonotone
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nonlinearities were explored in [18]. This technique was used in Zou [23] to a system
of delayed differential equations on highamensional lattices. By the same approach,
Hsu et al. [13] generalized the results of [18] for quasimonotone case to more general
equations which include scalar functionalfdiential equations of retarded, advanced and
mixed type, but which possess the quasimonotonicity with respect to the delayed terms
in the nonlinearity. The technique was also employed successfully by Weng et al. [17]
to a system of delayed lattice differential equations vgtbbal interactions, which is
derived from the population’s age structure of the species. Hsu et al. [13] employed the
shooting method to obtain the existence of traveling wave solution, which include scalar
functional differential equations of retarded, advanced and mixed type, but which deals
with the quasimonotonicity with respect to the delayed terms in the nonlinearity.

The approach developed in [18] has computational convenience, since the iteration only
involves solving first order linear ordinary differential equations and generates a monotone
sequence that converges to a profile function for the wave front. But the iteration scheme re-
quires the existence of a pair of upper—lower solutions to the wave equation with the upper
solution being monotonically nondecreasing andvesging to the two distinct equilibria
ast — —oo andt — +o0, respectively. Such requirements on the upper—lower solutions
have restricted the applicability of the above approach. Therefore, as far as existence of
traveling wave fronts go, it is desirable to relax some restrictions on the upper—lower solu-
tions.

In this paper, we will consider the existence of traveling wave fronts of the following
system of delayed differential equations:

m

d
E”n (1) = f((”n)t) + ;a,j [g(un—j (t)) + g(”n-i-j (t)) - Zg(un(t))]’

neZz, (1.2)

whereZ is the integer latticein > 1 is an integerg;, 1< j < m, are positive real num-
bers,g:R — R and f: X — R are given mappings to be specified later, wh&re-
C([—7,0]; R) is the Banach space of continuous functions define¢-on 0] equipped
with the super-norms > 0 is a given constant. Also, for any € C(R, R), we use the
notationg, to denote the element ik define byg,(s) = ¢ (¢t + s) for s € [—1, 0]. When
m=1,a1=d,t=0andg(x) = x, system (1.1) becomes

d
Zoun () = £ (un () + A1) + up2() =20, (0], neZ, (1.2)

which represents the spatial discretization of the scalar reaction—diffusion equation

du(x,t) %u(x,1)
o7 =D 5.2 +f(u(x,t)).

System (1.2) is a model for population géine where spatially discrete populations of
diploid individuals are considered. System (1.2) is also used to model propagation of nerve
pulses in myelinated axons, where traveling wave fronts are a crucial aspect (see Bell and
Cosner [2]). For results on traveling wave fronts of (1.2), see Britton [3], Chi et al. [6],
Hankerson and Zinner [12], Keener [14], Zinner [20,21], Zinner et al. [22].
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As in [18] and [13], we will tackle the existence via the corresponding wave equation,
and using the upper—lower solution technique. Discussed will be both quasimonotone and
weakened quasimonotone nonlinearities in thesseof [18]. But, instead of establishing
a monotone sequence convergent to a wave front profile function, we will employ the
Schauder fixed point theorem to the operator used by Wu and Zou [18], in a properly cho-
sen subset in a Banach spac&’i(R, R) equipped with the exponential decay norm. The
subset is obtained from a pair of upper—lower solutions, which are less restrictive than what
are required in [18] and [13]. This makes searching for the upper—lower solutions easier
than in [18] and [13]. For example, when the reaction term satisfies the quasimonotonicity,
we will prove that existence of supersolutiorand asubsolutionwhich may even not be
continuous) satisfying certain conditions wgliarantee the existenoéa required pair of
upper—lower solutions stated above; whea thaction term only satisfies the weakened
guasimonotonicity, our existence result could also be less demanding for the upper solu-
tion, as demonstrated in our example in Satho(see Remark 5.1), where a delayed and
discretely diffusive population model for Daphnia magna is considered.

The rest of this paper is organized as folf In Section 2, we do some preparation nec-
essary for the later sections. Section 3 is devoted to establishing the existence of traveling
wave front solutions in the case of quasinotone nonlinearities. Section 4 is parallel to
Section 3, but deals with the case of weadgigquasimonotone nonlinearities. Finally, ap-
plication of the main results to a delayed and discretely diffusive model for the population
of Daphnia magna is given in Section 5.

2. Preliminaries

A traveling wave solutioof (1.1) is a solution of the form,, () = ¢ (¢ + nc), wherec is
a given positive constant agd R — R is a differentiable function satisfying the following
mixed functional differential equation:

d m
PO =f@)+ D aj[g(eG+r)) +e(d—rp) —22(1)], (2.1)

j=1
wherer; = jc, j=1,...,m. If ¢ is monotone and satisfies the following asymptotic
boundary condition:
Iim ¢()=¢_ and lim ¢ () =y, (2.2)
t——00 t—+00

then the corresponding traveling wave solution is called a traveling wave front. Therefore,
(1.1) has a traveling wave front if and only if (2.1) has a monotone solutia® sattisfying
the asymptotic boundary condition (2.2).
Without loss of generality, we assume = 0 and¢ = K, therefore conditior{2.2)
can be replaced by

tﬂrpooqb(t)zo and HIi+rnooqb(t)=l<. (2.3)

For convenience of statements, we make the following hypothesis:
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(A1) f(©0) = f(K)=0with0< K.
(A2) There exist a positive constarts> 0 such that

|f(®)— f)| < Lllg— vl

for¢, v € C([—7,0], R) With 0< ¢ (s), ¥ (s) < K, s € [—1, 0.
(A3) g:[0, K]— R is continuously differentiable, with € g’(x) < g'(0), g(0) =0.

