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Abstract

The dynamics of the reaction-diffusion-advection population models with linear boundary condition has 
been widely studied. This paper is devoted to the dynamics of a reaction-diffusion-advection population 
model with nonlinear boundary condition. Firstly, the stability of the trivial steady state is investigated by 
studying the corresponding eigenvalue problem. Secondly, the existence and stability of nontrivial steady 
states are proved by applying the Crandall-Rabinowitz bifurcation Theorem, the Lyapunov-Schmidt reduc-
tion method and perturbation method, in which bifurcation from simple eigenvalue and that from degenerate 
simple eigenvalue are both possible. The general results are applied to a parabolic equation with monostable 
nonlinear boundary condition, and to a parabolic equation with sublinear growth and superlinear boundary 
condition. Our theoretical results show that the nonlinear boundary condition can lead to the occurrence of 
various steady state bifurcations. Meanwhile, compared with the linear boundary condition, the nonlinear 
boundary condition can induce the multiplicity and growing-up property of positive steady-state solutions 
for the model with logistic interior growth. Finally, the numerical results show that the advection can change 
the bifurcation direction of some bifurcation, and affect the density distribution of the species.
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1. Introduction

In this paper, we consider a general reaction-diffusion-advection population model with non-
linear boundary condition as follows:

⎧⎪⎨
⎪⎩
ut = ∇ · [d∇u− au∇P(x)] + F(x,u)u, x ∈�, t > 0,

d∂�nu− au∂�nP = B(x,u)u, x ∈ ∂�, t > 0,

u(x,0)= u0(x) > 0, x ∈�.

(1.1)

Here u denotes the population density of species u at location x and time t ; the habitat � ∈
RN(N ≥ 1) is a bounded domain with smooth boundary ∂�; �n is the outward normal vector 
on the boundary ∂�. The linear term −d∇u + au∇P(x) with respect to u is called the flux 
of species u at location x and time t , where the parameter d > 0 is the random diffusion rate 
of species u, the non-constant function P may account for the abundance of a resource for the 
species u and hence the second term presents a resource driven advection effect with a being 
the advection rate. The reaction term F(x, u)u stands for a general growth rate of species u. Our 
boundary condition of the form above means that when B(x0, u)u ≥ 0 for some x0 ∈ ∂�, the 
inflow rate of the population at the point x0 to the region � is determined by B(x0, u)u, while 
when B(x0, u)u < 0 for some x0 ∈ ∂�, the individuals are taken outside the habitat at a rate 
−B(x0, u)u once they reach the boundary point x0. Throughout this paper, we always assume 
that F, B and P satisfy the following conditions:

(H1) F ∈ C1+θ (�×R), B ∈ C1+θ (∂� ×R) and P ∈ C2+θ (�) for some θ ∈ (0, 1).

System (1.1) has important applications in several different biological scenarios. For instance, 
when P(x) =m(x), F(x, u) =m(x) − u, B(x, u) ≡ 0, (1.1) reduces to

⎧⎪⎨
⎪⎩
ut = ∇ · [d∇u− au∇m(x)] + u[m(x)− u], x ∈�, t > 0,

d∂�nu− au∂�nm= 0, x ∈ ∂�, t > 0,

u(x,0)= u0(x), x ∈�,

(1.2)

where m(x) stands for the intrinsic growth rate of species u. Here the movement of species u is 
assumed to be a combination of random diffusion and directed motion upward along the gradient 
of the resource m(x) reflected by describing the flux of species u at location x and time t as 
−d∇u + au∇m (see [9]). It is known that persistence or extinction of species u in model (1.2)
depends on the sign of the principal eigenvalue τ1 of the linearized problem at u = 0 [12]:

{
∇ · [d∇ψ − aψ∇m(x)] +m(x)ψ + τψ = 0, x ∈�,

d∂�nψ − aψ∂�nm= 0, x ∈ ∂�.

If τ1 > 0, then u = 0 is stable and the population become extinct in the long run; if τ1 < 0, then 
u = 0 is unstable and the population grows exponentially near u = 0 at the rate of e−τ1t . Bel-
gacem and Cosner [9] and subsequent work [19] have also shown that advection along resource 
gradients is beneficial to the persistence of a single species in convex habitats, while it is not nec-
essary for non-convex habitats. One can refer to [14,15,17] for two competition species model 
with this type of advection term.
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In a wide variety of environments, individuals are influenced by a constantly unidirectional 
flow (advection) which drives them out of the system, resulting in population decline. One of the 
most striking example is the aquatic organisms living in streams and rivers, where their dispersals 
are affected by the downstream water flow (see [30,33,34] and their references). If we consider 
a segment of river described by the interval (0, L) and let P(x) = x, F(x, u) = r(x) − u, � =
(0, L), B(0, u) ≡ 0 and B(L, u) = −ba, where b is positive constant, then (1.1) becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut = duxx − aux + u[r(x)− u], x ∈ (0,L), t > 0,

dux(0, t)− au(0, t)= 0, t > 0,

dux(L, t)− au(L, t)= −bau(L, t), t > 0,

u(x,0)= u0(x), x ∈ (0,L).

(1.3)

Thus, Eq. (1.3) describes the population dynamics of a single species in such a river segment. 
Here at the upstream end x = 0, the no-flux boundary condition is assumed, meaning that no 
individuals will pass through this boundary. While at the downstream end x = L, the boundary 
condition contains a parameter b ≥ 0 that measures the loss rate of individuals at the boundary 
relative to the flow rate (see [37] for a detailed derivation). Likewise, for model (1.3), the dynam-
ics of species u is determined by the sign of the principal eigenvalue ν1 of the linearized problem 
at u = 0 [12]:

⎧⎪⎨
⎪⎩
dψxx − aψx + r(x)ψ + νψ = 0, x ∈�,

dψx(0)− aψ(0)= 0,

dψx(L)− aψ(L)= −baψ(L).

Moreover, in the case of homogeneous environment, i.e. r(x) ≡ const , one can see from [42]
that there always exists a critical advection rate such that the species can persist if and only 
if its advection rate is less than the critical rate. Recently, the dynamics of two species model 
with this type of advection term has been systematically studied by several authors, see, e.g., 
[41–43,66,67].

Note that in both (1.2) and (1.3), the reaction terms are logistic growth; and moreover, the 
functions prescribing the fluxes on the boundary are assumed linear in u (i.e., B(x, u) is inde-
pendent of u). In such a case, either there is no positive steady state and u = 0 is globally stable 
among nonnegative solutions, or there is a unique positive steady state which is globally stable. 
However, it was pointed out in [18] that any coefficient in a reaction-advection-diffusion model 
or its boundary conditions could depend on population density, leading to model of the form 
(1.1). When the function B(x, u) is density dependent, properties of solutions may be dramati-
cally different and bifurcation theory is a useful tool in this case. The current paper is devoted 
to study the more general model (1.1) in high spatial dimensions, where the interior reaction 
function F(x, u)u and boundary reaction function B(x, u)u are both nonlinear with respect to u.

1.1. Motivation and related work

Recently, Liu and Shi [38] studied the following scalar reaction-diffusion equation with non-
linear boundary condition (which can be viewed as a special non-advective version of the above 
model (1.1), i.e., d = 1, a = 0, F(x, u) = λk(x)f (u), B(x, u) = λr(x)b(u))
3
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⎧⎪⎨
⎪⎩
ut =	u+ λk(x)f (u)u, x ∈�, t > 0,

∂�nu= λr(x)b(u)u, x ∈ ∂�, t > 0,

u(x,0)= u0(x) > 0, x ∈�,

(1.4)

where all parameters, biologically, can be understood in the same way as that in model (1.1), and 
the nonlinear boundary condition has the same meaning as that in model (1.1). Explored in [38]
is the bifurcation of nontrivial steady state solutions of model (1.4) by applying some abstract 
local bifurcation theory in [20,21,39,40] as well as the global bifurcation theory in [49,54].

There are several aspects of investigations on reaction-diffusion models with nonlinear bound-
ary conditions. The well-posedness and asymptotical behavior of solution are considered in 
[6,7,50–52]; the blow-up profiles of solutions are studied in [29,36,62]; and the boundary layer 
solutions are constructed in [8,11,22,23]. Existence, uniqueness and stability of steady state so-
lutions for some special problems are also studied by using bifurcation method and other related 
methods [13,16,45,46,56–58,60,61]. Confined to (1.4), for example, when f (u) = 0 and the non-
linear term b(u)u is logistic type, it is considered in [31,45,47]; when f (u)u is logistic type and 
b(u)u is superlinear type, it is considered in [13,16,57,58,60,61]. In these works, existence of 
positive branches of trivial solutions and their asymptotic behavior and stability under nonlinear 
boundary conditions are studied.

Motivated by the work of [38], a natural and fundamental question in this research direc-
tion would then be asked: can we establish a general bifurcation result for reaction-diffusion-
advection model with nonlinear boundary condition, parallel as that for the non-advective model 
(1.4)? Having this question in mind, we then turn to discuss the dynamics of model (1.1).

1.2. Variable transformation and organization of the paper

For the convenience of analysis, we first make a variable transformation. Letting ũ =
e(−a/d)P (x)u, t = t̃/d , denoting λ = 1/d, α = a/d , and dropping the tilde sign, model (1.1) is 
transformed to: ⎧⎪⎨

⎪⎩
ut = e−αP (x)∇ · [eαP (x)∇u] + λf (x,u)u, x ∈�, t > 0,

∂�nu= λβ(x,u)u, x ∈ ∂�, t > 0,

u(x,0)= u0(x) > 0, x ∈�,

(1.5)

where f (x, u) = F(x, eαP (x)u) and β(x, u) = B(x, eαP (x)u). The steady state solutions of (1.5)
satisfy

{
−∇ · [eαP (x)∇u] = λeαP(x)f (x,u)u, x ∈�,

∂�nu= λβ(x,u)u, x ∈ ∂�.
(1.6)

It is easy to see that (1.5) has a trivial steady state u = 0 for all λ > 0. That is, (1.6) has a line of 
trivial solutions

�0 := {(λ,0) : λ > 0} (1.7)

in the λ − u plane. For other steady states, note that when λ = 0 (i.e. d → ∞ in (1.1)), any 
constant u1 ≥ 0 is a solution to (1.6). Hence (1.6) possesses the second line of trivial solutions:
4
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�u1 := {(0, u1) : u1 > 0, u1 ∈R} (1.8)

in the λ − u plane.
In Section 2, we show some results for an eigenvalue problem with an indefinite weighted 

function, which play an important role in studying the stability and bifurcation of the steady state 
solutions of (1.5). Section 3 is devoted to the stability of the trivial steady state u = 0 of (1.5) by 
establishing the relation between the sign of the principal eigenvalue μ1(λ, û) of (3.1) and the 
stability of steady states to (1.5). In Section 4, we derive three types of bifurcation phenomena 
and calculate the bifurcation direction and stability of the bifurcating positive steady states. These 
results indicate that non-trivial solutions of (1.6) can emerge from �0 at some bifurcation point 
(λ, u) = (λ1, 0), or from �u1 at some (λ, u) = (0, u1). In a special case, non-trivial solutions can 
also emerge from (λ, u) = (0, 0), the intersection point of �0 and �u1 . Moreover, for illustration 
of our general results, we consider two examples of (1.5) in Sections 5 and 6 respectively and 
they are

(i) a parabolic equation with nonlinear boundary condition and monostable nonlinearity: 
f (x, u) ≡ 0 and β(x, u)u = r(x)b(u)u with b(u) satisfying b(0) > 0 and b(1) = 0 > b′(1)
(see Section 5); and

(ii) a parabolic equation with sublinear growth and superlinear boundary condition: f (x, u)u =
k(x)(u − up) and β(x, u)u = r(x)uq with p, q > 1 (see Section 6).

Finally, we summarize and discuss our results in Section 7.
Throughout the paper, we use the following notations. To consider the solutions of (1.6) in 

a functional setting, we define X = W 2
l (�), Y = Ll(�) ×W

1− 1
l

l (∂�), with l > N . Denote the 
norm of the Banach space X by ‖ · ‖, and the duality pair of a Banach space X and its dual space 
X∗ by 〈·, ·〉. The notations N(L) and R(L) are used to denote the null space and the range space 
of linear operator L, respectively. Let L[w] denote the image of w under the linear mapping L. 
For a multilinear operator L, we denote by L[w1, w2, · · · , wk] the image of (w1, w2, · · · , wk)

under L, and when w1 = w2 = · · · = wk , we use L[w1]k instead of L[w1, w2, · · · , wk]. For a 
nonlinear operator F , we let DuF denote the partial derivative of F with respect to u.

2. An eigenvalue problem with indefinite weighted function

In this section, we want to study the principal eigenvalue of an eigenvalue problem with 
indefinite weighted function. For this aim, we first comprehend the principal eigenvalue of the 
following linear eigenvalue problem for an eigenvalue μ(λ):

{
−e−αP (x)∇ · [eαP (x)∇φ] = λg(x)φ +μ(λ)φ, x ∈�,

∂�nφ = λh(x)φ, x ∈ ∂�,
(2.1)

where g ∈ Cθ(�) and h ∈ C1+θ (∂�), 0 < θ < 1 are Hölder continuous functions in the closed 
domain � and on the boundary ∂�, respectively. Here, g and h may be both sign-changing, P is 
the same as in (1.1).

