
Ž .Journal of Mathematical Analysis and Applications 257, 282�291 2001
doi:10.1006�jmaa.2000.7319, available online at http:��www.idealibrary.com on

Threshold Dynamics in a Delayed SIS Epidemic Model1

Xiao-Qiang Zhao and Xingfu Zou

Department of Mathematics and Statistics, Memorial Uni�ersity of Newfoundland,
St. John’s, Newfoundland A1C 5S7, Canada

E-mail: xzhao@math.mun.ca, xzou@math.mun.ca

Submitted by H. L. Smith

Received April 11, 2000

An SIS epidemic model with maturation delay is analysed. It is shown that the
disease dies out when the basic reproduction number R � 1, and the disease0
remains endemic when R � 1 in the sense of uniform persistence. When the0
disease induced death rate is sufficiently small, the global attractivity of the
endemic equilibrium is also proved. � 2001 Academic Press
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1. INTRODUCTION

� �In their recent paper, Cooke et al. 1 derived a population growth model
for single-species with multiple life stages and came up with a delay
differential equation

N � t � B N t � T N t � T e�d 1T � dN t , 1.1Ž . Ž . Ž . Ž . Ž .Ž .
d Ž . Ž .where � � , N t is the adult matured population size at time t, d � 0dt

Ž .is the death rate constant at the adult stage, B N is a birth rate function,
T is the developmental or maturation time, and d is the death rate1
constant for each life stage prior to the adult stage. Typical examples of

Ž .birth rate functions B N found in the biological literature are:

Ž . Ž . �a NB1 B N � be , with a � 0, b � d;1
pnŽ . Ž . Ž .B2 B N � p� q � N , with p, q, n � 0, and � d;2 q

Ž . Ž .B3 B N � A�N � c, with A � 0, d � c � 0.3

1 Ž .Research supported by NSERC Canada .
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Functions B and B with n � 1 are used in fisheries and are known as1 2
the Ricker function and the Beverton�Holt function, respectively. Func-

Ž .tion B N N represents a constant immigration rate A together with a3
linear birth term cN.

There have been many models for single-species population growth,
which have taken into consideration the maturation delay, and most of
these models basically fall into the following two types:

N � t � N t f N t , N t � T , 1.2Ž . Ž . Ž . Ž . Ž .Ž .
N � t � B N t � T N t � T � dN t 1.3Ž . Ž . Ž . Ž . Ž .Ž .

Ž � �e.g., see Nisbet and Gurney 9, Sect. 8.3 and Freedman and Gopalsamy
� �. Ž . Ž . Ž .4 . Equation 1.1 is different from 1.2 and 1.3 in that not only the

Ž .maturation delay but also the death rate d � 0 in life stages prior to the1
adult stage is incorporated into the model. It has been shown that d � 01
does make a difference in the dynamics of the population. See Cooke et al.
� �1, Sect. 3 for details.

Ž . � �Based on 1.1 , Cooke et al. 1 also established an SIS epidemic model

I
�I t � A N � I � d � � � � IŽ . Ž . Ž .

N

�SI
� �d T1S t � B N t � T N t � T e � dS � � � IŽ . Ž . Ž .Ž .

N
1.4Ž .

N � t � B N t � T N t � T e�d 1T � dN � � I ,Ž . Ž . Ž .Ž .

where I is the infective population, S is the susceptible population, and
N � I � S is the total population. Here � � 0 is the disease induced death

1Žrate constant, � � 0 is the recovery rate constant is the average�

.infective time , and � � 0 is the contact rate constant. The standard
�Iincidence function is used with giving the average number of adequateN

contacts with infectives of one susceptible per unit time. For some dis-
eases, this incidence function seems to fit the data better than mass action

� � � �incidence; see Mena-Lorca and Hethcote 8 , de Jong et al. 2 , and the
references therein. This model is obtained under the following assump-
tions:

Ž .A1 transmission of the disease occurs due to contact between
susceptibles and infectives;

Ž .A2 there is no vertical transmission;
Ž .A3 the disease confers no immunity, and thus upon recovery an

Žinfective individual returns to the susceptible class hence the name SIS
.model .
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This type of model is appropriate for some bacterial infections. For a fatal
disease, the recovery rate constant is set to zero, giving an SI model.

Ž .Because of the relation N � I � S, for 1.4 it is sufficient to consider

I
�I t � � N � I � d � � � � IŽ . Ž . Ž .