Here and in the sequel, for anye R, u will denote the constant function ¢r-t, 0] taking
the valuex for all s € [, O].

Letp > 0 and equipC (R, R) with the normy| - || defined byl¢|, = sup.g ¢ (t)|e =",
Denote

B,(R,R) = [qb € C(R, R): suRq¢(r)|e—P"‘ < oo}.
te

Then, itis easily seen th&, (R, R) is a Banach space.
Denote

Cro.x1(R,R)={p € C(R,R): 0< ¢(s) <K, s € R}.

Let u > 0 , which will be specified in Sections 3 and 4. DefiRe Bjo,x](R, R) —

H(@)(@®) = pop @)+ f(¢e) + Zaj [g(opt+r))+g(d —r))) —28(d()].
j=1
Via H, we can defing" : Cjo x1(R, R) — Cjo,x1(R, R) by

t

F(¢)(t)=e M / e H(¢)(s)ds.

—0o0

It is easy to show that under (A1)—(A3,: Cio,x1(R, R) — Cio,x1(R, R) is well defined.
For any¢ € Cio x1(R, R), F(¢) satisfies

(F(9)) + 1nF(¢) — H() (1) =0. (2.9)

Thus, if F(¢) = ¢, i.e., ¢ is a fixed point ofF, then (2.1) has a solution. If this solution
satisfies the boundary condition (2.3) and isrmatone, then we obtain the existence of
traveling wave front solution of (1.1).

As mentioned in the Introduction, we will use a pair of upper—lower solutions of (2.1) to
construct a subset @f (R, R) in which the Schauder fixed point theorem can be applied to
the related operator. To this end, we need to make it clear what upper and lower solutions
mean.

Definition 2.1. A continuous functior : R — [0, K] is called an upper solution of (2.1) if
it is differentiable almost everywhere, and satisfies

d m
o) > f¢0+ Y ajlg(00 +r)) +8(0¢ —rp) —2(p1)].  ae. ong.

j=1
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Lower solutiong(¢) of (2.1) can be similarly defined by reversing the inequality in the
above inequality.

Definition 2.2. A function¢ : R — R is called a supersolution of (2.1) if there exist finitely
many constantd;, i = 1,..., p, such thatp(¢) is differentiable inR/{T;, i =1, ..., p}
and satisfies

d m
60> f¢0)+ Y (g0 +) + (6 — ) — 25(61)]

j=1
forte R/{T;, i=1,...,p}.

A subsolution of (2.1) is defined by reversing the inequality in the above inequality.

In what follows, we assume that an upper soluty(n) and a lower solutiorp(z) of
(2.1) are given so that

(H1) 0< ¢ <é <K, with M, o =0, lim; 00§ = K.
(H2) f(@) #0foru e (0,infcr p(t)] U [SUR P(1), K).

3. Quasimonotone nonlinearities

In this section, we will consider (2.1) with the following quasimonotonicity:

(QM) There exists a constant> 0 such that forany, v € X with0 < ¢ (s) < ¥ (s) < K
for s € [—7, 0], one has

F@) = f(@) + u[¥(0) —d(0)] = 24[g(v(0)) — g(¢(0)].

whereA =371 a;.

Without loss of generality, for (QM) we will always chooge> 1 andu > p in the rest
of the paper. Assuming (QM), the operatdrdefined in Section 2 enjoys the following
nice properties.

Lemma 3.1 (Wu and Zou [18])Assume thatA1)—(A3) and (QM) are satisfied. Then

(i) O< H(@$)(1) < f(K)+ pK for ¢ € Cio k)(R, R).
(i) H(¢p)(r) is nondecreasingine R, if ¢ € Cjo,x1(R, R) is nondecreasing ine R.
(iiiy H@@)@) < HW)(@) forreR,if ¢,y € Cio,x1(R, R) are given so thap (1) < ¥ (1)
fort e R.

As a direct consequence of Lemma 3.1, the oper&tdefined in Section 2 also shares
with H the above nice properties. In other words, we have the following lemma.
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Lemma 3.2. Assume thatA1)—(A3) and (QM) hold. Then

(i) 0S F($)(1) < f(K)+ uK for ¢ € Cio k1(R. R).
(i) F(¢)(r) is nondecreasing in€ R, if ¢ € Cjo x1(R, R) is nondecreasing in e R.
(i) F(p)(®) < F(Y)() fort e R, if ¢, ¥ € Cio,x1(R, R) are given so thaip (1) < ()
fort e R.

Next, we further explore the operatbrin Lemmas 3.3-3.5.

Lemma 3.3. Assume thaA1)—(A3) hold. ThenF : Cjo (R, R) — B,(R, R) is continu-
ous with respect to the norm|, in B,(R, R).