Now we state the following theorem concerning the existence of principal eigenvalue of (2.1)
and its properties.
5
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Theorem 2.1. Assume that either sup� g(x) > 0 or sup∂� h(x) > 0. Then we have the following 
conclusions:

(i) For any λ ∈R, problem (2.1) has a unique principal eigenvalue μ1(λ), which is character-
ized variationally by

μ1(λ)= inf

{∫
�

eαP(x)|∇φ|2dx − λ

∫
�

eαP(x)gφ2dx − λ

∫
∂�

eαP (x)hφ2dS : φ ∈H 1(�),

∫
�

eαP(x)φ2dx = 1

}
.

(2.2)
Here dS is the surface element of ∂�.

(ii) The mapping λ �→μ1(λ) is concave and satisfies μ1(λ) → −∞ as λ → ∞.
(iii) If 

∫
�
gdx + ∫

∂�
eαP (x)hdS ≤ 0, then the principal eigenvalue μ1(λ) has a unique local 

maximum (i.e. global maximum) with respect to λ. Moreover, the sign of the unique global 
maximum point is equal to that of −(∫

�
gdx + ∫

∂�
eαP (x)hdS), if it exists.

When μ(λ) = 0, (2.1) becomes an indefinite weighted eigenvalue problem as follows:

{
−e−αP (x)∇ · [eαP (x)∇φ] = λg(x)φ, x ∈�,

∂�nφ = λh(x)φ, x ∈ ∂�.
(2.3)

We say that λ is a principal eigenvalue if (2.3) admits a positive solution (Notice that 0 is always 
a principal eigenvalue of (2.3)). The following theorem provides the existence and nonexistence 
of nonzero principal eigenvalue λ1(g, h) of (2.3).

Theorem 2.2.

(i) Assume that either sup� g(x) > 0 or sup∂� h(x) > 0. Then the problem (2.3) has a unique 
positive principal eigenvalue λ1(g, h) if and only if

∫
�

eαP(x)g(x)dx +
∫
∂�

eαP (x)h(x)dS < 0, (2.4)

and it can be characterized by the following form

λ1(g,h)= inf

{ ∫
�
eαP(x)|∇φ|2dx∫

�
eαP(x)gφ2dx + ∫

∂�
eαP (x)hφ2dS

: φ ∈H 1(�),

∫
eαP (x)gφ2dx +

∫
eαP (x)hφ2dS > 0

}
.

(2.5)
� ∂�
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(ii) Assume that either inf� g(x) < 0 or inf∂� h(x) < 0. Then the problem (2.3) has a unique 
negative principal eigenvalue λ1(g, h) if and only if

∫
�

eαP(x)g(x)dx +
∫
∂�

eαP (x)h(x)dS > 0.

(iii) Assume that either g(x) is sign-changing in � or h(x) is sign-changing on ∂�. If

∫
�

eαP(x)g(x)dx +
∫
∂�

eαP (x)h(x)dS = 0,

then 0 is the unique principal eigenvalue of (2.3).

2.1. Proof of Theorem 2.1

We will prove Theorem 2.1 by a variational argument similar to [55, Chapter 11]. Consider 
the minimizer of the functional

Sλ :=
∫
�

eαP(x)|∇φ|2dx − λ

∫
�

eαP(x)gφ2dx − λ

∫
∂�

eαP (x)hφ2dS,

where φ ∈H 1(�) and 
∫
�
eαP(x)φ2dx = 1. Recall the following result from [1, Lemma 1].

Proposition 2.3. For any ε > 0, there exists a positive constant C(ε) such that

∫
∂�

φ2dS ≤ ε

∫
�

|∇φ|2dx +C(ε)

∫
�

φ2dx, ∀φ ∈H 1(�).

Now we prove the following lemma.

Lemma 2.4. Sλ has a lower bound.

Proof. It follows from Proposition 2.3 that if 
∫
�
eαP(x)φ2dx = 1, then it holds that

∣∣∣∣∣∣λ
∫
∂�

eαP (x)hφ2dS

∣∣∣∣∣∣ ≤ ε|λ|‖eαP (x)h‖C(∂�)
∫
�

|∇φ|2dx + |λ|C(ε)‖eαP (x)h‖C(∂�)
eαmin� P(x)

.

Thus we have

Sλ ≥
(
eαmin� P(x) − ε|λ|‖eαP (x)h‖C(∂�)

)∫
�

|∇φ|2dx − |λ|‖g‖C(�) −
|λ|C(ε)‖eαP (x)h‖C(∂�)

eαmin� P(x)
.

This lemma is now proved if we take ε small enough such that ε|λ|‖eαP (x)h‖C(∂�) <
eαmin� P(x). �
7
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We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. (i) As in [55, Theorem 11.10], we can derive that the infimum of Sλ
can be attained by some nonnegative and nonzero function φ1λ, which is of C2+θ (�) by elliptic 
regularity [25]. The maximum principle implies that φ1λ > 0 in �. If there exists x0 ∈ ∂� such 
that φ1λ(x0) = 0, then ∂φ1λ

∂ �n
∣∣
x=x0

< 0 by Hopf lemma, which contradicts the fact that ∂φ1λ
∂ �n

∣∣
x=x0

=
λh(x0)φ1λ(x0) = 0. Hence φ1λ > 0 in �. Here, the variational formula (2.2) can be proved by a 
similar manner as in [55, Theorem 11.4]. For the uniqueness of μ1(λ), by way of contradiction, 
we suppose that (2.1) admits a principal eigenvalue μ(�= μ1(λ)), which is associated with an 
eigenfunction φ > 0 on �. Then by integration by parts, we see that 

∫
�
eαP(x)φφ1dx = 0, which 

is a contradiction. Hence, part (i) is proved.
(ii) Consider the mapping

λ �−→
∫
�

eαP(x)|∇φ|2dx − λ

∫
�

eαP(x)gφ2dx − λ

∫
∂�

eαP (x)hφ2dS

for a fixed φ ∈H 1(�). It is easy to see that this mapping is affine and then concave, so the infi-
mum is also concave. Now we can choose a nontrivial function φ̂ ∈ C1(�)with 

∫
�
eαP(x)φ̂2dx =

1, such that φ̂ > 0 in {x ∈ ∂� : h(x) > 0} and the support of φ̂ is contained in a very thin tubu-
lar neighborhood of ∂� if sup

∂�

h > 0, or that φ̂ has a compact support in {x ∈ � : g(x) > 0} if 

sup
�

g > 0. Based on above argument, we have

μ1(λ)≤
∫
�

eαP(x)|∇φ̂|2dx − λ

∫
�

eαP(x)gφ̂2dx − λ

∫
∂�

eαP (x)hφ̂2dS → −∞ as λ→ ∞.

This completes the proof of part (ii).
(iii) For part (iii), we see that

{
−e−αP (x)∇ · [eαP (x)∇φ1λ

] = λgφ1λ +μ1(λ)φ1λ, x ∈�,

∂�nφ1λ = λhφ1λ, x ∈ ∂�.
(2.6)

By differentiating (2.6) in λ, there holds that

{
−e−αP (x)∇ · [eαP (x)∇φ′

1λ

] = gφ1λ + λgφ′
1λ +μ′

1(λ)φ1λ +μ1(λ)φ
′
1λ, x ∈�,

∂�nφ′
1λ = hφ1λ + λhφ′

1λ, x ∈ ∂�,
(2.7)

where the prime notation denotes the derivative with respective to λ. Multiplying (2.1) by 
eαP (x)φ′

1λ and (2.7) by eαP (x)φ1λ, subtracting the resulting equations and then integrating by 
parts over �, we derive

μ′
1(λ)= −

∫
�
eαP(x)gφ2

1λdx + ∫
∂�
eαP (x)hφ2

1λdS∫
�
eαP(x)φ2

1λdx
. (2.8)

Notice that φ1(0) is a positive constant by (2.1). Then it follows from (2.8) that
8
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μ′
1(0)= −

∫
�
eαP(x)gdx + ∫

∂�
eαP (x)hdS∫

�
eαP(x)dx

. (2.9)

Assume that 
∫
�
eαP(x)gdx + ∫

∂�
eαP (x)hdS ≤ 0. Then by conclusion (ii) and (2.9), we 

infer that μ1(λ) has a critical point in λ ≥ 0. In the following, we will show the unique-
ness of the critical point for μ1(λ). Let λ0 be a critical point of μ1(λ), that is, μ′

1(λ0) = 0
and 

∫
�
eαP(x)gφ2

1λ0
dx + ∫

∂�
eαP (x)hφ2

1λ0
dS = 0. In this case, we normalize the eigenfunction 

φ1λ0 as 
∫
�
eαP(x)φ2

1λ0
dx = 1. In view of the concavity of μ1(λ), we only need to prove that 

μ1(λ) <μ1(λ0) if λ �= λ0. It is easy to see that μ1(λ0) =
∫
�
eαP(x)|∇φ1λ0 |2dx. From the defini-

tion of μ1(λ), there holds that for any λ �= λ0,

μ1(λ)≤
∫
�

eαP(x)|∇φ1λ0 |2dx − λ

∫
�

eαP(x)gφ2
1λ0

dx − λ

∫
∂�

eαP (x)hφ2
1λ0

dS

=
∫
�

eαP(x)|∇φ1λ0 |2dx = μ1(λ0).

Suppose to the contrary that there is a λ1 �= λ0 such that μ1(λ1) = μ1(λ0), then the infimum 
of Sλ1 can be achieved by φ1λ0 , which means

{
−e−αP (x)∇ · [eαP (x)∇φ1λ0

] = λ1gφ1λ0 +μ1(λ1)φ1λ0 , x ∈�,

∂�nφ1λ0 = λ1hφ1λ0 , x ∈ ∂�.

We also notice that{
−e−αP (x)∇ · [eαP (x)∇φ1λ0

] = λ0gφ1λ0 +μ1(λ0)φ1λ0 , x ∈�,

∂�nφ1λ0 = λ0hφ1λ0 , x ∈ ∂�.

By the assumption that μ1(λ0) = μ1(λ1), we have

(λ1 − λ0)gφ1λ0 = 0 for x ∈�, and (λ1 − λ0)hφ1λ0 = 0 for x ∈ ∂�.

Then the positivity of φ1λ0 implies that g ≡ 0 for x ∈� and h ≡ 0 for x ∈ ∂�, a contradiction. 
Hence we have proved the uniqueness of the local critical point. Finally, it follows from (2.9)
that the sign of the unique global maximum point is the same as that of −(∫

�
eαP(x)gdx +∫

∂�
eαP (x)hdS). The proof is completed. �

2.2. Proof of Theorem 2.2

To prove Theorem 2.2, we need to verify that the infimum (2.5) is well-defined by a positive 
constant. Recall the following result from [59, Lemma 4.1].

Lemma 2.5. Suppose that 
∫
�
eαP(x)g(x)dx+ ∫

∂�
eαP (x)h(x)dS < 0. If φ ∈H 1(�) satisfies that ∫

�
φ2dx + ∫

∂�
φ2dS = 1 and 

∫
�
eαP(x)gφ2dx + ∫

∂�
eαP (x)hφ2dS > 0, then there is a constant 

c0 such that 
∫ |∇φ|2dx ≥ c0.

�

9
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Suppose that φ ∈H 1(�) satisfies 
∫
�
eαP(x)gφ2dx+∫

∂�
eαP (x)hφ2dS > 0 and let the function 

ϕ = δφ be with 
∫
�
ϕ2dx + ∫

∂�
ϕ2dS = 1 for some δ > 0. Then there holds that

∫
�
eαP(x)|∇φ|2dx∫

�
eαP(x)gφ2dx + ∫

∂�
eαP (x)hφ2dS

≥ eαmin� P(x)
∫
�

|∇φ|2dx∫
�
eαP(x)gφ2dx + ∫

∂�
eαP (x)hφ2dS

= eαmin� P(x)
∫
�

|∇ϕ|2dx∫
�
eαP(x)gϕ2dx + ∫

∂�
eαP (x)hϕ2dS

≥ c0e
αmin� P(x)

‖eαP (x)g+‖C(�) + ‖eαP (x)h+‖C(∂�) > 0, (2.10)

where f+ := max{f, 0} for a continuous function f . This inequality shows that the infimum 
(2.5) is positive.

