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Abstract

This paper deals with the control of a prey species (as an unwanted species) in a predator-prey system. We 
consider a scenario where there are two control means available and they are applied in a state-dependent 
impulsive way, meaning that when the population of the harmful species is lower than a preset threshold, 
no control measure will be implemented; while when it reaches the threshold, the two control means will 
be used either in alternating order or random order. We formulate a general mathematical model for this 
scenario to evaluate the effect of such a control strategy by exploring the dynamics of this model. We de-
fine a one-dimensional map (Poincaré map) and by using the properties of this map, we derive sufficient 
conditions for the existence and global stability of an order-k periodic solution. By using the analogue of 
Poincaré criterion and bifurcation theory, we also establish sufficient conditions for a transcritical bifur-
cation near the predator-free periodic solution. Finally, we apply the results for the general model to two 
particular cases from two distinct fields: (I) integrated pest control and (II) tumour control with a compre-
hensive therapy. For (I), theoretical and numerical results show that the outbreak period of the pest is longer 
when two pesticides are applied randomly than when the alternating strategy is used. For (II), we find that 
the treatment frequency of drug rotation strategy is lower than that of no drug change strategy, and that the 
higher the control intensity, the lower the treatment frequency.
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1. Introduction

Among the interactions between various biological species in the real worlds, the predator-
prey type interactions is an important and yet the most richest and complicated type of interac-
tions. This is because biologically, there are all kinds of predation mechanisms due to the variety 
of predation natures; and mathematically, dynamical system describing predator-prey interac-
tions are not monotone systems. More than often, the prey species in predator-prey system is 
a toxic or harmful species that human beings wish control. Two frequently encountered exam-
ples of prey-predator interaction between such species are pests and their natural predators, and 
tumour cells and the effector cells as natural enemies of the tumour cells.

For a prey-predator system where the prey species is an unwanted and/or harmful species, 
human interventions by various possible control are often implemented to help reduce the 
harm/damage the prey species may cause. The purpose of such comprehensive controls of harm-
ful species is to keep the number of harmful species within a certain range [31,33,35,39]. In the 
context of pest control, the most commonly used means in practice is to spray pesticides; while 
for tumour cells inhibition, taking certain type of tumour inhibiting drug is a common treatment. 
In either case, the resistance of pests to a pesticide and cancer cells to a drug can easily occur due 
to the repeated use of the same pesticide or drug. Once such resistance occurs, the control/thera-
peutic effect will decrease significantly [2,24].

Taking field pest management as an example, long-term use of a single pesticide in the same 
area will easily result in drug resistance, this is particularly the case for some pyrethroid insecti-
cides and inhalant fungicides. As a consequence of such a drug resistance, the control effect will 
be greatly reduced after continued long-term use. In order to prevent or slow down the devel-
opment of pesticide resistance and/or compliment the usage of a pesticide, the following three 
methods can be considered [36]:

a) rotative applications of different pesticides with different action mechanisms;
b) combining pesticides with the use natural enemies to control pests, as long as such natural 

enemies are available;
c) implementing control measures more selectively, and correlating the application of pesticide 

with economic estimates of crop damage and possible negative impact on the natural enemies 
as the predators.

Recommendation a) is based on a theory that the possibility of a species developing resistance 
to two or more insecticides is significantly less than that to only one insecticide. This is because 
different insecticides usually are made of different chemical groups and have different action 
modes. For b), natural enemies of pests available mainly include frog, ladybug, sandfly, Tri-
chogramma waps, stink bug, yellow edge step, and parasitic fly etc; and attention needs to be 
paid to the protection of such wanted beneficial species in order to keep their role of inhibiting 
pests sustainable. The theoretical basis of recommendation c) is lies in the goal of balancing be-
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tween the benefit in reducing the damage to corps and the cost both in finance and in ecology 
(relevant to b)) —a reasonable level of the pest population may be essential for the persistence 
of its predator(s). The above considerations a)-c) motivate and justify the idea of rotative and 
density dependent applications of pesticides.

Similarly, in the context of tumour treatment, drug resistance will also affect the effectiveness 
of tumour control. Systemic therapy (including chemotherapy and molecular targeted therapy) is 
one of the main means to control cancer. However, chemotherapy generally needs to be repeated 
many times. If the same type of chemical anti-tumour drugs are used every time, some cancer 
cells may become resistant to the chemotherapeutic drugs [22]. For example, chemotherapy may 
causes fibroblasts near tumours to produce large amounts of the protein WNT16B, which stim-
ulates the growth of cancer cells which are drug-resistant [3]. Drug resistance may also occur 
when the same kind of molecular targeted anti-tumour drugs are used for many times.

Just as for the use of pesticides for field pest control discussed above, the rotative use of a 
variety of chemical anti-tumour drugs or molecular targeted anti-tumour drugs with different 
mechanisms can slow down drug resistance. The use of other treatment methods can also re-
duce drug resistance and effectively treat tumours, including surgical resection, radiotherapy, 
immunotherapy, and a combination of the above methods [14]. State-dependent (or density de-
pendent) impulsive therapy strategy is a common method to treat cancer in experiments and 
clinics. It means that when the diameter of tumour or the number of tumour cells is lower than a 
certain threshold, it will not be treated, but once it exceeds the threshold, it will be treated with 
surgery, chemotherapy, radiotherapy, or immunotherapy [4,9,16,38].

Although pest control and tumour control are two different topics, the above discussions show 
that the rotative and state-dependent control strategy seem to be a strategy that need to be sought 
for both of them. If the above state-dependent control strategy is implemented at a time, the pop-
ulations will change drastically in a short time. Thus, continuous dynamical system models are 
no longer suitable to describe the population dynamics in such a situation, and state-dependent 
impulsive differential systems offer better and natural choices. Indeed, there have been some prey-
predator models with state-dependent feedback control incorporated to characterize and evaluate 
the strategies in integrated pest control [28,34,37,42,44], in comprehensive treatment of tumours 
[31,32], in prevention and treatment of infectious diseases [6,23,43], and in treatment of diabetes 
mellitus [17,40,41].

For example, in [32], the authors propose a feedback control model of immunogenic tumours 
with comprehensive therapy, in which, once the tumour size reaches a critical value, surgical re-
section and appropriate immunotherapy are carried out. The results show that this control method 
can not only control cancer below a certain level, but also maintain the activity of the immune 
system. In references [34,39], researchers propose a state-dependent impulsive model for inte-
grated pest management. In those models, when the economic threshold (pest control level) was 
fixed, the killing rate of insecticides to pests and natural enemies remain unchanged, and they 
obtained the sufficient conditions for the existence and stability of order-1 periodic solutions. 
In [42], a generalized impulsive Kolmogorov model was used to study the control of harmful 
species. Through bifurcation analysis, the authors are able to demonstrate how the values of the 
model parameters corresponding to human intervention measures (including the killing rate of 
drugs, the constant release number of predators, and the implementation threshold of control 
measures) affect the dynamic properties of the model.

The aforementioned works have promoted the development of relevant theories of state-
dependent impulsive semi-dynamical systems. However, a common assumption in those models 
in the above papers is that the survival rate of harmful species remains the same constant after 
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each impulsive intervention (killing). This can not reflects the characteristic of rotative use of 
different drugs or pesticides that generally have different inhibiting (killing) rates. In this paper, 
we propose a prey-predator model with impulsive state-dependent controls on the prey (harm-
ful species) by a rotative use of interventions (drugs or pesticides or natural enemies) that allow 
different inhibiting (killing) rates against the harmful species (prey). To avoid making things too 
complicated, we work on the scenario of two different interventions, reducing rotative use to 
alternating use. Note that “drugs” for control the prey may also be toxic to predators, and hence 
the impulsive and alternating use of “drugs” will also be reflected on the dynamic equation for 
the predator. The main purpose of this paper is to study the dynamics of the proposed impulsive 
prey-predator model with switching state-dependent strategies by using the properties of succes-
sor functions (Poincaré maps) and bifurcation theory. Such a study may help us further and better 
evaluate the effect of drug rotations in the control of harmful species.

The rest of the paper is organized as follows. In Section 2, we formulate the main model and 
review some useful mathematical lemmas, for readers’ convenience. In Section 3, we derive the 
Poincaré maps for the model and explore its properties. Then we establish some sufficient con-
ditions for existence of order-k periodic solutions and for the global stability of order-1 periodic 
solutions, and discuss the possibility of the existence of multiple fixed points. In Section 4, we 
investigate the existence and stability of boundary periodic solution of the proposed model when 
only a single chemical means is used to control harmful species, and discuss the bifurcations 
near the boundary periodic solution. In Section 5, to demonstrate the obtained theoretical results, 
we present some numerical simulation results that are carried out for two particular cases of the 
model: integrated pest control and tumour treatment. We also use the numerical simulations to 
show the complexity of model dynamics when two known drugs are randomly (instead of in 
alternating order) selected to control harmful species each time. Finally, we complete the paper 
with some discussions and remarks on the results of the paper.

2. Model formulation and preliminaries

The basic ODE model employed in our work is the following general predator-prey model of 
Kolmogorov [1,19,26]:

⎧⎪⎪⎨⎪⎪⎩
dx(t)

dt
= x(t)F1(x(t), y(t)) = P(x(t), y(t)),

dy(t)

dt
= y(t)F2(x(t), y(t)) = Q(x(t), y(t)),

(2.1)

where x(t) and y(t) represent the populations of the prey and the predator at time t, respectively. 
Depending on the situation, the prey can be pests or tumour cells, the predator can be natural 
enemies or effector cells. Here functions F1(x, y) and F2(x, y) denote the per capita growth rate 
of the prey and the predator, respectively. For (2.1), to accommodate the nature of predator-prey 
interactions, we pose the assumptions on F1(x, y) and F2(x, y) as in [1]:

(H1) F1 and F2 are continuous in R2+ = {(x, y)|x ≥ 0, y ≥ 0}.
(H2) F1 and F2 are continuously differentiable in R2+0 = {(x, y)|x > 0, y > 0}.
(H3) There exists positive x̄ and ȳ such that (x − x̄)F1(x, 0) < 0 and (y − ȳ)F1(0, y) < 0 hold 

for all x ≥ 0, x �= x̄, y ≥ 0, and y �= ȳ.
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(H4) There exists a positive x̂, which satisfies (x − x̂)F2(x, 0) > 0 for all x ≥ 0 and x �= x̂.
(H5) F1y < 0 and F2y ≤ 0 in R2+0.
(H6) xF1x + yF1y < 0 holds for all (x, y) ∈ R2+0.
(H7) xF2x + yF2y > 0 holds for all (x, y) ∈ R2+0.

The following two assumptions will also be used in Section 3:

(H2)’ F1, F2 ∈ C2 in R2+.
(H8) F1yy = 0 and F2yy = 0 for all (x, y) ∈ R2+.

Here Fix , Fiy , Fixx , or Fiyy (i = 1, 2) represent the partial derivatives of respective orders of the 
function Fi to x or to y.

Since the inequalities in (H3) and (H4) will be repeatedly used in this paper and it involves 
two constants x̄ and x̂ which play crucial role in our analysis, they deserve some more detailed 
explanations. Indeed, (H3) indicate that x̄ actually accounts for the carrying capacity of the prey 
species in the absence of the predator; and ȳ gives the maximum population of the predator that 
the prey can support; while (H4) means that x̂ is the minimum population of the prey needed for 
the predator to survive. The biological interpretations of the other hypotheses mentioned above 
are shown in literature [26]. Unless otherwise stated, we suppose that assumptions (H1)-(H7) 
hold in the rest of this paper.

We now incorporate density dependent impulsive control to the system (2.1) by presetting a 
threshold for the population of the harmful species (prey), denoted by ET . Realistically, such a 
threshold value should not exceed the carrying capacity of the prey, therefore, in the rest of the 
paper, we always ET < x̄.

When x(t) < ET , no control is implemented, while when x(t) = ET , an impulsive control 
is applied to reduce the prey population. For the control, we assume that there are two choices 
available, denoted by (C1) and (C2), which may have different efficacy in reducing the prey 
population. Let p1 and p2 denote the respective efficacy (or killing rate of drug or pesticide) of 
the two controls. In general, p1 and p2 depend on the dosage of the drug or pesticide. The widely 
used kill efficiency function is an exponential distribution function [5,12,20,25], i.e., p1(D) =
1 − e−λ1D and p2(D) = 1 − e−λ2D , where D is the dosage of the drug or pesticide, λ1 and λ2 are 
constants. Considering that a control aiming to reduce the prey population may also have some 
negative impact on the predator that may cause some deaths of the predators, we introduce two 
more parameters q1 and q2 to denote such negative side effect. In the mean time, in addition to 
applying one of the controls aiming to reduce the prey at the threshold ET , we also accommodate 
the possibility of releasing certain number of predators, denoted by τ ≥ 0. The above scenario 
leads to the following model:⎧⎪⎪⎨⎪⎪⎩

dx(t)

dt
= x(t)F1(x(t), y(t)),

dy(t)

dt
= y(t)F2(x(t), y(t)),

⎫⎪⎪⎬⎪⎪⎭ if x(t) < ET, (2.2)

subject to the control of either

(C1) :
{

x(t+) = (1 − p1) x(t),

y(t+) = (1 − q )y(t) + τ,

}
if x(t) = ET (2.3)
1
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or

(C2) :
{

x(t+) = (1 − p2) x(t),

y(t+) = (1 − q2)y(t) + τ,

}
if x(t) = ET. (2.4)

Note that by their meanings, we should have pi ∈ (0, 1) and qi ∈ [0, 1), i = 1, 2. Without loss 
of generality, we assume p1 > p2. Here x(t+) and y(t+) denote the numbers of the prey and the 
predator after an integrated control strategy is applied at time t , respectively. We also assume that 
the initial values (x0, y0) of (2.2) satisfies y0 = y(0+) ≥ 0 and x0 = x(0+) < ET ; otherwise, the 
initial integrated control can be implemented to achieve these. For biological reason, we only 
focus on the region V = {(x, y) : 0 ≤ x < x̄, 0 ≤ y}.

There comes the issue of how to arrange (C1) and (C2) every time when x(t) reaches the 
threshold state. In this paper, we propose three strategies:

(S1): alternating order starting with the weaker one {C2, C1, C2, C1, C2, C1, . . .};
(S1): alternating order starting with the stronger one {C1, C2, C1, C2, C1, C2, . . .};
(S2): (C1) and (C2) are applied randomly when x(t) = ET with the probability of applying (C1) 

being P̄ and the probability of applying (C2) being 1 − P̄ .