Proof. We first prove thatH : Cjo kj(R, R) — B,(R, R) is continuous. For any > 0,
chooses > 0 suchthas < e/N, whereN = Le?“" + u+2Ag'(0) +2g'(0) 37 (aje).
If ¢, ¥ € Cro,k1(R, R) satisfy

o —lp= SuRq¢(t) — 1#(t)|efp‘” <6,
te
then
|H(¢®) - H(y0)]

=) = fW) +u(d@) —v®) + > ai{[g(d+r)) — (W +rp)]

j=1

+[g(et — 7)) — (vt —r))]+2[g(v®) —g(0®)]}

<[F@) = F@)|+ o —v®]+) ajlg(et+r)) — (W +r))]

j=1

+ ) ajlg(¢t —rp) —g(wt —rp)| +2) aj|g(v ) — g(s ()]

j=1 j=1
< Za,;g’(o)[ltﬁ(t +r) =Y +rp||ot—rp)—va—rpl]
j=1

+ £ @) — FW@D|+ (1 + 248" (0)|p (1) — ¥ (1))
Itis easily seen that
b —rj) = v =rple™ T+ o +r)) =¥t +rj)]e”V]
<2 p(s) =Y (5)] - (3.1)

Thus, it follows from (3.1) that
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|H(p(0) — H(y () [e ="
<|f@) = f@ e+ (n+ 248" (0) | (1) — y(1)|e V!

+Zajg/(0)[|¢(t +r) =Yt +r)|+ o —r) =yt —rp|]e "

j=1

<[f@) = fle+ (;L +248'0) + ZZ(a,;eﬂ’f)g/(0)> ) =y ®],

j=1

<Ll — Yrllx.e M+ (u +24g'(0) + 22<a,,~ep’f>g’<0>) CIORSZOIR

j=1
<L sup |¢(t+s)—y(t+s)|e
]

s€[—ct,0

+ (u +244'(0) + 2Z(aje”’f)g’(0)) CIGERIGIR

j=1
SLsuge®) — v (@)]e"lerr
0eR

+ (u + 2Ag'(0) + 2Z(ajep”)g/(0)) CIGERIGIR

j=1

< (Lep” +u+2Ag8'(0) + ZZ(ajeprf)g'(0)> |¢(t) - I/I(I)\p
j=1
< Néb < e.
Therefore H : Co,k1(R, R) — B, (R, R) is continuous.
In order to prove Lemma 3.3, we need to estim#@ap)(t) — F (¥)(¢)|. By the defini-
tion of F(¢)(t), we have
t t
e / e’”H(q) (s)) ds —e M / e’”H(lﬁ(s)) ds
—00

—00

[F(e) = Fy )| =

t

< e*“’/el”|H(¢(s)) — H(y()|ds
t

<[H (@)= HY )| e / s tols! g

(@) If t <0, we obtain

|F(o®) — F(¥ ()] < e H(¢() = H(Y ()],

and hence
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1
[Fle®) = Fy@)|e™" < - [H(90) = H(y D).
(b) If £ > 0, it follows that
|F(o) — F(v ()|
- e—W[ 11 N 1
w—p umtp putp
Therefore, we have
[F(¢®) = F(y0)]e™"!
1 1

1
= = e (utpx B
g[(M—p /L+,o>e +M—+p}|H(¢(I)) H(y )],

e(u+ﬂ)’i| |H (¢(s)) — H('ﬁ(s)”p'

1
<—|H - H .
——[H ()~ H )],

Thus, by using the fact tha@f is continuous inB, (R, R), it follows that F' is also contin-
uous with respect to the norm|,. The proof is completed. O

We further assume that the upper—lower solutig(r3 and¢(r) satisfy
(H3) supg, ¢(s) < () forall € R.
Then the set

I'lg.¢]= {¢ € Clo.x|(R, R): (i) ¢ is nondecreasing iR, }

(i) (1) <Pp(t) < () forallz e R,

is nonempty, since (H3) implies thég = sup <, ¢(s) € I'[¢, o1

Remark 3.1. If ¢ € Cjo,x1(R, R) is nondecreasing, then SUR B (s) = ¢ (1). Therefore,
(H3) is implied by (H1) if eitherp(r) or ¢ is nondecreasing (assumigg< o (1) for all
t € R).

Lemma 3.4. If (QM) holds, thenF (I'[¢, ¢1) C I'[¢. 4.

Proof. Sinceg(r) is a upper solution, we have

¢'(t) + up(t) — Hp(1) > 0. (3.2)
By (2.4), we know that

F'(¢) + nF($) — Hp(1) =0. (3.3)
Combining (3.2) and (3.3) gives

(F(®) —¢) +n(F(¢) —¢) <O. (3.4)

Let w(t) = F(¢) — ¢, and denote (1) = w’(t) + pw(t). Then, it follows from (3.4) that
r(t) < 0. Sincew(t) is bounded orf—oo, 00),
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t
_ —u(t—s)
w(t)_/e rds <0,
—0o0

which implies thatF (¢) < ¢. By a similar argument, we can prove thfatg) > ¢. Com-

bining this with Lemma 3.2(ii), we see tha&t(I"[¢, @) C r'e, #]. The proof is com-
pleted. O

Lemma 3.5. If (QM) holds, then the operataf : I'[¢, o]l — (e, ¢] is compact.

Proof. By Lemma 3.2(i),F (¢) is uniformly bounded fotp € I"'[¢, #]. Since

t

0< F'(9)(1) = —pe ™ / e H(P)(s)ds + H(9)(t) = —nF () (1) + H(P) ()

<—uFO) @) + H(K)(@) < H(K)(1) — HO)(1) = nK,

we know thatF'(¢) is equicontinuous fop € I'[¢, ¢]. But sincel’[¢, ¢] consists of func-
tions defined ok = (—o0, 0o) which is nhot compact, the Ascoli-Arzela lemma cannot be
applied directly. For each integer> 0, consider the “truncationF;, of F define by

Fu(@)(®) =1 F(¢)(—n), 1€ (—00,—n),

F(p)(n), t € (n,+00).