N 1.5Ž .
N � t � B N t � T N t � T e�d 1T � dN � � I.Ž . Ž . Ž .Ž .

Ž . Ž .The global dynamics of Eq. 1.1 and system 1.5 were studied in Cooke
� � Ž .et al. 1 . For 1.5 , a basic reproduction number was identified, that is,

�
R � , 1.6Ž .0 d � � � �

which gives the average number of new infectives produced by one
infective during the mean death adjusted infective period. When there is

Ž . �no delay T � 0 , R acts as a sharp threshold, as shown in Cooke et al. 1,0
�Theorem 4.1 . When T � 0, R � 1 implies the existence of an unique0

non-trivial equilibrium called disease free equilibrium, which is globally
Ž � �.asymptotically stable Cooke et al. 1, Theorems 4.2�4.3 . In the case of

R � 1, there exists also an endemic equilibrium, in addition to the disease0
Ž .free one, and analysing the dynamics of 1.5 in this case becomes quite

dŽ . Ž Ž . . �hard in general. For those B N with B N N � 0, Cooke et al. 1,dN
�Theorems 4.4�4.5 obtained the globally asymptotic stability of the en-

demic equilibrium for � � 0 and established the locally asymptotic stability
Ž . Ž . Ž . Ž .for � � 0 but with either B N � B N or B N � B N . As for the2 3

Ž . Ž .general B N and � � 0, the dynamics of 1.5 remains undetermined, and
this paper makes an attempt in this direction. In other words, we will

Ž . Ž .investigate the threshold dynamics of system 1.5 for more general B N
satisfying some biologically reasonable conditions, and we will allow � � 0.
Our approach will be a combination of the theory of monotone dynamical
systems, theory of asymptotically autonomous semiflows, some abstract
persistence theorems, and a perturbation technique.

2. THRESHOLD DYNAMICS

Ž .We first impose the following conditions on 1.5 :

Ž . Ž . �ŽŽ . Ž .. �Ž . Ž . Ž �.H1 B � 	 C 0, � , 0, � with B N � 0, �N 	 0, � , B 0 �
Ž . d1T d1T Ž . Ž . 1Ž� . .d � � e and de � B � ; and there exists a G . 	 C 0, � , R such

Ž . Ž .that G N � B N N, �N � 0.
Ž . Ž Ž . ..� Ž . Ž .H2 Either B N N � 0, �N 	 0, � , or B N N is bounded on

Ž . �1Ž d1T . Ž .0, � and the positive equilibrium N � B de of 1.1 is globallye
Ž� � �. � 4asymptotically stable for initial values in C �T , 0 , R 
 0 .
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Ž Ž . .� Ž .Note that the condition B N N � 0, �N 	 0, � , is sufficient for the
Ž .global asymptotic stability of N for 1.1 with initial values ine

Ž� � �. � 4 Ž � �.C �T , 0 , R 
 0 see Cooke et al. 1, Theorem 3.1 . For other suffi-
� Ž . Ž .�cient conditions, we refer to Cooke et al. 1, Theorem 3.3 iii and iv .

In order to get the existence, uniqueness, and positive invariance of
Ž . Ž 2 .solutions of 1.5 , we define a function F 	 C R , R by�

xy
2F 0, 0 � 0, F x , y � if x , y 	 R 
 0, 0 .� 4Ž . Ž . Ž . Ž .�x � y

It is easy to verify that F is globally Lipschitz on R2 ,�

� � � �F x , y � F x , y � x � x � y � y ,Ž . Ž .1 1 2 2 1 2 1 2

� x , y 	 R2 , i � 1, 2.Ž .i i �

Ž .Using S � N � I, system 1.5 is transformed into the following nonlinear
delayed system

I � t � � d � � � � I � �F I , SŽ . Ž . Ž .
S� t � � I � dS � �F I , SŽ . Ž . 2.1Ž .

� G I t � T � S t � T e�d 1T .Ž . Ž .Ž .

� � Ž� � 2 .By Smith 10, Theorem 5.2.1 , for any 	 	 C � C �T , 0 , R , there is a� �
Ž Ž . Ž .. Ž . Ž Ž . Ž .. Ž .unique solution I t, 	 , S t, 	 of 2.1 with I 
 , 	 , S 
 , 	 � 	 
 ,

� � Ž . Ž .�
 	 �T , 0 , and I t, 	 � 0, S t, 	 � 0 for all t � 0 in its maximal
Ž . Ž . Ž .interval of existence. Then N t � S t � I t satisfies the differential

inequality

N � t � G N t � T e�d 1T � dN.Ž . Ž .Ž .

