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We discuss the existence and approximation of solutions of asymptotic or
periodic boundary value problems of mixed functional differential equations. Our
approach is via monotone iteration and non-standard ordering in the profile set for
asymptotic boundary value problems and via S 1-degree and equivariant bifurcation
theory for periodic boundary value problems. Applications will be given to wave
fronts and to slowly oscillatory spatially periodic traveling waves of lattice delay
differential equations arising from population genetics, population dynamics, and
neural networks. � 1997 Academic Press

1. INTRODUCTION

The purpose of this paper is to establish the existence and approximation
schemes of solutions to periodic or asymptotic boundary value problems of
the following functional differential equation

d
dt

x(t)=f (x(t), x(t&{))

+ :
m

j=1

aj [ g(x(t+rj&={))+g(x(t&rj&={))&2g(x(t&={))] (1.1)

where x # R, f : R2 � R and g : R � R are continuous mappings, {�0 is a
given constant, ==0 or 1, aj and rj , 1�j�m, are given constants.

This equation has the important feature that the history and the future
status of the system both affect its change rate at the present time. It is
called a mixed functional differential equation and arises from various
application fields. For example, in optimal control problems with delays
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the Euler equation determining the optimal solution often involves systems
of functional differential equations with both advanced and delayed terms,
see Pontryagin, Gamkreledze and Michenko [50]. A specific mixed func-
tional differential equation arising in such way from a competitive economy
was investigated by Rustichini [51, 52]. Physical justification of (1.1) was
also discussed by Schulman [55, 56] in the field of time symmetric electro-
dynamics and absorber theory of Weeler and Feynman [61]. The qualita-
tive analysis of mixed functional differential equations is quite complicated,
and even the basic existence-uniqueness theory has not been established.

In this paper, we will investigate those mixed functional differential equa-
tions arising from the study of traveling waves of the following infinitely
coupled system of delay differential equations defined in a linear lattice on
the real line

d
dt

un(t)=f (un(t), un(t&{))

+ :
m

j=1

aj [ g(un&j (t&={))+g(un+j (t&={))&2g(un(t&={))] (1.2)

where n # Z (the lattice of all integers). Prototypes of (1.2), which will be
used to motivate our assumptions and to illustrate the general results,
include

d
dt

un(t)=un(t&={)[1&un(t)]+ :
m

j=1

aj [un&j (t))+un+j (t)&2un(t)], (1.3)

d
dt

un(t)=un(t)[1&un(t&{)]+ :
m

j=1

aj [un&j (t)+un+j (t)&2un(t)], (1.4)

d
dt

un(t)=&:un(t)+a0 g(un(t&={))

+ :
m

j=1

aj [ g(un&j (t&={))+g(un+j (t&={))]. (1.5)

arising from population genetics (Aronson and Weinberger [3], Fisher
[20] and Mckean [44]), population growth (Hastings [24], Krawcewicz
and Wu [31], Levin [39�41], Madras, Wu and Zou [42], Murray [45]),
and neural networks (Chua and Yang [12, 13], Cohen and Grossberg
[17], Hopefield [26, 27] and Pineda [49]), respectively. Other examples
include a model for propagation of nerve pulses in myelinated axons where
the membrane is excitable only at spatially discrete sites (Bell [7], Bell and
Cosner [8], Britton [9], Chi et al. [10], Keener [28, 29] and Zinner
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[64�66]). See also Cahn et al. [10], Chow and Shen [16], and the
excellent survey of Chow and Mallet-Paret [15].

A traveling wave of (1.2) is a solution un(t)=x(t&nc), where c is a given
constant and x : R � R is a differentiable function satisfying the following
mixed functional differential equation

d
dt

x(t)=f (x(t), x(t&{))

+ :
m

j=1

aj [ g(x(t+jc&={))+g(x(t&jc&={))&2g(x(t&={))]. (1.6)

Of our main concern in this paper is the existence of periodic traveling
waves and traveling wave fronts of (1.2). These are special wave solutions
of (1.2) which are periodic with respect to the spatial and temporal
variables or are convergent as t � \�. The above discussion naturally
leads us to the consideration of periodic boundary value problems or
asymptotic boundary value problems of the mixed functional differential
equation (1.6) or its general form (1.1).

Our first objective is to establish the existence of the asymptotic bound-
ary value problem (1.1) related to the wave fronts of the lattice delay dif-
ferential equation (1.2) in the case where f (0, 0)=f (K, K)=0 for a con-
stant K>0, by using the technique of monotone iteration. It will be shown
that an iterative scheme, using an upper solution as initial iteration,
monotonically converges to a solution of (1.1), and that the existence of a
lower solution will guarantee that the limit of the iterative scheme satisfies
the asymptotic boundary condition. We will also show that an ordered pair
of upper and lower solutions can be constructed from a careful analysis of
the related characteristic equation of (1.1) at a trivial solution. Since the
monotone iterative scheme involves only linear scalar nonhomogeneous
ordinary differential equations, our method can be utilized for computing
the wave fronts numerically. The monotone iteration technique to be
developed can be applied when f satisfies the quasi-monotonicity condition
that f (x, y) is monotonically increasing with respect to the second argu-
ment. Examples of such a functional include the delayed Fisher non-
linearity f=u(t&{)[1&u(t)] arising from population genetics; and the
delayed positive nonlinear feedback f=&:u(t)+a0 g(u(t&{)) with a non-
negative constant a0 and a sigmoidal g arising from neural networks.

In the case where the functional f does not satisfy the quasi-monotonicity
condition, the above iterative scheme is not necessarily monotone with
respect to the pointwise ordering of the space of all possible solutions,
called profiles, of (1.1) subject to the asymptotic boundary value condition.
Consequently, we are unable to establish the convergence of the scheme. In
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this case, we will further restrict the profile set and its ordering, motivated
by the work of Smith and Thieme [59, 60] in a different content. Under
additional conditions such as small delay, we will show that every function
in the iterative scheme starting from an upper solution in the restricted
profile set will remain in the profile set and the iteration scheme is
monotone with respect to the new ordering of the profile set. This, coupled
with the existence of a lower solution, will again lead to the existence of a
solution of (1.1) subject to the asymptotic boundary value condition. The
asymptotic boundary value problem (1.1) related to the population model
(1.4) with delayed logistic nonlinearity will be carefully analyzed. It will be
shown that with certain restrictions on d, if { is small, then (1.4) has a wave
front.

Our second objective is to obtain the existence of periodic waves for
(1.2), and in particular, for (1.5) under general conditions on the coef-
ficients (a0 , a1 , ..., am). The approach is to examine the existence and global
continuation of periodic solutions of the related mixed functional differen-
tial equation (1.6) by applying the S 1-degree and the equivariant bifurca-
tion theory developed in Erbe et al. [19]. This involves: (i) establishing
a-priori bounds for possible periodic solutions which are related to the
disipativeness of system (1.6); (ii) locating local Hopf bifurcation points and
evaluating the S 1-degree from the information of the distribution of zeros
of a characteristic equation; and (iii) ruling out periodic waves of certain
large fixed periods by first using the idea of Chow and Mallet-Paret [14],
Nussbaum [46], and Nussbaum and Potter [48] that a periodic wave of
large periods can be associated to a certain cyclic system of ordinary
differential equations and then by using a Liapunov function and the
Nussabaum's spectral theory of circulant matrices (Nussbaum [46]).

The rest of this paper is organized as follows. In Section 2, we will
present our main results and their applications to those lattice delay dif-
ferential equations arising from genetics, population dynamics and neural
networks. Sections 3, 4, and 5 will be devoted to the detailed discussions
and proofs of the main results for wave fronts in the case of quasimonotone
nonlinearity, for wave fronts in the case of non-quasimonotone non-
linearity and for periodic traveling waves, respectively.

2. MAIN RESULTS AND APPLICATIONS

We start with the mixed functional differential equation

d
dt

x(t)=f (xt)+ :
m

j=1

aj[ g(x(t+rj))+g(x(t&rj))&2g(x(t))], (2.1)
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where aj , 1�j�m, are real numbers, rj , 1�j�m, positive constants,
g : R � R and f : X � R given mappings to be specified later. Moreover, for
each x : R � R and t # R, xt stands for the element of X defined by xt(s)=
x(t+s) for s # [&{, 0], here {�0 is a given constant and X is the Banach
space of continuous functions defined on [&{, 0], equipped with the
super-norm.

In the following, we will use F1, F2, ... and P1, P2, ... to denote condi-
tions related to wave fronts and periodic traveling waves, respectively. We
first consider the existence of asymptotic boundary value problem of (2.1)
related to wave fronts of lattice delay differential equations.