Obviously,F, (¢) is also uniformly bounded and equicontinuousdoz "¢, ¢]. For each
» eIy, ¢1, Fu(¢) has the compact “support’n, n]. By the Ascoli-Arzela lemma, we
know F,, : I'[¢, ] — I'[¢, $] is compact. Using the estimate

SUP(Fu¢) (1) — (F) (1) el = sup|(Fa$) (1) — (F)(1)|e ="V < 2Ke™?",

teR [t|>n
we know F, — F uniformly in I"[¢, ¢]. Therefore, by Proposition 2.12 in [19], the limit
operatorF : I'[¢, ] — I'[¢, ¢] is also compact. The proof is completed:

Theorem 3.1. Assume thatA1)—(A3) and (QM) hold. If (2.1) has an upper solutiog
and a lower solutionp satisfying(H1)—(H3), then(2.1)—(2.3)as a solution, i.e(1.2)has
a traveling wave front solution.

Proof. Obviously, I'[¢, ¢] is a bounded subset @,(R, R). It is easy to verify that
r'le, ¢] is closed and convex. By Lemma 3.3-3.5 and Schauder fixed point theorem, we

know thatF has a fixed poing in I'[¢, #1. In order to prove that this fixed poigtgives a
traveling wave front, we need to verify theyanptotic boundary condition (2.3). Obviously

0<¢1:= lim ¢(1)=inf () <inf (),
t—>—00 teR teR

supp(t) <suppz = lim ¢ (1) =:¢(1) < K.
teR ™ teR 1—>+00
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Sincegy andg, are zeros off (-), by (H2), we have
¢r=_lim ¢()=0, ¢2= lim (1) =K

Finally, the fact tha# () € I'[¢, ¢]implies thatp (r) is monotone, and therefore it presents
a traveling wave front. The proof is completeda

Remark 3.2. Unlike in Wu and Zou [18], we do not require thatr) be monotone and
satisfy lim_, _. ¢ (z) = 0. This brings some convenience in searching for the upper—lower
solutions.

Lemma 3.6. Assume thafA1)—(A3) and (QM) hold. Assumégp, ¢) is a pair of superso-
lution and subsolution of2.1) satisfying(H1)—(H3)and

(H4) ¢(17) < $(t™) andgp(r+) < ¢(:7) forall £ € R.

Then,(F(¢(1), F(p(1)) € Cro,x1(R, R) is a pair of upper solution and lower solution of
(2.1) satisfying(H1)—(H3).

Proof. Letr > —o0 be sucb thad is continuous at, and letlT, <T,_1<--- < Ty beall
the discontinuous points @f in (—oo, 1). DenoteT),+1 = —oo. Then, by the definition of
supersolutiong’(s) + ug(s) — H(¢(s)) = 0 fors € (Tx41, Tx), 0< k < p. Hence

t 1

F(p)(t) <e ™ / e @ (s)ds + pe ™ / e p(s)ds

T; T;

P ! P g
:emz< / e%/(s)ds)weﬂ’Z( / e““‘a's(s)ds)

Jj=1 T]qu j=1 Tj+1

1 t

+e_’”/e’”q_5/(s) ds+p,e_’”/e’”¢_5(s)ds

T, T
14
= (1) — e et G (T) + e Y [eMTig(T]) — e Tir1g(T} )]
j=1
p
=¢(t) +e M Z euT,¢ euT/QS(T;r)] _ e“(TP*l*’)q_s(T;H)
j=1

=) +e

-MT

EN-T/ é(T‘i')] — gl"Tp-%—l(i (T;+1)}

j=1

p
=¢3(r)+e*“: > et i[(T) — (T )]} < o).

Jj=1
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By Lemma 3.1(iii),

F'(@)(1) + nF(@)(1) — H(F(fi_ﬁ))(t) > F'(§)(1) + nF(9) (1) — H(@$) (1) =0,
which implies thatF(¢)(z) is a upper solution of (2.1). Similarly, we can also prove
that F(¢)(7) is a lower solution of (2.1). The above also confirms that < F(¢) <
F(¢) < K. By L'Hospital’s rule, one can easily verify that lim _., F(¢)(r) =0 and
lim,— o0 F(¢)(t) = K. Noting that infez F(¢)(t) < inf;cg ¢(z) and sup_eR F@) (1) >
SURcg ¢(7), one sees that the paiF (¢) (1), F(¢)(1)) satisfies (H2). For (H3), leto(r) =
SUp.¢, (). Thengo(r) is nondecreasing angl(r) < ¢o(r) < ¢(r). By Lemma 3.2 and
Remark 3.1, sup, F(#)(s) < SUR<, F(¢o)(s) = F($o)(1) < F()(r), meaning that the
pair (F(¢)(1), F(¢)(1)) also satisfies (H3). The proof is completed:

Combining Lemma 3.6 with Theorem 3.1, we immediately obtain the following result.

Theorem 3.2. Assume thafA1)—(A3) and (QM) hold. If (2.1) has a supersolutiog (t)
and subsolutiorp(7) satisfying(H1)—(H4), then(2.1)—(2.3)has a solution, i.e(1.1)has a
traveling wave front solution.