� �By Smith 10, Theorem 5.1.1 and the standard comparison theorem,
Ž .together with assumption H2 , it then follows that each solution

Ž Ž . Ž .. � . Ž .I t, 	 , S t, 	 exists globally on 0, � and solutions of 2.1 are ulti-
Ž . Ž .mately bounded. Moreover, if 	 � 	 , 	 	 C with 	 0 � 0, by using1 2 � 1

Ž . Ž . Ž .the two equations in 2.1 respectively, we then have I t, 	 � 0, S t, 	 �
0, � t � 0.

�Ž . Ž . Ž . � �4 �ŽLet X � 	 , 	 	 C : 	 
 � 	 
 , �
 � �T , 0 , X � 	 ,1 2 � 2 1 0 1
. Ž . 4	 	 X : 	 0 � 0 and � X � X 
 X . Clearly, X is an open set rela-2 1 0 0 0

Ž .tive to X. To consider the dynamics of 1.5 , we extend it to the system

I � t � �F I , N � I � d � � � � I ,Ž . Ž . Ž .
2.2Ž .�d T� 1N t � G N t � T � dN � � I.Ž . Ž .Ž .
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Ž .By the aforementioned conclusions for 2.1 , it then follows that for any
Ž Ž . Ž .. Ž . Ž Ž . Ž	 	 X, the unique solution I t, 	 , N t, 	 of 2.2 with I 
 , 	 , N 
 ,

.. Ž . � � Ž . Ž . Ž .	 � 	 
 , �
 	 �T , 0 , satisfies I t, 	 � 0 and N t, 	 � I t, 	 , � t
� . Ž .	 0, � . Let � t : X � X, t � 0, be the solution semiflow generated by

Ž . Ž Ž . .Ž . Ž Ž . Ž .. � �2.2 , that is, � t 	 
 � I t � 
 , 	 , N t � 
 , 	 , 
 	 �T , 0 , t � 0.
Ž . Ž .Thus we further have � t : X � X , � t : � X � � X , � t � 0, and0 0 0 0

Ž . Ž� t : X � X is point dissipative. By the standard theory of FDE see, e.g.,
� �. Ž .Hale and Verduyn Lunel 6 , � t : X � X is compact for each t � T ,

Ž . Ž �and hence, there is a global attractor A for � t : X � X see Hale 5,
�.Theorem 3.4.8 .

Now we are in the position to state and prove the following result of
Ž .threshold dynamics for 1.5 , determining whether the disease dies out or

remains endemic eventually.

Ž . Ž .THEOREM 2.1. Assume that H1 and H2 hold. If R � 1, then e�ery0
Ž Ž . Ž .. Ž . Ž .solution I t, 	 , N t, 	 of 1.5 with 	 	 X satisfies lim I t, 	 � 00 t ��

Ž .and lim N t, 	 � N . If R � 1, then there is a  � 0 such that e�eryt �� e 0
Ž Ž . Ž .. Ž . Ž .solution I t, 	 , N t, 	 of 1.5 with 	 	 X satisfies lim inf N t, 	0 t ��

Ž .� lim inf I t, 	 � .t ��

Ž .Proof. Let B � , �, d, d , � , and T be fixed. Then we have the1
following claim.

Ž �. Ž . d1TClaim 1. For any positive number � with B 0 � d � � e , there0 0
Ž . � �exists � � � � � 0 such that for any � 	 0, � , the solution semiflow1 1 0 0

Ž . Ž . � Ž . �� t associated with 2.2 satisfies lim sup � t 	 � � , �	 	 X .t �� 1 0

1 � d T �1Ž Ž . Ž . . Ž .Indeed, let � � B 0 � d � � e . Note that if B 0 � �, we1 02
Ž �. � Ž . d1Treplace B 0 with any positive number B � d � � e . Then there0

Ž . Ž . Ž �.exists a � � � � such that B N � B 0 � � � 0, �0 � N � � .1 1 1 1 1
� Ž . �Suppose that, by contradiction, lim sup � t 	 � � for some 	 	 Xt �� 1 0

� � � Ž . �and � 	 0, � . Then there exists a T � 0 such that � t 	 � � ,0 1 1
Ž Ž . Ž .. Ž Ž . .Ž . Ž . Ž .� t � T . Let I t , N t � � t 	 0 , t � 0. Thus N t � I t , � t � 0,1
Ž .and hence N t satisfies the differential inequality

N � t � B 0� � � N t � T e�d 1T � d � � N t , � t � T .Ž . Ž . Ž . Ž . Ž .Ž . 1

Consider the linear delayed equation

N � t � B 0� � � N t � T e�d 1T � d � � N t , t � T .Ž . Ž . Ž . Ž . Ž .Ž .1 1

2.3Ž .