In the case of two insecticides for (C1) and (C2), they may come from different chemical groups 
with different modes of action, and it is such a difference together with the rotated uses that 
may help prevent the occurrence of drug resistance. Since strategies (S1) and (S1) are essentially 
the same, we only analyze (2.2)-(2.3)-(2.4) under the strategy (S1) in this paper. Strategy (S2) 
means that the two insecticides are applied randomly each time, with a constant probability P̄
for (C1) to reflect the user’s possible preference based on the information about the two insec-
ticides. Theoretically analyzing the consequences of strategy (S2) requires a new setting that 
involves probability arguments, as such, we will only briefly explore it numerically to gain some 
comparison with the alternating order of uses, hoping to motivate some future research projects.

Since (2.1) is the baseline equation of our state-dependent impulsive control model (2.2)-(2.4), 
its properties are crucial and helpful for us to explore the dynamics of our model (2.2)-(2.4). 
Below we gather those properties of (2.1) needed for our later analysis, from the literature (see, 
e.g., [1,19,26]). Lemma 2.1 [1] gives the position of vertical and horizontal isoclinics and the 
equations to be satisfied, as shown in Fig. 2.1. Lemma 2.2 [1] gives the stability of the equilibrium 
of model (2.1).

Lemma 2.1. If functions F1(x, y) and F2(x, y) satisfy conditions (H1)-(H7), then

(i) F1(x, y) = 0 defines a unique continuous function y = ϕ1(x) on [0, x̄] such that ϕ1(0) = ȳ

and ϕ1(x̄) = 0. Further, function ϕ1 is both positive definite and differentiable on (0, x̄) and 
satisfies ϕ′

1(x) < ϕ1(x)/x;
(ii) F2x > 0 holds for any (x, y) ∈ R2+0 and F2(x, y) = 0 defines a unique continuous function 

x = ϕ2(y) on [0, +∞) such that ϕ2(0) = x̂. Moreover, ϕ2 is differentiable on (0, +∞) and 
satisfies 0 ≤ ϕ′

2(y) < ϕ2(y)/y.

Lemma 2.2. Under hypotheses (H1)-(H7), model (2.1) always has equilibria (0, 0) and (x̄, 0)

with (0, 0) being unstable. Moreover,
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Fig. 2.1. Schematic diagram of functions F1(x, y) and F2(x, y) satisfying (H1)-(H7) in (2.1).

(i) when x̂ ≥ x̄ holds, then (x̄, 0) is globally stable in R2+0;
(ii) when x̂ < x̄, (x̄, 0) becomes unstable and there exists a unique positive equilibrium E∗ =

(x∗, y∗) with x̂ ≤ x∗ < x̄ which is globally attractive in R2+0 provided that there is no 
periodic orbit in R2+0; and if E∗ is unstable then there is at least one limit cycle in R2+0.

The following lemma [30] is helpful for judging the stability of periodic solutions.

Lemma 2.3 (Analogue of Poincaré’s criterion). For the following impulsive system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= P(x(t), y(t)),

dy(t)

dt
= Q(x(t), y(t)),

⎫⎪⎪⎬⎪⎪⎭ if φ(x(t), y(t)) �= 0,

x(t+) = x(t) + a(x(t), y(t)),

y(t+) = y(t) + b(x(t), y(t)),

}
if φ(x(t), y(t)) = 0,

(2.5)

where P , Q, φ, a, and b are continuous functions from R2 into R and ∇φ(x, y) �= 0. If 
(ξ(t), η(t)) is a periodic solution with period T , then it is orbitally asymptotically stable if the 
Floquet multiplier μ2 satisfies | μ2 |< 1, where

μ2 =
q∏

n=1


n exp

⎡⎣ T∫
0

Px(ξ(t), η(t))dt

⎤⎦ exp

⎡⎣ T∫
0

Qy(ξ(t), η(t))dt

⎤⎦ (2.6)

with
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�n =
P+

(
∂bn

∂y
∂φ
∂x

− ∂bn

∂x
∂φ
∂y

+ ∂φ
∂x

)
+ Q+

(
∂an

∂x
∂φ
∂y

− ∂an

∂y
∂φ
∂x

+ ∂φ
∂y

)
P

∂φ
∂x

+ Q
∂φ
∂y

. (2.7)

Here, q is the total number of pulses of the periodic solution within the period T , τn(n ∈ N)

is the time of the n-th jump, an = x(τ+
n ) − x(τn), bn = y(τ+

n ) − y(τn), P+ = P(ξ(τ+
n ), η(τ+

n )), 
Q+ = Q(ξ(τ+

n ), η(τ+
n )), and the rest of �n are calculated at the pulse point (ξ(τn), η(τn)).

To address the bifurcation of the Poincaré map defined in the next section, we introduce the 
following lemma [13].

Lemma 2.4 (Transcritical bifurcation). Let 
 : U × I −→ R define a one-parameter family of 
maps, where 
(y, α) is Cr with r ≥ 2, and U, I are open intervals of the real line containing 0. 
Assume that


(0, α) = 0 for all α, 
y(0, α∗) = 1, 
yα(0, α∗) �= 0, 
yy(0, α∗) > 0 (resp. < 0).

Then there are α1 < α∗ < α2 and ε > 0 such that

(i) if α1 < α < α∗ and 
yα(0, α∗) > 0 (or α∗ < α < α2 and 
yα(0, α∗) < 0), then 
 has 
two fixed points, 0 and y1(α) > 0 (resp. y1(α) < 0) in (−ε, ε). The origin is asymptotically 
stable, the other fixed point is unstable;

(ii) if α∗ < α < α2 and 
yα(0, α∗) > 0 (or α1 < α < α∗ and 
yα(0, α∗) < 0), then 
 has two 
fixed points, 0 and y1(α) < 0 (resp. y1(α) > 0) in (−ε, ε). The origin is unstable, the other 
fixed point is asymptotically stable.

According to the relationship between ET (action threshold), x̄ (the carrying capacity of 
prey), and x̂ (the minimum number of prey to ensure predator reproduction), we study the ex-
istence and stability of the periodic solutions of hybrid system (2.2)-(2.4) for the following two 
cases in the rest of this paper:

(A) ET < min{x̄, x̂}; (B) x̂ < ET < x̄. (2.8)

3. Poincaré maps and its properties

In this section, assume ET < min{x̄, x̂} and strategy (S1) is applied in the state-dependent 
impulsive model (2.2)-(2.4).

The following three vertical lines and two curves are needed in defining Poincaré map and 
studying its properties:{

L1 : x = (1 − p1)ET
.= EP1, L2 : x = (1 − p2)ET

.= EP2, L3 : x = ET,

L4 : F1(x, y) = 0 =⇒ y = ϕ1(x), L5 : F2(x, y) = 0 =⇒ x = ϕ2(y),

where L1 and L2 represent the two phase lines, L3 represents the impulse line, L4 is the vertical 
isocline of model (2.2), and L5 denotes the horizontal isocline, (see Lemma 2.1). As shown in 
Fig. 2.1 and Fig. 3.1, the intersection points of vertical isocline L4 and straight lines L1, L2, and 
L3 are marked as D(EP1, y

+), B(EP2, y
+), and E(ET, ye), respectively.
d b
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Fig. 3.1. Phase diagram of (2.2)-(2.4) when ET < min{x̄, x̂} and strategy (S1) is applied.

3.1. The definition of Poincaré maps

Let L1 be the Poincaré section of the system (2.2)-(2.4). For any given point on L1, denoted by 
P +

0 = (EP1, y
+
0 ), the trajectory of (2.2) starting from P +

0 will intersect the threshold line L3 at 
a point denoted by P1 = (ET , y1). The value y1 depends on y+

0 and is denoted as y1 = G1(y
+
0 ). 

Then, the control (C2) will pull this point to a point on the line L2, denoted by P +
1 = (EP2, y

+
1 )

where

y+
1 = (1 − q2)y1 + τ = (1 − q2)G1(y

+
0 ) + τ. (3.1)

Trajectory of (2.2) starting from P +
1 will also intersect the L3 at a point denoted by P2 =

(ET , y2) where y2 depends on y+
1 , denoted as y2 = G2(y

+
1 ). Then, the second control (C1) 

in (S1) will pull P2 to the line L1 at a point P +
2 = (EP1, y

+
2 ) with

y+
2 = (1 − q1)y2 + τ = (1 − q1)G2(y

+
1 ) + τ. (3.2)

Now, combining (3.1) and (3.2), we obtain a map 
 : [0, ∞) → [0, ∞) given by


(y) = (1 − q1)G2[(1 − q2)G1(y) + τ ] + τ, y ≥ 0. (3.3)

We call 
 the Poincaré map of (2.2)-(2.4) under strategy (S1).
In the sequel, we follow the convention to denote 
n as the n-th iteration of 
, that is,


0(u) = u, 
n(u) = 
n−1(
(u)), for n = 1,2, .... (3.4)
344



Q. Zhang, S. Tang and X. Zou Journal of Differential Equations 364 (2023) 336–377
As is customary, a point u ∈ [0, ∞) is said to be a k-periodic point (periodic point with period 
k) of 
, if 
j(u) �= u for all 1 ≤ j < k and 
k(u) = u. In particular, a 1-periodic point of 
 is 
nothing but a fixed point of 
.

Definition 3.1. Assume (S1) is applied. For a P +
0 (EP1, y

+
0 ) on the L1, the corresponding orbit 

consisting of trajectories ̂P +
0 P1 and ̂P +

1 P2 and the two line segments P1P
+
1 and P2P

+
2 , as shown 

in Fig. 3.1, is said to be an order-1 periodic solution of system (2.2)-(2.4) if P +
2 = P +

0 , i.e., y+
0

is a fixed point of 
. Similarly, if 
 has a k-periodic point in [0, ∞), then we say the system 
(2.2)-(2.4) has an order-k periodic solution.

3.2. The properties of the Poincaré map

Let

y+
d = ϕ1(EP1), y+

b = ϕ1(EP2), and ye = ϕ1(ET ).

Define

yd+1 = G1(y
+
d ), y+

d+1 = (1 − q2)yd+1 + τ, yb = (y+
b − τ)/(1 − q2), (3.5)

where G1 is defined in (3.1). Note that when τ < y+
b < y+

d+1, there is a point (ET , yb) on L3 and 
the backward orbit 1 initiating from (ET , yb) will reach two points (EP1, y

+
f ) and (EP1, y+

g )

of phase curve L1 with y+
f < y+

d < y+
g .

The following theorem presents some properties of 
.

Theorem 3.1. Assume ET < min{x̄, x̂} and (S1) is applied in (2.2)-(2.4). Then the properties of 
map 
(u) are as follows.

(i) 
 is continuously differentiable on interval [0, +∞).
(ii) When y+

d+1 ≤ y+
b , 
 is increasing on [0, y+

d ) and decreasing on [y+
d , +∞). The map 
 is 

concave down on (0, y+
d ) if (H2)’ and (H8) hold.

(iii) When y+
b ≤ τ , 
 is decreasing on [0, y+

d ) and increasing on [y+
d , ∞).

(iv) When τ < y+
b < y+

d+1, 
 is increasing on [0, y+
f ) ∪[y+

d , y+
g ) and decreasing on [y+

f , y+
d ) ∪

[y+
g , +∞) with 
(y+

f ) = 
(y+
g ). The map 
 is concave down on (0, y+

f ) if (H2)’ and (H8) 
hold.

(v) y = 
(0) is the horizontal asymptote of 
(u) as u → +∞, as shown in Fig. 3.2.

Proof. Continuous differentiability. It follows from Lemma 2.2 that if ET < min{x̄, x̂} holds, 
then any trajectory of model (2.1) starting from the phase curve L1 or L2 will reach the pulse 
curve L3 in a finite time. Thus, the domain of 
 is [0, +∞). 
 is continuously differentiable 
because of the theorem of the continuity and the differentiability of the solution of the ordinary 
differential equation to the initial value.
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Fig. 3.2. The shape of the Poincaré map 
 when ET < min{x̄, x̂} and (S1) is applied.

Next we prove the respective monotonicity and concavity of 
(u) on the respective intervals 
specified in (ii)-(iv). Note from (3.3), i.e., 
(u) = (1 − q1)G2(h(u)) + τ , where

h(u) := (1 − q2)G1(u) + τ, (3.6)

that the range of function h and the monotonicity of continuous functions h and G2 jointly affect 
the monotonicity of Poincaré map 
.

According to the definition of function G1(u) and the direction of the trajectory when 
ET < min{x̄, x̂} holds, we get that G1(u) and h(u) are increasing on (0, y+

d ) and decreasing 
on (y+

d , +∞), and thus the range of h(u) is [h(0), h(y+
d )] = [τ, y+

d+1]. Similarly, function G2(u)

is increasing on (0, y+
b ) and decreasing on (y+

b , +∞).
With the above observations, we naturally obtain the monotonicity of the Poincaré map 
(u)

when the parameters meet different conditions as following three cases.

1) When y+
d+1 ≤ y+

b , i.e., the maximum value of function h(u) does not exceed y+
b , then 


increases monotonically on [0, y+
d ) and decreases monotonically on [y+

d , +∞), as shown in 
Fig. 3.2-(a);

2) When y+
b ≤ τ , i.e., the minimum value of function h(u) is not less than y+

b , then the mono-
tonicity of map 
 is opposite to that of (1), as shown in Fig. 3.2-(b);

3) When τ < y+
b < y+

d+1 holds, then there is a trajectory 1 and 1 starting from point 
(EP1, y+

g ) with y+
g > y+

d first intersects L1 at point (EP1, y
+
f ) with y+

f < y+
d and then 

intersects L3 at point (ET , yb), where yb = (y+
b − τ)/(1 − q2). Obviously, h(u) ∈ [τ, y+

b ]
for all u ∈ [0, y+

f ] ∪[y+
g , +∞), while h(u) ∈ (y+

b , y+
d+1] for all u ∈ (y+

f , y+
g ). Thus, combin-

ing the monotonicity of h(u) and G2(u) and the range of h(u), then 
(u) is increasing on 
[0, y+

f ) ∪ [y+
d , y+

g ) and decreasing on [y+
f , y+

d ) ∪ [y+
g , +∞) with 
(y+

f ) = 
(y+
g ), which 

means that 
 is a special bimodal map, as shown in Fig. 3.2-(c).
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For concavity, note that under hypotheses (H2)’ and (H8). We claim that 
 is concave down 
on interval D0, where D0 = (0, y+

d ) for case 1) and D0 = (0, y+
f ) for case 3). That means we 

need to prove 
′′(u) < 0 for all u ∈ D0 in case 1) and case 3).
First, from the continuous differentiability of the solution of (2.1) with respect to the initial 

value, it can be obtained that functions G1(u) and G2(u) are second-order continuously differen-
tiable. Further, since 
(u) = (1 −q1)G2((1 −q2)G1(u) + τ) + τ , the compound map 
 belongs 
to C2(R+, R+).