Remark 3.3. From the proof of Theorem 3.1, we know that supersolution and subsolution
may have finite many discontinuous points, and thus, one can expect that searching for
such a pair of supersolution and subsolution would be easier than searching for a pair of
upper and lower solutions required in Theorem 3.1.

4. Nonquasimonotone nonlinearities

The quasimonotonicity condition (QM) pfa an important role in Section 3. But in
many models arising from practical problems, (QM) may not be satisfied. In this section,
we will relax (QM) to a weaker condition (Q& which is given below:

(QM*) there exists a constant > 0 such that for any, ¥ € X with 0 < ¢(s) <
Y(s) < K and[¢(s) — ¥ (s)]e* nondecreasing is € [—1, 0], one has

F@) = f) +u[op0 -y (0] >24[g((0) — (v (0)],
whereA =3""_ a;.

Parallel to Lemmas 3.1-3.3, we can establish the following Lemmas 4.1-4.3.

Lemma 4.1 (Wu and Zou [18])Assume thafA1)-(A3) and (QM*) hold. Then for any
¢ (¢) satisfying

() ¢ () is nondecreasingimR; and0 < ¢ (r) < K,
(1) eM[¢p(r +s) — ¢(s)] is nondecreasing in € R for everys > 0,

the following hold
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(i) H(p)() =0,
(i) H(¢)(t) is nondecreasing ine R,
(i) H@)(t) < H(@p)@) forr e R if v € C(R, R") satisfiesthaD < ¥ (1) < ¢ () < K
and thate*'[¢ () — ¥ (2)] is nondecreasing in€ R.

Lemma 4.2. Assume thatA1)—(A3) and (QM*) hold. Then for any (¢) satisfying

() ¢ () is nondecreasingimR; and0 < ¢ (¢) < K,
(1) eM[¢p(r +s) — ¢(s)] is nondecreasing in € R for everys > 0,

we have

(i) F(e)(®) =0,
(i) F(¢)(r) is nondecreasingine R,
(i) F(W)(@) < F(p)@@) fort e R if v € C(R, R") satisfies thaD < v (1) < ¢(t) < K
and thate*'[¢ (1) — ¥ (2)] is nondecreasing in€ R.

Note that the continuity of the map : Cjo,x (R, R) — B,(R, R) does not depend
on (QM) and thus remains true. Similar to Section 3, we now construct a subset of
Cio,x1(R, R). For this purpose, in the rest of this section, we assume that there are an upper
solutiong(¢) and a lower solutio(¢) satisfying (H1)—(H2) and the following additional
assumption: N

(H5) The setl™[¢(1), #(1)] is nonempty, where

(i) ¢(¢) is nondecreasing iR,
(i) o(t) < (1) < P(0),
(iii) e"'[p(r) — P ()] ande™ [p (1) — p(1)]
are nondecreasing inc R.
(iv) e[ (t +5) — ¢(¢)] is nondecreasin
inz € R foreverys >0

r*[¢).¢1)]=1{¢<€C(R,R);

Lemma 4.3. Assume thatA1)—(A3) and (QM*) hold. Then/"*[¢, ¢] is closed, bounded,
convex subset @&, (R, R).

Proof. Boundedness and convexity can be easily shown by their definitions. We next prove
thatI"*[¢, ] is closed. Assume, € I'*[¢, ¢] andp, — ¢ innorm| - |,, i.e.,

lim sugen(t) — p()|e " =0.
teR

n——+00

By ¢n € I'*[¢, $], we know that for anyy, 2 € R with 11 < 12,
eht2 [¢n (f2+5) — ¢n (t2)] > Mt [(bn (t1+5) — én (tl)]:
e"2[p(t2) — pu(t2)] = [ p(t1) — pu(11)],
M2 (12) — Q(tz)] > M (11) — Q(tl)]-
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Taking limitn — oo, we have
e"2[p(t2 +5) — pu(t2)] = [P (11 + 5) — P (11)].
e"2[p(12) — ¢ (12)] = e [p(11) — P (12)],
e"2[p(t2) — P(12)] = e [p(11) — P(12) ]

which implies thatp (¢) satisfies (iii) and (iv) o "*[¢, ¢). Itis easy to show thag(¢) satis-

fies (i) of I'*[¢, ¢]. Hencep € I'*[¢, ¢] and therefore[™[¢, ¢] is closed. This completes
the proof. O

Lemma 4.4. If (QM*) holds, thenF (I"*[¢, ¢]) C I'*[, 1 .
Proof. Let ¢(¢) € I'“[¢, ¢]. By Lemma 4.2(ii), F(¢)(¢t) is nondecreasing in € R.
Lemma 4.2(iii) implies
F(¢)(1) < F(@)(1) < F() ().
Repeating the proof of Lemma 3.4 gives
F($)(1) < (1), F(9) (1) = ¢(1).
Hence
P (t) < F(9)(1) < (1),

which implies thatr(¢)(¢) satisfying (i) of I"*[¢, o
Next, we will verify the fourth condition of*[g, ¢] for F(¢). For anys > 0, we have

t+s t
M [F(p)(t+5)— F(p) ()] =e ™ / e H(p)(0)do — / " H($)(6)do

1 t

—e / EFH () (€ + 5) dE — / e H (¢)(6) db
E E

= / " [H (@) (O +s) — (H($)(©6)]db.
By Lemma 4.1, we obtain

d
E[e’”(F(tﬁ)(t +5) = F(9)(0)] =" [H(p)(t +5) — H(¢(1)] >0,

which implies (iv) of I"[¢, @1* holds for F (¢).