Proof of Theorem 2.2. (i) Let λ∗ be a positive constant defined by the infimum in (2.5). Notice 
that μ1(0) = 0 from (2.1). It follows from Theorem 2.1 (ii) and (iii) that once 

∫
�
eαP(x)g(x)dx+∫

∂�
eαP (x)h(x)dS < 0, then there exists a unique positive principal eigenvalue λ1(g, h) of (2.3), 

i.e., μ1(λ1(g, h)) = 0, while (2.3) admits no principal eigenvalue for any λ �= λ1(g, h). In view 
of this point, to obtain formula (2.5), we only need to prove that μ1(λ∗) = 0. For φ ∈ H 1(�)

satisfying 
∫
�
eαP(x)gφ2dx + ∫

∂�
eαP (x)hφ2dS > 0, by the definition of λ∗, we have

∫
�

eαP(x)|∇φ|2dx − λ∗
∫
�

eαP(x)gφ2dx − λ∗
∫
∂�

eαP (x)hφ2dS ≥ 0. (2.11)

Since λ∗ > 0, the inequality (2.11) also holds true when 
∫
�
eαP(x)gφ2dx+∫

∂�
eαP (x)hφ2dS ≤ 0, 

which implies that μ1(λ∗) ≥ 0.
On the other hand, by the definition of the infimum in (2.5), there is a sequence {φn} ⊂H 1(�)

such that ∫
�

eαP(x)gφ2
ndx +

∫
∂�

eαP (x)hφ2
ndS > 0,

∫
�

φ2
ndx = 1, (2.12)

(
1 + 1

n

)
λ∗ ≥

∫
�
eαP(x)|∇φn|2dx∫

�
eαP(x)gφ2

ndx + ∫
∂�
eαP (x)hφ2

ndS
. (2.13)

It follows from Proposition 2.3 that for any ε > 0, there exists a positive constant C(ε) such that∫
∂�

eαP (x)hφ2
ndS ≤ ‖eαP (x)h+‖C(∂�)

∫
∂�

φ2
ndS

≤ ε‖eαP (x)h+‖C(∂�)
∫
�

|∇φn|2dx +C(ε)‖eαP (x)h+‖C(∂�)
∫
�

φ2
ndx.(2.14)
10
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This together with (2.12) and (2.13) leads to that

(
eαmin� P(x) − 2λ∗ε‖eαP (x)h+‖C(∂�)

)∫
�

|∇φn|2dx

≤ 2λ∗(‖eαP (x)g+‖C(�) +C(ε)‖eαP (x)h+‖C(∂�)),

where we have used that 1 + 1/n ≤ 2. We can choose ε > 0 small enough such that

eαmin� P(x) − 2λ∗ε‖eαP (x)h+‖C(∂�) > eαmin� P(x)

2
,

and hence

∫
�

|∇φn|2dx ≤ 4λ∗
(‖eαP (x)g+‖C(�) +C(ε)‖eαP (x)h+‖C(∂�)

)
eαmin� P(x)

<∞.

This combined with (2.12) implies that φn is bounded in H 1(�), and also bounded in L2(∂�)

by virtue of the continuous imbedding H 1(�) ⊂ L2(∂�). Now we can derive from (2.13) that

∫
�

eαP(x)|∇φn|2dx − λ∗
∫
�

eαP(x)gφ2
ndx − λ∗

∫
∂�

eαP (x)hφ2
ndS

≤ λ∗
n

⎛
⎝∫
�

eαP(x)gφ2
ndx +

∫
∂�

eαP (x)hφ2
ndS

⎞
⎠

≤ λ∗
n

⎛
⎝‖eαP (x)g+‖C(�) + ‖eαP (x)h+‖C(∂�)

∫
∂�

φ2
ndS

⎞
⎠ → 0, n→ ∞,

which leads to that μ1(λ∗) ≤ 0 and hence we obtain μ1(λ∗) = 0. This proves part (i).
For part (ii), we denote p(x) = −g(x) for x ∈� and q(x) = −h(x) for x ∈ ∂�. Since either 

inf� g(x) < 0 or inf∂� h(x) < 0, it follows from part (i) that λ1(p, q) > 0. Clearly, −λ1(p, q)
is the unique negative principal eigenvalue of (2.3). This proves part (ii). The conclusion of part 
(iii) can be inferred from parts (i) and (ii) directly. The proof for Theorem 2.2 is completed. �
3. Stability of trivial steady states

In this section, we will discuss the stability of the trivial solution u = 0 of (1.6). Let û be a 
nonnegative solution of (1.6). By linearizing system (1.5) at û, we can obtain the linear eigen-
value problem

{
−e−αP (x)∇ · [eαP (x)∇ψ] − λ

[
f (x, û)+ ûfu(x, û)

]
ψ = μ(λ, û)ψ, x ∈�,

∂ ψ − λ
[
β(x, û)+ ûβu(x, û)

]
ψ = μ(λ, û)ψ, x ∈ ∂�.

(3.1)

�n

11
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It follows from Theorem 2.2 in [3] that the eigenvalue problem (3.1) admits a unique principal 
eigenvalue, which is simple with a positive eigenfunction on �. Denote the principal eigenvalue 
and the corresponding eigenfunction of problem (3.1) by μ1(λ, û) and ψ1(λ, û), respectively.

Definition 3.1. A function ṽ ∈ C2,1(�× (0, ∞)) is called a upper-solution of (1.5) if ṽ satisfies

⎧⎪⎨
⎪⎩
ṽt ≥ e−αP (x)∇ · [eαP (x)∇ṽ] + λf (x, ṽ)ṽ, x ∈�, t > 0,

∂�nṽ ≥ λβ(x, ṽ)ṽ, x ∈ ∂�, t > 0,

ṽ(x,0)≥ u0(x), x ∈�.

(3.2)

A lower-solution of (1.5) is defined by reversing all the inequalities in (3.2).

Firstly, we show the relation between the sign of the principal eigenvalue μ1(λ, û) of (3.1)
and the stability of steady states to (1.5).

Proposition 3.2.

(i) Let û be a nonnegative steady state of (1.5) and δ > 0 be a constant. If μ1(λ, û) > 0, then 
there exists a constant ρ > 0 such that (1.5) admits a unique global solution u satisfying

|u(x, t)− û(x)| ≤ ρe−δtψ1(x), ∀t > 0, x ∈�

provided a nonnegative and not identically zero initial data u0 ∈ C2(�) with the condition

|u0(x)− û(x)| ≤ ρψ1(x), ∀x ∈�,

that is, the steady state û is locally asymptotically stable. Here ψ1 is the positive eigenfunc-
tion associated with the principal eigenvalue μ1(λ, û) of (3.1).

(ii) Let û be a nonnegative steady state of (1.5) and 0 < σ < 1 be a constant. Suppose that 
μ1(λ, û) < 0. Then there exist constants ρ̂0 = ρ̂0(μ1), δ̂ = δ̂(σ, μ1) > 0 such that if 0 <
ρ ≤ ρ̂0, then any solution u of (1.5) satisfies

u(x, t)≤ û(x)− ρ(1 − σe−δ̂t )ψ1(x), ∀t > 0, x ∈� (3.3)

provided a nonnegative and not identically zero initial data u0 ∈ C2(�) with the condition

u0(x)≤ û(x)− ρ(1 − σ)ψ1(x), ∀x ∈�.

Meanwhile, there exist constant ρ̃0 = ρ̃0(μ1), δ̃ = δ̃(σ, μ1) > 0 such that if 0 < ρ ≤ ρ̃0, 
then any solution u of (1.5) satisfies

u(x, t)≥ û(x)+ ρ(1 − σe−δ̃t )ψ1(x), ∀t > 0, x ∈� (3.4)

provided a nonnegative and not identically zero initial data u0 ∈ C2(�) with the condition

u0(x)≥ û(x)+ ρ(1 − σ)ψ1(x), ∀x ∈�.
12
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That is, the steady state û is unstable.

Proof. The proof is similar to that of [48, Theorem 5.3.3] with a minor modification. At first, 
we prove conclusion (i). Set ṽ(x, t) = û(x) + ρe−δtψ1(x) with positive constants ρ, δ. As in 
the proof of [48, Theorem 5.3.3], we can infer that there exists a positive ρ1 such that for any 
ρ ∈ (0, ρ1],

ṽt − e−αP (x)∇ · [eαP (x)∇ṽ] − λf (x, ṽ)ṽ ≥ 0 for t > 0 and x ∈�. (3.5)

For the boundary condition, we see that

∂�nṽ − λβ(x, ṽ)ṽ = λβ(x, û)û+ ρe−δt
[
λ
[
β(x, û)+ ûβu(x, û)

]
ψ1 +μ1(λ, û)ψ1

]
− λβ

(
x, û+ ρe−δtψ1

)(
û+ ρe−δtψ1

)
= ρe−δtψ1

(
μ1(λ, û)−O(|ρe−δtψ1|)

)
for t > 0 and x ∈ ∂�. It follows from the above identity that there exists a positive constant ρ2
such that for any ρ ∈ (0, ρ2],

∂�nṽ − λβ(x, ṽ)ṽ ≥ 0 for t > 0 and x ∈ ∂�. (3.6)

The two inequalities (3.5) and (3.6) together with the initial data u0 ≤ û+ ρψ1 imply that ṽ =
û+ ρe−δtψ1 is an upper-solution of (1.5) if 0 < ρ ≤ min{ρ1, ρ2}.

By the same argument as above, it can be inferred that v̂(x, t) = û(x) − ρe−δtψ1 is a lower-
solution of (1.5) provided that u0 ≥ û− ρψ1, where 0 < ρ ≤ ρ3 for some positive constant ρ3. 
Now, conclusion (i) can be obtained from [48, Theorem 4.1.1].

In the following, we only show the former part of conclusion (ii), as the latter part can be 
checked by a similar manner. Set ṽ(x, t) = û(x) − ρ(1 − σe−δt )ψ1(x) with constant 0 < σ <

1, ρ > 0, δ > 0. As in the proof of [48, Theorem 5.3.3], there exist constants ρ1, δ1 > 0 such that 
if ρ ∈ (0, ρ1] and δ = δ1, then it holds that

ṽt − e−αP (x)∇ · [eαP (x)∇ṽ] − λf (x, ṽ)ṽ ≥ 0 for t > 0 and x ∈�. (3.7)

For the boundary condition, we have

∂�nṽ − λβ(x, ṽ)ṽ = ρ(1 − σe−δt )ψ1

(
O(|ρ(1 − σe−δt )ψ1|)−μ1(λ, û)

)
.

Then we can find the constants ρ2 > 0 and 0 < c1 <−μ1(λ, û) such that for ρ ∈ (0, ρ2],

∂�nṽ − λβ(x, ṽ)ṽ ≥ −(c1 +μ1(λ, û))ρ(1 − σe−δt )ψ1 ≥ 0 for t > 0 and x ∈ ∂�. (3.8)

Again, the two inequalities (3.7) and (3.8) show that ṽ = û−ρ(1 −σe−δt )ψ1 is an upper-solution 
of (1.5) given that u0 ≤ û− ρ(1 − σ)ψ1, where 0 < ρ ≤ min{ρ1, ρ2} and δ = δ1. Consequently, 
(3.3) follows from the comparison argument as developed in [48, Theorem 4.1.2]. The proof of 
this theorem is completed. �
13
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To classify the main result of this section, we need to state the following lemma. Here we 
denote by φ1 the normalized positive eigenfunction associated with principal eigenvalue λ1 of 
(2.3) with g replaced by f (x, û) + ûfu(x, û) and h replaced by β(x, û) + ûβu(x, û). And we 
also define ψ1 as the normalized positive eigenfunction corresponding to the principal eigenvalue 
μ1(λ, û) of (3.1).

Lemma 3.3. The principal eigenvalue μ1(λ, û) of (3.1) satisfies the following two identities:

μ1(λ, û)

⎛
⎝∫
�

eαP(x)φ2
1dx +

∫
∂�

eαP (x)φ2
1dS

⎞
⎠

= −
∫
�

eαP(x)ψ2
1

∣∣∣∣∇
(
φ1

ψ1

)∣∣∣∣
2

dx + (λ1 − λ)

∫
�

eαP(x)φ2
1

(
f (x, û)+ fu(x, û)û

)
dx

+ (λ1 − λ)

∫
∂�

eαP (x)φ2
1

(
β(x, û)+ βu(x, û)û

)
dS, (3.9)

μ1(λ, û)

⎛
⎝∫
�

eαP(x)ψ2
1 dx +

∫
∂�

eαP (x)ψ2
1 dS

⎞
⎠

=
∫
�

eαP(x)φ2
1

∣∣∣∣∇
(
ψ1

φ1

)∣∣∣∣
2

dx + (λ1 − λ)

∫
�

eαP(x)ψ2
1

(
f (x, û)+ fu(x, û)û

)
dx

+ (λ1 − λ)

∫
∂�

eαP (x)ψ2
1

(
β(x, û)+ βu(x, û)û

)
dS. (3.10)

Proof. Notice the equality

∇ ·
[
eαP (x)ψ2

1 ∇
(
φ1

ψ1

)]
= eαP (x)ψ1(∇P · ∇φ1 +	φ1)− eαP (x)φ1(∇P · ∇ψ1 +	ψ1)

=ψ1∇ ·
[
eαP (x)∇φ1

]
− φ1∇ ·

[
eαP (x)∇ψ1

]
.