In range �, where

� = {(x, y)|0 ≤ y < ϕ1(x), 0 < x < min{x̄, x̂}}, (3.7)

model (2.1) can be rewritten as the following scalar differential equation

dy

dx
= yF2(x, y)

xF1(x, y)
= Q(x,y)

P (x, y)
=̇G(x,y). (3.8)

The initial condition of (3.8) is y(x0) := u ∈ (0, y+
d ) when x0 = EP1 or y(x0) := u ∈ (0, y+

b )

when x0 = EP2. Notice that on � function G(x, y) belongs to C2 provided that conditions 
(H2)’ holds.

The solution of (3.8) can be denoted as y(x; x0, u) and the partial derivative of solution 
y(x; x0, u) to the initial value u is as follows

yu(x;x0, u) = exp

⎛⎝ x∫
x0

Gy(x, y(x;x0, u))dx

⎞⎠ . (3.9)

Hence, for function G1(u) = y(ET ; EP1, u) on interval (0, y+
d ) or for function G2(u) =

y(ET ; EP2, u) on (0, y+
b ), there is

G′
i (u) = yu(ET ;EPi,u) = exp

⎛⎜⎝ ET∫
EPi

Gy(x, y(x;EPi,u))dx

⎞⎟⎠> 0, i = 1,2. (3.10)

For (3.3), we have


′(u) = (1 − q1)(1 − q2)G
′
2(h(u))G′

1(u)

= (1 − q1)(1 − q2) exp

⎛⎜⎝ ET∫
EP2

Gy(x, y(x;EP2, h(u)))dx +
ET∫

EP1

Gy(x, y(x;EP1, u))dx

⎞⎟⎠
(3.11)

and
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′′(u) = 
′(u)·
⎡⎢⎣
⎛⎜⎝ ET∫

EP2

Gyy(x, y(x;EP2, h(u))) · yh(x;EP2, h(u))dx

⎞⎟⎠ (1 − q2)G
′
1(u)

+
⎛⎜⎝ ET∫

EP1

Gyy(x, y(x;EP1, u)) · yu(x;EP1, u)dx

⎞⎟⎠
⎤⎥⎦ ,

(3.12)

where

Gy(x, y) = F2 + yF2y

xF1
− yF2F1y

x(F1)2 (3.13)

and

Gyy(x, y) = 2F2y + yF2yy

xF1
− yF2F1yy

x(F1)2 − 2F1y(F2 + yF2y)

x(F1)2 + 2yF2(F1y)
2

x(F1)3 . (3.14)

Note that when (H8) holds, F1yy = 0 and F2yy = 0, then (3.14) can be simplified as

Gyy(x, y) = 2F2y

xF1
− 2F1y(F2 + yF2y)

x(F1)2 + 2yF2(F1y)
2

x(F1)3 , (3.15)

which is less than zero on range �, since condition (H5) holds, F1 > 0 and F2 < 0 on �, as shown 
in Fig. 2.1. For (3.12), combining Gyy(x, y) < 0 on � with 
′(u) > 0, yh(x; EP2, h(u)) > 0, 
yu(x; EP1, u) > 0, and (1 − q2)G

′
1(u) > 0 for all u ∈ D0, there is 
′′(u) < 0 for all u ∈ D0 for 

case 1) and case 3).
Horizontal Asymptote. For continuous function G1(u), which is monotonically decreasing on 

[y+
d , +∞) and G1(u) ∈ [0, yd+1], we claim that limu→+∞ G1(u) = 0. Otherwise, there exists a 

positive y∗ satisfying limu→+∞ G1(u) = y∗. Choose an arbitrary point (ET , y1) on phase curve 
L3 with 0 < y1 < y∗. It follows from the uniqueness of a solution to ordinary differential equation 
(2.1) that there must exist a point (EP1, y

+
0 ) on L1 such that G1(y

+
0 ) = y1 with y+

0 ≥ +∞, which 
is a contradiction. Thus,

lim
u→+∞G1(u) = 0 = G1(0). (3.16)

For continuous function G2(u), there is limu→τ G2(u) = G2(τ ). Thus, we naturally obtain that 
the limit of continuous compound function (3.3) is as follows:

lim
u→+∞(1 − q1)G2 ((1 − q2)G1(u) + τ) + τ = (1 − q1)G2(τ ) + τ, (3.17)

that is, limu→+∞ 
(u) = 
(0), which indicates that line y = 
(0) is the horizontal asymptote 
of the map 
, as shown in Fig. 3.2. This completes the proof. �
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Theorem 3.2 discusses the existence and the global stability of fixed point of map 
 when 
τ = 0.

Theorem 3.2. Assume ET < min{x̄, x̂} and (S1) is applied. When τ = 0, the map 
 has a unique 
trivial fixed point, which is globally stable. This means that impulsive model (2.2)-(2.4) has a 
globally stable predator-free periodic solution (PFPS).

Proof. When τ = 0, it is obvious that 
(0) = 0. Because dy/dt = yF2(x, y) < 0 in area 
{(x, y)| 0 < x < min{x̄, x̂}, y > 0}, as shown in Fig. 2.1, there are G1(u) < u and G2(u) < u

for all u > 0, where

G1(u) := y(ET ;x0 = EP1, y0 = u), G2(u) := y(ET ;x0 = EP2, y0 = u),

are defined by the solutions of model (3.8) with ET < min{x̄, x̂}. From the above, there is


(u) = (1 − q1)G2((1 − q2)G1(u)) < (1 − q1)(1 − q2)G1(u) < u ⇒

(u) < u for all u > 0.

(3.18)

Thus, we have proved that u∗ = 0 is the unique fixed point of map 
(u).
It follows from the assumptions (H3) and (H4) that Gy(x, 0) = F2(x, 0)/[xF1(x, 0)] < 0 for 

all x < ET < min{x̄, x̂}, which indicates that for (3.11), there is

0 < 
′(0) = (1 − q1)(1 − q2) exp

⎛⎜⎝ ET∫
EP2

Gy(x,0)dx +
ET∫

EP1

Gy(x,0)dx

⎞⎟⎠< 1. (3.19)

It is known that for the one-dimensional discrete mapping 
(u) with |
′(0)| < 1, the trivial fixed 
point is locally asymptotically stable.

Finally, we prove that the trivial fixed point is globally attractive. Because 
(u) < u for all 
u > 0 as shown in (3.18), there is

0 ≤ · · · < 
n(u) < 
n−1(u) < · · · < 
(u) < u for all u > 0 and n ≥ 1. (3.20)

Hence, point column {
n(u)} is monotonically decreasing and limn→+∞ 
n(u) = 0 for all u ≥
0. Otherwise, if limn→+∞ 
n(u) = ỹ > 0 then there is 
(ỹ) < ỹ, which is a contradiction. This 
completes the proof. �

Obviously, when the releasing number of predators is greater than zero, i.e., τ > 0, 
 does 
not have trivial fixed point. In the following theorem, we discuss the number of positive fixed 
points of 
 corresponding to the number of positive periodic solutions of the impulsive model 
(2.2)-(2.4).

Theorem 3.3. Assume ET < min{x̄, x̂} and (S1) is applied. When τ > 0, the Poincaré map 
(u)

may be unimodal, inverted U-shaped, or bimodal. Further,

(i) 
(u) has at least one positive fixed point.
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(ii) there is at most one fixed point in each monotonically decreasing subinterval.
(iii) the number of fixed points of the map 
(u) depends on the number of fixed points of 
(u)

in monotonically increasing interval.

Proof. When τ > 0, the relationship between τ , y+
d+1, and y+

b can be one of the three cases: 
y+
d+1 ≤ y+

b , or y+
b ≤ τ , or τ < y+

b < y+
d+1. Thus, the monotonicity of the continuous map 
(u) is 

shown in Theorem 3.1, and the shape of 
(u) may be unimodal, inverted U-shaped, or bimodal, 
as shown in Fig. 3.2.

(i) Obviously, 
(0) = (1 − q1)G2(τ ) + τ > 0. For the continuous and bounded map 
, there 
exists a large enough u0 to make 
(u0) < u0. Hence, the map 
 has at least one positive fixed 
point.

(ii) First, we claim that the fixed point may be in the decreasing interval of 
(u). According 
to the intermediate value theorem of continuous function 
(u), the sufficient conditions for the 
existence of positive fixed points u∗ in the monotonically decreasing subinterval of map 
(u)

are as follows:

• when y+
d+1 ≤ y+

b , then there exists a fixed point u∗ ∈ (y+
d , +∞) if 
(y+

d ) > y+
d ;

• when y+
b ≤ τ , then there exists a fixed point u∗ ∈ (0, y+

d ) if 
(y+
d ) < y+

d ;
• when τ < y+

b < y+
d+1, then there is a fixed point u∗ ∈ (y+

f , y+
d ) if 
(y+

f ) > y+
f and 
(y+

d ) <

y+
d , and fixed point u∗ ∈ (y+

g , +∞) if 
(y+
g ) > y+

g .

Next, we prove that on the monotonically decreasing subinterval of map 
(u), the number of 
fixed point does not exceed 1. Take the last case (i.e., τ < y+

b < y+
d+1 and 
(u) is a bimodal map) 

as an example. If there are at least two positive fixed points on decreasing subinterval (y+
f , y+

d ), 

let us assume that two of them are u∗
1 and u∗

2 with y+
f < u∗

1 < u∗
2 < y+

d , then u∗
1 = 
(u∗

1) >

(u∗

2) = u∗
2, which is a contradiction.

(iii) The number of fixed points of map 
(u) on monotonically decreasing interval is finite, 
which have proved in (ii). However, on the increasing interval of 
(u), the convexity of 
 is 
complex and possibly changeable, which has a great influence on the number of fixed points. 
This completes the proof. �

From the proof of the above theorem together with the fact that 
(y+
g ) > y+

g implies 
(y+
f ) >

y+
f , we actually have the following corollary.

Corollary 3.1. Assume ET < min{x̄, x̂} and (S1) is applied. When 0 < τ < y+
b < y+

d+1, the map 

(u) has at least three fixed points (i.e., model (2.2)-(2.4) has at least three positive periodic 
solutions) provided that 
(y+

d ) < y+
d and 
(y+

g ) > y+
g .

Theorems 3.4 and 3.5 give the sufficient condition for the stability of the positive fixed point 
of Poincaré map 
. Passing these condition to the impulsive model (2.2)-(2.4), the following 
two theorems discuss the sufficient condition for the stability of the positive periodic solution of 
impulsive model (2.2)-(2.4).

Theorem 3.4. Assume ET < min{x̄, x̂} and (S1) is applied. When τ > 0, y+
d+1 ≤ y+

b , 
(y+
d ) <

y+
d , (H2)’ and (H8) hold, then 
(u) has a unique fixed point u∗ ∈ (0, y+

d ), which is globally 
stable.
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Proof. It follows from 
(0) > 0 and 
(y+
d ) < y+

d that there exists a u∗ ∈ (0, y+
d ) satisfying 


(u∗) = u∗. The fixed point u∗ is unique, because 
(u) is concave down and increasing on in-
terval (0, y+

d ), as shown in Theorem 3.1(ii), and meanwhile, there is no fixed point on decreasing 
interval [y+

d , +∞) since u ≥ y+
d > 
(y+

d ) ≥ 
(u) for all u > y+
d .

Now, we prove that the unique fixed point u∗ is globally stable.

• For u ∈ (0, u∗), it follows from u < 
(u) < u∗ that

u < 
(u) < · · · < 
n−1(u) < 
n(u) < u∗,

which indicates that 
n(u) increases monotonically toward u∗ as n → +∞.
• For u ∈ (u∗, +∞), when 
(u) < u∗, then similar to above case, limn→+∞ 
n(u) =

u∗. However, when 
(u) > u∗, since 
(u) < 
(y+
d ) < y+

d , 
[u∗, y+
d ] ⊆ [u∗, 
(y+

d )] ⊂
[u∗, y+

d ], and 
(ū) < ū for all u∗ < ū, then

u∗ < 
n(u) < 
n−1(u) < · · · < 
(u) < y+
d ,

that is, 
n(u) decreases monotonically toward u∗ as n → +∞. This completes the 
proof. �

Theorem 3.5. Assume ET < min{x̄, x̂} and (S1) is applied. When τ > 0, y+
d+1 ≤ y+

b , 
(y+
d ) >

y+
d , (H2)’ and (H8) hold, then the map 
 has a unique fixed point u∗ ∈ (y+

d , +∞), as shown in 
Fig. 3.2-(a). Further,

(i) if 
2(u) > u for all u ∈ [y+
d , u∗), then u∗ is globally stable.

(ii) if 
2(y+
d ) ≥ y+

d , then 
 has a globally stable fixed point on (y+
d , +∞) or a two-point 

cycle coexisting with the fixed point such that any other trajectory of system (2.2)-(2.4) will 
approach either an order-1 periodic solution or an order-2 periodic solution as t → ∞.

(iii) if 
2(y+
d ) < y+

v1
, where y+

v1
= min{u| 
(u) = y+

d }, then 
 has a periodic point with period 
k (k = 1, 2, 3, . . .), i.e., (2.2)-(2.4) has order-k periodic solutions.

The proof process of Theorem 3.5 is similar to that of Theorems 5, 6 and 7 in Ref. [35] but is 
a bit lengthy. For integrity of this article, we give the proof in Appendix A.

The following theorem discusses the stability of the fixed point of map 
 when 
 is inverted 
U-shaped.

Theorem 3.6. Assume ET < min{x̄, x̂}, (S1) is applied, and y+
b ≤ τ .

(i) If 
(0) ≤ y+
d , then the Poincaré map 
 has a unique fixed point u∗ ∈ (0, y+

d ), which either 
is globally stable or coexists with 2-periodic points.

(ii) If 
(0) ≤ y+
d and 
2(u) > u for all u ∈ [0, u∗), u∗ is globally stable.

(iii) If 
(y+
d ) ≥ y+

d and 
 has a unique fixed point u∗ ∈ [y+
d , +∞) (see Fig. 3.2-(b)), then u∗

is globally stable.

Proof. Theorem 3.1 tells us that when the assumptions of Theorem 3.6 hold, function 
(u)

decreases on [0, y+) and increases on (y+, +∞), moreover, limu→+∞ 
(u) = 
(0).
d d
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(i) According to 
(0) is the maximum value of function 
(u), there is 
(u) < 
(0) ≤ y+
d

for any y+
d ≤ u, which implies that there is no fixed point of 
 on interval [y+

d , +∞). For 
continuous function 
, there are 
(0) > 0 and 
(y+

d ) < 
(0) ≤ y+
d . Thus, the map 
 has a 

fixed point u∗ ∈ (0, y+
d ). Moreover, Theorem 3.3 (ii) guarantees that u∗ is the unique fixed point.

It follows from 
[0, +∞) = [
(y+
d ), 
(0)] ⊂ [0, 
(0)] that 
n(u) ∈ [0, 
(0)] for all u ≥ 0. 