Repeating the proof of Proposition 4.1 in Wu and Zou [18], we kmﬂ\?\[é(t)_—
F(¢)()] and e [F(¢) — ¢(1)] are nondecreasing ine R. Thus, F(¢)(1) € I'*[¢, ¢],
and therefore” (I'*[¢, ¢)) C I'*(¢. ¢]. O
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Lemma 4.5. If (QM*) holds, thenF : I'[¢, #]* — I'[$, $]* is compact.

The proof is similar to that of Lemma 3.5 and hence is omitted here.
Now, by Lemmas 3.3 and 4.3—-4.5, the Schauder’s fixed point theorem, and the same
argument as in the proof of Theorem 3.1, we obtain the following result.

Theorem 4.1. Assume thafA1)—(A3) and (QM*) hold. If (2.1)has an upper solutioe (¢)
and a lower solutior(¢) satisfying(H1), (H2) and (H5), then(2.1)—(2.3)has a solution,
i.e.,(1.1)has a traveling wave front solution.

Remark 4.1. Comparing with the results in nonquasimonotone case of Wu and Zou [18],
we do not require that the upper solutigiir) belongs to the profild™, in which the
upper solution is required to be satisfied [¢(r + s) — ¢(¢)] is nondecreasing in€ R

for all s > 0, and lim_, _s ¢(t) = 0. This brings some convenience in searching for the
upper—lower solutions.

5. An example

Consider the following lattice differential equation with time delay:

1—u,(t—r1) )
1+ yu,(t—1))
neZ. (5.1

System (5.1) can be considered as the spatiatelization of the reaction diffusion equa-
tion

d
E”n (1) = d[”n-‘,—l(t) — 2u, (1) + Mn—l(t)] + Mn(t)(

du(x,t 02u(x,t 1—(x,1—
u(x,t) _d u(x,t) u(ef) (x T) ’
ot x2 1+yu(x,t—r1)

which has been used to model the population of Daphnia magna (see, e.g., Feng and Lu
[10], Gourley [11] and references cited therein).
If y =0, system (5.1) becomes

(5.2)

%”n ) = d[”n+l(t) — 2un(t) + Mn—l(t)] + Mn(t)[l —up(t — T)]’ neZz, (53)

which was also proposed as a model for propagation of nerve pulses in myelinated axons
where the membrane is excitable only at spatially discrete sites (see, e.g., Bell [1], Bell and
Cosner [2], Chi et al. [6], Keener [14], Zinner [20—22] Wu and Zou [18] and references
cited therein).

Substitutingu, (1) = ¢ (¢t + cn) into (5.1) leads to

(5.4)

1— _
¢' () =d[p(t + )+ p(t — ) — 29 (1)] +¢(,)(Lﬂ>’

1+ypt—1)
We are interested in solutions of (5.4) satisfying

t_lirpoo ¢ () =0, timoo ¢@) =1 (5.5)
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For¢ € C([—7, 0], R), denote

_ 1)
fo))(x)—¢(x>(°>(1+y¢(x)(_r)>'

Obviously, (A1)—(A3) are satisfied for this functiondl with £k = 1. We verify that f
satisfies QM*).

Lemma 5.1. Whenr > 0 is sufficiently smallf (¢) satisfies QM*).

Proof. For any¢, v € C([—7,0], R) with 0 < ¥ (s) < ¢(s) <1 ande” [¢p(s) — ¥ (s)]
nondecreasing in € [—1, 0], we have

1-¢(-7) 1-y(-D)
_ =0 ——— )~y ———=
F@) = f@) ¢(>(1+y¢(_ﬂ> I/’()<1+W(_t)>

(@0 =Y (O)[L—yp(—D)Y(—1) — p(—7)]
B A+yd(—NA+y¥(—1)
Y (@O Y (—1) — Y (0)p(—1)) — Y (O)[p(—7) — Y (—7)]
L+yp(—t))A+y¥(-1))
L @O -y O)L=—yp(—D)Y(=1) —$(-1)]
- AL+yo(—)A+y¥(-1))
L 7 @O ¥ (0) — V(0 ($(0) — ¥ (0)
1+yp(—t))A+y¥(-1))
(@0 =Y ()L —y(—D)Y(—T) — p(—1) — Y (0)e" — yp(0)e""]
B A+yd(—tNA+y¥(—1)]
_ @©) =y O)—y — A+ y)e]
A+yd(=)A+yy¥(=1))
> [—y — A+ )] (¢ (0) — ¥ (0)).

+

If we choose

w>1+2y, (5.6)
then, for sufficiently smalt, (5.6) implies

w=y+ @d+y)e. (5.7)
Thus

f@) = fW) +1(¢© =¥ (0) = [ —y — L+ y)e ] (#(0) — y(0)) >0,
and this completes the proofo

In order to apply Theorem 4.1, we need to find a pair of upper and lower solutions of
(5.4) required by the theorem. Note that by letting

d(ct) = ¢@) and ¢t = c, (5.8)
Eq. (5.4) is transformed to the following equivalent equation:
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(5.9)

1-— _
C“P’(t)Zd[¢(t+1)+¢(t—1)—2¢(t)]+¢(t)( ¢t —ct) )

1+yp(t—cr)

Indeed, (5.9) corresponds to the traveling wave solutions of (5.1) with thefptm =

¢ (n + ct). Thus, in what follows, we will work on (5.9) for a required pair of upper and
lower solutions. To this end, the following result about the characteristic equation of (5.9)
at O will be employed.