Ž �. Ž .Since B 0 � � � 0, 2.3 is a cooperative and irreducible equation, and1
� � Ž . Ž .hence, by Smith 10, Corollary 5.5.2 , the linear stability of 0, 0 for 2.3 is

Žthe same as for ordinary differential equation by ignoring the delay in
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Ž ..N t � T

N � t � B 0� � � e�d 1T � d � � N t , t � T . 2.4Ž . Ž . Ž . Ž . Ž .Ž .Ž .1 1

Ž �. Ž . �d 1T � �Note that � � B 0 � d � � e and � 	 0, � . We then have1 0 0
Ž Ž �. . �d 1T Ž . �B 0 � � e � d � � � 0, and hence, by Smith 10, Corollary1

� Ž . �5.5.2 , the stability modulus s of 2.3 is positive. Then, by Smith 10,
� Ž . � Ž . stTheorem 5.5.1 , 2.3 admits a solution N t � e u with u � 0. Since

Ž . Ž . � Ž .N t � 0, � t � 0, we can choose a k � 0 such that N t � kN t , � t 	
� �T � T , T . By the comparison theorem of quasimonotone systems with1 1

Ž � �. Ž . � Ž .delays Smith 10, Theorem 5.1.1 , we get N t � kN t , � t � T , and1
Ž . Ž Ž . Ž ..hence lim N t � �, which contradicts the boundedness of I t , N tt ��

� .on 0, � .
Ž .In the case of R � 1, we have � � d � � � � . If I 0 � 0, then0

Ž . Ž . Ž .N t � I t � 0, � t � 0, and hence, by Eq. 1.5 , we get

I � t � � � d � � � � I t , t � 0.Ž . Ž . Ž .Ž .
It then follows that

I t � I 0 eŽ��Žd���� .. t , t � 0,Ž . Ž .
Ž . Ž .and hence lim I t � 0 exponentially. Thus N t satisfies the followingt ��

non-autonomous delayed equation

N � t � B N t � T N t � T e�d 1T � dN � � I t ,Ž . Ž . Ž . Ž .Ž .
Ž .which is asymptotic to the autonomous delayed equation 1.1 . By the

generalized Markus’ theorem for asymptotically autonomous semiflows
Ž � �. Ž .see Thieme 14, Theorem 4.1 , together with assumption H2 and Claim

Ž .1 above, it then follows that lim N t � N .t �� e
Ž .In the case of R � 1, that is, � � d � � � � , let M � 0, 0 and0 1

˜Ž . Ž . Ž .M � 0, N . By assumption H2 , we have A � � � 	 �2 e � 	 	 � X 0
� 4 Ž .M , M , where � 	 is the omega limit set of 	 for the solution1 2

Ž .semiflow � t . Clearly, M and M are disjoint, compact, and isolated1 2
Ž . � � 4invariant sets for the semiflow � t , and no subset of M , M forms a� X 1 20

cycle in � X . We further have the following claim.0

Claim 2. For any positive number � with � � d � � � � , there exists0 0
Ž . � � Ž .� � � � � 0 such that for any � 	 0, � , the solution semiflow � t2 2 0 0

Ž . � Ž . Ž .�associated with 2.2 satisfies lim sup � t 	 � 0, N � � , �	 	 X .t �� e 2 0

1 N � IŽ Ž . .Indeed, let � � 1 � d � � � � �� . Since lim � 12 0 Ž I, N .� Ž0, N .2 Ne
N � IŽ . �� � , there exists a � � � � such that � � , �0 � I � � , N �2 2 2 2 2 2N

� � Ž . Ž .�N � � . Suppose that, by contradiction, lim sup � t 	 � 0, N � �e 2 t �� e 2
� �for some 	 	 X and � 	 0,� . Then there exists a T � 0 such that0 0 2