We assume

(F1) aj and rj are positive constants, 1�j�m;

(F2) there exists a constant K>0 such that f (0� )=f (K� )=0 and
f (x̂){0 for x # (0, K), here x̂ denotes the constant mapping from [&{, 0]
into R with the constant value x;

(F3) g # C 2([0, K]; R), g(0)=0, 0<g$(x)�g$(0) for x # [0, K];

(F4) there exists a constant +>0 such that for any ,, � # X with
0�,(s)��(s)�K for s # [&{, 0], one has f (�)&f (,)++[�(0)&,(0)]�
2A[ g(�(0))&g(,(0))] with A=�m

j=1 aj ;

(F5) f # C 2(X; R), sup[ | f "(,)|; , # XK]<� and f $(,) e* }&2Ag$(,(0))
�f $(0) e* }&2Ag$(0) for any real number * and for any , # XK , where XK :=
[, # X ; ,(s) # [0, K] for s # [&{, 0]], and e* } # X is defined by e* }(%)=e*%

for % # [&{, 0];

(F6) There exist 0<*1<*2 such that 2(*1)=2(*2)=0 and 2(*)>0
for * # (*1 , *2), where

2(*)=*&f $(0) e* }& :
m

j=1

aj g$(0)[e*rj+e&*rj&2].

Condition (F3) imposed on the function g is motivated by the linear or
nonlinear diffusivity in the population growth model and the neural
network model to be described later. (F4) and (F5) are related to the
quasimonotonicity condition widely used in the literature of monotone
dynamical systems generated by functional differential equations (Ahmad
and Vatsala [1], Kerscher and Nagel [30], Kunish and Schappacher
[34], Ladas and Lakshmikantham [35], Lakshmikantham and Leela
[36], Leela and Moaura [38], and Smith [57, 58]). These conditions will
play an important role in ensuring the monotonicity of the iteration
employed in the proof of the existence of the solution to the asymptotic
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boundary value problem of (2.1) subject to the asymptotic boundary
condition

lim
t � �

x(t)=K, lim
t � &�

x(t)=0. (2.2)

Finally, the transcendental equation

2(*)=0 (2.3)

will be called the characteristic equation of (2.1) at the trivial solution.
As will be seen in next section, an upper solution of (2.1)�(2.2) can be
constructed from some solutions (called characteristic values) of (2.3).

Our first general result is as follows:

Theorem 2.1. Assume that (F1)�(F6) hold. Then the asymptotic
boundary value problem (2.1)�(2.2) has a solution.

Example 2.1. Consider the following system of lattice differential
equations

C
dun(t)

dt
=&

1
R

un(t)+A0 g(un(t))+ :
m

j=1

Aj [ g(un&j (t))+g(un&j (t))]+I

as a model, suggested by the work of Chua and Yang [11, 12], Cohen and
Grossberg [17], and Hopfield [26, 27], for a network of infinitely many
cells located in a linear lattice on the real line. Here, it is assumed that each
cell is made of a linear capacitor, a nonlinear voltage-controlled current
source and a few resistive linear circuit elements, and that cells com-
municate with each other directly only through its nearest m-neighbors. In
the equation, C and R are positive constants denoting the capacitance and
the resistance of each cell, the transfer (input-output or activation) function
g : R � R is a sigmoidal (that is, a smooth and nondecreasing function with
graph asymptotic to two horizontal lines), (A0 , A1 , ..., Am) are the inter-
active parameters, and I denotes the input control effect. In what follows,
we will assume that I=0. This can always be achieved by some translation
of coordinates. Note that Aj , j=0, ..., m, can be either positive or negative,
corresponding to the excitatory or inhibitory interaction of cells. The above
equation can be rewritten as

dun(t)
dt

=&:un(t)+a0 g(un(t))+ :
m

j=1

aj[ g(un&j (t))+g(un&j (t))], (2.4)

where :=1�RC and aj=Aj�C for all j=0, ..., m. Applying Theorem 2.1, we
get
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Corollary 2.1. Assume

(i) aj , 0�j�m are positive constants;

(ii) g # C 2(R; R), g(0)=0, limx � \� g(x)=\1, g$(x)>0 and
xg"(x)<0 for x{0;

(iii) (a0+2 �m
j=1 aj) g$(0)>:.

Let

c*=inf {c>0; *<&:+g$(0) _a0+ :
m

j=1

aj (e*jc+e&*jc) for *>0= .

Then for every c<c*, equation (2.4) has a traveling wave front un(t)=
x(t&nc) such that limt � &� x(t)=0 and limt � � x(t)=K, where K>0 is
the unique positive solution of the algebraic equation

:K=\a0+2 :
m

j=1

aj+ g(K ).

Note that in the above result c*>0 always holds. In fact, with the
change of variable *c=%, the inequality defining c* becomes

%
c

<&:+g$(0) __a0+ :
m

j=1

aj (e j%+e&j%)& , %>0.

The right hand is a smooth function which is concave up and with a
positive value (under the condition (iii)) at %=0. c* is the value of c where
the graph of the right hand side function of the above inequality has a
double coincidence point with the straight line %�c. See Fig. 2.1.

Example 2.2. We consider the following lattice delay differential
equations

d
dt

un(t)=h(un(t), un(t&{))+ :
m

j=1

aj [un&j (t)+un+j (t)&2un(t)]. (2.5)

This can be regarded as the model for the growth of a single species
population distributed over a patchy environment consisting of infi-
nitely many patches, where un(t) stands for the density of the population
in the n th patch, h(un(t), un(t&{)) is the intrinsic growth rate, and
�m

j=1 aj [un&j (t)+un+j (t)&2un(t)] represents the effect of the spatial dis-
persal, where aj>0, 1�j�m. It can also be regarded as the discrete
analog of the well known Fisher equation arising from population genetics
and bifurcation process, and the existence of traveling wave fronts in the
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Fig. 2.1. The functions defining c*.

continuous model with delay was established by Schaaf [53]. An
immediate application of Theorem 2.1 leads to the following.

Corollary 2.2. Assume that

(i) h # C 2(R2; R) and there exists a constant K>0 such that
h(0, 0)=h(K, K)=0 and h(x, x)>0 for all x # (0, K);

(ii) (���y) h(x, y)�0 for all x, y # [0, K];

(iii) (���z) h(x, y)�(���z) h(0, 0) for x, y # [0, K], where z=x or y;

(iv) (���x) h(0, 0)+(���y) h(0, 0)>0.
Let

c* :=inf {c; *&
�

�x
h(0, 0)+2 :

m

j=1

aj<
�

�y
h(0, 0) e&*{

+ :
m

j=1

aj (e*jc+e&*jc) for *>0= .

Then for every c<c*, equation (2.5) has a traveling wave front un(t)=
x(t&nc) such that limt � � x(t)=K and limt � &� x(t)=0.

We should mention that in the absence of delay, the existence of
traveling wave fronts of (2.5) for m=1 was established by Zinner et al.
[66] via continuation and comparison methods.
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One of the crucial conditions in Theorem 2.1 is the quasimonotonicity
(F4) which is not satisfied by the delayed logistic map h(x, y)=[K&y] x.
In the next result, we will replace (F4) by the following:

(F4*) There exists a constant +>0 such that for any ,, � # X with
0�,(s)��(s)�K and [�(s)&,(s)] e+s nondecreasing in s # [&{, 0],
one has f (�) & f (,) + +[�(0) & ,(0)] � 2A[ g(�(0)) & g(,(0))], where
A=�m

j=1 aj .

This condition is in the spirit of the non-standard ordering of the phase-
space introduced by Smith and Thieme [59, 60] in order to obtain the
(strong) order-preserving property of solution semiflows defined by non-
cooperative functional differential equations, and in order to apply the
powerful theory of monotone dynamical systems. See also Krisztin and Wu
[32, 33].

Our idea for establishing the existence of the solution of the asymptotic
boundary value problem (2.1)�(2.1) under condition (F4*) is to seek solu-
tions in the following profile set

\ is continuous and nondecreasing;

1*={\ : R � [0, K]; limt � &� \(t)=0 and limt � � \(t)=K ; and =[\(t+s)&\(t)] e+t is nondecreasing for any fixed s>0.

and to use an iteration starting from an upper solution in 1*, where a
continuous function \ : R � [0, K] is called an upper solution of (2.1) if it
is differentiable almost everywhere and satisfies

d
dt

x(t)�f (xt)+ :
m

j=1

aj[ g(x(t+rj))+g(x(t&rj))&2g(x(t))] (2.6)

a.e. on R. Lower solutions can be similarly defined by reversing the
inequality in (2.6).

Theorem 2.2. Assume (F1)�(F3) and (F4*) are satisfied. Suppose also
that (2.1) has an upper solution \+ in 1* and a lower solution \& : R � [0, K]
such that \&�0, 0�\&(t)�\+(t)�K and [\+(t)&\&(t)] e +t is non-
decreasing in t # R. Then (2.1)�(2.2) has a solution in 1*.

Of practical importance is, of course, to construct the pair of upper and
lower solutions satisfying the conditions in Theorem 2.2. At this time, we
are unable to construct such a pair for general form of (2.1). But the next
example indicates that in some special situations, it is still possible to
construct this pair from the careful analysis of the related characteristic
equation.
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Example 2.3. Consider the following lattice delay differential equations
with delayed logistic nonlinearility

d
dt

un(t)=un(t)[1&un(t&{)]+d[un+1(t)+un&1(t)&2un(t)], n # Z.