Lemma 5.2 [18, Proposition 4.3]Let A(A) = ci — 1 —d[e* + e™* — 2], A € R, where
d > 0. Then there exists* = c*(d) > 0 such that

() if c <c*, A(L) has no real zergs
(i) if c =c*, A(X) has precisely one double zeyos
(i) if ¢ > c¢*, A(A) have exactly two real zerdd< A1 < A2, and A(A) > O for all A €
(A1, A2).

From now on, we will assume> ¢* and use.1 anda; to construct the upper and lower
solutions.

Leta € (0,1) (to be specified later). Fa¥ > 1 ande > 0, denoter* = ZIn - and
define

a(l— Methert | < 1,

- ellt t<0
t — b ~ 9
o) { 0, t>t*.

1, t >0,
Lety > 0 be given and be such that

$(1) = {

O<e<min{ln2, A1, A2 — A1} (5.10)
For sufficiently smallt > 0, chooseV > 1 such that

a(y +De M

) (5.11)

Noticing thati; > 0 andd > ?l—xl direct calculation shows thgt In 272 +-1 > 0. It
follows that

1

Lemma5.3. Assumel > —

solution of (5.9).

and letr > 0 be sufficiently small. Thep(r) is an upper

Proof. Assumer is sufficiently small such thatr < 1,and O< 7 < v* = [t In <2 4+ 1].

H I 1
Since 0K ¢(r —c7) < 1, Tai—e) < 1 and thus,

dO[L—¢(t —c1)]
14+ yo@t —c1)
>cd'(t)—d[p(t+ D+t —1) —2¢(1)] — p(O[1— p(t — cT)].

We have five cases to verify.

cd' (1) —d[pt + 1)+ ¢t — 1) — 26 ()] —
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(i) Fors > 1,¢(1) = ¢(1 +1) = ¢(t — 1) = ¢(t — c) = 1. Obviously,
@) —d[pt + 1)+ ot — 1) - 26(1)] — ¢()[1 - ¢(t —cT)] =0.
(i) For et < <1,6(1) = ¢(t + 1) = gt — c1) = 1, §(r — 1) = "¢~ and hence,
cd (1) —d[p(t + 1)+ ¢t — 1) —26(1)] — dD)[L— ¢t —c1)]
=—d[p(t—1) - 1] =d[1— D] > 0.

(i) For O <t <ct, (1) =t + 1) =1, ¢t — 1) = MDD and ¢t — c1)
e*1=¢1) - 1 Sinced > H;—u >1,0<t <t*and O<t < ct, we havect < ct*
rll In 41 + 1. Direct calculation shows that-1 -4 ¢*1¢=D > 0. Therefore,

cd' () —d[pt+ D)+t — 1) — 26(1)] — d()[1— p(t — c1)]
>cd' () —d[p(t+ 1)+t — 1) —26(1)] — (1)

d
=—d[-1+ ekl(t_l)] -1=d-1 |:1 — ﬂ@xl(t_l)} >0.

(iv) For =1 <1 <0, ¢(r) = €™, ¢(r + 1) = 1, ande’1*D > 1. From Lemma 5.2, it
follows that
c'(t) —d[p(t + 1)+t — 1) = 26(1)] — () [1— ¢t — c7)]
>cd' () —d[p(t+ 1)+t — 1) —26(1)] — (1)
=chpe — d[1+ MUD _gpMily _
> C)»le)‘lt _ d[ekl(t-i-l) _|_e)»1(l—1) _ 26)‘11] _ e)‘lt
=M [ch1— d(eM e —2) — 1] =o0.
(v) Fort < —1, we have
@' (1) —d[¢p(t + 1)+ ¢t — 1) = 26(1)] — p()[1 — (t — c1)]
>cd' () —d[p(t+ 1)+t — 1) —2¢(1)] — (1)

— C)\.]_é‘)tlt _ d[ekl(t-‘rl) +ell(t—l) _ zellt] _ ellt

=M [ckl —d(M e M —2)— 1] =0.
Combining with the above (i)—(v), we know thatr) is an upper solution of (5.9), and this
completes the proof. O

Lemmab.4. Lete > 0andM > 0 be such tha(5.10)—(5.11hold, andr > 0 be sufficiently
small. Theng(z) is a lower solution of(5.3).

Proof. Assumect < 1. We verify the conclusion in the following five cases.
(Fort>1+1* ¢t —1) =¢@) =¢(t +1) = (¢ — ct) = 0. Obviously,

PO — ¢ —c)]
@) —d[9( + 1+ 90~ 1)~ 2] - = ci) —0,
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()Fort* +ct <t <1+1t*, ¢ +1)=¢(t —ct) =¢(¢) =0. It follows that

PO — ¢ —c1)]
1+y¢@t —cr)

cd' (1) —d[p(t + 1)+t — 1) — 2¢(1)] —
= —ad[1— M DM D <,
(iii) For t* <1 <t*+ct, ¢(1) =¢(1 + 1) = 0. SinceM e~ < Met'" =1, we have

PO — ¢ —c1)]
1+y¢@t —cr)

cd' (1) —d[p(t + 1)+t — 1) — 2¢(1)] —

= —da[l— MDD
(iv) Fort* — 1<t <t*, ¢(t) =a(l— Me)e, ¢(t + 1) = 0. It follows that
dMI[L— ¢ —c7)]
1+y¢@t —cr)