� Ž . Ž .� Ž Ž . Ž .. Ž Ž . .Ž .� t 	 � 0, N � � , � t � T . let I t , N t � � t 	 0 , t � 0. Thuse 2 2
Ž .I t satisfies the differential inequality

I � t � �� � d � � � � I t , � t � T .Ž . Ž . Ž .Ž .2 2
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Then

I t � I T eŽ��2�Ž d���� ..Ž t�T2 . , � t � T .Ž . Ž .2 2

Ž . Ž .By the choice of � , we have �� � d � � � � � �� � d � � � � �2 2 2 0
Ž .0, and hence lim I t � �, which contradicts the boundedness oft ��

Ž Ž . Ž .. � .I t , N t on 0, � .
In view of Claims 1 and 2 above, it is easy to see that M and M are1 2

Ž . sŽ .isolated invariant sets for � t in X, and W M � X � �, i � 1, 2,i 0
sŽ . Ž .where W M is the stable set of M for � t . By the acyclicity theoremi i

Ž � �.on uniform persistence see Hale and Waltman 7, Theorem 4.1 , for any
Ž . Ž .positive � satisfying H1 , the semiflow � t is uniformly persistent with

Ž .respect to X , � X in the sense that there is a  � 0 such that0 0 0
Ž Ž . .lim inf dist � t 	, � X �  for all 	 	 X . Then, by Smith andt �� 0 0 0

� � Ž� � 2 . Ž .Zhao 13, Theorem A.2 with Z � C �T , 0 , R and e � 1, 1 , there
Ž Ž . Ž .. Ž Ž . .Ž .exists a  � 0 such that I t, 	 , N t, 	 � � t 	 0 , t � 0, satisfies

Ž . Ž .lim inf I t, 	 �  and lim inf N t, 	 �  for all 	 	 X .t �� t �� 0

In the case that the disease induced death rate � is sufficiently small
and the basic reproduction number R � 1, we have the following result0
on the global attractivity of the endemic equilibrium.

�Ž . Ž .THEOREM 2.2. Assume that H1 with � � 0 and H2 hold. If � 1,d � �

� � Ž .then there exists an � � 0 such that for any � 	 0, � , system 1.5 admits a
Ž � Ž . � Ž ..positi�e equilibrium I � , N � which is globally attracti�e in X .0

Proof. By assumption, we can choose an � � 0 sufficiently small such0
Ž �. Ž . �d 1T Ž .that B 0 � d � � e and R � �� d � � � � � 1. Note that for0 0

Ž Ž . Ž .. Ž . Ž . Ž .any 	 	 X, the solution I t, 	 , N t, 	 of 2.2 satisfies N t � I t � 0,
t � 0, and

N � t � G N t � T e�d 1T � dN t , t � 0. 2.5Ž . Ž . Ž . Ž .Ž .
Ž . d1T Ž . �d 1TSince B � � de , there exists a K � 0 such that B N e � d � 0,0

� ��N � K . Then Smith 10, Theorem 5.2.1 and Remark 5.2.1 imply that0
� �any interval 0, K , K � K , is positively invariant for the scalar delayed0

equation

N � t � G N t � T e�d 1T � dN t , t � 0. 2.6Ž . Ž . Ž . Ž .Ž .
Ž . Ž . Ž .In the case that B N N is bounded by K on 0, � , N t, 	 also satisfies1

N � t � K e�d 1T � dN t , t � 0. 2.7Ž . Ž . Ž .1

ŽBy the comparison theorem for quasimonotone systems with delays Smith
� �.10, Theorem 5.1.1 and the standard comparison theorem for scalar

Ž .ordinary differential equations, it then follows that solutions of 2.2 are
� �uniformly bounded and ultimately bounded uniformly for � 	 0,� . Let0
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Ž . Ž .� � , t be the solution semiflow generated by 2.2 . As mentioned before,
� � Ž .for each � 	 0, � and t � T , � � , t : X � X is compact. It then easily0

Ž . � �follows that for any fixed t � T , � �, t 	 : 0, � � X is continuous uni-0
formly for 	 in any bounded subset B of X, and hence, � � � , t BŽ .� 	�0, � �0

Ž �is compact in X see, e.g., the Claim in the proof of Smith and Zhao 12,
�.Theorem 3.1 . Moreover, there is a bounded and closed subset B of X,0