(2.7)

We can show that if d is sufficiently large, then

\+(t)=
1

1+:e&*1 t

with a positive : is indeed an upper solution in 1*, where *1 is the minimal
positive real solution of the characteristic equation c*&1&d[e*+e&*&2]
=0. A lower solution, similar to the one given by Atkinson and Reuter [4]
and Schumacher [54] in the continuous diffusion case, can be constructed.
Therefore, we obtain

Corollary 2.3. For every d�(e�2(e&1)) there exist {*={*(d)>0
and 0<c1(d)<c2(d ) so that if 0�{<{* then for every c # (c1(d ), c2(d )),
Eq. (2.7) has a traveling wave front un(t)=x(t&nc) satisfying limt � &� x(t)
=0 and limt � �x(t)=1.

As already mentioned, the main idea in the proof of Theorem 2.1 or 2.2
is the monotone iteration

d
dt

xn(t)=&+xn(t)+f ((xn&1)t)++xn&1(t)

+ :
m

j=1

aj [ g(xn&1(t+rj))+g(xn&1(t&rj))&2g(xn&1(t))],

n=1, 2, ...

starting from an upper solution. Since only linear scalar nonhomogeneous
ordinary differential equations are involved, the monotone iteration
provides a very simple and effective method for computing the wave fronts
numerically.

We now consider how time delay induces nonlinear periodic oscillations
in the mixed functional differential equation

d
dt

x(t)=f (xt)

+ :
m

j=1

aj [ g(x(t+rj&{))+g(x(t&rj&{))&2g(x(t&{))]. (2.8)
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We will regard the delay { as a parameter and look for periodic solutions
of (2.8) from the Hopf bifurcation point of view. A general result about the
existence and global continuation of periodic solutions of mixed functional
differential equations was obtained by Erbe et al. [19], we here state a
special form of their results in our setting and present an application to the
existence of periodic traveling waves of a lattice delay differential equation
motivated by the neural network model.

We assume that

(P1) aj and rj are given constants and rj are positive, 1�j�m;

(P2) f # C 2(X ;R) is completely continuous, f (0� )=0 and f (x̂){0 for
x{0;

(P3) g # C 2(R; R) and g(0)=0;

(P4) There exists a sequence of increasing positive real numbers [{j]
and a sequence of positive real numbers [|j] so that 2({, i|)=0 for real
{, |�0 if and only if {={j and |=|j for some j�1, where

2({, *)=*&f $(0) e* }& :
m

j=1

aj g$(0)[e*rj+e&*rj&2] e&*{;

(P5) #j=&1, where

#j=degB(H&
j , 0j)&degB(H+

j , 0j)

0j=[(u, v) # R2; 0<u<=, |j&=<v<|j+=]

H\
j (u, v)=2({j\$, u+iv), (u, v) # R2

here = and $ are small positive real numbers and degB is the Brouwer
degree.

Condition (P4) relates to the existence of purely imaginary zeros of the
related characteristic equation and (P5) is the topological analog of the
usual transversality condition. Condition #j{0 implies that {j is a critical
value where a branch of Hopf bifurcation takes place. Let 7j be the
nonempty connected component through (0, {j , 2?�|j) in the set

1j=closure[(x, {, T ); x(t) is a non-constant T-periodic solution of (2.8)],

where the closure is taken in the space Y_R2, Y is the Banach space of all
bounded continuous functions defined on R equipped with the super-norm.
Then we have the following global Hopf bifurcation theorem:

Theorem 2.3. Assume that (P1)�(P5) hold. Then 7j is unbounded.
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Example 2.4. We return to the neural network model (2.4). It was
observed by Hopfield [26, 27] and Marcus and Westervelt [43] that cells
do not communicate and response instantaneously and sustained oscilla-
tions can arise from large relative size of the delay (relative to the relaxa-
tion time of the system) in the communication and response among cells
(See also Belair [5], Belair et al. [6], Gopalsamy and He [22], Herz
et al. [25], and Wu and Zou [63] for related work). This naturally leads
to the following infinite system of delay differential equations

dun(t)
dt

=&:un(t)+a0 g(un(t&{))

+ :
m

j=1

aj [ g(un&j (t&{))+g(un&j (t&{))]. (2.9)

Note that if un(t)=x(t&nc), c>0, is a traveling wave of (2.9), then x
satisfies

d
dt

x(t)=&:x(t)+a0 g(x(t&{))

+ :
m

j=1

aj [ g(x(t&{+jc))+g(x(t&{&jc))]. (2.10)

A traveling wave un(t)=x(t&nc) is said to be spatially p-periodic if p is a
positive integer and un(t)=un+p(t) for all t # R and n # Z. Clearly, x is a
pc-periodic function and thus, a spatially p-periodic wave is also periodic
with respect to the time variable.

To detect the bifurcation of spatially periodic traveling waves, we define

#=g$(0) (2.11)

and

;p=a0+2 :
m

j=1

aj cos \2?
p

j+ . (2.12)

Also, in order to rule out periodic traveling waves with prescribed periods,
we need the following real numbers, corresponding to each given integer q:

bi=: [aj ; 1�j�m, jq or &jq=i&2(mod pq)], 1�i�pq (2.13)

and

#p, q=max {Re \ :
pq

j=2

bj ei(2?�pq)( j&1) n+ ; n=0, ..., pq&1= . (2.14)
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Then we have the following existence result for periodic traveling waves:

Theorem 2.4. Assume that
(i) g # C 2(R; R), g(0) = 0, limx � \� g(x) =\1, g$(x) > 0 and

xg"(x)<0 for x{0;

(ii) a0+2 �m
j=1 aj<:�#;

(iii) there exists a positive integer p such that ;p<&:�#;

(iv) there exists a positive integer q such that pq�4 is an even integer
and #p, q<:�#.

Let %p # (?�2, ?) be given so that cos %p = :�#;p , and define {p =
&(%p�:) cot %p . Then for each {>{p there exists a constant c>0 such that
(2.9) has a spatially p-periodic traveling wave un(t)=x(t&nc) and the period
of x is between 2{ and pq{.

The above result shows that {p is the critical value of delay where a
branch of spatially p-periodic waves bifurcates from the trivial solution.
The profile x is of a period larger than 2{ and thus will be called slowly
oscillatory waves, borrowing a terminology from the study of scalar func-
tional differential equations (see, for example, Nussbaum and Mallet-Paret
[47]). As will be made clear in Section 5 where Theorem 2.4 will be
proved, there exists a sequence of critical values {p<{p, 1<{p, 2 } } } such
that at each {p, k , k�1, a branch of spatially p-periodic rapidly oscillatory
waves (those waves whose profiles have periods less than 2{) occurs as
well, and thus for large {, we will have the coexistence of at least one slowly
oscillatory and multiple rapidly oscillatory waves.

A similar result holds when ;p>:�#. We refer the reader to Section 5 for
more details.

In the case where p=q=2, we have the following

Corollary 2.4. Assume that (i) of Theorem 2.4 holds, and let

b2=a0+: [aj ; 1�j�m, j is even];

b4=: [aj ; 1�j�m, j is odd ].

Moreover, assume that

{
b2&b4<&

:
#

|b2+b4 |<
:
#

,
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Fig. 2.2. The region of (b2 , b4) when (2.9) has a slowly oscillatory spatially 2-periodic
traveling wave.

that is, (b2 , b4) belongs to the shaded region in Fig. 2.2. Then for each
{>{2 :=&(%2 �:) cot %2 there exists a constant c>0 such that (2.9) has a
spatially 2-periodic traveling wave un(t)=x(t&nc) and the period of x is
between 2{ and 4{, where

cos %2=
:

#(b2&b4)
, %2 # \?

2
, ?+ .

In the case where p=3 and q=2, we have the following

Corollary 2.5. Assume that (i) of Theorem 2.4 holds, and let

b2=a0+: [aj ; 1�j�m, j=0(mod 3);]

b4=: [aj ; 1�j�m, j=1(mod 3)];

b6=: [aj ; 1�j�m, j=2(mod 3)].
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Moreover, assume that

|b2+b4+b6 |<
:
#

{} b4&
b2+b6 |

2 }<:
#

b2&
(b4+b6)

2
<&

:
#

.

Then for each {>{3 :=&(%3 �:) cot %3 there exists a constant c>0 such that
(2.9) has a spatially 3-periodic traveling wave un(t)=x(t&nc) and the period
of x is between 2{ and 6{, where

cos %3=
:

#[b2&1�2(b4+b6)]
.

3. ASYMPTOTIC BOUNDARY VALUE PROBLEMS OF MIXED
FDEs: QUASIMONOTONE NONLINEARITIES

Consider the following asymptotic boundary value problem of mixed
functional differential equation

d
dt

x(t)=f (xt)+ :
m

j=1

aj[ g(x(t+rj))+g(x(t&rj))&2g(x(t))], (3.1)

lim
t � &�

x(t)=0, lim
t � �

x(t)=K, (3.2)

where

(H1) aj and rj are positive constants, 1�j�m;

(H2) K and { are given positive constants, f : XK � R is continuous,
f (0� )=f (K� )=0 and f (x̂){0 for x # (0, K);

(H3) g : [0, K] � R is continuous and monotonically increasing and
g(0)=0;

(H4) there exists a constant +>0 such that for any ,, � # X
with 0 � ,(s) � �(s) � K for s # [&{, 0], one has f (�) & f (,) +
+[�(0)&,(0)]�2A[ g(�(0))&g(,(0))] with A=�m

j=1 aj .