Multiplying the above equation by 
φ1

ψ1
and making an integration over �, we see that

∫
∂�

φ1

ψ1
eαP (x)(ψ1∂�nφ1 − φ1∂�nψ1)dS −

∫
�

eαP(x)ψ2
1

∣∣∣∣∇
(
φ1

ψ1

)∣∣∣∣
2

dx

=
∫
�

φ1∇ ·
[
eαP (x)∇φ1

]
dx −

∫
�

φ2
1

ψ1
∇ ·

[
eαP (x)∇ψ1

]
dx.

This together with the equations satisfied by φ1 and ψ1 gives the equation (3.9). Likewise, by 
using the equality
14
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∇ ·
[
eαP (x)φ2

1∇
(
ψ1

φ1

)]
= eαP (x)φ1(∇P · ∇ψ1 +	ψ1)− eαP (x)ψ1(∇P · ∇φ1 +	φ1)

= φ1∇ ·
[
eαP (x)∇ψ1

]
−ψ1∇ ·

[
eαP (x)∇φ1

]
,

we can derive the equation (3.10). The proof is completed. �
In what follows, we state the main result of this section.

Theorem 3.4. Assume that the condition (H1) holds. We have the following conclusions:

(i) Suppose that either sup� f (x, 0) > 0 or sup∂� β(x, 0) > 0. If

∫
�

eαP(x)f (x,0)dx +
∫
∂�

eαP (x)β(x,0)dS < 0,

then the trivial steady state u = 0 of (1.5) is locally asymptotically stable for 0 <λ < λ1 and 
unstable for λ > λ1, where λ1 is the positive principal eigenvalue of (2.3) with g = f (x, 0)
and h = β(x, 0).

(ii) Suppose that either f (x, 0) changes sign in � or β(x, 0) changes sign on ∂�. If

∫
�

eαP(x)f (x,0)dx +
∫
∂�

eαP (x)β(x,0)dS ≥ 0,

then the trivial steady state u = 0 of (1.5) is always unstable.

Proof. (i) Consider the case 
∫
�
eαP(x)f (x, 0)dx + ∫

∂�
eαP (x)β(x, 0)dS < 0. It follows from 

Theorem 2.2 (i) that (2.3) with g = f (x, 0) and h = β(x, 0) has a positive principal eigen-
value λ1. By the variational characterization of λ1, we see that 

∫
�
eαP(x)f (x, 0)φ2

1dx +∫
∂�
eαP (x)β(x, 0)φ2

1dS > 0. Inserting û= 0 into (3.9), we obtain

μ1(λ,0)

⎛
⎝∫
�

eαP(x)φ2
1dx +

∫
∂�

eαP (x)φ2
1dS

⎞
⎠

= −
∫
�

eαP(x)ψ2
1

∣∣∣∣∇
(
φ1

ψ1

)∣∣∣∣
2

dx

+ (λ1 − λ)

⎛
⎝∫
�

eαP(x)f (x,0)φ2
1dx +

∫
∂�

eαP (x)β(x,0)φ2
1dS

⎞
⎠ ,

which implies that μ1(λ, 0) < 0 for λ > λ1.
In the following, we prove that μ1(λ, 0) > 0 if 0 < λ < λ1. By setting û= 0 in (3.10), it holds 

that
15
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μ1(λ,0)

⎛
⎝∫
�

eαP(x)ψ1(λ,0)2dx +
∫
∂�

eαP (x)ψ1(λ,0)2dS

⎞
⎠

=
∫
�

eαP(x)φ2
1

∣∣∣∣∇
(
ψ1(λ,0)

φ1

)∣∣∣∣
2

dx

+ (λ1 − λ)

⎛
⎝∫
�

eαP(x)f (x,0)ψ1(λ,0)2dx +
∫
∂�

eαP (x)β(x,0)ψ1(λ,0)2dS

⎞
⎠ .

This shows that μ1(λ, 0) > 0 when 0 < λ < λ1 and

∫
�

eαP(x)f (x,0)ψ1(λ,0)2dx +
∫
∂�

eαP (x)β(x,0)ψ1(λ,0)2dS > 0.

Meanwhile, for the case 0 < λ < λ1 and

∫
�

eαP(x)f (x,0)ψ1(λ,0)2dx +
∫
∂�

eαP (x)β(x,0)ψ1(λ,0)2dS ≤ 0,

by using (3.1) with û= 0, we have

μ1(λ,0)

⎛
⎝∫
�

eαP(x)ψ1(λ,0)2dx +
∫
∂�

eαP (x)ψ1(λ,0)2dS

⎞
⎠

=
∫
�

eαP(x) |∇ψ1(λ,0)|2 dx

− λ

⎛
⎝∫
�

eαP(x)f (x,0)ψ1(λ,0)2dx +
∫
∂�

eαP (x)β(x,0)ψ1(λ,0)2dS

⎞
⎠

≥
∫
�

eαP(x) |∇ψ1(λ,0)|2 dx.

Since ψ1(λ, 0) is not a constant for all λ > 0, there must be μ1(λ, 0) > 0. This completes the 
proof of part (i).

(ii) Consider the case 
∫
�
eαP(x)f (x, 0)dx+ ∫

∂�
eαP (x)β(x, 0)dS ≥ 0. Then we see from The-

orem 2.2 (ii) and (iii) that the unique nonnegative principal eigenvalue of (2.3) is λ1 = 0 with a 
eigenfunction φ1 = 1. By setting û= 0 in (3.9), we obtain

μ1(λ,0)

⎛
⎝∫

eαP (x)dx +
∫
eαP (x)dS

⎞
⎠

� ∂�
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= −
∫
�

eαP(x)ψ1(λ,0)2
∣∣∣∣∇

(
1

ψ1(λ,0)

)∣∣∣∣
2

dx

− λ

⎛
⎝∫
�

eαP(x)f (x,0)dx +
∫
∂�

eαP (x)β(x,0)dS

⎞
⎠ .

Since ψ1(λ, 0) is not a constant for all λ > 0, we have μ1(λ, 0) < 0. Thanks to Proposition 3.2, 
we complete the proof of this theorem. �
4. Bifurcation analysis at trivial steady states

This section is devoted to the bifurcations of non-trivial solutions of (1.6) from two lines of 
trivial solutions �0 and �u1 defined in (1.7) and (1.8), respectively. In a special situation, non-
trivial solutions can also bifurcate from (λ, u) = (0, 0), the intersection point of �0 and �u1 .

Definition 4.1. A point (λ∗, 0) is called a bifurcation point on the line of trivial solutions �0
if there exists a sequence of solutions (λ(n), u(n)) to (1.6) such that u(n) �= 0, λ(n) → λ∗ and 
u(n) → 0 in C(�) as n → ∞. And a bifurcation point on the line of trivial solutions �u1 is 
defined similarly.

To consider the solutions of (1.6), we define a nonlinear mapping F : R ×X → Y by

F(λ,u)=
(
∇ · [eαP (x)∇u] + λeαP(x)f (x,u)u,

∂u

∂ �n − λβ(x,u)u
)
. (4.1)

Note that the Fréchet derivative DuF(λ∗, u∗) :X → Y of F with respect to u at (λ∗, u∗) is given 
by

DuF(λ∗, u∗)[v] =
(
∇ · [eαP (x)∇v] + λ∗eαP (x)

(
f (x,u∗)+ fu(x,u∗)u∗

)
v,

∂v

∂ �n − λ∗
(
β(x,u∗)+ βu(x,u∗)u∗

)
v
)
.

(4.2)

It is well known that if (λ∗, u∗) is a bifurcation point on the line �0 (or �u1 ), then the operator 
DuF(λ∗, u∗) is not injective. We first provide the following lemma concerning the potential 
bifurcation points.

Lemma 4.2. Assume that the condition (H1) holds.

(i) If (λ∗, 0) with λ∗ > 0 is a bifurcation point of (1.6) with respect to the trivial branch �0, 
then λ∗ is an eigenvalue of

{
−∇ · [eαP (x)∇v] = λeαP(x)f (x,0)v, x ∈�,

∂�nv = λβ(x,0)v, x ∈ ∂�.
(4.3)

(ii) If (0, u∗) with u∗ > 0 is a bifurcation point of (1.6) with respect to the trivial branch �u1 , 
then u∗ satisfies
17
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(H2)
∫
�

eαP(x)f (x, u∗)dx +
∫
∂�

eαP (x)β(x, u∗)dS = 0.

Proof. (i) Suppose on the contrary that λ∗ is not an eigenvalue of (4.3). Then DuF(λ∗, 0) is a 
homeomorphism for all λ near λ∗. In view of the implicit function theorem, we see that the trivial 
solution (λ∗, 0) is the unique solution of F = 0 near (λ∗, 0). Then λ∗ is not a bifurcation point 
along the line �0. Hence λ∗ must be an eigenvalue of (4.3) if (λ∗, 0) is a bifurcation point.

(ii) Suppose that (0, u∗) with u∗ > 0 is a bifurcation point of (1.6) with respect to the trivial 
branch �u1 . Then from Definition 4.1, there exists a sequence (λ(n), u(n)) of solutions to (1.6)
with

0 �= λ(n) → 0 and ‖u(n) − u∗‖X → 0, when n→ ∞.

A integration on the equation satisfied by u(n) yields that

λ(n)
∫
�

eαP(x)f (x,u(n))u(n)dx = −
∫
�

∇ · [eαP (x)∇u] = −
∫
∂�

eαP (x)
∂u

∂ �ndS

= −λ(n)
∫
∂�

eαP (x)β(x,u(n))u(n)dS,

which leads to that∫
�

eαP(x)f (x,u(n))u(n)dx +
∫
∂�

eαP (x)β(x,u(n))u(n)dS = 0

since λ(n) �= 0. Consequently, we obtain (H2) by taking n → ∞. �
4.1. Local bifurcation from �0

In this subsection, we consider the bifurcations on �0 = {(λ, 0) : λ > 0}. From Theorem 2.2, 
we see that under the condition∫

�

eαP(x)f (x,0)dx +
∫
∂�

eαP (x)β(x,0)dS < 0,

(λ1, 0) is a potential bifurcation point of (1.6) on the line of trivial solution �0, where λ1 is the 
unique positive principal eigenvalue of (4.3), which is always a simple one. Then we have the 
following result on the local bifurcation from �0.

Theorem 4.3. Assume that f, β satisfy (H1) and also satisfy

(H3) Either sup� f (x, 0) > 0 or sup∂� β(x, 0) > 0, and

∫
eαP (x)f (x,0)dx +

∫
eαP (x)β(x,0)dS < 0. (4.4)
� ∂�
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Then the eigenvalue problem (4.3) admits a positive principal eigenvalue λ1, which is a bifurca-
tion point with respect to �0. Precisely, in a neighborhood of (λ1, 0) in R+ ×X, the only positive 
solution to (1.6) lies in the curve

�0 = {(λ0(s), u0(s)) : s ∈ I = (0, ε)⊂ R+},

where λ0(s) = λ1 + z2(s), u0(s) = sφ1 + sz1(s) are C1 function so that zi(0) = 0, i = 1, 2, φ1
is the positive eigenfunction associated with λ1.

Proof. Under the assumptions (H1) and (H3), we see from Theorem 2.2 (i) that the problem (4.3)
has a principal eigenvalue λ1 > 0. We apply Crandall-Rabinowitz’s Theorem [20] for simple 
eigenvalue to prove our assertion. For this proof, we will find the nontrivial solution of F = 0
near (λ1, 0), where F is defined in (4.1). Now, we complete it by several steps:

(a) DλF , DuF and DλuF exist and are continuous. This assertion is obvious.
(b) dimN(DuF(λ1, 0)) = 1. By Theorem 2.2 (i), the positive principal eigenvalue λ1 of (4.3)

is simple, and φ1 is a positive eigenfunction associated with λ1. Thus, N(DuF(λ1, 0)) =
span{φ1}.

(c) codimR(DuF(λ1, 0)) = 1. Set (y1, y2) ∈R(DuF(λ1, 0)) and w ∈X satisfying that

{
∇ · [eαP (x)∇w] + λ1e

αP (x)f (x,0)w = y1, x ∈�,

∂�nw− λ1β(x,0)w = y2, x ∈ ∂�.
(4.5)

Multiplying the first equation of (4.3) and (4.5) by w and φ1, respectively, subtracting and 
integrating the result over �, we obtain

∫
�

φ1y1dx =
∫
�

(
φ1∇ · [eαP (x)∇w] −w∇ · [eαP (x)∇φ1

])
dx

=
∫
∂�

eαP (x)(φ1
∂w

∂ �n −w
∂φ1

∂ �n )dS

=
∫
∂�

eαP (x)(φ1(λ1β(x,0)w+ y2)−wλ1β(x,0)φ1)dS =
∫
∂�

eαP (x)φ1y2dS.

Thus, (y1, y2) ∈R(DuF(λ1, 0)) if and only if

∫
�

φ1y1dx −
∫
∂�

eαP (x)φ1y2dS = 0. (4.6)

Thus, codimR(DuF(λ1, 0)) = 1. In the following we define l ∈ Y ∗ as

〈l, (y1, y2)〉 =
∫
φ1y1dx −

∫
eαP (x)φ1y2dS. (4.7)
� ∂�
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(d) DλuF(λ1, 0)[φ1] /∈ R(DuF(λ1, 0)). A direct calculation gives that

DλuF(λ1,0)[φ1] = (
eαP (x)f (x,0)φ1,−β(x,0)φ1

)
.