Therefore, we only need to analyze the property of {
n(u)} when u ∈ [0, 
(0)].
Denote

un = 
n(u), (Aa) : lim
k→+∞u2k �= lim

k→+∞u2k+1, (Ab) : lim
k→+∞u2k = lim

k→+∞u2k+1 = u∗. (3.21)

Because 
(u) is decreasing on [0, y+
d ] ⊇ [0, 
(0)] and u∗ < 
(0), there are u∗ < 
(u) < 
(0)

for all u < u∗ and 0 < 
(u) < u∗ for all u∗ < u < 
(0). Thus, when u ∈ [0, 
(0)], we have the 
following four cases:

(a.1) 0 ≤ u < u2 < u4 < u∗ < u3 < u1 ≤ 
(0) ⇒ (Aa) holds or (Ab) holds;
(a.2) 0 < u4 < u2 < u < u∗ < u1 < u3 < 
(0) ⇒ (Aa) holds;
(a.3) 0 < u3 < u1 < u∗ < u < u2 < u4 < 
(0) ⇒ (Aa) holds;
(a.4) 0 < u1 < u3 < u∗ < u4 < u2 < u ≤ 
(0) ⇒ (Aa) holds or (Ab) holds.

Therefore, (i) is proved.
(ii) According to the proof of above, 
 has no periodic point with period-n where n ≥ 3, 

except a fixed point or periodic points with period-2. Suppose there are periodic points ua and 
ub with period-2, where ua < ub , 
(ua) = ub and 
2(ua) = ua . Cases (a.1)-(a.4) tell us that 
0 < ua < u∗ < ub < 
(0). However, 
2(ua) = ua < u∗, which contradicts 
2(u) > u for all 
u < u∗. Hence, map 
 has no periodic point with period-2 and the unique fixed point u∗ is 
globally stable.

(iii) From the assumption of (iii), it is easy to know that u∗ ∈ [y+
d , +∞) is the unique fixed 

point of map 
, as shown in Fig. 3.2-(b). Further, 
[0, +∞) = [
(y+
d ), 
(0)] ⊂ [y+

d , +∞), for 
any y+

d < u < u∗ there is u < 
(u) < u∗, and for any u > u∗ there is u > 
(u) > u∗. Hence, for 
any u ≥ 0, 
n(u) increases (or decreases) toward u∗ as n → +∞. �

Theorems 3.2, 3.4, 3.5 and 3.6 discussed the existence and stability of the fixed point only 
when 
(u) has a single extremal point. In the following Theorems 3.7, 3.8 and 3.9, we investi-
gate the properties of 
 when 
 has two maximum points [11,7,18]. As a preparation, we first 
note that according to Theorem 3.1, under the assumptions of 0 < τ < y+

b < y+
d+1, (H2)’ and 

(H8), map 
 is a special bimodal map, which is monotonically increasing and concave down on 
(0, y+

f ), decreasing on (y+
f , y+

d ) ∪ (y+
g , +∞), and increasing on (y+

d , y+
g ). Further,


(y+
f ) = 
(y+

g ) > 
(u) for all u ∈ [0,+∞) \ {y+
f , y+

g } (3.22)

and

lim
u→+∞
(u) = 
(0). (3.23)

Theorem 3.7. Assume ET < min{x̄, x̂} and (S1) is applied. When 0 < τ < y+
b < y+

d+1, (H2)’ 
and (H8) hold, then the map 
 has the following properties.
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(i) If 
(y+
f ) < y+

f , 
 has a unique and globally stable fixed point u∗ ∈ (0, y+
f ).

(ii) If 
(y+
d ) > y+

d and 
(y+
g ) < y+

g , 
 has at least one fixed point u∗ and u∗ must belong to 
(y+

d , y+
g ).

(iii) If there is a unique u∗ ∈ (y+
d , y+

g ) such that 
(u∗) = u∗, 
(u) > u for all u ∈ [y+
d , u∗), 

and 
(u) < u for all u ∈ (u∗, y+
g ], then u∗ is the unique and globally stable fixed point 

of 
.

Proof. (i) The proof process of (i) is similar to that of Theorem 3.4. 
(0) > 0 is obvious. If 

(y+

f ) < y+
f holds, one yields that there exists a u∗ ∈ (0, y+

f ) satisfying 
(u∗) = u∗. The con-

cavity of 
 tells us that u∗ is the unique fixed point of 
 on (0, y+
f ). Moreover, it follows from 

the monotonicity of 
(u) that 
(u) ≤ 
(y+
f ) < y+

f for all u > y+
f , i.e., 
(u) < u for all u > y+

f . 
Thus, u∗ is the unique fixed point of 
.

From 
[0, +∞) ⊂ [0, 
(y+
f )] ⊂ [0, y+

f ], u < 
(u) < u∗ for all u ∈ [0, u∗), and u∗ < 
(u) <

u for all u ∈ (u∗, y+
f ]. It follows that 
n(u) is monotonically increasing to u∗ for any u ∈ [0, u∗), 

and 
n(u) is monotonically decreasing to u∗ for any u ∈ (u∗, y+
f ]. Hence, for any u ∈ [0, +∞), 

{
n(u)} converges to u∗.
(ii) When 
(y+

d ) > y+
d and 
(y+

g ) < y+
g , then map 
 has at least one fixed point u∗ on 

(y+
d , y+

g ) according to the intermediate value theorem of continuous function. In the following, 
we prove that on [0, y+

d ] ∪ [y+
g , +∞] map 
 has no fixed point.

• For all u ∈ [y+
g , +∞), 
(u) is decreasing. There is 
(u) ≤ 
(y+

g ) < y+
g ≤ u, which means 


(u) < u for all u ≥ y+
g ;

• For all u ∈ [y+
f , y+

d ], 
(u) is still decreasing. There is 
(u) ≥ 
(y+
d ) > y+

d ≥ u, which 

means 
(u) > u for all u ∈ [y+
f , y+

d ] and thus 
(y+
f ) > y+

f ;

• It follows from 
(u) is increasing and concave down on [0, y+
f ], 
(0) > 0, and 
(y+

f ) >

y+
f , that 
(u) > u for all u ∈ [0, y+

f ].

Hence, 
(u) �= u for all u ∈ [0, y+
d ] ∪ [y+

g , +∞].
(iii) Hypothesis 
(u) > u for all u ∈ [y+

d , u∗) tells us that 
(y+
d ) > y+

d , and hypothesis 

(u) < u for all u ∈ (u∗, y+

g ] implies that 
(y+
g ) < y+

g . Therefore, combining the proof of 
(ii) and the assumptions of (iii), we can obtain that 
(u) > u for all u < u∗ and 
(u) < u for all 
u > u∗, that is, u∗ is the unique fixed point of 
.

Finally, we claim that u∗ is globally stable, that is, {
n(u)} converges to u∗ for any u ∈
[0, +∞). It is noted that 
(u) is increasing on (0, y+

f ) ∪ (y+
d , u∗) and decreasing on (y+

f , y+
d ). 

The maximum value 
(y+
f ) of 
 belongs to (u∗, y+

g ) since 
(y+
f ) = 
(y+

g ) < y+
g and 
(u)

increases on (u∗, y+
g ). Denote Y∗ = {u|
(u) = u∗, y+

f < u < y+
d }. We discuss the convergence 

of {
n(u)} when u ∈ [0, y+
f ], u ∈ [y+

f , Y∗), u ∈ (Y∗, u∗), u ∈ (u∗, 
(y+
f )], or u ∈ (
(y+

f ), +∞)

as follows.

1) For all u ∈ (Y∗, u∗), 
(u) ∈ [
(y+
d ), u∗) ⊂ [y+

d , u∗) and ū < 
(ū) for all ū ∈ [y+
d , u∗). 

Thus, 
n(u) is monotonically increasing toward u∗ as n → +∞;
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2) For all u ∈ (u∗, 
(y+
f )], 
(u) < u and 
(u) is increasing. Thus, there is u∗ < · · · < 
2(u) <


(u) < u ≤ 
(y+
f ), which indicates that 
n(u) is monotonically decreasing toward u∗ as 

n → +∞;
3) For all u ∈ [y+

f , Y∗), 
(u) ∈ (u∗, 
(y+
f )]. Similar to 2), limn→+∞ 
n(u) = u∗;

4) For all u ∈ [0, y+
f ], 
(u) > u and 
(u) is increasing. Thus, there exists a k ≥ 1 such that 


(k)(u) ∈ [y+
f , 
(y+

f )]. Similar to 1)-3), limn→+∞ 
n(u) = u∗;

5) For all u ∈ (
(y+
f ), +∞), 
(u) ∈ [
(0), 
(y+

f )] ⊂ [0, 
(y+
f )]. Thus, similar to 1)-4), 

limn→+∞ 
n(u) = u∗. �
The following corollary can be drawn from Theorem 3.4, Theorem 3.6(iii), and Theorem 3.7.

Corollary 3.2. Assume ET < min{x̄, x̂} and (S1) is applied. When τ > 0, map 
(u) has a unique 
fixed point u∗, and u∗ belongs to the increasing interval of 
, then u∗ is globally stable.

Theorem 3.8. Assume ET < min{x̄, x̂}, (S1) is applied, 0 < τ < y+
b < y+

d+1, and 
 has a unique 
fixed point u∗ > y+

g , as shown in Fig. 3.2-(c).

(i) If 
2(u) > u for all u ∈ [y+
g , u∗), then u∗ is globally stable.

(ii) If 
2(y+
g ) ≥ y+

g , then u∗ is globally stable or 
 has a two-point cycle coexisting with the 
fixed point.

(iii) If 
2(y+
g ) < y+

v2
, where y+

v2
= min{u| 
(u) = y+

g }, then 
 has a periodic point with period 
k (k = 1, 2, 3, . . .), i.e., (2.2)-(2.4) has order-k periodic solutions.

Proof. Under the assumptions of Theorem 3.8, it follows from Theorem 3.1(iv) that 
 is a 
special bimodal map, as shown in Fig. 3.2-(c). Moreover, because u∗ is the unique fixed point of 

, there are 
(u) > u for all u < u∗ and 
(u) < u∗ for all u∗ < u.

(i) Under the assumption of 
2(u) > u for any u ∈ [y+
g , u∗), we prove limn→+∞ un = u∗ in 

the following three cases, where un := 
n(u).

• For all u ∈ [y+
g , u∗), because 
(u) is decreasing on [y+

g , +∞) and ū < 
2(ū) when 
ū ∈ [y+

g , u∗), there is y+
g ≤ u < u2 < u4 < · · · < u∗ < · · · < u3 < u1. By analogy, u2k

is monotonically increasing to u∗ and u2k+1 is monotonically decreasing to u∗. Hence, 
limn→+∞ un = u∗;

• For all u ∈ X1 := {u|u ≥ 0, 
(u) > u∗} \ [y+
g , u∗), there is u∗ < 
(u) ≤ 
(y+

g ). Since 

[y+

g , u∗) = (u∗, 
(y+
g )], there exists a û1 ∈ [y+

g , u∗) such that 
(û1) = 
(u). Thus, the 
situation reduces to the above case and limn→+∞ un = u∗ also holds true;

• For all u ∈ X2 := {u|u ≥ 0, 
(u) < u∗}, there must exist an m and a û2 ∈ [y+
g , u∗) ∪X1 such 

that 
m(u) = 
(û2) > u∗ or 
m(u) = u∗, which implies that the situation again reduces to 
the above two cases and limn→+∞ un = u∗.

(ii) According to the above analysis process, we only need to know the properties of point 
sequence {un} when u ∈ [y+

g , u∗) to judge the stability of the fixed point of map 
.

When u ∈ [y+
g , u∗), it follows from 
(u) is decreasing on [y+

g , +∞) and 
2(y+
g ) ≥ y+

g that 

(y+) > 
(u) > 
(u∗) = u∗ > y+ and y+ ≤ 
2(y+) ≤ 
2(u) < u∗, that is,
g g g g

354



Q. Zhang, S. Tang and X. Zou Journal of Differential Equations 364 (2023) 336–377
y+
g ≤ u < u∗ < u1 < 
(y+

g ), y+
g ≤ u2 < u∗. (3.24)

According to (3.24), there are the following three possible situations:

1) u = u2 �= u1;
2) u2 < u ⇒ y+

g ≤ u4 < u2 < u < u∗ < u1 < u3 < 
(y+
g ) ⇒ limk→+∞ u2k �= limk→+∞ u2k+1;

3) u < u2 ⇒ y+
g ≤ u < u2 < u4 < u∗ < u3 < u1 < 
(y+

g ) ⇒ limk→+∞ u2k �= limk→+∞ u2k+1
or limk→+∞ u2k = limk→+∞ u2k+1 = u∗.

Therefore, if and only if 3) occurs and limk→+∞ u2k = limk→+∞ u2k+1 for all u ∈ [y+
g , u∗), then 

the fixed point u∗ is globally stable. On the contrary, two-point cycles coexist with the unique 
fixed point.

(iii) The proof of (iii) is the same as the proof of Theorem 3.5(iii). �
Theorem 3.9. Assume ET < min{x̄, x̂} and (S1) is applied. When 0 < τ < y+

b < y+
d+1, 
 has a 

unique fixed point u∗ ∈ (y+
f , y+

d ) and 
2(u) > u for all u ∈ [y+
f , u∗), then u∗ is globally stable.

The proof of Theorem 3.9 is similar to that of Theorem 1 in Ref. [27], for convenience, we 
put the proof in Appendix B.

4. The existence and stability of PFPS and its bifurcation

4.1. The existence and stability of PFPS

Assume τ = 0, ET < x̄, and strategy (S1) is applied for impulsive system (2.2)-(2.4). When 
y0 = 0, there is y(t) ≡ 0 for all t ≥ 0 and (2.2)-(2.4) can be simplified as follows:⎧⎪⎪⎨⎪⎪⎩

dx(t)/dt = x(t)F1(x(t),0), if x(t) = ET,

x(t+) = (1 − p2)x(t), if x(t) = ET, j = 2n − 1,

x(t+) = (1 − p1)x(t), if x(t) = ET, j = 2n, n ≥ 1,

(4.1)

where tj represents the time of the j-th pulse happened.
For model (4.1), since ẋ(t) > 0 for all x < ET with ET < x̄, the trajectory starting from 

x0 = (1 − p1)ET = EP1 reaches pulse line x = ET after a finite time T1, then pulses to phase 
line x = (1 − p2)ET = EP2, and then reaches pulse line x = ET again after a finite time T2, 
where Ti (i=1, 2) satisfies the following integral equation

ET∫
EPi

dx

xF1(x,0)
dx = Ti. (4.2)

Denote T = T1 + T2.
According to the above analysis, we find that system (4.1) has a periodic solution ξ(t) with 

period T , which satisfies ξ(0+) = EP1, ξ(T1) = ET , ξ(T +
1 ) = EP2, ξ(T ) = ET , and ξ(T +) =

EP1. Further, ξ(t) also satisfies the following equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ(t)∫
EP1

dx

xF1(x,0)
= t − nT , for t ∈ [nT +, nT + T1],

ξ(t)∫
EP2

dx

xF1(x,0)
= t − (nT + T1), for t ∈ [(nT + T1)

+, (n + 1)T ], n ≥ 0.