Define the set of profiles by

1={\ : R � [0, K];
\ is continuous and nondecreasing;

=limt � &� \(t)=0 and limt � � \(t)=K
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and define H : C(R; R) � C(R; R) by

H(\)(t)=f (\t)++\(t)

+ :
m

j=1

aj [ g(\(t+rj))+g(\(t&rj))&2g(\(t))], t # R.

Proposition 3.1. Assume (H1)�(H4) are satisfied. Let \ # 1 and \̂ #
C(R; R) with \(t)�\̂(t) for t # R. Then

(i) 0�H(\)(t)�f (K� )++K for t # R;

(ii) H(\)(t) is nondecreasing. Moreover, if \ is strictly increasing on
(&�, a] with some a # R, then so is H(\) on (&�, a];

(iii) H(\)(t)�H( \̂)(t) for t # R.

Proof. (i) and (iii) are immediate consequences of (H3) and (H4). To
verify (ii), we fix t # R and s>0. Using (H3) and (H4), we get

H(\)(t+s)&H(\)(t)

=f (\t+s)&f (\t)++[\(t+s)&\(t)]&2A[ g(\(t+s))&g(\(t))]

+ :
m

j=1

aj [ g(\(t+s+rj))&g(\(t+rj))]

+ :
m

j=1

aj [ g(\(t+s&rj))&g(\(t&rj))]

�0.

Moreover, if \ is strictly increasing on (&�, a] for some a # R, then
g(\(t+s&rj))>g(\(t&rj)) for t�a provided that t+s�a. Consequently,
H(\)(t+s)>H(\)(t) for t+s�a. This completes the proof.

We now rewrite (3.1) as

d
dt

x(t)=&+x(t)+H(x)(t). (3.3)

It is easy to verify that x : R � [0, K] is a solution of (3.3) with
limt � &� x(t)=0 if and only if it solves the following integral equation

x(t)=e&+t |
t

&�
e+sH(x)(s) ds. (3.4)
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Definition 3.1. A continuous function \ : R � [0, K] is called an upper
solution of (3.1) if it is differentiable almost everywhere, limt � &� \(t)=0
and satisfies

d
dt

\(t)�f (\t)+ :
m

j=1

aj[ g(\(t+rj))+g(\(t&rj))&2g(\(t))] (3.5)

a.e. on R. Lower solutions of (3.1) can be similarly defined by reversing the
inequality in (3.5).

Our goal is (i) to construct an ordered pair of upper and lower solutions
0�\&(t)�\+(t)�K for t # R; and (ii) to construct a monotone sequence
of functions starting from \+ and approaching to a solution of the
asymptotic boundary value problem (3.1)�(3.2). To start the iteration, let
us first assume that there exists an upper solution \+(t) and a lower solu-
tion \&(t) of (3.1) with 0�\&(t)�\+(t)�K for t # R. We assume \&

is a nontrivial lower solution (that is, \&�0 on R) and \+(t) is non-
decreasing for t # R and limt � � \+(t)=K. It is easy to verify that
x1 : R � R given by

x1(t)=e&+t |
t

&�
e+sH(\+)(s) ds, t # R (3.6)

is a well defined C 1-function. Some of the important properties of x1 are
formulated as follows:

Proposition 3.2. The function x1 defined by (3.6) satisfies

(i) (d�dt) x1(t)>0 for t # R;

(ii) \&(t)�x1(t)�\+(t) for t # R;

(iii) limt � &� x1(t)=0 and limt � +� x1(t)=K.

Proof. Using the monotonicity of \+ and (ii) of Proposition 2.1, we get

d
dt

x1(t)=&+e&+t |
t

&�
e +sH(\+)(s) ds+H(\+)(t)

=&+e&+t |
t

&�
e+sH(\+)(s) ds++e&+t |

t

&�
e+sH(\+)(t) ds

=+e&+t |
t

&�
e+s[H(\+)(t)&H(\+)(s)] ds>0.
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Applying the L' Hospital's rule, we get

lim
t � &�

x1(t)= lim
t � &�

e+tH(\+)(t)
+e+t = lim

t � &�

1
+

H(\+)(t)=0;

lim
t � +�

x1(t)= lim
t � +�

e+tH(\+)(t)
+e+t = lim

t � +�

1
+

H(\+)(t)=K.

The inequality \&(t)�x1(t)�\+(t) for t # R follows from the definition of
x1 , the upper solution and the monotonicity H(\+)(t)�H(\&)(t) for
t # R. This completes the proof.

Note that by (iii) of Proposition 3.1, we have

d
dt

x1(t)= &+x1(t)+H(\+)(t)

� &+x1(t)+H(x1)(t)

=f ((x1)t)+ :
m

j=1

aj [ g(x1(t+rj))+g(x1(t&rj))&2g(x1(t))], t # R.

Therefore, x1 is an upper solution of (3.1) and we can repeat the above
process for the pair (x1 , \&) to obtain another upper solution

x2(t)=e&+t |
t

&�
e+sH(x1)(s) ds, t # R. (3.7)

Inductively, we can define

xn(t)=e&+t |
t

&�
e+sH(xn&1)(s) ds, t # R, n�2 (3.8)

and obtain:

Proposition 3.3. The above sequence is well-defined and satisfies

(i) (d�dt) xn(t)>0 for t # R;

(ii) limt � &� xn(t)=0, limt � +� xn(t)=K;

(iii) \&(t)�xn(t)�xn&1(t)�\+(t) for t # R and n�2.

The monotonicity (iii) in the above result ensures the existence of

x(t)= lim
n � �

xn(t). (3.9)

Clearly, the function x : R � R is nondecreasing. We now claim
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Theorem 3.1. x : R � R obtained in (3.6), (3.7), (3.8), and (3.9) is a
solution of the asymptotic boundary value problem (3.1)�(3.2).

Proof. Applying the Lebesgue's Dominated Convergence Theorem to
(3.8), we can establish that

x(t)=e&+t |
t

&�
e+sH(x)(s) ds (3.10)

from which it follows that x satisfies (3.1). It remains to show that
limt � � x(t)=K.

Note that x is nondecreasing and bounded. So x* :=limt � � x(t)�K
exists. Taking the limit t � � in (3.1), we get f (x̂*)=0. On the other hand,
we have xn(t)�\&(t) for n�1 and t # R. Therefore, x(t)�\&(t) and hence
x*�supt # R \&(t)>0. Consequently, in view of (H2), we must have
x*=K. This completes the proof.

It remains to construct a pair of ordered upper and lower solutions.

Proposition 3.4. Assume, in addition to (H1)�(H4), the following holds:

(H5) g : [0, K] � R is continuously differentiable and 0<g$(x)�g$(0)
for x # [0, K];

(H6) f : X � R is continuously differentiable and f $(,) e* }&2Ag$(,(0))
� f $(0) e* }&2Ag$(0) for any real number * and for any , # XK ;

(H7) There exists 0<*1<*2 such that 2(*1)=2(*2)=0 and 2(*)>0
for * # (*1 , *2), where 2(*)=*&f $(0) e* }&�m

j=1 aj g$(0) [e*rj+e&*rj&2].

Then \+(t)=K min[e*1t, 1] is an upper solution of (3.1).

Proof. Clearly, 0 � \+(t) � K for t # R, limt � &� \+(t) = 0 and
limt � +� \(t)=K. So, it suffices to show that \* +(t)�F(\+)(t) a.e. on R,
where

F(\+)(t)=f (\+
t )+ :

m

j=1

aj [ g(\+(t+rj))+g(\+(t&rj))&2g(\+(t))].

For t>0, we have from (H3) that

:
m

j=1

aj [ g(\+(t+rj))+g(\+(t&rj))]� :
m

j=1

aj [ g(K)+g(K)]=2Ag(K),
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and from (H4) that

f (K� )&f (\+
t )=f (K� )&f (\+

t )++[K&\+(t)]�2A[ g(K)&g(\+
t )].

Therefore,

F(\+)(t)

=f (\+
t )&2Ag(\+(t))+ :

m

j=1

aj [ g(\+(t+rj))+g(\+(t&rj))]

�f (K� )&2Ag(K)+2Ag(K)=f (K� )=0=\* +(t).

For t�0, we have from (H5) that

g(\+(t+rj))+g(\+(t&rj))

�g$(0)[\+(t+rj)+\+(t&rj)]

�Kg$(0)[e*1(t+rj)+e*1(t&rj)],

and from (H6) that

f (\+
t )&2Ag(\+(t))�K[ f $(0) e*1(t+ } )&2Ag$(0) e*1 t].

Consequently,

F(\+)(t)�K _ f $(0) e*1 }+ :
m

j=1

aj g$(0)[e*1 rj+e&*1rj&2]& e*1 t

=K*1e*1 t=K\* +(t).

Therefore, \+ is an upper solution of (3.1). This completes the proof.

Proposition 3.5. Assume, in addition to (H1)�(H4) and (H7), that

(H8) g : [0, K] � R and f : X � R are twice continuously differentiable
and that there exists N>0 such that | f "(,)|�N for , # XK .

Then, for sufficiently small =>0 and sufficiently large M>0, \&(t)=
K max[0, (1&Me=t) e*1 t] is a lower solution of (3.1).