However, we see that∫
�

eαP(x)f (x,0)φ2
1dx +

∫
∂�

eαP (x)β(x,0)φ2
1dS

= − 1

λ1

∫
�

φ1∇ · [eαP (x)∇φ1
]
dx + 1

λ1

∫
∂�

eαP (x)
∂φ1

∂ �n φ1dS (4.8)

= 1

λ1

∫
�

eαP(x)|∇φ1|2dx > 0.

This verifies that DλuF(λ1, 0)[φ1] /∈R(DuF(λ1, 0)).

Hence this theorem follows by applying [20, Theorem 1.7]. �
Remark 4.4. We can see from the proof of Theorem 4.3 that there exists a negative solution 
curve �−

0 of (1.6) bifurcating from the line of trivial solutions �0, which has the form �−
0 =

{(λ0(s), u0(s)) : s ∈ I = (−η, 0) ⊂ R}. However, this solution has no biological significance.

In the following, we investigate the bifurcation direction of the steady state bifurcation from 
(λ1, 0) derived in Theorem 4.3. For the purpose, we need to calculating the sign of λ′

0(0). Assume 
that f, β are class C2 or C3 near u = 0. Using the expression (4.5) in [53], we have

λ′
0(0)= −〈l,DuuF(λ1,0)[φ1]2〉

2〈l,DλuF(λ1,0)[φ1]〉 . (4.9)

And the results in [53] can be concluded that

(F1) if F satisfies DuuF(λ1, 0)[φ1]2 /∈ R(DuF(λ1, 0)), then λ′
0(0) �= 0, and it is called a trans-

critical bifurcation;
(F2) if F satisfies DuuF(λ1, 0)[φ1]2 ∈R(DuF(λ1, 0)), then λ′

0(0) = 0, and

λ′′
0(0)= −〈l,DuuuF(λ1,0)[φ1]3〉 + 3〈l,DuuF(λ1,0)[φ1, ϑ]〉

3〈l,DλuF(λ1,0)[φ1]〉 , (4.10)

where ϑ satisfies DuuF(λ1, 0)[φ1]2 + DuF(λ1, 0)[ϑ] = 0. Moreover, if λ′
0(0) = 0 and 

λ′′
0(0) �= 0, then it is called a pitchfork bifurcation.

A direct calculation gives that

DuuF(λ1,0)[φ1]2 = (
2λ1e

αP (x)fu(x,0)φ2
1 ,−2λ1βu(x,0)φ2

1

)
,

DuuF(λ1,0)[φ1, ϑ] = (
2λ1e

αP (x)fu(x,0)φ1ϑ,−2λ1βu(x,0)φ1ϑ
)

20



Z. Li, B. Dai and X. Zou Journal of Differential Equations 363 (2023) 1–66
and

DuuuF(λ1,0)[φ1]3 = (
3λ1e

αP (x)fuu(x,0)φ3
1 ,−3λ1βuu(x,0)φ3

1

)
.

Then we have

λ′
0(0)= −λ2

1

∫
�
eαP(x)fu(x,0)φ3

1dx + λ2
1

∫
∂�
eαP (x)βu(x,0)φ3

1dS∫
�
eαP(x)|∇φ1|2dx

and

λ′′
0(0)= −λ2

1

∫
�
eαP(x)fuu(x,0)φ4

1dx + λ2
1

∫
∂�
eαP (x)βuu(x,0)φ4

1dS∫
�
eαP(x)|∇φ1|2dx

− 2λ2
1

∫
�
eαP(x)fu(x,0)φ2

1ϑdx + 2λ2
1

∫
∂�
eαP (x)βu(x,0)φ2

1ϑdS∫
�
eαP(x)|∇φ1|2dx

,

where ϑ satisfies{
∇ · [eαP (x)∇ϑ] + λ1e

αP (x)f (x,0)ϑ + 2λ1e
αP (x)fu(x,0)φ2

1 = 0, x ∈�,

∂�nϑ − λ1β(x,0)ϑ − 2λ1βu(x,0)φ2
1 = 0, x ∈ ∂�.

(4.11)

The above expression for λ′
0(0) can be simplified in several special cases, which are listed as 

follows:

(Case 1) Assume that f (x, u) ≡ 0 and β(x, u) = r(x)b(u), where r(x) �≡ 0 and b(0) �= 0. Then

λ′
0(0)= −λ2

1b
′(0)

∫
∂�
eαP (x)r(x)φ3

1dS∫
�
eαP(x)|∇φ1|2dx

= −λ1 · b
′(0)
b(0)

·
∫
∂�
eαP (x)φ2

1∂�nφ1dS∫
�
eαP(x)|∇φ1|2dx

= −λ1 · b
′(0)
b(0)

·
∫
�
φ2

1∇ · [eαP (x)∇φ1
]
dx + 2

∫
�
eαP(x)|∇φ1|2φ1dx∫

�
eαP(x)|∇φ1|2dx

= −2λ1 · b
′(0)
b(0)

·
∫
�
eαP(x)|∇φ1|2φ1dx∫
�
eαP(x)|∇φ1|2dx

. (4.12)

Thus if b′(0) �= 0, then a transcritical bifurcation occurs at (λ1, 0), while if b′(0) = 0, 
then λ′

0(0) = 0. For the case b′(0) = 0, if we further assume that b ∈ C3 near u = 0, 
then

λ′′
0(0)= −λ2

1b
′′(0)

∫
∂�
eαP (x)r(x)φ4

1dS∫
�
eαP(x)|∇φ1|2dx

= −λ1 · b
′′(0)
b(0)

·
∫
∂�
eαP (x)φ3

1∂�nφ1dS∫
�
eαP(x)|∇φ1|2dx

= −λ1 · b
′′(0)
b(0)

·
∫
�
φ3

1∇ · [eαP (x)∇φ1
]
dx + 3

∫
�
eαP(x)|∇φ1|2φ2

1dx∫
�
eαP(x)|∇φ1|2dx

= −3λ1 · b
′′(0)
b(0)

·
∫
�
eαP(x)|∇φ1|2φ2

1dx∫
�
eαP(x)|∇φ1|2dx

. (4.13)
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Thus, if b′(0) = 0 and b′′(0) �= 0, then a pitchfork bifurcation occurs at (λ1, 0).
(Case 2) Assume that β(x, u) ≡ 0 and f (x, u) = k(x)a(u), where k(x) �≡ 0 and a(0) �= 0. Then

λ′
0(0)= −λ2

1a
′(0)

∫
�
eαP(x)k(x)φ3

1dx∫
�
eαP(x)|∇φ1|2dx

= λ1 · a
′(0)
a(0)

·
∫
�
φ2

1∇ · [eαP (x)∇φ1
]
dx∫

�
eαP(x)|∇φ1|2dx

= λ1 · a
′(0)
a(0)

·
∫
∂�
φ2

1e
αP (x)∂�nφ1dx − 2

∫
�
eαP(x)|∇φ1|2φ1dx∫

�
eαP(x)|∇φ1|2dx

= −2λ1 · a
′(0)
a(0)

·
∫
�
eαP(x)|∇φ1|2φ1dx∫
�
eαP(x)|∇φ1|2dx

. (4.14)

Thus if a′(0) �= 0, then a transcritical bifurcation occurs at (λ1, 0), while if a′(0) = 0, 
then λ′

0(0) = 0. For the case a′(0) = 0, if a ∈ C3 near u = 0, then

λ′′
0(0)= −λ2

1a
′′(0)

∫
�
eαP(x)k(x)φ4

1dx∫
�
eαP(x)|∇φ1|2dx

= λ1 · a
′′(0)
a(0)

·
∫
�
φ3

1∇ · [eαP (x)∇φ1
]
dx∫

�
eαP(x)|∇φ1|2dx

= λ1 · a
′′(0)
a(0)

·
∫
∂�
φ3

1e
αP (x)∂�nφ1dS − 3

∫
�
eαP(x)|∇φ1|2φ2

1dx∫
�
eαP(x)|∇φ1|2dx

= −3λ1 · a
′′(0)
a(0)

·
∫
�
eαP(x)|∇φ1|2φ2

1dx∫
�
eαP(x)|∇φ1|2dx

. (4.15)

Therefore, if a′(0) = 0 and a′′(0) �= 0, then a pitchfork bifurcation occurs at (λ1, 0).
(Case 3) Assume that f (x, u) = k(x)a(u) and β(x, u) = r(x)b(u), where k(x) �≡ 0, r(x) �≡ 0

and a(0) �= 0, b(0) �= 0. Then

λ′
0(0)= −λ2

1a
′(0)

∫
�
eαP(x)k(x)φ3

1dx + λ2
1b

′(0)
∫
∂�
eαP (x)r(x)φ3

1dS∫
�
eαP(x)|∇φ1|2dx

= λ1 · a
′(0)
a(0)

·
∫
�
φ2

1∇ · [eαP (x)∇φ1
]
dx∫

�
eαP(x)|∇φ1|2dx

− λ1 · b
′(0)
b(0)

·
∫
∂�
eαP (x)φ2

1∂�nφ1dS∫
�
eαP(x)|∇φ1|2dx

= λ1 ·
(
a′(0)
a(0)

− b′(0)
b(0)

)
·
∫
�
φ2

1∇ · [eαP (x)∇φ1
]
dx∫

�
eαP(x)|∇φ1|2dx

− 2λ1 · b
′(0)
b(0)

·
∫
�
eαP(x)|∇φ1|2φ1dx∫
�
eαP(x)|∇φ1|2dx

. (4.16)

If a(0)b′(0) = b(0)a′(0) �= 0, then (4.16) becomes (4.12) and a transcritical bifurcation 
occurs. While if a′(0) = b′(0) = 0, then λ′

0(0) = 0 and

λ′′
0(0)= −λ2

1a
′′(0)

∫
�
eαP(x)k(x)φ4

1dx + λ2
1b

′′(0)
∫
∂�
eαP (x)r(x)φ4

1dS∫
�
eαP(x)|∇φ1|2dx

= λ1 · a
′′(0)
a(0)

·
∫
�
φ3

1∇ · [eαP (x)∇φ1
]
dx∫

eαP (x)|∇φ |2dx
− λ1 · b

′′(0)
b(0)

·
∫
∂�
eαP (x)φ3

1∂�nφ1dS∫
eαP (x)|∇φ |2dx
� 1 � 1
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= λ1 ·
(
a′′(0)
a(0)

− b′′(0)
b(0)

)
·
∫
�
φ3

1∇ · [eαP (x)∇φ1
]
dx∫

�
eαP(x)|∇φ1|2dx

− 3λ1 · b
′′(0)
b(0)

·
∫
�
eαP(x)|∇φ1|2φ2

1dx∫
�
eαP(x)|∇φ1|2dx

. (4.17)

We find that the sign of λ′
0(0) or λ′′

0(0) in the formulas (4.12), (4.13), (4.14) and (4.15) is inde-
pendent of the weighted function k(x) or r(x). However, the calculation for (4.16) or (4.17) is 
more complicated due to the weighted function k(x) or r(x).

Finally we discuss the stability of the positive bifurcating solution (λ0(s), u0(s)) derived in 
Theorem 4.3. Consider the linear eigenvalue problem (3.1) at (λ0(s), u0(s)), which read as:

{
−e−αP (x)∇ · [eαP (x)∇ψ] − λ0(s)

[
f (x,u0(s))+ u0(s)fu(x,u0(s))

]
ψ = μψ, x ∈�,

∂�nψ − λ0(s)
[
β(x,u0(s))+ u0(s)βu(x,u0(s))

]
ψ = μψ, x ∈ ∂�.

(4.18)
To stress the dependence of the principal eigenvalue of (4.18) on s, we denote by μ1(s) the 
principal eigenvalue of problem (4.18), and let ψ1(s) be the positive eigenfunction corresponding 
to μ1(s). It is clear that λ0(0) = λ1, u0(0) = 0, μ1(0) = 0 and ψ1(0) = φ1. Moreover, μ1(s) and 
ψ1(s) are both real analytic at s = 0. Indeed, looking at the mapping G : (−ε, ε) ×R ×W 2

l (�) →
Ll(�) ×W

1− 1
l

l (∂�) ×R, where l > N , defined by

G(s,μ,ψ)

=
⎛
⎝−e−αP (x)∇ · [eαP (x)∇ψ] − λ0(s)

[
f (x,u0(s))+ u0(s)fu(x,u0(s))

]
ψ −μψ

∂�nψ − λ0(s)
[
β(x,u0(s))+ u0(s)βu(x,u0(s))

]
ψ −μψ∫

�
eαP(x)ψ2dx + ∫

∂�
eαP (x)ψ2dS − (∫

�
eαP(x)φ2

1dx + ∫
∂�
eαP (x)φ2

1dS
)

⎞
⎠ ,

we have that G(0, 0, φ1) = 0 and the Fréchet derivative D(μ,ψ)G(0, 0, φ1) : (−ε, ε) × R ×
W 2
l (�) → Ll(�) × W

1− 1
l

l (∂�) × R with respect to (μ, ψ) at (0, 0, φ1) is a homeomorphism 
by the standard argument. Then an application of the implicit function theorem implies that

G(s,μ,ψ)= 0 ⇐⇒ (μ,ψ)= (μ(s),ψ(s)), |s| � 1,

μ(0) = 0, ψ(0) = φ1 and μ(s) and ψ(s) are both real analytic at s = 0 (see Zeidler [64]). Here 
ψ(s) is positive on � by the positivity of φ1 on � and the continuity of ψ(s) on s. Hence we 
obtain that μ(s) =μ1(s) and ψ(s) =ψ1(s) by uniqueness.