(4.3)

Note that (ξ(t), 0) is a PFPS of the impulsive model (2.2)-(2.4) when strategy (S1) is applied.
According to Lemma 2.3, we can obtain the sufficient condition for local stability of the 

periodic solution of model (2.2)-(2.4), which is shown in Theorem 4.1.

Theorem 4.1. Assume ET < x̄ and (S1) is applied. When τ = 0 and (4.9) hold, then the T-
periodic solution (ξ(t), 0) of system (2.2)-(2.4) is orbitally asymptotically stable.

Proof. Lemma 2.3 tells us that if the modulus of Floquet multiplier μ2 is less than 1 where

μ2 = 
1 · 
2 exp

⎡⎣ T∫
0

Px(ξ(t),0)dt

⎤⎦ exp

⎡⎣ T∫
0

Qy(ξ(t),0)dt

⎤⎦ , (4.4)

the PFPS (ξ(t), 0) is orbitally asymptotically stable.
First of all, when τ = 0 and strategy (S1) is used for model (2.2)-(2.4), the formula 
1 and 
2

related to the periodic solution (ξ(t), 0) are shown in (2.7), where φ(x, y) = x −ET , a1(x, y) =
−p2x, b1(x, y) = −q2y, a2(x, y) = −p1x, b2(x, y) = −q1y, ξ(T1) = ξ(T ) = ET , ξ(T +

1 ) =
EP2, and ξ(T +) = EP1. Therefore, there are

�1 = (1 − q2)
P (ξ(T +

1 ),0)

P (ξ(T1),0)
= (1 − q2)

P (EP2,0)

P (ET ,0)
(4.5)

and

�2 = (1 − q1)
P (ξ(T +),0)

P (ξ(T ),0)
= (1 − q1)

P (EP1,0)

P (ET ,0)
. (4.6)

Next, taking the transformation dt = dx/ẋ in expression exp
[∫ T

0 Px(ξ(t),0)dt
]

yields

exp

⎛⎝ T∫
0

Px(ξ(t),0)dt

⎞⎠

= exp

⎛⎜⎜⎝
T1∫

0

Px(ξ(t),0)dt +
T∫

T +
Px(ξ(t),0)dt

⎞⎟⎟⎠

1
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= exp

⎛⎜⎝ ET∫
EP1

Px(x,0)

P (x,0)
dx +

ET∫
EP2

Px(x,0)

P (x,0)
dx

⎞⎟⎠
= exp

[
ln

(
P(ET,0)

P (EP1,0)

)
+ ln

(
P(ET,0)

P (EP2,0)

)]
= P(ET,0)

P (EP1,0)

P (ET ,0)

P (EP2,0)
. (4.7)

Combining (4.5), (4.6) and (4.7), we obtain �1�2 exp
(∫ T

0 Px(ξ(t),0)dt
)

= (1 − q1)(1 − q2). 
Hence, the value of Floquet multiplier μ2 in (4.4) as the following

μ2 = (1 − q1)(1 − q2) exp

⎛⎜⎜⎝
T1∫

0

Qy(ξ(t),0)dt +
T∫

T +
1

Qy(ξ(t),0)dt

⎞⎟⎟⎠

= (1 − q1)(1 − q2) exp

⎛⎜⎝ ET∫
EP1

Qy(x,0)

P (x,0)
dx +

ET∫
EP2

Qy(x,0)

P (x,0)
dx

⎞⎟⎠ ,

(4.8)

where Qy(x, 0)/P (x, 0) = F2(x, 0)/[xF1(x, 0)].
Therefore, if

μ2 = (1 − q1)(1 − q2) exp

⎛⎜⎝ ET∫
EP2

(
F2(x,0)

xF1(x,0)

)
dx +

ET∫
EP1

(
F2(x,0)

xF1(x,0)

)
dx

⎞⎟⎠< 1, (4.9)

then |μ2| < 1 and the PFPS (ξ(t), 0) is orbitally asymptotically stable. �
Combining the above proof process and the basic assumptions (H3) and (H4) on the popula-

tion growth rate function, we have the following results.

Theorem 4.2. Assume ET < x̄ and (S1) is applied for (2.2)-(2.4). When τ = 0, q1 = q2 = 0, 
EP1 > x̂, and EP2 > x̂ hold, the periodic solution (ξ(t), 0) is unstable.

Proof. As shown in assumptions (H3) and (H4), there exists x̄ > 0 and x̂ > 0 such that 
F1(x, 0) > 0 for all 0 < x < x̄ and F2(x, 0) > 0 for all x > x̂. Thus, if ET < x̄, EP1 > x̂, 
and EP2 > x̂ then F2(x, 0)/[xF1(x, 0)] > 0 holds for all x ∈ (EP1, ET ) or x ∈ (EP2, ET ), that 
is, μ2 > 1 and (ξ(t), 0) is unstable. This completes the proof. �
Remark 4.1. If ET < min{x̄, x̂}, then F2(x, 0)/[xF1(x, 0)] < 0 for x ∈ (0, ET ), which implies 
the value of Floquet multiplier μ2 as shown in (4.9) is within interval (0, 1). Thus, when τ = 0, 
ET < min{x̄, x̂}, and strategy (S1) is applied, the T-periodic solution (ξ(t), 0) of (2.2)-(2.4) is 
orbitally asymptotically stable, which has been shown in Theorem 3.2.

Remark 4.2. If τ = 0, x̂ < ET < x̄, and (S1) is applied, then the value of μ2 may be equal 
to 1, which means that the stability of the periodic solution (ξ(t), 0) will change, that is, the 
bifurcation phenomenon may exist.
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According to Remark 4.2, in the following subsection we will discuss the existence of the 
bifurcation phenomenon of model (2.2)-(2.4) near the PFPS under the assumptions that τ = 0, 
x̂ < ET < x̄, and strategy (S1) is applied.

4.2. Bifurcations with respect to p1

Let p1 be the bifurcation parameter, where p1 represents the killing rate of prey by using drug 
1 or pesticide 1. Note that in this subsection, we do not require p1 to be greater than p2 (the 
killing rate of prey by using drug 2 or pesticide 2), and p1 can be taken arbitrarily in interval 
(0, 1).

We define that both multiplier μ2 and EP1 = (1 − p1)ET are functions of p1, where the 
formula of μ2(p1) is shown in (4.9). By analyzing the monotonicity of function μ2(p1) with 
respect to p1 and the existence of the root of equation μ2(p1) − 1 = 0, the sufficient condition 
for the existence of bifurcation is given. Then we use the properties of one-parameter family of 
discrete maps to judge the type of bifurcations.

Taking the derivative of μ2 with respect to p1 yields

μ′
2(p1) = −μ2EP ′

1

(
F2(EP1,0)

EP1 · F1(EP1,0)

)
= μ2

(1 − p1)

F2(EP1,0)

F1(EP1,0)
. (4.10)

Obviously, μ′
2(p1) = 0 if and only if F2((1 − p1)ET , 0) = F2(x̂, 0) = 0, i.e., p1 = 1 − x̂/ET . 

Moreover, ⎧⎨⎩if p1 > 1 − x̂/ET ⇒ EP1 < x̂ ⇒ F2(EP1,0) < 0 ⇒ μ′
2(p1) < 0;

if p1 < 1 − x̂/ET ⇒ EP1 > x̂ ⇒ F2(EP1,0) > 0 ⇒ μ′
2(p1) > 0.

(4.11)

Therefore, function μ2 monotonically increases with respect to p1 on interval (0, 1 − x̂/ET ) and 
monotonically decreases on (1 − x̂/ET , 1).

According to (4.9), we have limp1→1− μ2(p1) = 0, and

lim
p1→0+ μ2(p1) = (1 − q1)(1 − q2) exp

⎛⎜⎝ ET∫
EP2

(
F2(x,0)

xF1(x,0)

)
dx

⎞⎟⎠ , (4.12)

lim
p1→1− x̂

ET

μ2(p1) = (1 − q1)(1 − q2) exp

⎛⎜⎝ ET∫
EP2

(
F2(x,0)

xF1(x,0)

)
dx

⎞⎟⎠ exp

⎛⎝ ET∫
x̂

(
F2(x,0)

xF1(x,0)

)
dx

⎞⎠ .

(4.13)
Combining above equations with the monotonicity of function μ2(p1), we get the following two 
cases and express them as Remark 4.3.

Remark 4.3. If (4.12) is greater than or equal to 1, then there exists a unique root of μ2(p1) = 1, 
denoted p∗

1r , where μ′
2(p

∗
1r ) < 0. That is, the PFPS is locally orbitally asymptotically stable for 

p1 ∈ (p∗
1r , 1) while the PFPS is unstable for p1 ∈ (0, p∗

1r ).
If (4.12) is less than 1 and (4.13) is greater than 1, then there exists two roots of μ2(p1) = 1, 

denoted p∗ and p∗ , where p∗ < 1 − x̂/ET < p∗ , μ′ (p∗ ) > 0, and μ′ (p∗ ) < 0. That is, 
1l 1r 1l 1r 2 1l 2 1r
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the PFPS is locally orbitally asymptotically stable for p1 ∈ (0, p∗
1l ) ∪ (p∗

1r , 1) while the PFPS is 
unstable for p1 ∈ (p∗

1l , p
∗
1r ).

When τ = 0 and x̂ < ET < x̄ in this section, the continuity of the Poincaré map 
(u), 
defined by (3.3), is complex. While on [0, ε+) with ε+ small enough, 
 is still continuously 
differentiable and as smooth as functions F1 and F2. Hence, assume F1 and F2 satisfy assump-
tion (H2)’, and assume p1 is the parameter of function G1, function h and map 
, then 
: 
[0, ε+) ∗ (0, 1) → [0, +∞) defines a one-parameter family of maps:


(u,p1) = (1 − q1)G2((1 − q2)G1(u,p1)) = (1 − q1)G2(h(u,p1)), (4.14)

which is C2. Note that functions G1, G2 and h are defined in (3.1), (3.2) and (3.6), respectively.
By analyzing the properties of the discrete one-parameter maps 
(u, p1), we obtain the fol-

lowing sufficient conditions for the bifurcation of map 
(u, p1) or system (2.2)-(2.4), as shown 
in Theorem 4.3.

Theorem 4.3. Suppose that τ = 0, x̂ < ET < x̄, (S1) is applied, and (H2)’ hold for (2.2)-(2.4). 
When one of the following two conditions is true, map 
(u, p1) undergoes the transcritical 
bifurcation at p∗

1:

(i) (4.12) is greater than or equal to 1, and (4.18) is not equal to zero for p∗
1 = p∗

1r .
(ii) (4.12) is less than 1, (4.13) is greater than 1, and (4.18) is not equal to zero for p∗

1 = p∗
1r or 

p∗
1 = p∗

1l .

Moreover, if 
uu(0, p∗
1) < 0 (resp., > 0), there appears a stable (resp., an unstable) positive 

fixed point which is bifurcated from the trivial fixed point 0 (i.e., for system (2.2)-(2.4) using 
(S1), there appears a stable (resp., an unstable) positive periodic solution which is bifurcated 
from the PFPS) once p1 increases and exceeds p∗

1l or p1 is reduced and below p∗
1r (resp., p1 is 

reduced and below p∗
1l or p1 increases and exceeds p∗

1r ).

Proof. Assumption (H2)’ ensures that map 
(u, p1) is second-order continuously differentiable 
on [0, ε+) ∗ (0, 1). Now, to prove this theorem, we only need to verify that 
(u, p1) satisfies the 
four conditions shown in Lemma 2.4.

It follows from ẏ(t) = yF2(x, y) that y(t) ≡ 0 when the initial condition is y0 = 0, which 
means G1(0, p1) = 0 and G2(0) = 0. Hence, we have 
(0, p1) = 0 holds for all p1 ∈ (0, 1).

According to (3.11), the value of 
u(u, p1) at u = 0 is


u(0,p1) = (1 − q1)(1 − q2) exp

⎛⎜⎝ ET∫
EP2

Gy(x,0)dx +
ET∫

EP1

Gy(x,0)dx

⎞⎟⎠= μ2(p1), (4.15)

where Gy(x, 0) = F2(x, 0)/[xF1(x, 0)] and the formula of μ2 is shown in (4.9). Remark 4.3
tells us that when τ = 0, x̂ < ET < x̄, assumption (i) or (ii) of Theorem 4.3 hold, then there 
exists bifurcation point p∗

1r or p∗
1l , which satisfies 
u(0, p∗

1r ) = μ2(p
∗
1r ) = 1 or 
u(0, p∗

1l ) =
μ2(p

∗ ) = 1.
1l
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It follows from the formula of 
u(u, p1) as shown in (3.11) that there are


up1(u,p1) =
⎛⎜⎝ ET∫

EP1

Gyy(x, y(z, y(x;EP1, u))) · yp1(x;EP1, u)dx − EP ′
1Gy(EP1, u) +

ET∫
EP2

Gyy(x, y(x;EP2, h(u,p1)))yp1(x;EP2, h(u,p1))dx

⎞⎟⎠
u(u,p1),

(4.16)

yp1(x;EP1,0) = −G(EP1,0) exp

⎛⎜⎝ x∫
EP1

Gy(x,0)dx

⎞⎟⎠EP ′
1 = 0, yp1(x;EP2, h(0,p1)) = 0.

Thus,


up1(0,p1) = −
u(0,p1)EP ′
1Gy(EP1,0) = μ2(p1)

(1 − p1)

F2(EP1,0)

F1(EP1,0)
= μ′

2(p1), (4.17)

and for p∗
1l and p∗

1r as defined in Remark 4.3, 
up1(0, p∗
1l ) = μ′

2(p
∗
1l ) > 0 and 
up1(0, p∗

1r ) =
μ′

2(p
∗
1r ) < 0.