Proof. Assume M>0 is chosen so that at least M>1. Let s0=
s0(M, =)<0 be such that Me=s0=1. For t>s0 , we first use (H4) to get

f (\&
t )�2Ag(\&(t)).
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Therefore,

F(\&)(t) :=f (\&
t )+ :

m

j=1

aj[ g(\&(t+rj))+g(\&(t&rj))&2g(\&(t))]

�2Ag(\&(t))+ :
m

j=1

aj [ g(0)+g(0)&2g(\&(t))]

=0=\* &(t).

For t<s0 , we have

K&\* &(t)=[*1&M(*1+=) e=t] e*1 t.

Let

f (,)=f $(0) ,&R(,), , # XK ;

g(x)=g$(0) x&Q(x), x # [0, K].

Using assumption (H8), we have

|R(,)|�N[ sup
% # [&{, 0]

|,(%)|]2, , # XK ;

|Q(x)|�Gx2, for all x # [0, K] and for some G>0.

Therefore,

K&1F(\&)(t)

=K&1f $(0) \&
t +K&1 :

m

j=1

aj g$(0)[\&(t+rj)+\&(t&rj)&2\&(t)]

&K&1R(\&
t )&K&1 :

m

j=1

aj[Q(\&(t+rj))+Q(\&(t&rj))&Q(\&(t))]

�f $(0) e*1(t+} )+ :
m

j=1

aj g$(0)[e*1(t+rj)+e*1(t&rj)&2e*1 t]

&Me(=+*1) t { f $(0) e(=+*1)}+ :
m

j=1

aj g$(0)[e(*1+=) rj+e&(*1+=) rj&2]=
&K&1R(\&

t )&K&1 :
m

j=1

aj[Q(\&(t+rj))+Q(\&(t&rj))&2Q(\&(t))].

Thus

K&1F(\&)(t)�K&\* &(t)=[*1&M(*1+=) e=t] e*1 t (3.11)
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provided that

2(*1+=) Me(*1+=) t

�2(*1) e*1 t+K&1R(\&
t )

+K&1 :
m

j=1

aj [Q(\&(t+rj))+Q(\&(t&rj))&2Q(\&(t))].

So, if we choose =>0 sufficiently small so that *1+=<*2 , then (3.11)
holds if

2(*1+=) M

�K&1 e&(*1+=) t {R(\&
t )+ :

m

j=1

aj [Q(\&(t+rj))

+Q(\&(t&rj))&2Q(\&(t))]= .

Note that there exists a constant P>0 so that

K&1 |\&(t+%)|=|(1&Me=(t+%)) e*1(t+%)|�Pe*1 t, t�0, % # [&{, 0];

K&1 |\&(t\rj)|�Pe*1 t, t�0, 1�j�m.

Therefore, for t�s0<0, if =�*1 then we have

} K&1e&(*1+=) t {R(\&
t )+ :

m

j=1

aj [Q(\&(t+rj))

+Q(\&(t&rj))&2Q(\&(t))]= }
�K&1e&(*1+=) t[NK 2P2e2*1 t+4K 2AGP2e2*1 t]

=K[NP2+4AGP2] e(*1&=) t

�KP2[N+4AG].

Consequently, if we choose =>0 sufficiently small and M>0 sufficiently
large so that

0<=<*1<*1+=<*2

2(*1+=) M>KP2[N+4AG],

then \& is a lower solution of (3.1). This completes the proof.

Combining Theorem 3.1 and Propositions 3.4�3.5, we obtain:
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Theorem 3.2. Assume that (H1)�(H8) hold. Then the asymptotic
boundary value problem (3.1)�(3.2) has a solution.

We can now prove Theorem 2.1 and Corollaries 2.1 and 2.2. First of all,
Theorem 2.1 is an immediate consequence of Theorem 3.2, noting the
following (F1) � (H1), (F2) � (H2), (F3) O (H3)+(H5), (F4) � (H4),
(F5) O (H6)+(H8), and (F6) � (H7).

To prove Corollary 2.1, we observe that un(t)=x(t&nc) is a traveling
wave of (2.4) if x(t) satisfies (3.1) with f (,)=&:,(0)+(a0+2A) g(,(0))
and rj=jc. Therefore, (i) implies (F1). On the other hand, (ii) and (iii)
implies that &:x+(a0+2A) g(x)=0 has a unique positive solution. Thus,
(F2) holds. (F3) follows from (ii). To obtain (F4), we note that

f (�)&f (,)&2A[ g(�(0))&g(,(0))]

=&:[�(0)&,(0)]+(a0+2A)[ g(�(0))&g(,(0))]

&2A[ g(�(0))&g(,(0))]

=(a0&:)[�(0)&,(0)].

So (F4) holds with any +>:&a0 . For (F5), we note that

f $(,) e* }&2Ag$(,(0))

=&:+(a0+2A) g$(,(0))&2Ag$(,(0))

=&:+a0 g$(,(0))

�&:+a0 g$(0)

=f $(0) e* }&2Ag$(0).

Finally, for Eq. (2.4), the related characteristic equation is

2(*)=*&[&:+(a0+2A) g$(0)]& :
m

j=1

aj g$(0)[e*jc+e&*jc&2]

=*&_&:+a0 g$(0)+ :
m

j=1

aj g$(0)(e*jc+e&*jc)&
As (a0+2A) g$(0)>:, we can easily see that

c* :=inf {c; *<&:+a0 g$(0)+ :
m

j=1

aj g$(0)(e*jc+e&*jc) for *>0=
is a finite number and if c<c*, then (F6) holds. Therefore, Corollary 2.1
follows from Theorem 2.1.

337BVPs OF MIXED FDEs



File: 505J 323224 . By:DS . Date:27:03:97 . Time:07:49 LOP8M. V8.0. Page 01:01
Codes: 2623 Signs: 1553 . Length: 45 pic 0 pts, 190 mm

Similarly, we can verify that (F1)�(F6) hold for the equation satisfied by
the profile of the traveling wave of (2.5) under conditions (i)�(iv) of
Corollary 2.2, noting that the related characteristic equation in this case is

2(*)=*&
�

�x
h(0, 0)&

�
�y

h(0, 0) e&*{& :
m

j=1

aj (e jc*+e&jc*&2).

4. ASYMPTOTIC BOUNDARY VALUE PROBLEMS OF MIXED
FDEs: NON-QUASIMONOTONE NONLINEARITIES

The purpose of this section is to establish the existence of solutions to
the asymptotic boundary value problem (3.1)�(3.2), replacing the quasi-
monotonicity condition (H4) by the following

(H4*) there exists a constant +>0 such that for any ,, � # X with
0�,(s)��(s)�K and [�(s)&,(s)] e+s nondecreasing in s # [&{, 0], one
has f (�)&f (,)++[�(0)&,(0)]�2A[g(�(0))&g(,(0))] where A=�m

j=1 aj .

This condition is in the spirit of the non-standard ordering of the phase
space introduced by Smith and Thieme [59, 60] in order to obtain the
(strong) order-preserving property of solution semiflows defined by non-
cooperative functional differential equations.

We will seek wave fronts in the following profile set

\ is continuous and nondecreasing;

1*={\ : R � [0, K]; limt � &� \(t)=0 and limt� � \(t)=K; and = .

[\(t+s)&\(t)] e+t is nondecreasing for any fixed s>0.

Again, we define

H(\)(t)=f (\t)++\(t)

+ :
m

j=1

aj [ g(\(t+rj))+g(\(t&rj))&2g(\(t))], t # R

for \ # 1*. We can easily show that H(\)(t)�0 for all t # R. Moreover, for
any \ # 1*, t # R, s>0 and % # [&{, 0], we have

[\t+s(%)&\t(%)] e+%=[\(t+s+%)&\(t+%)] e +(t+%)e&+t.

Thus, [\t+s(%)&\t(%)] e +% is nondecreasing in % # [&{, 0]. This implies,
using (H4*) and (H3), the following monotonicity of H(\):
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H(\)(t+s)&H(\)(t)

=f (\t+s)&f (\t)++[\(t+s)&\(t)]&2A[ g(\(t+s)&g(\(t))]

+ :
m

j=1

aj [ g(\(t+s+rj))&g(\(t+rj))

+g(\(t+s&rj))&g(\(t&rj))]

�0.

Now, we assume that (3.1)�(3.2) has an upper solution \+ : R � [0, K] in
the profile set 1*. Define

x1(t)=e&+t |
t

&�
e+sH(\+)(s) ds, t # R. (4.1)

We can apply the same argument as that of Proposition 3.2 to show that
(d�dt) x1(t)�0 and 0�x1(t)�\+(t) for t # R, limt � &� x1(t)=0 and
limt � � x1(t)=K. Moreover, for fixed t # R and s>0, we have

[x1(t+s)&x1(t)] e+t

=e&+sx1(t+s) e+(t+s)&x1(t) e +t

=e&+s |
t+s

&�
e+%H(\+)(%) d%&|

t

&�
e +%H(\+)(%) d%

=|
t+s

&�
e+(%&s)H(\+)(%) d%&|

t

&�
e +%H(\+)(%) d%

=|
t

&�
e+%H(\+)(%+s) d%&|

t

&�
e+%H(\+)(%) d%

=|
t

&�
e+%[H(\+)(%+s)&H(\+)(%)] d%.