� � � �independent of � 	 0, � , such that for any 	 	 X, � 	 0, � , there0 0
Ž . Ž . Ž .exists t � t 	, � � 0 such that � � , t 	 	 B for all t � t . Let � 	0 0 0 0 �

Ž . Ž .be the omega limit set of 	 	 X for � � , t : X � X. Clearly, � 	 is�

Ž .invariant for � � , t and is a subset of B . Then,0

� � 	  � � � , t � 	Ž . Ž . Ž .Ž .� 	�0, � � , 	 	 X � � 	�0, � � , 	 	 X �0 0

 � � � , t B , � t � T ,Ž .� 	�0, � � 00

and hence � � 	 is compact in X. By Theorem 2.1, forŽ .� 	�0, � � , 	 	 X �0

� � Ž . Ž .each � 	 0, � , � � , t is uniformly persistent with respect to X , � X ,0 0 0
� �and hence, by Hale and Waltman 7, Theorem 3.2 , there is a global

0 Ž .attractor A for � � , t : X � X . By the theorem on the uniform persis-� 0 0
Ž �tence uniform in parameters see Smith and Zhao 12, Theorem 4.3 and

�.Remark 4.2 , together with Claims 1 and 2 in the proof of Theorem 2.1,
Ž �it then follows that there exist � 	 0, � and  � 0 such that1 0 1

Ž Ž . . � �lim inf dist � � , t 	, � X �  for all 	 	 X , � 	 0, � . Thus theret �� 0 1 0 1

exists a bounded and closed subset B� of X such that A0  B� for all0 0 � 0
� �� 	 0, � . For any t � T ,1

�0� � � , t A  � � � , t B , andŽ . Ž .� 	�0, � � � � 	�0, � � 01 1

� �0 0� � � , t A � � A  B � B  X .Ž .� 	�0, � � � � 	�0, � � � 0 0 01 1

0 Ž .Then � � � , t A is compact in X . When � � 0, system 2.2Ž .� 	�0, � � � 01
d � �ŽŽ . .admits a unique positive equilibrium 1 � N , N which is globallye e�

Ž � �.asymptotically stable in X see Cooke et al. 1, Theorem 4.4 . By Smith0
� � 0and Waltman 11, Theorem 2.2 with U � X and B � A , there is an0 � �

Ž � � � Ž .� 	 0, � such that for each � 	 0, � , system 2.2 admits a positive1
� � � � d � �Ž Ž . Ž .. Ž Ž . Ž .. ŽŽ . .equilibrium I � , N � with I 0 , N 0 � 1 � N , N , ande e�

� �Ž Ž . Ž ..I � , N � is globally attractive in X .0

3. DISCUSSION

Under quite general conditions, we have proved that the basic reproduc-
Ž .tion number R acts as a threshold for the SIS model 1.5 : when R � 1,0 0

the disease dies out, and when R � 1 the disease remains endemic in the0
sense of uniform persistence. For the latter case, if the disease induced
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Ž . Ž . Ž . ŽFIG. 1. Numerical simulations for 1.5 with B N � B N , using XPPAUT Ermentraut1
� �.3 . The parameters are chosen as follows: a � d � d � 1, b � 20, y � 0.5, T � 0.1, and1
� � 20. It is easy to verify that for these parameter values, the conditions in Theorems

Ž . Ž . Ž .2.1�2.2 are satisfied. Part a is for I and b is for N. The initial values are I s � 2,
Ž . � �N s � 3.5 for all s 	 �0.1, 0 . Note that the critical value of � � 0 for R � 1 is 18.5.0

Ž .Convergence to the endemic equilibrium is observed for values of � � 18.5 R � 1 and is0
Ž .shown in the figure for � � 5, 12, 18. For values of � � 18.5 R � 1 , convergence to the0

Ž .disease free equilibrium see Theorem 2.1 is also confirmed but not given in the figure.

death rate � is sufficiently small, we even have proved that the endemic
equilibrium is globally attractive. Some numerical simulations are shown in
Fig. 1. There arises a natural question: When R � 1, does the endemic0
equilibrium remain globally attractive for large values of � � 0? In proving
Theorem 2.2, we made use of a perturbation theorem established in Smith

� �and Waltman 11, Theorem 2.2 , and hence our approach fails to answer
this question and the problem remains open. We hope to be able to solve
this open problem by using some new technique in a forthcoming paper.
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