It follows from (3.12) and (3.9) that the value of 
uu(u, p1) at u = 0 and p1 = p∗
1 is


uu(0,p∗
1) = (1 − q2) exp

⎛⎜⎝ ET∫
(1−p∗

1 )ET

Gy(x,0)dx

⎞⎟⎠ ET∫
EP2

Gyy(x,0) exp

⎛⎜⎝ x∫
EP2

Gy(x,0)dx

⎞⎟⎠dx

+
ET∫

(1−p∗
1)ET

Gyy(x,0) exp

⎛⎜⎝ x∫
(1−p∗

1 )ET

Gy(x,0)dx

⎞⎟⎠dx,

(4.18)

where p∗
1 denotes the root of μ2(p1) = 1 and

Gy(x,0) = F2

xF1
(x,0), Gyy(x,0) = 2F2y

xF1
(x,0) − 2F2F1y

xF 2
1

(x,0). (4.19)

If 
uu(0, p∗
1) �= 0, then the map 
 has a transcritical bifurcation at p1 = p∗

1l or p1 = p∗
1r with 

respect to parameter p1, further,

• when 
uu(0, p∗
1) < 0 (see, e.g., Fig. 5.6-(c)-(d)), a stable positive fixed point of map 


(u, p1) (a stable positive periodic solution of (2.2)-(2.4)) appears if p1 ∈ (p∗
1l , p

∗
1l + ε)

or p1 ∈ (p∗ − ε, p∗ ) with ε > 0 small enough, as shown in Fig. 5.7-(d)-(h).
1r 1r
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• when 
uu(0, p∗
1) > 0 (see, e.g., Fig. 5.8-(b)), an unstable positive fixed point of map 


(u, p1) (an unstable positive periodic solution of (2.2)-(2.4)) appears if p1 ∈ (p∗
1l − ε, p∗

1l )

or p1 ∈ (p∗
1r , p

∗
1r + ε) with ε > 0 small enough, as shown graphically in Fig. 5.8-(e). �

5. Applications and numerical simulations

In this section, two examples and their simulations are provided to illustrate the main theorems 
of the generalized impulsive model (2.2)-(2.4).

5.1. State-dependent feedback control of pest-natural enemy system

Assume that, for model (2.2), x(t) and y(t) are the numbers of pests (prey) and natural ene-
mies (predator) at time t , respectively, and

F1(x, y) = r
(

1 − x

K

)
− βy

1 + ω1x + ω2Ā
, F2(x, y) = F2(x) = ηβ(x + Ā)

1 + ω1x + ω2Ā
− δ. (5.1)

For convenience, we denote the model (2.2)-(2.4) with (5.1) by (5.1)’ which is a pest-natural 
enemy system with state-dependent feedback control and has two pulse strategies: (S1) and (S2).

Here, r is the intrinsic growth rate of pests. K denotes the environmental carrying capacity. 
Ā denotes the biomass of additional food for natural enemies, and it is assumed to be evenly 
distributed in the habitat. β is the rate of predator attack on prey. η represents the nutritional 
value of the prey. δ represents the death rate of the natural enemies. 1/ω1 is the half saturation 
value for the predation rate. And ω2 is the quality of additional food. Moreover, the instantaneous 
killing rate of pesticide i (i = 1, 2) for pests and natural enemies are pi and qi , respectively. τ
represents the instantaneous release amount of natural enemies, which shall not be less than 
zero. ET represents the economic threshold satisfying ET < K [15]. Especially, when Ā = 0, 
q1 = q2 = 0, and p1 = p2, the global dynamic behaviour of (5.1)’ is studied in reference [35].

For F1 and F2 as shown in (5.1), they satisfy assumptions (H1)-(H3),(H5),(H6),(H8), and 
(H2)’ naturally, where x̄ = K and ȳ = r(1 + ω2Ā)/β . In addition, a simple calculation shows 
that if

Z1 := ηβ(1 − ω1Ā + ω2Ā) > 0, Z2 := δ − (ηβ − δω2)Ā > 0, Z3 := ηβ − δω1 �= 0, (5.2)

then (H4) and (H7) hold, where F2x = Z1/(1 + ω1x + ω2Ā)2 > 0, and x̂ = Z2/Z3 > 0 when 
Z3 > 0 while x̂ = +∞ when Z3 < 0.

Assume the parameters satisfy the conditions in (5.2) in this section. Then Lemma 2.1 and 
Lemma 2.2 are also applicable to the corresponding ODE of model (5.1)’. Furthermore, those 
conclusions about the general impulsive Kolmogorov model (2.2)-(2.4) (such as the properties 
of Poincaré map, the sufficient conditions for the existence and stability conditions of positive 
periodic solutions, and the sufficient conditions for the bifurcation of the PFPS) are also appli-
cable to model (5.1)’. Next, we do some numerical simulations with Matlab software, which are 
somewhat corresponding to Theorems 3.1 to 3.9 (see Fig. 5.1 to Fig. 5.5) and Theorems 4.1 to 
4.3 (see Fig. 5.6 to Fig. 5.8).

In Fig. 5.1 to Fig. 5.5, we choose global parameters as follows:

r = 1.5, β = 0.3, η = 0.75, δ = 0.8,ω1 = 0.3,ω2 = 0.35, Ā = 0,K = 100, (5.3)
Q. Zhang, S. Tang and X. Zou Journal of Differential Equations 364 (2023) 336–377
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Fig. 5.1. The Poincaré maps 
 of model (5.1)’ for the cases (a): y+
d+1 < y+

b
; (b): τ < y+

b
< y+

d+1; (c): y+
b

< τ ; while 
(d) illustrates the coexistence of order-1 and order-2 periodic solutions. Parameters are shown in (5.3) and (5.4).

Fig. 5.2. Numerical simulations of y(t) component of the solution (x(t), y(t)) to the impulsive system (5.1)’. (a): with the 
initial condition (35, 15), the solution tends to the periodic solution corresponding to u∗

1 ; (b): with the initial condition (35, 
10), the solution approaches the periodic solution corresponding to u∗

3 . Some parameters are q1 = 0.08, q2 = 0.02, τ =
40, and others are shown in (5.3) and (5.4).
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Fig. 5.3. (a): An order-1 periodic solution. (b): An order-2 periodic solution. Parameters are shown in (5.3) and (5.4).

ET = 50,p1 = 0.3,p2 = 0.1. (5.4)

Simple calculations show that condition (5.2) holds, x̄ = 100, and x̂ = +∞. Thus, the corre-
sponding ODE of model (5.1)’ has no positive equilibrium, equilibrium (x̄, 0) is stable, and 
ET < min{x̄, x̂}. Thus, when there is no pulse control, the orbit of model (5.1)’ will approach 
the boundary equilibrium (100, 0) and ecologically, pests will outbreak and the number of pests 
will settle at the environmental capacity. However, when the impulsive control is implemented 
repeatedly by (S1), the pest population will always remain below the economic threshold ET , 
and the existence and stability of periodic solutions of the impulsive system (5.1)’ are shown in 
Theorems 3.1 to 3.9.

When selecting other pulse parameters as q1 = 0.08 and q2 = 0.02, we obtain the diagram of 
the Poincaré map 
 shown in Fig. 5.1(a)-(c), which indicates that the monotonicity, concavity, 
and asymptote of 
 are consistent with those described in Theorem 3.1. And Fig. 5.1(a)-(c) 
shows that the map 
 changes from a single peak to a double peak and finally to an inverted U-
shape as τ increases. The solution of (5.1)’ as shown in Fig. 5.4 can illustrate that map 
(u) (see 
Fig. 5.1-(b)) is a bimodal mapping when τ < y+

b < y+
d+1. Fig. 5.1(a)-(d) also shows that when 

τ > 0 there exists at least one positive fixed point as described in Theorem 3.3, which corresponds 
to a positive periodic solution of the impulsive model (5.1)’. Moreover, for τ = 5 in Fig. 5.1-(a), 
the unique fixed point u∗ with u∗ < y+

d is globally stable as described in Theorem 3.4. For 
τ = 25 in Fig. 5.1-(b), the parameters satisfy the condition of Corollary 3.2, and here 
(u) has 
three fixed points, u∗

1 < u∗
2 < u∗

3. Note that in Fig. 5.1-(b), u∗
1 and u∗

2 are unstable and u∗
3 is locally 

stable, since |
u(u
∗
1)| > 1, |
u(u

∗
2)| > 1, and |
u(u

∗
3)| < 1. However, for τ = 40 in Fig. 5.1-(c), 

u∗
1 and u∗

3 are locally stable (bistable), and u∗
2 is still unstable, since |
u(u

∗
1)| < 1, |
u(u

∗
2)| > 1, 

and |
u(u
∗
3)| < 1. The above conclusions can also be observed/confirmed by the method of 

cobwebbing. Indeed, cobwebbing can give more information about the basin of attraction of a 
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Fig. 5.4. The solutions of (5.1)’ to illustrate the monotonicity of 
(u) when τ < y+
b

< y+
d+1. Some parameters are 

q1 = 0.08, q2 = 0.02, τ = 25, and others are shown in (5.3) and (5.4).

stable equilibrium. For example, applying cobwebbing to Fig. 5.1-(c), we find that the basin of 
attraction of the fixed point u∗

3 is (0, ū) ∪ (u∗
2, +∞), while the domain of attraction of the fixed 

point u∗
1 is the subinterval of (ū, u∗

2), where 
(ū) = u∗
2.

The numerical results in Fig. 5.1 indicate that with the increase of parameter τ , the number 
of order-1 periodic solutions and their stabilities become more complicated, and the dynamic 
behaviours of (2.2)-(2.4) become richer. Fig. 5.1 demonstrate the dynamics of the Poincaré map 

: existence of order-1 (fixed) and order-2 periodic points of 
 and their stability. Note that each 
positive stable (unstable) periodic point of 
 corresponds to a stable (unstable) positive periodic 
solution to the impulsive system (5.1)’. Given a set of initial conditions, the convergence to a 
periodic solution represented by the corresponding periodic point of 
 (as shown in Fig. 5.1) 
can be demonstrated by numerical simulations through the time series diagram of solutions to 
(5.1)’. Taking the case in Fig. 5.1-(c) as an example, when we choose the initial populations 
to be (35, 15) (resp. (35, 10)), one observes that the solution trajectory eventually approaches 
the periodic solution corresponding to u∗

1 (resp. u∗
3), as shown in Fig. 5.2. For both (a) and 

(b) in Fig. 5.2, the periods of the two periodic solutions of (5.1)’ seem to be the same, being 
approximately 20 time units. Since u∗

1 and u∗
3 are both order-1 stable periodic points of 
, 

within each period, threshold value of ET = 50 for x(t) is reached twice (1 × 2 = 2 times) and 
accordingly, the controls (C1) and (C2) are each implemented once (refer to Fig. 3.1).

If we choose q1 = q2 = 0 and τ = 20 then 
 is a bimodal mapping, which has a unique 
fixed point u∗ = 46.4729 with 
u(u

∗) < −1 and a two-point cycle 
2(u) = u = 39.5690 �=
49.3456 = 
(u) as shown in Fig. 5.1-(d). The coexisting order-1 and order-2 periodic solutions 
of model (5.1)’ are shown in Fig. 5.3-(a) and Fig. 5.3-(b), respectively, where the order-1 peri-
odic solution is unstable due to 
u(u

∗) < −1, and the order-2 periodic solution may be locally 
orbitally asymptotically stable.
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Fig. 5.5. (a) The shape of map 
. (b) The phase portrait of model (5.1)’. (c) and (d): The time series of pest and natural 
enemy, respectively. The initial point is (35, 45). Parameters of (5.1)’ are q1 = 0.08, q2 = 0.02, τ = 0, and others are 
shown in (5.3) and (5.4).

Fig. 5.5 gives the numerical simulation results with the same the parameter values as those 
for Fig. 5.1-(b), except that τ = 0. Because x̂ = +∞ and ẏ(t) < 0 for all x > 0, there is y+

d+1 ≤
yd+1 < y+

b and thus 
(u) becomes a unimodal mapping with a unique trivial fixed point, which 
is globally stable since |
u(u = 0 = u∗)| < 1 and limn→+∞ 
n(u) = 0 for all u ≥ 0 as shown in 
Fig. 5.5-(a). Hence, it can be seen from Fig. 5.1-(b) and Fig. 5.5-(a) that when τ changes from 25
to zero with ET < min{x̄, x̂}, the three positive periodic solutions of the impulsive system (5.1)’ 
disappear and a globally stable PFPS appears, which is consistent with the conclusion described 
in Theorem 3.2. The solution of model (5.1)’ with initial point (EP1, 45) is shown in Fig. 5.5-(b). 
Fig. 5.5-(c) indicates that the number of pests will eventually change periodically. Fig. 5.5-(d) 
not only shows that when τ = 0 and ET < min{x̄, x̂}, the number of natural enemies gradually 
decreases and tends to zero, but also shows that the frequency of using pesticides gradually 
increases, and finally the pesticides is applied at a periodic time, that is, the state-dependent 
control will be transformed into periodic control.

Now we take the parameters in Figs. 5.6–5.8 as follows:

r = 1.5, β = 0.45, η = 0.65, δ = 0.78,ω1 = 0.35,ω2 = 0.35, Ā = 0, q1 = q2 = τ = 0, (5.5)

where x̂ = x∗ = 40. In Fig. 5.6 and Fig. 5.7, K = 100 and ET = 80 are fixed such that the 
corresponding ODE of the model (5.1)’ has a unique positive equilibrium (x∗, y∗) which is an 
unstable focus, and x̂ < ET < x̄ = 100. Fig. 5.6-(a) and Fig. 5.6-(b) are the curves of Floquet 
multiplier μ2(p1), which illustrate that the stability of the PFPS changes near p1 = p∗

1l and p1 =
p∗

1r . Fig. 5.6-(c) and Fig. 5.6-(d) are the curves of 
uu(0, p1), which show that 
uu(0, p∗
1l ) < 0

and 
uu(0, p∗
1r ) < 0. The above two inequalities illustrate that under this set of parameters, when 

the parameter p1 is reduced and below p∗
1r or p1 increases and exceeds the p∗

1l , the PFPS changes 
from stable to unstable, and a stable positive periodic solution (ξ(t), η(t)) appears (see Fig. 5.7).
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Fig. 5.6. (a) and (b): The curve of Floquet multiplier μ2 with respect to p1. (c) and (d): The curve of 
uu(0, p1) with 
respect to p1. Parameters of (5.1)’ are K = 100, ET = 80, and others are shown in (5.5).

Fig. 5.7. (a) and (d): The phase portrait of system (5.1)’. (b), (e)-(g): The time series of natural enemy. (c) and (h): The 
curve of Poincaré map 
. Fixed p1 = 0.7654 > p∗

1r
in (a)-(c) and p∗

1l
< p1 = 0.7652 < p∗

1r
in (d)-(h). Parameters of 

(5.1)’ are K = 100, ET = 80, p2 = 0.8, and others are shown in (5.5).