This implies that

d
dt

[[x1(t+s)&x1(t)] e+t]=e+t[H(\+)(t+s)&H(\+)(t)]�0.

Therefore, x1 # 1*.
Also, note that

d
dt

\+(t)�&+\+(t)+H(\+)(t), a.e. on R
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and

d
dt

x1(t)=&+x1(t)+H(\+)(t), t # R.

Therefore,

d
dt

[\+(t)&x1(t)]�&+[\+(t)&x1(t)] a.e. on R.

Consequently,

d
dt

[\+(t)&x1(t)] e+t�0 a.e. on R

from which it follows that [\+(t)&x1(t)] e +t is nondecreasing in t # R.
This also implies that H(\+)(t)�H(x1)(t) by using (H4*). So x1 is an
upper solution as well.

We now assume that there exists a lower solution \& of (3.1)�(3.2) such
that \&�0, 0�\&(t)�\+(t) and [\+(t)&\&(t)] e +t is nondecreasing in
t # R. Then H(\&)(t)�H(\+)(t) by using (H4*), and hence x1(t)�\&(t)
for t # R. Moreover,

d
dt

[[x1(t)&\&(t)] e+t]

=_ d
dt

x1(t)&
d
dt

\&(t)& e +t++[x1(t)&\&(t)] e+t

�[[&+x1(t)+H(\+)(t)]&[&+\&(t)+H(\&)(t)]

++[x1(t)&\&(t)]] e +t

�0 a.e. on R.

That is, [x1(t)&\&(t)] e +t is nondecreasing in t # R.
We now summarize the above discussion in the following:

Proposition 4.1. Assume that (3.1)�(3.2) has an upper solution \+ in
1* and a lower solution \&: R � [0, K] such that \&�0, 0�\&(t)�
\+(t) and [\+(t)&\&(t)] e+t is nondecreasing in t # R. Then x1 defined by
(4.1) is an upper solution in 1* of (3.1)�(3.2) such that 0�\&(t)�x1(t)�
\+(t), [x1(t)&\&(t)] e+t and [\+(t)&x1(t)] e+t are nondecreasing in
t # R.
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In general, we can define

xn(t)=e&+t |
t

&�
e+sH(xn&1)(s) ds, n�2 (4.2)

and repeat the above argument, using xn&1 as the upper solution of
(3.1)�(3.2) in 1*, to obtain that

(i) xn # 1*;

(ii) 0�\&(t)�xn(t)�xn&1(t)� } } } �\+(t), t # R;

(iii) [xn(t)&\&(t)] e+t and [xn&1(t)&xn(t)] e+t are nondecreasing
in t # R.

We can now use the same argument as that of Theorem 3.1 to establish
the following existence result (Theorem 2.2):

Theorem 4.1. Assume (H1)�(H3) and (H4*) are satisfied. Suppose also
that (3.1)�(3.2) has an upper solution \+ in 1* and a lower solution \& : R �
[0, K] such that \�0, 0�\&(t)�\+(t)�K and [\+(t)&\&(t)] e+t is
nondecreasing in t # R. Then (3.1)�(3.2) has a solution x in 1*, which can be
obtained by limn � � xn(t).

To demonstrate this general result, we consider the lattice delay differen-
tial equation with delayed logistic nonlinearity (2.7). We look for the
traveling wave front un(t)=y(t&nc~ ) with y monotonically increasing,
lims � &� y(s)=0 and lims � +� y(s)=1. Then y must satisfy

d
dt

y(t)=d[ y(t+c~ )+y(t&c~ )&2y(t)]

+y(t)[1&y(t&{)], t # R; (4.3)

lim
t � &�

y(t)=0 and lim
t � +�

y(t)=1. (4.4)

In what follows, we will write x(t)=y(c~ t) and let c=c~ &1. The (4.3)�(4.4)
is equivalent to

c
d
dt

x(t)=d[x(t+1)+x(t&1)&2x(t)]+x(t)[1&x(t&c{)], t # R; (4.5)

lim
t � &�

x(t)=0 and lim
t � +�

x(t)=1. (4.6)

Clearly, this is a special case of (3.1)�(3.2) with m=1, r1=1, a1=d�c,
g(x) = x and f (,) = (1�c) ,(0)[1 & ,(&c{)]. It is easy to see that
(H1)�(H3) are satisfied with K=1.
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Proposition 4.2. For any d>0, let x*=x*(d )>1 be given so that
x*(ln x*&1)=2d. Then for each 0�{<(x*)&1, there exists +>0 such that
f (,)=(1�c) ,(0)[1&,(&c{)] satisfies (H4*).

Proof. Let , and � be in X=C([&c{, 0]; R] with 0�,(s)��(s)�1
and [�(s)&,(s)] e+s nondecreasing in s # [&c{, 0]. Then

c[ f (�)&f (,)]

=[�(0)&,(0)]&[�(0) �(&c{)&,(0) ,(&c{)]

=[�(0)&,(0)][1&�(&c{)]&,(0)[�(&c{)&,(&c{)]

�[�(0)&,(0)][1&�(&c{)]&,(0)[�(0)&,(0)] e+c{

�&e+c{[�(0)&,(0)].

Thus,

f (�)&f (,)+\+&
2d
c + [�(0)&,(0)]

�
1
c

(+c&e +c{&2d )[�(0)&,(0)].

Therefore, if {<(x*)&1 and +=(1�c{) ln (1�{) then

+c&e+c{&2d=
1
{ _ln

1
{

&1&&2d�x*(ln x*&1)&2d�0.

This completes the proof.

In the remainder of this section, we will construct a pair of ordered
upper and lower solutions of (4.5)�(4.6) satisfying the conditions in
Theorem 4.1. First, we formulate the following observation which can be
easily verified by elementary calculus:

Proposition 4.3. Let

2c, d (*)=c*&1&d[e*+e&*&2], * # R,

where d>0. Then there exists c*=c*(d )>0 such that

(i) if c<c*, 2c, d (*) has no real zeros;

(ii) if c=c*, 2c, d (*) has precisely one double zero **;

(iii) if c>c*, 2c, d (*) have exactly two real zeros 0<*1<*2 , and
2c, d (*)>0 for all * # (*1 , *2).
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For the sake of presentation, let us introduce the following three
functions:

g1, d (*)=e*&d[e*+e&*&2], * # R;

g2(*)=
1+e*

e*+e&* , * # R;

g3, d (*)=1+d[e*+e&*&2], * # R.

Proposition 4.4. Define

h1(s)=
s

2(s&1)
, s>1;

h2(s)=
s

(s&1)[(s+1) ln s&(s&1)]
, s>1.

Then

(i) h1 and h2 are decreasing on (1, �);

(ii) h2(s)>h1(s) for s # (1, e), h1(e)=h2(e)=(e�2(e&1)), h1(1+)=
h2(1+)=�;

(iii) for each d>(e�2(e&1)) there exist 1<s1 :=s1(d )<s2 :=
s2(d )<e such that h1(s1)=d, h2(s2)=d and h1(s)<d<h2(s) for s # (s1 , s2);

(iv) c(s) :=( g3, d (ln s)�ln s) is decreasing in s # (s1 , s2);

(v) for each d>(e�2(e&1)) and for every c # (c(s2), c(s1)) there
exists s # (s1 , s2) such that c=c(s) and if *1=ln s, then g2(*1)�g3, d (*1),
g1, d (*1)�g3, d (*1), 2c, d (*1)=0 and (d�d*) 2c, d (*1)>0.

Proof. We suggest the reader to consult Fig. 4.1 to understand the
proof. First of all, (i) and (iii) can be verified by elementary calculations.
To prove (iv), we note that

d
ds

c(s)=
d(s&1)[(s+1) ln s&(s&1)]&s

(s ln s)2 <0

since d<h2(s) for s # (s1 , s2).
Also, elementary calculation leads to g1, d (*1)�g3, d (*1) and 2c, d (*1)=0

for *1=ln s if d>(e�2(e&1)), s # (s1 , s2) and c=c(s). By Proposition 4.3,
2c(s), d (*) has two real zeros. But since (d�d*) $c(s), d (*1)>0, we can con-
clude that *1=ln s is the smaller positive real zero of 2c(s), d (*)=0. This
completes the proof.

Now we are ready to get an upper solution of (4.5)�(4.6).
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Fig. 4.1. The functions of h1 and h2 .

Proposition 4.5. For every d�(e�2(e&1)) and {�1�c(s1(d )), define

\+
: (t)=

1
1+:e&*1 t , t # R

where *1=ln s, s # (s1 , s2) is a given number. Then

(i) ,+
: is an upper solution to (4.5) for every :>0;

(ii) For any :>0, \+
: (t) is nondecreasing in t # R and limt � &� \+

: (t)
=0, limt � � \+

: (t)=1. Moreover, [\+
: (t+s)&\+

: (t)] e+t is nondecreasing
in t # R for any fixed s>0, provided +>*1 .