Now we differentiate by s the equation (4.18) with μ = μ1(s) and ψ =ψ1(s), and then obtain 
the equation for s = 0:

⎧⎪⎨
⎪⎩

−e−αP (x)∇ · [eαP (x)∇ψ ′
1(0)

]
−λ1f (x,0)ψ ′

1(0)− λ′
0(0)f (x,0)φ1 − 2λ1fu(x,0)φ2

1 = μ′
1(0)φ1, x ∈�,

∂�nψ ′
1(0)− λ1β(x,0)ψ ′

1(0)− λ′
0(0)β(x,0)φ1 − 2λ1βu(x,0)φ2

1 = μ′
1(0)φ1, x ∈ ∂�,

(4.19)
where we have used the fact that λ0(0) = λ1, u0(0) = 0, μ1(0) = 0 and u′

0(0) = ψ1(0) = φ1. 
Multiplying the first equation of (4.19) by eαP (x)φ1 and integrating the result over �, it follows 
that
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μ′
1(0)

(∫
�

eαP(x)φ2
1dx +

∫
∂�

eαP (x)φ2
1dS

)

= −λ′
0(0)

(∫
�

eαP(x)f (x,0)φ2
1dx +

∫
∂�

eαP (x)β(x,0)φ2
1dS

)

− 2λ1

(∫
�

eαP(x)fu(x,0)φ3
1dx +

∫
∂�

eαP (x)βu(x,0)φ3
1dS

)
. (4.20)

This combined with the expression of λ′
0(0) and the variational characterization of λ1 gives that

μ′
1(0)= λ′

0(0)
(∫
�
eαP(x)f (x,0)φ2

1dx + ∫
∂�
eαP (x)β(x,0)φ2

1dS
)

∫
�
eαP(x)φ2

1dx + ∫
∂�
eαP (x)φ2

1dS
. (4.21)

Thanks to the variational characterization of λ1, it follows that

∫
�

eαP(x)f (x,0)φ2
1dx +

∫
∂�

eαP (x)β(x,0)φ2
1dS > 0.

Furthermore, when λ′
0(0) = 0, we still need to compute the expression of μ′′

1(0) since μ′
1(0) = 0. 

Differentiating twice by s the equation (4.18) with μ = μ1(s) and ψ = ψ1(s) and letting s = 0, 
similarly, we have

μ′′
1(0)

⎛
⎝∫
�

eαP(x)φ2
1dx +

∫
∂�

eαP (x)φ2
1dS

⎞
⎠

= − 4λ1

⎛
⎝∫
�

eαP(x)fu(x,0)φ2
1ψ

′
1(0)dx +

∫
∂�

eαP (x)βu(x,0)φ2
1ψ

′
1(0)dS

⎞
⎠

− λ′′
0(0)

⎛
⎝∫
�

eαP(x)f (x,0)φ2
1dx +

∫
∂�

eαP (x)β(x,0)φ2
1dS

⎞
⎠

− λ1

(∫
�

eαP(x)
[
3fuu(x,0)φ2

1 + 2fu(x,0)u′′
0(0)

]
φ2

1dx

+
∫
∂�

eαP (x)
[
3βuu(x,0)φ2

1 + 2βu(x,0)u′′
0(0)

]
φ2

1dS

)
. (4.22)

In (4.22), there are u′′
0(0) and ψ ′

1(0) to be determined. Here, ψ ′
1(0) satisfies (4.19) with λ′

0(0) =
μ′

1(0) = 0, which coincides with (4.11). To consider u′′
0(0), we substitute (λ, u) = (λ0(s), sφ1 +

sz1(s)) into (1.6), and then obtain
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{
−∇ · [eαP (x)∇(φ1 + z1(s))

] = λ0(s)e
αP (x)f (x, sφ1 + sz1(s))(φ1 + z1(s)), x ∈�,

∂�n(φ1 + z1(s))= λ0(s)β(x, sφ1 + sz1(s))(φ1 + z1(s)), x ∈ ∂�.

(4.23)
By differentiating (4.23) with respect to s, and letting s = 0, there holds that

{
−∇ · [eαP (x)∇z′1(0)] = λ1e

αP (x)f (x,0)z′1(0)+ λ1e
αP (x)fu(x,0)φ2

1 , x ∈�,

∂�nz′1(0)= λ1β(x,0)z′1(0)+ λ1βu(x,0)φ2
1 , x ∈ ∂�.

(4.24)

Note that u′′
0(s) = 2z′1(s) + sz′′1(s). Then u′′

0(0) = 2z′1(0). According to definitions of ψ1(s) and 
u0(s), we see that ψ ′

1(0), u
′′
0(0) and z′1(0) do not belong to N(DuF(λ1, 0)). Notice that

∫
�

eαP(x)fu(x,0)φ3
1dx +

∫
∂�

eαP (x)βu(x,0)φ3
1dS = 0

since λ′
0(0) = 0. Then by (4.6), the solution of (4.11) exists and is unique, so does the solution 

of (4.24). Now, we must have ψ ′
1(0) = u′′

0(0) = ϑ , where ϑ is defined as in (4.11). This together 
with (4.22) and the expression of λ′′

0(0) yields that

μ′′
1(0)= 2λ′′

0(0)
(∫
�
eαP(x)f (x,0)φ2

1dx + ∫
∂�
eαP (x)β(x,0)φ2

1dS
)

∫
�
eαP(x)φ2

1dx + ∫
∂�
eαP (x)φ2

1dS
. (4.25)

To sum up the above discussion, we have that under the assumptions (H1) and (H3), the 
trivial steady state u = 0 is stable for 0 < λ < λ1, and unstable for λ > λ1. If u = 0 and the 
only positive solutions are physically meaningful solutions, then the transcritical bifurcation is 
superscritical (resp. subscritical) and the positive bifurcating solution is stable (resp. unstable) if 
λ′

0(0) > 0 (resp. λ′
0(0) < 0). Furthermore, when λ′

0(0) = 0, the pitchfork bifurcation is forward 
(resp. backward) and the positive bifurcating solution is stable (resp. unstable) if λ′′

0(0) > 0 (resp. 
λ′′

0(0) < 0).

4.2. Local bifurcation from �u1

In this subsection, we discuss the bifurcations on �u1 = {(0, u1) : u1 > 0, u1 ∈R}. Notice that 
F(0, u∗) = 0 and DuF(0, u∗) = (∇ · [eαP (x)∇]

, ∂
∂ �n ) for any given constant u∗ > 0. Then we see 

that N(DuF(0, u∗)) = span{1}. Set (y1, y2) ∈R(DuF(0, u∗)) and w ∈X with

{
∇ · [eαP (x)∇w] = y1, x ∈�,

∂�nw = y2, x ∈ ∂�.

Integrating the above equation over �, it follows that

∫
∂�

eαP (x)y2dS =
∫
∂�

eαP (x)∂�nwdS =
∫
�

∇ · [eαP (x)∇w]
dx =

∫
�

y1dx.

This means that (y1, y2) ∈R(DuF(0, u∗)) if and only if
25
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∫
�

y1dx =
∫
∂�

eαP (x)y2dS. (4.26)

Thus, codimR(DuF(0, u∗)) = 1 and DuF(0, u∗) is a Fredholm operator with index zero. Then 
we decompose the spaces X and Y by

X =N(DuF(0, u∗))⊕X1 and Y =R(DuF(0, u∗))⊕ Y1.

In the following, referring to Section 2.2 in [26], we use the Lyapunov-Schmidt reduction tech-
nique to investigate how bifurcation occurs. When dimY1 = 1, there exists ϕ ∈ Y satisfying 
‖ϕ‖Y = 1 so that Y1 = span{ϕ}. Applying the Hahn-Banach Theorem [63], we see that there 
exists a vector l in the dual space Y ∗ of Y satisfying that 〈l, ϕ〉 = 1 and 〈l, y〉 = 0 for all 
y ∈R(DuF(0, u∗)), in which 〈·, ·〉 : Y ∗ ×Y → R is the duality between Y ∗ and Y and is defined 
by

〈v,u〉 =
∫
�

v(x)u1(x)dx −
∫
∂�

eαP (x)v(x)u2(x)dS,

for all v ∈ Y ∗ and u = (u1, u2) ∈ Y . Here we can choose l ∈ Y ∗ such that

〈l, u〉 =
∫
�

u1(x)dx −
∫
∂�

eαP (x)u2(x)dS

and then N(l) = R(DuF(0, u∗)). Now, we let P be a projection operator from Y to Y1 along 
R(DuF(0, u∗)), namely, Py = 〈ψ, y〉ϕ for y ∈ Y . Set u = u∗ +σ +η, where σ ∈ R and η ∈X1. 
Thus, F(λ, u) = 0 is equivalent to the following system

PF(λ,u∗ + σ + η)= 0, (I − P)F(λ,u∗ + σ + η)= 0. (4.27)

By a simple calculation, we have (I − P)F(0, u∗) = 0 and (I − P)DσF(0, u∗) =DuF(0, u∗). 
From the implicit function theorem, there exist an open neighborhood U of (0, 0) in R2, and a 
continuously differentiable map η̃ : U →X1 such that η̃(0, 0) = 0 and

(I − P)F(λ,u∗ + σ + η̃(λ, σ ))≡ 0. (4.28)

Substituting η = η̃(λ, σ) into the first equation of (4.27) and then calculating the inner product 
with l, we obtain that

G(λ,σ )� 〈l,PF(λ,u∗ + σ + η̃(λ, σ ))〉
= 〈l,F(λ,u∗ + σ + η̃(λ, σ ))〉 = 0.

(4.29)

From above argument, we reduce the original bifurcation problem to the problem of find-
ing zeros of G(λ, σ). By (4.28), we see that (I − P)DuF(0, u∗)[1 + η̃σ (0, 0)] = 0. Since 
DuF(0, u∗)[1] = 0, η̃σ ∈ X1 and DuF(0, u∗)X1 is an isomorphism, then η̃σ (0, 0) = 0. Clearly, 
G(0, 0) =Gσ (0, 0) = 0. Notice that
26



Z. Li, B. Dai and X. Zou Journal of Differential Equations 363 (2023) 1–66
Gλ(0,0)= u∗
∫
�

eαP(x)f (x,u∗)dx + u∗
∫
∂�

eαP (x)β(x,u∗)dS.

By the implicit function theorem, if Gλ(0, 0) �= 0, then there exist a constant δ > 0 and a continu-
ously differentiable mapping σ �→ λσ from (−δ, δ) → R such that G(λσ , σ) ≡ 0 for σ ∈ (−δ, δ), 
i.e., (1.6) with λ = λσ has a positive solution u∗ +σ + η̃(λσ , σ). This combined with Lemma 4.2
implies that (0, u∗) ∈ R ×X is not a bifurcation point of the map F when Gλ(0, 0) �= 0. More-
over, we have Fλ(0, u∗) /∈R(DuF(0, ·)). Then the following conclusion holds true.

Theorem 4.5. Assume that f, β satisfy (H1) with f ∈ C2(� × R), g ∈ C2(∂� × R), and also 
satisfy

(H2)′
∫
�

eαP(x)f (x, u∗)dx +
∫
∂�

eαP (x)β(x, u∗)dS �= 0 for some u∗ > 0.

Then there exists no positive solution of (1.6) bifurcating from (0, u∗), that is to say, the solution 
set of (1.6) near (0, u∗) consists precisely of the trivial curve �u1 .

Next, we consider the bifurcation problem when Gλ(0, 0) = 0 holds. Under the assumption
(H2), we have ∇G(0, 0) = (0, 0). To find the zeros of G(λ, σ), we need to calculate the Hessian 
matrix of G at (0, 0), which has the form:

Hess(G)=
(
Gλλ(0,0) Gλσ (0,0)
Gλσ (0,0) Gσσ (0,0)

)
. (4.30)

From Lemma 2.5 in [39], we have the following results:

(i) If det Hess(G) > 0, then (0, 0) is the unique zero of G near (0, 0);
(ii) If det Hess(G) < 0, then there exist two Cp−1 curves (λ1(s), σ1(s)) and (λ2(s), σ2(s)) for 

s ∈ (−δ, δ), such that the solution set of G(λ, σ) = 0 consists of precisely these two curves 
near (0, 0), which satisfy (λ1(0), σ1(0)) = (λ2(0), σ2(0)) = (0, 0). Moreover, s can be re-
scaled so that (λ′

1(0), σ
′
1(0)) and (λ′

2(0), σ
′
2(0)) are the two linear independent solutions 

of

Gλλ(0,0)x2 + 2Gλσ (0,0)xy +Gσσ (0,0)y2 = 0.