In Fig. 5.7-(a)-(c), we choose p2 = 0.8 and p1 = 0.7654 > p∗
1r = 0.7653 to illustrate the sce-

nario that the PFPS is globally stable. In Fig. 5.7-(d)-(h), we choose p2 = 0.8 and 0.0493 = p∗
1l <

p1 = 0.7652 < p∗
1r such that the PFPS is unstable and there appears a unique positive periodic 

solution (ξ(t), η(t)), which is globally stable. The global stability of (ξ(t), η(t)) is proved by 
map 
 in Fig. 5.7-(h). Ecologically, (ξ(t), η(t)) globally stable means that when the initial num-
ber of pests and natural enemies meets x0 = EP1 and y0 > 0, it needs to carry out infinite times 
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Fig. 5.8. (a) The curve of Floquet multiplier μ2 with respect to p1. (b) The curve of 
uu(0, p1) with respect to p1. 
(c) and (e): The phase portrait of system (5.1)’. Fixed p∗

1l
< p1 = 0.4 < p∗

1r
in (c) and p1 = 0.7652 > p∗

1r
in (e). (d) 

is a time series of natural enemy corresponding to a trajectory with initial value of (x+
0 = EP1, y+

0 = 5) in (c). (f) and 
(g) are the time series of natural enemy corresponding to trajectories with initial value of (x+

0 = EP1, y+
0 = 10) and 

(x+
0 = EP1, y+

0 = 5) in (e), respectively. Parameters of (5.1)’ are K = 80, ET = 70, p2 = 0.8, and others are shown in 
(5.5).

of comprehensive pest control, and finally the number of the two population changes periodically 
and tends to (ξ(t), η(t)).

However, when we change K and ET to K = 80 and ET = 70, as is shown in Fig. 5.8, the 
unique positive equilibrium (x∗, y∗) becomes a stable focus and x̂ < ET < x̄ = 80 still holds. 
Fig. 5.8-(a)-(b) shows that μ2(p

∗
1l ) = 1, μ2(p

∗
1r ) = 1, 
uu(0, p∗

1l ) > 0, and 
uu(0, p∗
1r ) > 0. The 

above formulas imply that when the parameter p1 is reduced and below p∗
1l or p1 increases and 

exceeds the p∗
1r , the PFPS changes from unstable to stable, and a positive and unstable periodic 

solution (ξ(t), η(t)) appears, which is proved in Fig. 5.8-(c)-(g). Therefore, with the same set of 
parameters corresponding to Fig. 5.8-(e), the PFPS and the internal positive equilibrium (x∗, y∗)
are bistable. Ecologically, this means that when the initial populations satisfy x0 = EP1 and 
y0 > 0, either infinite multiple integrated pest control is required, and the final number of pests 
and natural enemies tends to the PFPS, where the natural enemies become extinct, or only finite 
pulse control is required and the final number of population tends to (x∗, y∗).

Fig. 5.6 to Fig. 5.8 verify the bifurcation conclusion, that is, under the assumption of Theo-
rem 4.3, the impulsive system (5.1)’ has a transcritical bifurcation with respect to parameter p1
and produces a positive periodic solution near the PFPS.

We can also explore the impact of the efficacy parameter p1 and the predator release rate 
parameter τ on the dynamics of the Poincaré map of (5.1)’ (hence on (5.1)’). To this end, we fix 
the parameters as below:

r = 1.2,K = 100, β = 0.185, η = 0.7,ω1 = 0.15,ω2 = 0.35, Ā = 0, δ = 0.8, (5.6)

ET = 68,p2 = 0.1, q1 = q2 = 0, τ = 15.5, (5.7)
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Fig. 5.9. (a) Bifurcation diagrams with respect to p1. Parameters of (a) are shown in (5.6) and (5.7). (b) Bifurcation 
diagrams with respect to τ with (c) being a zoom-in of (b) near τ = 15.5. Parameters of (b) and (c) are q1 = 0.08, 
q2 = 0.02, and others are shown in (5.3) and (5.4).

and assume (S1) is applied. With the above fixed, Fig. 5.9-(a) present the bifurcation diagrams for 
the Poincaré map 
 of (5.1)’ with respect to p1. The diagram shows that when p1 = 0.8, there 
is a stable order-1 periodic solution of model (5.1)’; when p1 = 0.5 there exists a stable order-2 
periodic solution; and an order-4 periodic solution appears when p1 = 0.37. Furthermore, when 
p1 decreases to a certain level, then chaos occurs. On the other hand, if we choose q1 = 0.08, 
q2 = 0.02 and the other parameters as in (5.3) and (5.4), we have the corresponding bifurcation 
diagram of 
 with respect to τ , given in Fig. 5.9-(b) with ET < x̄ < x̂. From Fig. 5.9-(b)-
(c), we can numerically observe the existence of positive order-1, order-2, order-4, and order-8 
periodic orbits for the Poincaré map 
 as τ increases and such a period-doubling bifurcation 
leads to chaos. It is particularly interesting to observe that when τ is further increased to certain 
value, there occurs a route from chaos to stable periodic solutions via a cascade of period halving 
bifurcations.

5.2. State-dependent feedback control of immunogenic tumours

State-dependent pulse therapy is a common method to treat cancer in experiment and clinic 
[9,4]. For model (2.2)-(2.4), which has two pulse strategies (S1) and (S2), let x(t) and y(t) be 
the populations of tumour cells and the effector cells, respectively, and

F1(x, y) = r1 (1 − x/K1) − by, F2(x, y) = cx/(1 + ωx) − dx − δ1 := F2(x). (5.8)

For convenience, we denote the model (2.2)-(2.4) with (5.8) by (5.8)’. Here, r1 is the intrinsic 
growth rate of tumour cells. K1 represents the carrying capacity. δ1 is the natural mortality rate 
of effector cells. b represents the binding rate between tumour cells and effector cells. d denotes 
the inactivation rate of effector cells. cx/(1 + ωx) represents the rate at which effector cells 
are produced due to the presence of tumours. When the diameter of the tumour or the number of 
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tumour cells is lower than a certain threshold denoted as ET , treatment will not be carried out, but 
once it reaches the threshold ET , chemotherapy (or radiotherapy, or surgical resection of some 
tumours) and immunotherapy will be carried out. Here, τ denotes the constant injection rate of 
effector cells. pi ∈ (0, 1) (resp., qi ∈ [0, 1)) represents the instantaneous removal rate of tumour 
cells (resp., effector cells) due to chemotherapy or radiotherapy or the surgery. The difference of 
p1 and p2 can represent the switching of chemotherapy drugs or treatment methods. Reference 
[32] studied the global dynamic behaviour of (5.8)’ when p1 = p2 and q1 = q2 ≤ 0.

In this section, F1 and F2 always satisfy the assumptions (H1)-(H3), (H5)-(H8), and (H2)’ of 
the Kolmogorov model, where x̄ = K1 and ȳ = r1/b. Since F2(x) < 0 ⇐⇒ −dωx2 + (c−δ1ω−
d)x − δ1 < 0 ⇐⇒ −dω(x − x1)(x − x2) < 0, where x1 = c−δ1ω−d−√

�
2dω

, x2 = c−δ1ω−d+√
�

2dω
and 

� = (c − δ1ω − d)2 − 4dωδ1, we obtain the following two cases:

(i) If � < 0 then there is F2(x) < 0 for all x ≥ 0 and x̂ = +∞, which indicates that (H4) holds 
true when � < 0. For this case, effector cell-free equilibrium (x̄, 0) = (K1, 0) is a globally 
stable focus or node for model (2.1). This means that when there is no pulse control, the orbit 
of model (5.8)’ will approach the boundary equilibrium (x̄, 0). Moreover, Theorems 3.1-3.9
on the general model (2.2)-(2.4) apply to this example.

(ii) If � > 0, c − δ1ω − d > 0, and 0 < x1 < K1 < x2, then F2(x) < 0 for all 0 ≤ x < x1, 
and F2(x) > 0 for all x1 < x ≤ K1. Model (2.1) has a unique positive equilibrium (x∗, y∗), 
which is a stable or an unstable focus or node, where x∗ = x1 = x̂ < x̄ = K1 and (H4) holds. 
Therefore, Theorem 4.3 (Transcritical bifurcation) still apply to tumour model (5.8)’.

Theorem 3.1 to Theorem 3.9 discuss the existence and stability of order-k (k ≥ 1) periodic 
solutions. Theorem 3.3 tells us that when τ > 0 (i.e., when chemotherapy or surgical treatment is 
combined with immunotherapy), model (5.8)’ has at least one positive order-1 periodic solution. 
When the periodic solution is globally stable, according to the period of periodic solution, the 
state-dependent pulse therapy can be transformed into fixed time pulse therapy. At this time, it is 
not necessary to repeatedly monitor the number of tumour cells.

Theorem 4.3 shows that when τ = 0 (cancel immunotherapy) and the parameters of model 
(5.8)’ meet several conditions, (5.8)’ will have Transcritical bifurcation with respect to the con-
trol parameter p1 (the killing ratio of chemotherapeutic drug 1 on tumour cells or the resection 
proportion of tumour tissue by surgical treatment), resulting in stable or unstable positive pe-
riodic solutions. When a stable positive periodic solution, an unstable effect cell-free periodic 
solution (ξ(t), 0), and an unstable positive equilibrium (x∗, y∗) coexist, such as Fig. 5.7-(d), 
countless therapeutic interventions are needed to control cancer. When (ξ(t), 0) and (x∗, y∗) are 
bistable and there is an unstable positive periodic solution, such as Fig. 5.8-(e), the frequency 
of intervention treatment is related to the initial number of tumour cells and effector cells: some 
need to intervene countless times to control the number of cancer cells below a certain level; 
some need limited intervention, and the number of tumour cells and effector cells is close to a 
stable state, which is lower than a certain level; some do not need any treatment, and the num-
ber of them is close to a stable equilibrium. This is very consistent with the clinical results of 
[9,16,38].

6. Conclusion and discussion

In the real world, many harmful or unwanted species often need interventions from humans 
to control their populations and thereby, reduce their harms. Such controls are usually scheduled 
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to be implemented in an impulsive way at given times. It is known that repeated uses of the same 
control means can facilitate the resistance to the control, and combined uses of multiple control 
means may help prevent the occurrence of resistance. Meanwhile, most (if not all) harmful or 
unwanted species (prey) have their natural enemy (predator); and therefore, a control means for 
the prey species, especially those chemical means, may also have negative effect on the preda-
tor species. In this paper, we have formulated a mathematical model system (2.2)-(2.4) for the 
control of harmful species, which is a result of incorporating into a general predator-prey model 
the following assumptions: (i) two control means for the harmful species (prey) are available 
with different efficacies; (ii) the controls are implemented impulsively but based on a threshold 
for the harmful species (hence, state dependent); (iii) the control may also cause some deaths 
of the predator and accordingly a constant augmentation of the predator is simultaneously im-
plemented. A theoretical analysis has been done for (2.2)-(2.4) with the strategy (S1): apply the 
two control means (C1) and (C2) in alternating order. The results show that model (2.2)-(2.4)
can demonstrate very rich dynamic behaviour when the alternating control strategy (S1) is ap-
plied:

• When τ > 0 and ET < min{x̄, x̂}, the study of periodic solution of impulsive system is 
transformed into the study of fixed points or periodic points of the Poincaré map 
 (the 
successor function), which is defined on the phase set {(x = EP1, y ≥ 0)}. By analyzing the 
properties of this successor function, it is obtained that there must exist a positive order-1 
periodic solution of model (2.2)-(2.4), and the sufficient conditions for its global stability 
are given. The sufficient conditions for the existence of order-2 or order-k (k ≥ 3) periodic 
solutions are also discussed. We as well as obtain that when τ = 0 and ET < min{x̄, x̂}, the 
PFPS is globally stable. The above conclusions refer to Theorems 3.1 to 3.9.

• When τ = 0 and x̂ < ET < x̄, by using the branching lemma of one-dimensional discrete 
single parameter mapping 
(u, p1), the sufficient conditions for 
(u, p1) to have transcriti-
cal bifurcation with respect to parameter p1 and produce stable or unstable positive periodic 
solutions are given (see Theorem 4.3). These conclusions are also applicable to the integrated 
pest management model (5.1)’ and the comprehensive tumour treatment model (5.8)’.

Numerically, Figs. 5.1–5.9 confirms that the above conclusions are fully feasible to model 
(5.1)’ and the alternating insecticide strategies can control the number of harmful species within 
a certain range. However, the rotational drug model has more complex dynamic behaviours than 
the model using a single drug control (e.g., it can have multiple order-1 periodic solutions). 
Fig. 5.1-(b) demonstrates a case where (5.1)’ has three order-1 periodic solutions together with 
an order-2 periodic solution. Such a phenomenon has not been reported and observed when only 
one pest control means is applied (i.e., p1 = p2 and q1 = q2). In Fig. 5.1, the appearance of 
periodic solution shows that the state-dependent pulse can be transformed into periodic pulse 
without measuring the number or density of harmful species.

With the framework of our model, we can also explore impact of the killing rates. In Fig. 5.7-
(a), the killing rate of insecticides is too high, which will lead to the extinction of natural enemies, 
improve the frequency of pesticides use, and accelerate the development of resistance. This is not 
conducive to the sustainable control of pests. Fig. 5.7-(d) tells us that appropriate pest killing rate 
will stabilize the number of pests and natural enemies within a certain range and with periodic 
change. It also shows that the drug frequency is lower than in Fig. 5.7-(a) — this is conducive 
to pest control. Fig. 5.8-(e) shows that model (5.1)’ may demonstrate a bistable phenomenon, 
meaning that for different initial numbers of pests and natural enemies, either the solution ap-
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Fig. 6.1. Periodic solution and period of model (5.1)’ when two pesticides are used alternately for (a) and (b); only type 
1 insecticide is used for (c)-(d); only type 2 insecticide is used for (e)-(f).

proaches the positive equilibrium after a finite number of pest controls, or countless pest controls 
are required and natural enemies become extinct. Fig. 5.9 illustrates that with the increase of p1

or τ , the period-doubling bifurcation appears which leads to chaos, and finally the period halving 
bifurcation occurs.

Fig. 6.1 intends to present some comparison between alternating strategy of two available 
insecticides, and a strategy of applying only one of the two insecticides. To this end, we consider 
the scenario of ET < x̄ < x̂ for which the corresponding baseline ODE for model (5.1)’ has 
no interior equilibrium. We assume that there are two insecticides for consideration in the three 
control strategies. Let Tn denote the time it takes from the (n − 1)-th time x(t) hits the threshold 
ET to the n-th time x(t) hits ET . (a)-(b) presents the numerical results when the first alternating 
strategy (S1) is applied for model (5.1)’. For the case of only applying one insecticide, (c)-(d) 
are the results when only applying the first insecticide (i.e., (C1)), while (e)-(f) are results of 
applying the second insecticide (i.e., (C2)). Parameters are p1 = 0.3, p2 = 0.1, q1 = 0.08, q2 =
0.02, ET = 50, τ = 25, and others are shown in (5.3); and the initial values are (x(0), y(0)) =
(35, 25).