Proof. By direct calculation, we get

\* +
: (t)=

:*1e&*1 t

(1+:e&*1 t)2

and

\+
: (t+1)+\+

: (t&1)&2\+
: (t)

=
:e&*1 t(e*1+e&*1&2)(:e&*1 t&1)

(1+:e&*1 t)(1+:e*1e&*1 t)(1+:e&*1e&*1 t)
.
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Moreover, since c{�1, we have

\+
: (t)[1&\+

: (t&c{)]

=
:e*1c{e&*1 t

(1+:e&*1 t)(1+:e*1c{e&*1t)

�
:e*1e&*1 t

(1+:e*1e&*1 t)(1+:e&*1 t)
.

So, in order for \+
: to be an upper solution of (4.5), we only need

e*1

1+:e*1e&*1 t+
d(e*1+e&*1&2)(:e&*1t&1)

(1+:e*1e&*1 t)(1+:e&*1e&*1 t)
�

c*1

1+:e&*1 t . (4.7)

This is true, because by Proposition 4.4, we have

e*1

1+:e*1e&*1 t+
d(e*1+e&*1&2)(:e&*1 t&1)

(1+:e*1e&*1 t)(1+:e&*1e&*1 t)
&

c*1

1+:e&*1 t

=
[ g1, d (*1)&c*1]+:e&*1 t[e*1+e&*1][ g2(*1)&c*1]&:e&2*1 t2c, d (*1)

(1+:e*1e&*1 t)(1+:e&*1e&*1 t)(1+:e&*1 t)

�0.

This shows (i), (ii) can be verified directly. K

Proposition 4.6. Let d�(e�2(e&1)) and c # (c(s2), c(s1)) be fixed.

(i) Let =>0 be such that =<*1<*1+=<*2 , and M>0 be such that
M�(e&=c{�2c, d (*1+=)). Then, \&(t)=max[0, (1&Me=t) e*1 t] is a lower
solution of (4.5);

(ii) \&(t)�\+
: (t) for t # R if :>0 is sufficiently small ;

(iii) Assume +�*1 and 0<:<(+�2(*1++)). Let = be such that 0<
=<*1<*1+=<*2 , and M>0 be sufficiently large such that (- 2&1)�
:M<M&1 and M�(e&=c{�2c, d (*1+=)). Then, [\+

: (t)&\&(t)] e+t is
nondecreasing in t # R.

Proof. The argument of (i) is similar to that of Proposition 3.5.
Verification of (ii) and (iii) is straightforward but tedious, and thus is
omitted.

Now, combining Lemmas 4.2�4.6 and applying Theorem 4.1, we finally
have the following result from which Corollary 2.3 follows.
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Corollary 4.1. Assume that d�(e�2(e&1)) and {�min[(x*)&1,
(c(s1(d))&1]. Then for every c # (c(s2), c(s1)), system (2.7) has a traveling
wave front un(t)=x(t&nc&1), n # Z, where (d�dt) x(t)>0 for t # R,
limt � &� x(t)=0 and limt � � x(t)=1. Moreover, we have the following
estimate

\&(t)�,(t)�\+
: (t), t # R

where \& and \+
: are given in Propositions 4.5 and 4.6.

5. PERIODIC TRAVELING WAVES

As mentioned in Section 2, Theorem 2.3 can be established by an argu-
ment similar to that of Erbe et al. [19], using the S 1-degree and bifurca-
tion theory of Dylawerski et al. [18] and Geba and Marzantowicz [21].
In this section, we will take (2.9)�(2.10) as an example to demonstrate the
main steps of the proofs of Theorems 2.3 and 2.4.

We consider (2.9) with g # C 2(R; R) and g(0)=0. Recall that if un(t)=
x(t&nc) is a spatially p-periodic traveling wave of (2.9), then x(t+pc)=
x(t) and x : R � R satisfies the mixed functional differential equation (2.10).
We now normalize the period of x by

y(t)=x \pc
2?

t+ , (5.1)

then y is 2?-periodic and (2.10) is equivalent to

2?
pc

y* (t)=&:y(t)+a0 g \ y \t&
2?
pc

{++
+ :

m

j=1

aj _g \y \t&
2?
pc

{&j
2?
p +++g \y \t&

2?
pc

{+j
2?
p ++& .

(5.2)

The Hopf bifurcation problem of (5.2) was discussed in Alexander and
Auchmuty [2]. From now on, we will fix the positive integer p. Then, for
given constants c and { and for a given 2?-periodic mapping y : R � R, we
can define

F( y, {, c)(t)=
pc
2? {&:y(t)+a0 g \ y \t&

2?
pc

{++
+ :

m

j=1

aj _g \y \t&
2?
pc

{&j
2?
p +++g \ y \t&

2?
pc

{+j
2?
p ++&= .
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Therefore, (5.2) can be written as

y* (t)=F( y, {, c)(t). (5.3)

Restricting to the subspace of all constant mappings, F induces a
mapping F� : R_R_(0, �) � R by

F� (z, {, c)=
pc
2? _&:z+\a0+2 :

m

j=1

aj+ g(z)& , (z, {, c) # R_R_(0, �).

(5.4)

A point (z, {, c) # R_R_(0, �) is called a stationary point if F� (z, {, c)=0.
Clearly, if z=0 is the only fixed point of (1�:)[a0+2 �m

j=1 aj] g(x), then
(0, {, c) is the only stationary point corresponding to ({, c) # R_(0, �).

To apply the S 1-bifurcation theory developed by Erbe, Geba, Krawcewicz
and Wu [19] for parameterized mixed functional differential equations, we
need to verify that DzF� (z, {, c), the derivative of F� with respect to the first
argument, is an isomorphism at given (0, {, c). Note that

DzF� (0, {, c)=
pc
2? _&:+\a0+2 :

m

j=1

aj+ #& , #=g$(0). (5.5)

Therefore, if

# \a0+2 :
m

j=1

aj+{:, (5.6)

then DzF� (0, {, c) is indeed an isomorphism.
The linearization of (5.2) at the stationary point (0, {, c) has the form

2?
pc

y* (t)=&:y(t)+a0#y \t&
2?
pc

{+
+ :

m

j=1

aj # _y \t&
2?
pc

{&j
2?
p ++y \t&

2?
pc

{+j
2?
p +& . (5.7)

The characteristic values of the stationary point (0, {, c) are complex
numbers * satisfying the characteristic equation

*=&
pc
2?

:+
pc
2?

a0#e&*(2?�pc) {

+
pc
2?

:
m

j=1

aj #e&*(2?�pc) {[e&*(2?�p) j+e*(2?�p) j]. (5.8)
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A stationary point (0, {, c) is a center if the exists an integer k�1 such that
ik is a characteristic value. Substituting *=ik to (5.8), we get

ik
2?
pc

=&:+# _a0+ :
m

j=1

aj (e&ik(2?�p) j+eik(2?�p) j)& e&ik(2?�pc) {

=&:+# _a0+2 :
m

j=1

aj cos \k
2?
p

j+& e&ik(2?�pc) {

=&:+#;p, ke&ik(2?�pc) {, (5.9)

where

;p, k :=a0+2 :
m

j=1

aj cos \k
2?
p

j+ .

In particular, if k=1 then

;p, 1=;p :=a0+2 :
m

j=1

aj cos \2?
p

j+ .

Writing (5.9) in terms of its real and imaginary parts, we get

{
:=;p, k# cos \k

2?
pc

{+
&k

2?
pc

=;p, k # sin \k
2?
pc

{+ .

That is,

{
cos \k

2?
pc

{+=
:

#;p, k

tan \k
2?
pc

{+=&k
2?
pc:

.
(5.10)

Therefore, if |;p, k |>:�# then we can solve the first equation of (5.10).
Substituting the result into the second equation of (5.10) we can determine
the real { and c. In summary, we have established the following:

Proposition 5.1. Assume that |;p, k |>:�# for some fixed positive
integers p and k. Let %p, k # (?�2, ?) or (3?�2, 2?), depending on whether
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;p, k<0 or ;p, k>0, be given so that cos %p, k=:�#;p, k . For each integer
j�0, define

%p, k, j=%p, k+2j?;

cp, k=&k
2?
p:

cot %p, k ;

{p, k, j=&
%p, k, j

:
cot %p, k .

Then the set of centers of (5.3) is [(0, {p, k, j , cp, k); k�1, j�0] and thus, is
isolated in R_R_(0, �).

Our next step is to evaluate the so-called crossing number of the stationary
point (0, {p, j , cp), where

{p, j :={p, 1, j :=&
%p+2j?

:
cot %p ;

cp :=cp, 1=&
2?
p:

cot %p ;

%p :=%p, 1 .

The crossing number is defined by (see Erbe et al. [19])

#(0, {p, j , cp)=degB(2; 0),

where degB is the Brouwer degree and

2({, c)=i
2?
pc

&_&:+a0 #e&i(2?�pc) {+ :
m

j=1

aj#e&i(2?�pc) {(e&i(2?�p) j+ei(2?�p) j)&
=i

2?
pc

&[&:+;p #e&i(2?�pc) {],

and 0=({p, j&$, {p, j+$)_(cp&$, cp+$) for small $>0 (the function 2
is obtained by looking for the action of the equation (5.2) on the function
eit, the basis for the first isotypical component of the space of 2?-periodic
continuous mappings, where S 1 acts by shifting the argument). Define

H({, u, c)=\u+i
2?
pc+&[&:+;p#e&(u+i(2?�pc)) {]

where (u, c) # D :=(0, =)_(cp&=, cp+=) for a small =>0. Then we have
the following observations:
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(i) H({, 0, c)=2({, c);

(ii) H({, u, c){0 if |{&{p, j |�= and (u, c) # �D"[(0, c); |c&cp |<=];

(iii) H({p, j\=, 0, c){0 for |c&cp |<=.