A straightforward calculation gives that Gσσ (0, 0) = 0 and

Gλσ (0,0)=
∫
�

eαP(x)
[
f (x,u∗)+ fu(x,u∗)u∗

]
dx +

∫
∂�

eαP (x)
[
β(x,u∗)+ βu(x,u∗)u∗

]
dS.

Notice that (I − P)
(
DλF(0, u∗) +DuF(0, u∗)[η̃λ(0, 0)]

) = 0. This together with the fact that 
η̃λ(0, 0) ∈ X1 and DλF(0, u∗) ∈ R(DuF(0, u∗)) means that DλF(0, u∗) + DuF(0, u∗)[η̃λ(0,
0)] = 0. Moreover, since
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Gλλ = 〈l,DλλF + 2DλuF[η̃λ] +DuuF[η̃λ, η̃λ] +DuF[η̃λλ]〉
= 〈l,DλλF + 2DλuF[η̃λ] +DuuF[η̃λ, η̃λ]〉,

we have

Gλλ(0,0)= 2
∫
�

eαP(x)
[
f (x,u∗)+ u∗fu(x,u∗)

]
v1dx

+ 2
∫
∂�

eαP (x)
[
β(x,u∗)+ u∗βu(x,u∗)

]
v1dS,

where v1 is the unique solution of

⎧⎪⎨
⎪⎩

∇ · [eαP (x)∇v] + eαP (x)f (x,u∗)u∗ = 0, x ∈�,

∂�nv = β(x,u∗)u∗, x ∈ ∂�,∫
�
v(x)dx = 0.

(4.31)

Thus, we have the following result.

Theorem 4.6. Assume that f, β satisfy (H1) with f ∈ C2(� ×R), g ∈ C2(∂� ×R), (H2) and

(H4)
∫
�

eαP(x)fu(x, u∗)dx +
∫
∂�

eαP (x)βu(x, u∗)dS �= 0 for some u∗ > 0.

Then the solution set of (1.6) near (0, u∗) consists exactly of the trivial solution curve �u1 and 
the curve

�1 = {(λ1(s), u1(s)) : s ∈ (−δ, δ)⊂ R},

where λ1(s) and u1(s) = u∗ + σ1(s) + η̃(λ1(s), σ1(s)) are C1 functions such that λ1(0) =
σ1(0) = 0, λ′

1(0) = 1 and

σ ′
1(0)= −

∫
�
eαP(x)

[
f (x,u∗)+ u∗fu(x,u∗)

]
v1dx + ∫

∂�
eαP (x)

[
β(x,u∗)+ u∗βu(x,u∗)

]
v1dS∫

�
eαP(x)

[
f (x,u∗)+ fu(x,u∗)u∗

]
dx + ∫

∂�
eαP (x)

[
β(x,u∗)+ βu(x,u∗)u∗

]
dS

,

with v1 defined as in (4.31).

Proof. If the f, β satisfy (H1), (H2) and (H4), then ∇G(0, 0) = (0, 0) and det Hess(G) < 0. 
Thus, there exist two Cp−1 curves (λ1(s), σ1(s)) and (λ2(s), σ2(s)) for s ∈ (−δ, δ), which sat-
isfy (λ1(0), σ1(0)) = (λ2(0), σ2(0)) = (0, 0), such that the solution set of G(λ, σ) = 0 consists of 
precisely these two curves near (0, 0) and that (λ′

1(0), σ
′
1(0)) = (1, σ ′

1(0)) and (λ′
2(0), σ

′
2(0)) =

(0, 1). It is noticed that the solution curve (λ2(s), σ2(s)) = (0, 1)s+o(s) of G = 0 is correspond-
ing to the trivial branch �u1 = {(0, u1) : u1 > 0}. Hence, we obtain the existence of two solution 
curves of (1.6), which are tangent to each other at the bifurcation point. �
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In what follows, we study the stability of bifurcating solution (λ1(s), u1(s)) in Theorem 4.6. 
Consider the linear eigenvalue problem (3.1) at (λ1(s), u1(s)), which has the form:

{
−e−αP (x)∇ · [eαP (x)∇ψ] − λ1(s)

[
f (x,u1(s))+ u1(s)fu(x,u1(s))

]
ψ = μψ, x ∈�,

∂�nψ − λ1(s)
[
β(x,u1(s))+ u1(s)βu(x,u1(s))

]
ψ = μψ, x ∈ ∂�.

(4.32)
We still denote by (μ1(s), ψ1(s)) the principal eigen-pair of problem (4.32). Obviously, μ1(0) =
0 and ψ1(0) = 1. Multiplying the first equation of (4.32) by eαP (x) and then integrating over �, 
it follows that

μ1(s)
(∫
�

eαP(x)ψ1(s)dx +
∫
∂�

eαP (x)ψ1(s)dS
)

= − λ1(s)
(∫
�

eαP(x)
[
f (x,u1)+ fu(x,u1)u1

]
dx +

∫
∂�

eαP (x)
[
β(x,u1)+ βu(x,u1)u1

]
dS

)
.

Taking s → 0, we see that

lim
s→0

μ1(s)

λ1(s)
= − Gλσ (0,0)∫

�
eαP(x)dx + ∫

∂�
eαP (x)dS

.

Therefore, we can conclude that under the assumptions (H1), (H2) and (H4), there exists a 
positive solution curve �1 = {(μ1(s), u1(s)) : s ∈ (0, δ) ∈ R, δ > 0} of (1.6) bifurcating from the 
trivial branch �u1 = {(0, u1) : u1 > 0}. Moreover, when Gλσ (0, 0) < 0, the positive bifurcating 
solution of (1.6) is stable (resp. unstable) for s ∈ (0, δ) (resp. s ∈ (−δ, 0)); when Gλσ (0, 0) > 0, 
it becomes unstable (resp. stable) for s ∈ (0, δ) (resp. s ∈ (−δ, 0)).

4.3. Local bifurcation from (0, 0)

It is easy to see that in the previous subsection, if u∗ is replaced by 0, then there must be 
Gλ(0, 0) = 0, and the argument for Theorem 4.6 can also be applied to the point (λ, u) = (0, 0)
with some modification. Thus we have the following conclusion.

Theorem 4.7. Assume that f, β satisfy (H1) with f ∈ C2(� × R), g ∈ C2(∂� × R), and the 
condition

(H3)′
∫
�

eαP(x)f (x, 0)dx +
∫
∂�

eαP (x)β(x, 0)dS �= 0.

Then the nonnegative solution set of (1.6) near (0, 0) is the union of �0 and �u1 .

In fact, Theorem 4.7 is valid since det Hess(G) < 0 at the bifurcation point (0, 0), where 
G(λ, σ) = 〈l, F(λ, σ + η̃(λ, σ))〉. However, when the condition

(H3)′′
∫
eαP (x)f (x, 0)dx +

∫
eαP (x)β(x, 0)dS = 0
� ∂�
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is satisfied, we have det Hess(G) = 0 at the bifurcation point (0, 0), and Lemma 2.5 of Liu, Shi 
and Wang [39] can not be applied to G. In this degenerate case, we need to further investigate 
the bifurcation problem at (0, 0). Assume that f ∈ C3(� ×R), g ∈ C3(∂� ×R). Then η̃ and G
are C3 in a neighborhood U of (λ, σ) = (0, 0). Since F(λ, 0) ≡ 0, it follows that η̃(λ, 0) ≡ 0, 
hence η̃λ(0, 0) = 0 and η̃λλ(0, 0) = 0. Define F (λ, σ) := (I − P)F(λ, σ + η̃(λ, σ)) ≡ 0 for 
(λ, σ) ∈ U . It is easy to calculate that

∂F

∂σ
= (I − P)DuF(0,0)[1 + η̃σ (0,0)] =DuF(0,0)[η̃σ (0,0)] = 0,

thus η̃σ (0, 0) = 0 from DuF(0, 0)[1] = 0, DuF(0, 0)|X1 : X1 → R(DuF(0, 0)) is an isomor-
phism and η̃σ (0, 0) ∈X1. For the second derivatives of F , we calculate that

∂2F

∂λ∂σ
(0,0)= (I − P)

(
DλuF(0,0)

[
1 + η̃σ (0,0)

] +DuuF(0,0)
[
1 + η̃σ (0,0), η̃λ(0,0)

]
+DuF(0,0)

[
η̃λσ (0,0)

])
=DλuF(0,0)

[
1
] +DuF(0,0)

[
η̃λσ (0,0)

] = 0.

In view of (H3)′′, there holds that DλuF(0, 0)
[
1
] ∈ R(DuF(0, 0)), and then η̃λσ (0, 0) = ξ1 is 

the unique solution of

⎧⎪⎨
⎪⎩

∇ · [eαP (x)∇ξ] + eαP (x)f (x,0)= 0, x ∈�,

∂�nξ = β(x,0), x ∈ ∂�,∫
�
ξ(x)dx = 0.

(4.33)

Similarly, the equation

∂2F

∂σ 2 (0,0)= (I − P)
(
DuuF(0,0)

[
1 + η̃σ (0,0)

]2 +DuF(0,0)
[
η̃σσ (0,0)

])
=DuuF(0,0)

[
1
]2 +DuF(0,0)

[
η̃σσ (0,0)

] = 0

implies that η̃σσ (0, 0) = 0 since DuuF(0, 0)
[
1
]2 = 0 and η̃σσ (0, 0) ∈X1.

Since η̃(λ, 0) ≡ 0, there should be G(λ, 0) ≡ 0. Now, we define

H(λ,σ )=
⎧⎨
⎩

1

σ
G(λ,σ ), if σ �= 0,

Gσ (λ,0), if σ = 0.
(4.34)

Firstly, we check that H(λ, σ) is C2 at σ = 0 in U . We calculate that

Hσ (λ,0)= lim
σ→0

1

σ
(H(λ,σ )−H(λ,0))= lim

σ→0

1

σ

(
1

σ
G(λ,σ )−Gσ (λ,0)

)

= lim
1
2

(
G(λ,σ )−G(λ,0)−Gσ (λ,0)σ

) = 1
Gσσ (λ,0),
σ→0 σ 2
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Hλσ (λ,0)= lim
σ→0

1

σ
(Hλ(λ,σ )−Hλ(λ,0))= lim

σ→0

1

σ

(
1

σ
Gλ(λ,σ )−Gλσ (λ,0)

)

= lim
σ→0

1

σ 2

(
Gλ(λ,σ )−Gλ(λ,0)−Gλσ (λ,0)σ

) = 1

2
Gλσσ (λ,0),

Hλ(λ,0)=Gλσ (λ,0), Hλλ(λ,0)=Gλλσ (λ,0),

and

Hσσ (λ,0)= lim
σ→0

1

σ
(Hσ (λ,σ )−Hσ (λ,0))

= lim
σ→0

1

σ

(−G(λ,σ )+ σGσ (λ,σ )

σ 2 − 1

2
Gσσ (λ,0)

)

= lim
σ→0

1

σ 3

(
−G(λ,σ )+ σGσ (λ,σ )− 1

2
Gσσ (λ,0)

)
= 1

3
Gσσσ (λ,0).

Thus Hσ and Hσσ are well-defined for σ = 0. In addition,

Hσσ (λ,σ )−Hσσ (λ,0)= 2

σ 3

[
G(λ,σ )− σGσ (λ,σ )+ σ 2

2
Gσσ (λ,σ )− σ 3

6
Gσσσ (λ,0)

]
= o(σ ),

Hλλ(λ,σ )−Hλλ(λ,0)= 1

σ
Gλλ(λ,σ )−Gλλσ (λ,0)

= 1

σ

[
Gλλ(λ,σ )−Gλλ(λ,0)−Gλλσ (λ,0)σ

] = o(σ )

and

Hλσ (λ,σ )−Hλσ (λ,0)= − 1

σ 2Gλ(λ,σ )+ 1

σ
Gλσ (λ,σ )− 1

2
Gλσσ (λ,0)

= − 1

σ 2

[
Gλ(λ,σ )− σGλσ (λ,σ )+ 1

2
Gλσσ (λ,0)σ 2

]
= o(σ ),

which means that H ∈ C2 at σ = 0 in U .
Next, we show that H(0, 0) = 0, ∇H(0, 0) = (Hλ(0, 0), Hσ (0, 0)) = (0, 0), and the Hessian 

matrix Hess(H) is non-degenerate. Calculating the partial derivatives of H at (0, 0), it follows 
that

H(0,0)=Gσ (0,0)= 〈
l,DuF(0,0)

[
1 + η̃σ (0,0)

]〉 = 0,

Hλ(0,0)=Gλσ (0,0)

= 〈
l,DλuF(0,0)

[
1 + η̃σ (0,0)

] +DuuF(0,0)
[
η̃λ(0,0),1 + η̃σ (0,0)

]
+DuF(0,0)

[
η̃λσ (0,0)

]〉
= 〈

l,DλuF(0,0)
[
1
]〉 = ∫

�

eαP(x)f (x,0)dx +
∫
∂�

eαP (x)β(x,0)dS = 0,
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and

Hσ (0,0)= 1

2
Gσσ (λ,0)

= 1

2

〈
l,DuuF(0,0)

[
1 + η̃σ (0,0)

]2 +DuF(0,0)
[
η̃σσ (0,0)

]〉

= 1

2

〈
l,DuuF(0,0)

[
1
]2

〉
= 0.