L+t — c)p(®)
1+y¢@ —cr)
') —d[pt+ D+ ¢t —1) = 2¢(1)] — p(1) + (14 y)p(t — cT)(2)
=ae'{[cr1—1—d(e™™ = 2)] — Me[c(e + A1) — 1—d(e” P11 —2)

+a(l+y)(d— M) (1 — M) Mli=en])
< ote“'{dek1 +a(l+ )Mt — M
— Mef'[c(ry+e) —1—d(e” 1) — 2]}

cd' (1) —d[p(t + 1)+t — 1) — 2¢(1)] —

=cd'(t) —d[dp(t+1D) + ¢ —1) —2¢(1)] — p(1) +

By (5.10) and* — 1 <t < t* < 0, we have

et = efsMeet* — Mee(t*fl) < Mt < Meet* =1, eklt < ot < eet* - =
By (5.10) and (5.11) and Lemma 5.1, it follows that

c+¢e)—1—d(e P8 _2) s getrte 5
Hence, we obtain

PO[1— ¢t —c1)]
1+y¢@ —cr)

cd' (1) —d[p(t + 1)+t — 1) — 2¢(1)] —

< ae“’{de)‘l +a(l+y)eMl=D[1— ¢~
—ef[cOat+e) —1—de *t) —2)])
< ae}n]_f*é‘{a(l + y)eé‘+)\1(tfc‘[)[1 _ e*&]

—[cOa+e) —1—d(e*1Fe) 4 t1te — )]}

< aekltg{(l + y)%e““”[l —e f1— A(s + Al)}
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< @ T oLt y)e T — 1) = MAGe + 1))
< %e“’_g{a(l+ y)e ™M — MA(e + 1)} <O.

(V) If t <r* —1<0, by (5.10) and (5.11), we have
PN[L—¢(t —c1)]

1+y¢(t —cr)
e/ () —d[¢pt+ D+ ¢t —1) —261)] — (1) + A+ y)p(t — cT)P(1)
= aexlz[ckl —l—d(e M 4 M — 2)]

— aMe D e(e + A1) — L — d(eM1H e~ 01H9) _2)]

+ O[2(]_ +y)(1— Meet)eut(l _ Mes(t—cr))exl(t—cr)
< —aMeETAGY 4 ) + (7 + Daett =D
= oze(g"")»l)’{—MA()\l +e)+aly + 1)6—)»1cr } <o.

Combining the above, we see thatis a lower solution of (5.9), and the proof is com-
pleted. O

/() —d[¢(t + 1)+ ¢t — 1) — 2p(1)] —

For aforementioned.; and ¢ > 0, chooseu > A1 (in addition to (5.6)) andx €
(z255+1) € (0,1). Let M > 0 be large such that (5.11) holds aR® — 1 <aM <
M—1.

Lemma 5.5. For the parameters chosen as aboy&|¢, ¢] is nonempty.

Proof. We claim thatp () = ﬁ is in the setl"*[¢, ¢]. In fact,
az)\le_)‘lt

—_— & >

[(1+ ae11]2

implies thatg(¢) is nondecreasing iR. Also

Pt = 0

At
O —fny=e - 2 g

1+ ae ! 14 et
which impliesé (1) < ¢(¢). By Proposition 4.6(ii) and (iii) in [18], we know thafi(s) >
@) ande*[¢(t) — ¢ ()] is nondecreasing in € R. By Proposition 4.5(ii) in [18], we
know thate*/[¢ (¢ + 5) — ¢(1)] is nondecreasing for atl> 0. i
Next, we will verify thate#! [¢(¢) — ¢ (¢)] is nondecreasing ine R. Fort > 0,¢(t) =1,
and hence

d - - d o
E{e“’[cb(t) — o]} = T {e’” [1 Sk } }

-1t

+ Maze—ﬂlt}

MMl -a)ypu+au—ap—ra)e
- [1+ae—klt]2
S eMalp(l—a) + 21(1—a)le}

- [1+4 ae—*11]2

> 0.
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Fort <0, ¢(t) = ¥, and hence

d _ ~ d o
ut _ ut| At
dt {e [¢(t) ¢(t)]} dt {e |:e ' 1+ ae21! i|}

O+ we TN+ h) + al2a(p + A1) — ple )

[1+ae— 22l ]2 >0

Thereforeg”![¢(t) — (1)) |§ nondecreasing in€ R.
From the above, see thatr) € I'*[¢, ¢], and this completes the proofO

Lemma 5.5 verifies (H5). (H1) and (H2) can be easily verified for this pair of upper and
lower solutions. Now, applying Theorem 4.1, we obtain the following result.

Theorem 5.1. Assumer > 0 is sufficiently small. Then for every> ¢* (¢ < 1/c*), (5.2)
has a traveling wave front solution of the foum(t) = ¢ (n + ct) (u,(t) = ¢t + cn))
connecting) and 1.

Remark 5.1. When the nonlinear reaction term gnbatisfies the weakened quasi-
monotonicity(QM*), the corresponding main theorem i8] (Theorem 4.1) requires that

the upper solutio be such thae”/ [¢(r + s) — ¢(1)] is nondecreasing ine R for all

s > 0. This is a very demanding condition, and makes searching for the upper solution a
hard job. But our Theorem 4.1 drops this condition, and thus allows us to choose simpler
piecewise functions, as is shown in the above example.
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