Fig. 6.1-(a) is the plot of y(t) when (S1) is implemented, which also generates Fig. 6.1-
(b). From (a)-(b), we see the solution converges to a periodic solution corresponding to two (2) 
sprayings, with the time lengths between the two consecutive sprayings of the two insecticides 
being 11.7189 and 0.3533 respectively. Similarly, Fig. 6.1-(c)-(d) shows convergence to a peri-
odic solution corresponding to four (4) sprayings, with the time lengths between four consecutive 
sprayings being 4.2354, 12.2478, 1.0483, and 6.4943; while Fig. 6.1-(e)-(f) presents a conver-
gence to a stable periodic solution corresponding to eleven (11) sprayings with time lengths 
between eleven consecutive sprayings being 0.8522, 13.9159, 0.3475, 4.9801, 12.6977, 0.3530, 
5.1071, 12.4800, 0.3594, 5.2543, and 9.7426. Note that the least common multiple of 2, 4 and 11 
is 44. Calculating the total time lengths after 44 sprayings for the alternating strategy (S1), the 
strategy of applying only (C1) and the strategy of applying (C2) only, we have
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Fig. 6.2. The mean outbreak period of model (5.1)’, as a function of p1. Parameters are ET = 50, q1 = 0.04, q2 =
0.02, p2 = 0.3, τ = 5, and others are shown in (5.3). (For interpretation of the colours in the figure(s), the reader is 
referred to the web version of this article.)

(11.7189 + 0.3533) × 22 = 265.5884 (for strategy (S1) )

> (0.8522 + 13.9159 + 0.3475 + 4.9801 + 12.6977 + 0.3530 + 5.1071 + 12.4800 + 0.3594

+ 5.2543 + 9.7426) × 4 = 264.3592 (for applying (C2) only)

> (4.2354 + 12.2478 + 1.0483 + 6.4943) × 11 = 264.2838 (for applying (C1) only).

This comparison of the lengths of keeping the pest under control indicates that the alternating 
strategy is the best among the three. Such a conclusion is consistent with the theory that the 
likelihood of a population developing resistance to two or more pesticides, each from a different 
chemical group with different modes of action, is significantly less than the likelihood that a 
population could develop resistance to only one of the pesticides [36].

We point out that we have not done a theoretical analysis for the random strategy (S2) because, 
as we mentioned in the introduction, an analysis would involve some probability argument to 
reflect the randomness of (S2). However, we have performed some numerical simulations by 
which we can have a comparison with (S1) and (S1) in some aspect. To this end, we choose 
the parameter values in (5.3) with which the corresponding ODE of model (5.1)’ has no interior 
equilibrium. Now, we further choose ET = 50, q1 = 0.04, q2 = 0.02, p2 = 0.3, τ = 5. Note that 
when using strategy (S2) for model (5.1)’, the higher killing rate of insecticide 1 makes it more 
likely to be used by agricultural workers than insecticide 2. Thus, it is reasonable to assume 
P̄ > 1/2. For demonstration, we choose P̄ = 2/3, that is, when the number of pests reaches 
ET , insecticide 1 and insecticide 2 are selected with probabilities of 2/3 and 1/3 respectively. 
The alternating strategies (S1) and (S1) are essentially the same, except the order in which the 
two pesticides are selected differs. Defining them as (S1) and (S1) is only for the convenience of 
facilitating theoretical analysis and numerical simulation. As such, the effect of these two control 
strategies should be the same, and this is reflected by the full overlap of the pink and blue curves 
372



Q. Zhang, S. Tang and X. Zou Journal of Differential Equations 364 (2023) 336–377
in Fig. 6.2. In Fig. 6.2, simulations are run for 300 pest outbreak events to rule out transients, and 
the last 100 points of sequence Tn are used to determine the mean outbreak period. Fig. 6.2 also 
clearly shows that strategy (S2) is the best since the mean outbreak period of the pest when two 
pesticides are applied randomly by (S2) is longer than that when the alternating strategy (S1) or 
(S1) is used. This is consistent with the theory that the rotation of pesticides should not be too 
regular—the more regular, the more likely to cause resistance [8,10]. Practitioners should make 
certain adjustments according to the actual situation when using pesticides to control pests. In 
strategy (S2), insecticide 1 is used more frequently than insecticide 2. But in such a case, the use 
frequency of insecticide 1 should not be too high; otherwise, excessive dependence on insecticide 
1 will also facilitate occurrence of drug resistance. It is expected that the balance between the 
frequency of using insecticide 1 and insecticide resistance is complex but will play a crucial role. 
We leave this and the topics related to (S2) for future research projects.

We point out that this paper intends to establish a theoretical framework for a class of prob-
lems that involve state-dependent impulsive controls of population of an unwanted species. The 
motivation is pest control and tumour inhibiting in the presence of a predator species (e.g., nat-
ural enemy or effector cells) and thus, the predator-prey type interaction is considered beyond 
the control. Accordingly, we use a general predator-prey ODE systems as the baseline system. 
As such, this work is of theoretical nature and effort was not made to gather related data to valid 
the model for a particular problem. The values of the parameters in the numerical simulations, 
together with the simulations, are mainly for the purpose of demonstrating our analytical results.

A key step in this work is to reduce the 2-D Poincaré map of the 2-D ODE model with state-
dependent impulsive controls switching between two means into a 1-D function (also called 
Poincaré), in the form of weighted composition. This is possible mainly because the dynamics 
of the baseline predator-prey ODE system (2.1) is fully understood and can be conveniently de-
scribed in terms of the phase-plane portrait. We believe this framework can be easily expanded 
to the population controls of two competitive or cooperative species by replacing the baseline 
predator-prey ODE system with a 2-D competitive or cooperative ODE system for which, the 
dynamics can also be conveniently described by the phase portrait technique (well-known re-
sults also exist). However, when the baseline ODE system is a three or higher dimensional ODE 
system, it is, in general, very difficult to determine the direction of its vector field. Thus, general-
ization of the framework in this paper to a similar problem with the baseline ODE system having 
a higher (than 2) dimension, will face great challenges in determining and simplifying/reducing 
the Poincaré map to simpler lower dimensional map. This does not exclude some special higher 
dimensional systems for which this method can work out.
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Appendix A. The proof of Theorem 3.5

Proof. Under the assumptions of Theorem 3.5, map 
(u), as shown in Fig. 3.2-(a), is increasing 
and concave down on [0, y+

d ], and decreasing on (y+
d , +∞), which is proved in Theorem 3.1(ii). 

There is no fixed point on [0, y+
d ] due to 
(0) > 0, 
(y+

d ) > y+
d , and 
 is concave down on 

[0, y+
d ]. There exists a unique u∗ ∈ (y+

d , +∞) satisfying 
(u∗) = u∗, since 
(u) decreases on 
(y+

d , +∞), 
(y+
d ) > y+

d , and there exists a w large enough such that 
(w) < w.
(i) We claim that the fixed point u∗ of unimodal map 
 is globally stable if 
2(u) > u for all 

u ∈ [y+
d , u∗). Let us divide (0, +∞) into three subintervals: [y+

d , u∗), (0, y+
d ), and (u∗, +∞).

• When u ∈ [y+
d , u∗), because 
(u∗) = u∗, 
(u) is monotonically decreases on [y+

d , +∞), 
and 
2(ū) > ū for all ū ∈ [y+

d , u∗), then we have

y+
d ≤ u < 
2(u) < 
4(u) < · · · < u∗ = 
(u∗) < · · · < 
3(u) < 
(u).

Using mathematical recursion, one yields that 
2n(u) monotonically increases toward u∗ as 
n → +∞ and 
2n+1(u) monotonically decreases toward u∗ as n → +∞.

• When u ∈ (0, y+
d ), there exists a m1 such that u∗ ≤ 
m1(u) ≤ 
(y+

d ). Moreover, there is a 
û1 ∈ [y+

d , u∗] satisfying 
m1(u) = 
(û1). Similar to the above case, limn→∞ 
n(u) = u∗
holds.

• When u ∈ (u∗, +∞), 
(u) < u∗ and there exists a û2 ∈ (0, y+
d ) such that 
(u) = 
(û2). 

Thus, similar to the above second case, limn→∞ 
n(u) = u∗.

(ii) When u ∈ (0, y+
d ) or u ∈ (u∗, +∞), there must exists a m3 such that 
m3(u) ∈

[u∗, 
(y+
d )]. Further, 
m3+1(u) ∈ [
2(y+

d ), u∗] ⊆ [y+
d , u∗] due to 
 monotonically decreases 

on [u∗, +∞) and 
2(y+
d ) ≥ y+

d . Thus, we need to discuss the convergence of column {
n(u)}
when u ∈ (y+

d , u∗). For convenience, denote 
n(u) = un in the following.
When u ∈ (y+

d , u∗), because 
(u) is monotonically decreases on [y+
d , +∞) and 
2(y+

d ) ≥
y+
d , there are y+

d < u < u∗ < u1 < 
(y+
d ) and y+

d < u2 < u∗. Combining the above with the 
relationship between u and u2, we have the following three situations: (M1) u2 = u < u∗ < u1, 
(M2) u < u2 < u∗ < u1, and (M3) y+

d < u2 < u < u∗ < u1 < 
(y+
d ).

• When (M1) occurs, map 
 has a two-point cycle.
• When (M2) occurs, there is u < u2 < u4 < · · · < u∗ < · · · < u3 < u1. Thus, {u2n}

and {u2n+1} are monotonically bounded point sequences and limn→+∞ u2n ≤ u∗ ≤
limn→+∞ u2n+1. If limn→+∞ u2n �= limn→+∞ u2n+1, then map 
 has a two-point cycle.

• When (M3) occurs, there is y+
d < · · · < u4 < u2 < u < u∗ < u1 < u3 < · · · < 
(y+

d ). Thus, 
limn→∞ u2n �= limn→∞ u2n+1 and 
 has a two-point cycle.

Now, we have proved that, 
 has a globally stable fixed point if and only if case (M2) occurs 
for all u ∈ (y+

d , u∗) and limn→+∞ u2n ≡ limn→+∞ u2n+1. Otherwise, a two-point cycle coexists 
with the fixed point.

(iii) According to 
(u) is continuous on [0, +∞), function 
3(u) − u is also continuous 
on [0, +∞). Obviously, 
3(0) > 0. Under the assumption of 
2(y+

d ) < y+
v1

, where y+
v1

=
min{u| 
(u) = y+}, there is 
3(y+ ) = 
2(y+) < y+ . Hence, there is a u∗∗∗ ∈ (0, y+ ) such 
d v1 d v1 v1
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that 
3(u∗∗∗) = u∗∗∗. Moreover, it follows from u∗∗∗ < y+
v1

< y+
d < u∗ that u∗∗∗ �= u∗ and map 


 has a periodic point with period 3.
For the continuous self mapping 
 defined on [0, +∞), because there is a periodic point with 

period 3, there is also a periodic point with period k, where k = 1, 2, 3, . . ., which is guaranteed 
by Sharkovskii’ theorem [29]. The above indicates that the impulsive model (2.2)-(2.4) has order-
k (k = 1, 2, 3, . . .) periodic solutions and has chaotic attractor, which is guaranteed by Li-Yorke’ 
theorem [21]. �
Appendix B. The proof of Theorem 3.9

Proof. Under the assumption of 
 has a unique fixed point u∗, one yields (I): 
(u) > u for all 
u < u∗ and 
(u) < u for all u > u∗. Theorem 3.1(iii) also tells us that (II): 
(u) is decreasing 
on [y+

f , u∗). In the following, we prove the convergence of {
n(u)} when u ∈ [y+
f , u∗), or u ∈

[0, y+
f ), or u ∈ (u∗, +∞).

(i) For all u ∈ [y+
f , u∗), u∗ < 
(u) because of (II). Further, either 
n(u) ≥ u∗ for all n ≥ 1, 

which indicates that {
n(u)} is decreasing toward u∗ as n → +∞ because of (I), or there exists 
a m ≥ 2 such that


m(u) < u∗ < 
m−1(u) < · · · < 
(u) ≤ 
(y+
f ). (B.1)

It follows from the assumption of 
2(u) > u for all u ∈ [y+
f , u∗) that u < 
m(u) is true if m = 2. 

If m > 2, then there exists a y ∈ [y+
f , u∗) such that 
(y) = 
m−1(u) and y < 
2(y) = 
m(u). 

Moreover, the number y is greater than u since (II), u ∈ [y+
f , u∗), y ∈ [y+

f , u∗), and 
(y) =

m−1(u) < 
(u), as shown in (B.1). Now, we get

y+
f ≤ u < 
m(u) < u∗ < 
m−1(u) < · · · < 
(u). (B.2)

It can be seen from the above analysis that when u ∈ [y+
f , u∗), either there is a m such that 


m+j (u) is decreasing toward u∗ as j → +∞, or there is a subsequence {mj } of {m} such that 

mj (u) is increasing toward u∗ as j → +∞. It remains to prove the convergence of {
n(u)} for 
the last case.

First, function 
(u) is continuous, which tells us that for any ε > 0, there exists a δ with 
0 < δ < ε such that |
(u) − u∗| < ε for all |u − u∗| < δ.

Point sequence {
mj (u)} converges to u∗ as j → +∞, that is, for any δ with 0 < δ < ε, there 
exists a N such that |
mj (u) − u∗| < δ for all j > N , which implies that |
mj+1(u) − u∗| < ε

for all j > N and u ∈ [y+
f , u∗). Note that there are mj + 1 < mj+1 and

y+
f ≤ u < 
mj (u) < 
mj+1(u) < u∗ < 
mj+1−1(u) < · · · < 
mj +1(u) < 
(u) (B.3)

due to (I) and (B.2).
Hence, for any ε > 0, there exists a N such that |
n(u) − u∗| < ε for all n > mN and u ∈

[y+
f , u∗). That is, the convergence of point sequence {
n(u)} is proved when u ∈ [y+

f , u∗).
(ii) For all u ∈ [0, y+

f ), then either 
n(u) ≤ u∗ for all n ≥ 1, which means 
n(u) increases 

toward u∗ as n → +∞ because of (I), or there exists a k1 such that u∗ < 
k1(u) ≤ 
(y+), 
f
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which implies that there exists a y ∈ [y+
f , u∗) such that 
(y) = 
k1(u). Therefore, similar to 

above situation (i), 
n(u) converges to u∗ as n → +∞.
(iii) For all u ∈ (u∗, +∞), then either 
n(u) ≥ u∗ for all n ≥ 1, which means that 
n(u)

decreases toward u∗ as n → +∞ because of (I), or there exists a k2 such that 
k2(u) < u∗, then 
similar to situations (i) and (ii), there is limn→+∞ 
n(u) = u∗. This completes the proof. �
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