Therefore, using Lemma 2.5 of Erbe et al. [19], we get

#(0, {p, j , cp)=degB(H({p, j&=, } ), D)&degB(H({p, j+=, } ), D). (5.11)

Proposition 5.2. The crossing number #(0, {p, j , cp) at (0, {p, j , cp) is &1
for every given integer j�0.

Proof. For the sake of simplicity, we let v=(2?�pc). Assume u=u({)
and v=v({) are the smooth functions of { # ({p, j&$, {p, j+$) such that

u+iv+:&;p#e&(u+iv) {=0. (5.12)

Differentiating both sides of (5.12) with respect to { and then evaluating at
{={p, j , c=cp , we get

d
d{

(u+iv)=
&(u+iv) ;p#e&(u+iv) {

1+;p#{e&(u+iv) {

=
&i(2?�pc) ;p#e&i(2?�pc) {

1+;p#{e&i(2?�pc) {

=
&i(2?�pc)(i(2?�pc)+:)

1+{(:+i(2?�pc))
.

Therefore,

d
d{

u({) } {={p, j

=
(2?�pcp)2

(1+:{p, j)
2+((2?{p, j)�( pcp))2>0

Consequently, from (5.11), we get #(0, {p, j , cp)=&1. This completes the
proof.

We can now apply the global bifurcation theorem (Theorem 2.3) to
conclude that the connected component Sp through (0, {p , cp), {p :={p, 0=
&(%p�:) cot %p , in the closure of the subset [( y, {, c); y is a non-constant
2?-periodic solution of (5.2), { # R, c>0] of the space X_R2 must be non-
empty and unbounded, where X is the Banach space of 2?-periodic con-
tinuous functions equipped with the super-norm. This is equivalent to say
that the connected component 7p through (0, {p , cp) in the closure of the
subset [(x, {, c); x is a non-constant pc-periodic solution of (2.10), { # R,
c�0] of the space Y_R2 must be nonempty and unbounded, where Y is
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the Banach space of all bounded and continuous functions equipped with
the super-norm.

The following result establishes a-priori bounds for periodic solutions
of (2.10).

Proposition 5.3. There exists a constant M>0, independent of { and c,
such that supt # R |x(t)|�M for every given periodic solution x of (2.10),
under condition (i) of Theorem 2.4.

Proof. Clearly, for t, s # R, we have

x(t)=e&:(t&s)x(s)

+|
t

s
e&:(t&%) {a0 g(x(%&{))

+ :
m

j=1

aj [ g(x(%&{+jc))+g(x(%&{&jc))]= d%.

Letting s � &� and considering the fact that | g(x)|�1 for all x # R, we
have

|x(t)|�
1
: _ |a0 |+2 :

m

j=1

|aj |& :=M

for t # R. This completes the proof.

The following result establishes a priori bounds for the period of periodic
solutions of (2.10).

Proposition 5.4. For fixed positive integers p and q, let #p, q be defined
by (2.14). If pq�4 is an even integer and if #p, q<:�#, then system (2.10) has
no non-constant pq{-periodic solution. In other words, if #p, q<:�# for
positive integers p and q such that pq�4 is even, then there exists no
(x, {, c) # 7p so that c=q{.

Proof. Let x be a pq{-periodic solution of (2.10), and define

xi (t)=x(t+{&i{), 1�i�pq;

X(t)=(x1(t), x2(t), ..., xpq(t))T;

G(X(t))=(g(x1(t)), g(x2(t)), ..., g(xpq(t))T;

bi=: [aj ; 1�j�m, jq or &jq=i&2(mod pq), 1�i� pq.
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Then we get

X4 (t)=&:X(t)+BG(X(t)), (5.13)

where B is the pq_pq circulant matrix

0 b2 b3 } } } bpq

bpq 0 b2 } } } bpq&1

B=\bpq&1 bpq 0 } } } bpq&2+ .

} } } } } } } } }

b2 b3 b4 } } } 0

Let V(X)=� pq
j=1 �xj

0 g(x) dx. Then

V4 (5.13)(X(t))=&:[X(t)]T G(X(t))+[G(X(t))]T BG(X(t)).

Using the Nussbaum's spectral theorem for circulant matrices (Nussbaum
[46]), we get

[G(X(t))]T BG(X(t))�#p, q[G(X(t))]T G(X(t)).

Therefore,

V4 (5.13)(X(t))

�& :
pq

j=1

xj (t) g(xj (t)) _:&
g(xj (t))
xj (t))

#p, q&
�&[:&#p, q #] :

pq

j=1

xj (t) g(xj (t)).

By the LaSalle's Invariance Principle (see LaSalle [37]), we conclude that
X(t) is convergent to a constant as t � �. This shows that X(t) cannot be
a non-constant periodic solution of (5.13). So, x cannot be a non-constant
pq{-periodic solution of (2.10).

We are now in the position to prove Theorem 2.4 and Corollaries
2.4�2.5: First of all, as #(0, {p , cp)=&1{0, �p must be nonempty. In
other words, (0, {p , cp) is a Hopf bifurcation point. Next, we note that
pcp�{p=2?�%p # (2, 4) if ;p<&:�#. Therefore, in the neighborhood of
(0, {p, cp), every element (,, {, c) # �p must satisfy ( pc�{) # (2, 4)/(2, pq).
By Propositions 5.3 and 5.4 and since 7p is connected, we know that the
unbounded component 7p must satisfy

7p/{(x, {, c); sup
t # R

|x(t)|�M,
pc
{

# (2, pq)= .
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We now claim that 7p does not intersect with the hyperplane {=0.
If fact, if (x, 0, c) # 7p for some x # Y and c�0, then there exists a
sequence (xn , {n , cn) # 7p such that xn � x in Y, {n � 0 and cn � c. As
pcn�{n # (2, pq), we must have cn � 0 as well. Therefore, x must satisfy the
ordinary differential equation

d
dt

x(t)=&:x(t)+\a0+2 :
m

j=1

aj+ g(x(t)).

Now the assumption (a0+2 �m
j=1 aj) #<: implies that x=0. This leads to

a contradiction to the obvious fact that (0, 0, 0) � 7p .
Therefore, the projection of 7p onto the {-space in unbounded and is

contained in [0, �). This shows that for every {>{p , there exists a
pc-periodic solution of (2.10) with (pc�{) # (2, pq), completing the proof of
Theorem 2.4.

Corollaries 2.4 and 2.5 are immediate consequences of Theorem 2.4 after
some elementary calculations.

Using a similar argument for 7p, j , the connected component through
(0, {p, j , cp) in the closure of the subset [(x, {, c); x is a non-constant
pc-periodic solution of (2.10), { # R, c�0] of the space Y_R2, we can get
the following existence of one slowly oscillatory wave and multiple rapidly
oscillatory waves of (2.9):

Theorem 5.1. Assume that

(i) g # C 2(R; R), g(0)=0, limx � \� g(x)=\1, g$(x)>0 and
xg"(x)<0 for x{0;

(ii) a0+2 �m
j=1 aj<:�#;

(iii) there exists a positive integer p such that ;p<&:�#;

(iv) there exists a positive integer q such that pq�4 is an even integer
and #p, q<:�#

Let %p # (?�2, ?) be given so that cos %p=(:�#;p). Define

cp=&
2?
p:

cot %p , {p=&
%p

:
cot %p ;

%p, j=%p+2j?;

{p, j=&
%p, j

:
cot %p , j�0.
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Then for each fixed integer j�0 and for each {>{p, j there exist constants
:1 , ..., :j>0 such that (2.9) has j spatially p-periodic traveling waves
un, j (t)=xj (t&n:j) and the period of xj is in

(2{, pq{), \2
3

{,
4
5

{+ , ..., \ 4
4j+2

{,
4

4j+1
{+ ,

respectively.

Similarly, in the case where ;p>(:�#), we have

Theorem 5.2. Assume that (i) and (ii) of Theorem 5.1 hold and
(iii) there exists a positive integer p such that ;p>:�#;

(iv) there exists a positive integer q such that pq�2 and #p, q<:�#.

Let %p # ((3?�2), 2?) be given so that cos %p=:�#;p . Define

cp=&
2?
p:

cot %p , {p=&
%p

:
cot %p ;

%p, j=%p+2j?;

{p, j=&
%p, j

:
cot %p , j�0.

Then for each fixed integer j�0 and for each {>{p, j there exist constants
:1 , ..., :j>0 such that (2.9) has j spatially p-periodic traveling waves
un, j (t)=xj (t&n:j) and the period of xj is in

({, q{), \2
5

{,
1
2

{+, ..., \ 1
j+1.5

{,
1

j+1
{+ ,

respectively.
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