Recall that η̃σ (0, 0) = η̃λ(0, 0) = η̃λλ(0, 0) = η̃σσ (0, 0) = 0, and η̃λσ (0, 0) = ξ1 is the unique 
solution of (4.33). For the Hessian matrix

Hess(H)=
(
Hλλ Hλσ

Hλσ Hσσ

)
,

we have the following evaluations at (0, 0):

Hλλ(0,0)=Gλλσ (0,0)

=
〈
l,DλλuF

[
1 + η̃σ

] + 2DλuuF
[
η̃λ,1 + η̃λ

] + 2DλuF
[
η̃λσ

] + 2DuuF
[
η̃λσ , η̃λ

]
+DuF

[
η̃λλσ

] +DuuuF
[
η̃λ, η̃λ,1 + η̃σ

] +DuuF
[
η̃λλ,1 + η̃σ

]〉
=

〈
l,DλλuF(0,0)

[
1
] + 2DλuF(0,0)

[
ξ1

]〉
= 2

∫
�
eαP(x)f (x,0)ξ1(x)dx + 2

∫
∂�
eαP (x)β(x,0)ξ1(x)dS = 2

∫
�
eαP(x)|∇ξ1|2dx,

Hλσ (0,0)= 1
2Gλσσ (0,0)

= 1
2

〈
l,DλuuF

[
1 + η̃σ

]2 +DλuF
[
η̃σσ

] + 2DuuF
[
η̃λσ ,1 + η̃σ

] +DuF
[
η̃λσσ

]
+DuuuF

[
η̃λ,1 + η̃σ ,1 + η̃σ

] +DuuF
[
η̃λ, η̃σσ

]〉
= 1

2

〈
l,DλuuF(0,0)

[
1
]2 + 2DuuF(0,0)

[
η̃λσ ,1

]〉
= ∫

�
eαP(x)fu(x,0)dx + ∫

∂�
eαP (x)βu(x,0)dS,

and

Hσσ (0,0)= 1

3
Gσσσ (0,0)

= 1

3

〈
l,DuuuF

[
1 + η̃σ

]3 + 3DuuF
[
η̃σσ ,1 + η̃σ

] +DuF
[
η̃σσσ

]〉

= 1

3

〈
l,DuuuF(0,0)

[
1
]3

〉
= 0.

Hence from Lemma 2.5 of Liu, Shi and Wang [39], we see that if det Hess(H) < 0, then the 
solution set of H(λ, σ) = 0 near (λ, σ) = (0, 0) is a pair of intersecting curves. Consequently, 
the solution set of (1.6) near (λ, u) = (0, 0) is precisely the union of trivial solution curve �0
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and the pair of intersecting curves which solves H(λ, σ) = 0. Here, the two intersecting curves 
solving H(λ, σ) = 0 have the form

{(λi(s), ui(s)) : |s|< δ} (i = 1,2)

for some δ > 0 with ui(s) = σi(s) + η̃i (λi(s), ui(s)), where (λ′
1(0), σ

′
1(0)) and (λ′

2(0), σ
′
2(0))

are non-zero linear independent solutions of

Hλλ(0,0)x2 + 2Hλσ (0,0)xy = 0.

Then we choose (λ′
1(0), σ

′
1(0)) = (0, 1), (λ′

2(0), σ
′
2(0)) = (1, − Hλλ(0,0)

2Hλσ (0,0)
) such that the curve 

{(λ1(s), u1(s))} is consistent with the trivial solution set �u1 , while the curve �2 = {(λ2(s),

u2(s))} must be distinct from �0 or �u1 . Thus, the following theorem is established.

Theorem 4.8. Assume that f, β satisfy (H1), (H3)′′ with f ∈ C3(� ×R), g ∈ C3(∂� ×R), and 
the condition

(H5)
∫
�

eαP(x)fu(x, 0)dx +
∫
∂�

eαP (x)βu(x, 0)dS �= 0.

Then the solution set of (1.6) near (0, 0) consists exactly of the curves �0, �u1 and

�2 = {(λ2(s), u2(s)) : s ∈ (−δ, δ)⊂ R},
where λ2(s) and u2(s) = σ2(s) + η̃(λ2(s), σ2(s)) are C1 functions such that λ2(0) = σ2(0) = 0, 
λ′

2(0) = 1 and

σ ′
2(0)= −

∫
�
eαP(x)|∇ξ1|2dx∫

�
eαP(x)fu(x,0)dx + ∫

∂�
eαP (x)βu(x,0)dS

,

with ξ1 defined as in (4.33).

Remark 4.9. From Theorem 4.8, it can be seen that if 
∫
�
eαP(x)fu(x, 0)dx + ∫

∂�
eαP (x)βu(x,

0)dS < 0, then there exists a negative solution curve �−
2 of (1.6) bifurcating from the line of 

trivial solutions �0 and �u1 , which has the form �−
2 = {(λ2(s), u2(s)) : s ∈ I = (−δ, 0) ⊂ R}. 

However, this solution has no biological significance.

Finally, we investigate the stability of positive bifurcating solution (λ2(s), u2(s)) for s ∈ (0, δ)
in Theorem 4.8. Consider the linear eigenvalue problem (3.1) at (λ2(s), u2(s)), which has the 
form:{

−e−αP (x)∇ · [eαP (x)∇ψ] − λ2(s)
[
f (x,u2(s))+ u2(s)fu(x,u2(s))

]
ψ = μψ, x ∈�,

∂�nψ − λ2(s)
[
β(x,u2(s))+ u2(s)βu(x,u2(s))

]
ψ = μψ, x ∈ ∂�.

(4.35)
We still denote by (μ1(s), ψ1(s)) the principal eigen-pair of problem (4.35). Obviously, μ1(0) =
0 and ψ1(0) = 1. Moreover, λ2(0) = u2(0) = 0, λ′ (0) = 1 and u′ (0) = σ ′(0). Substituting λ =
2 2 2
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λ2(s), u = u2(s) into (1.6), differentiating twice with respect to s, and then letting s = 0, we 
obtain that

{
−∇ · [eαP (x)∇u′′

2(0)
] = 2eαP (x)f (x,0)σ ′

2(0), x ∈�,

∂�nu′′
2(0)= 2β(x,0)σ ′

2(0), x ∈ ∂�,

which leads to that u′′
2(0) = 2σ ′

2(0)ξ1, where ξ1 is the unique solution of (4.33). Similarly by 
differentiating (4.35) and setting s = 0, we get

{
−e−αP (x)∇ · [eαP (x)∇ψ ′

1(0)
] − f (x,0)= μ′

1(0), x ∈�,

∂�nψ ′
1(0)− β(x,0)= μ′

1(0), x ∈ ∂�.
(4.36)

By multiplying the first equation of (4.36) by eαP (x) and integrating over �, it is inferred that 
μ′

1(0) = 0 and then ψ ′
1(0) = ξ1. Next, differentiating (4.35) twice by s and taking s = 0, we have

⎧⎪⎨
⎪⎩

−e−αP (x)∇ · [eαP (x)∇ψ ′′
1 (0)

]
−2f (x,0)ξ1 − 4fu(x,0)σ ′

2(0)− λ′′
2(0)f (x,0)= μ′′

1(0), x ∈�,

∂�nψ ′′
1 (0)− 2β(x,0)ξ1 − 4βu(x,0)σ ′

2(0)− λ′′
2(0)β(x,0)= μ′′

1(0), x ∈ ∂�,

(4.37)

where we have used the fact that μ′
1(0) = 0 and ψ ′

1(0) = ξ1. By the assumption (H3)′′, multiply-
ing the first equation of (4.37) by eαP (x) and integrating over �, we derive that

μ′′
1(0)

(∫
�

eαP(x)dx +
∫
∂�

eαP (x)dS
)

= −2
(∫
�

eαP(x)f (x,0)ξ1(x)dx +
∫
∂�

eαP (x)β(x,0)ξ1(x)dS
)

− 4σ ′
2(0)

(∫
�

eαP(x)fu(x,0)dx +
∫
∂�

eαP (x)βu(x,0)dS
)

= 2
∫
�

eαP(x)|∇ξ1|2dx > 0,

(4.38)

which implies that μ′′
1(0) > 0.

Therefore, we can conclude from the above arguments and Theorem 3.4 that under the as-
sumptions (H1), (H3′′) and (H5), the trivial solution (λ, 0) of (1.6) is unstable for λ ∈ (0, ∞)

and the positive bifurcating solution (λ2(s), u2(s)) is stable for s ∈ (0, δ).

5. Application to a parabolic equation with monostable nonlinear boundary condition

In this section, we consider a special case of (1.5) with f (x, u) ≡ 0 and β(x, u) = r(x)b(u), 
i.e.,
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⎧⎪⎨
⎪⎩
ut = e−αP (x)∇ · [eαP (x)∇u], x ∈�, t > 0,

∂�nu= λr(x)b(u)u, x ∈ ∂�, t > 0,

u(x,0)= u0(x) > 0, x ∈�,

(5.1)

where � ∈RN(N ≥ 1) is a bounded domain with smooth boundary ∂�, λ is a positive parameter, 
r : ∂� → R is of class C1+θ (∂�) for some θ ∈ (0, 1) and b :R → R is C3 function satisfying

(A1)

{
b(0) > 0, b(1)= 0, b′(1) < 0, [ub(u)]′′ < 0 in (0,1),

b > 0 in (0,1), b < 0 in (1,+∞).

Clearly, b(u) = 1 −u satisfies the condition (A1). Moreover, for the parabolic problem above we 
have

(A2) X := {u ∈H 1(�) : 0 ≤ u(x) ≤ 1 a.e. x ∈�} is the phase space for (5.1)

keeping analogy with several problems occurring in population genetics where solutions with 
0 ≤ u ≤ 1 are of interest.

Consider the steady state solutions of (5.1) satisfying 0 ≤ u ≤ 1, which satisfy

{
∇ · [eαP (x)∇u] = 0, x ∈�,

∂�nu= λr(x)b(u)u, x ∈ ∂�.
(5.2)

For application of the results of Section 4, we define a nonlinear mapping F :R ×W 2
l (�) →

Ll(�) ×W
1− 1

l

l (∂�), l > N as

F(λ,u)=
(
∇ · [eαP (x)∇u], ∂�nu− λr(x)b(u)u

)
. (5.3)

The aim of this section is to study the bifurcation and stability structures of steady states of 
(5.1). Assume that b satisfies (A1). Clearly, (5.2) has the trivial solution curves

�0 := {(λ,0) : λ > 0}, �1 := {(λ,1) : λ > 0}

and

�u1 := {(0, u1) : 0< u1 < 1}.

We first investigate bifurcation from the solution set �0 and �1 as follows:

Proposition 5.1. Suppose that (A1) holds true and r : ∂� → R is sign-changing on ∂�.

(i) If

∫
eαP (x)r(x)dS = 0, (5.4)
∂�
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then there is no bifurcation from �0 and �1.
(ii) If ∫

∂�

eαP (x)r(x)dS < 0, (5.5)

then (λ1, 0) is a bifurcation point with respect to the trivial branch �0 and there is no 
bifurcation from �1, where λ1 is the unique positive principal eigenvalue of

{
−∇ · [eαP (x)∇v] = 0, x ∈�,

∂�nv = λr(x)b(0)v, x ∈ ∂�.
(5.6)

(iii) If ∫
∂�

eαP (x)r(x)dS > 0, (5.7)

then (λ̃1, 1) is a bifurcation point with respect to the trivial branch �1 and there is no 
bifurcation from �0, where λ̃1 is the unique positive principal eigenvalue of

{
−e−αP (x)∇ · [eαP (x)∇φ] = 0, x ∈�,

∂�nψ = λr(x)b′(1)φ, x ∈ ∂�.

Proof. (i) We only prove the case related to �0. Suppose that λ̂ > 0 is a bifurcation point with 
respect to �0. From Lemma 4.2 (i), then λ̂ is the principal eigenvalue of (5.6), which is impossible 
by (5.4) and Theorem 2.2 (iii). The proof for �1 is similar.

(ii) It can be seen from Theorem 2.2 that when (5.5) holds, (5.6) admits a principal eigenvalue 
λ1 > 0 since b(0) > 0. Thus, λ1 is a bifurcation point with respect to �0. On the other hand, 
since b′(1) < 0 and (5.5) holds, there is no bifurcation from �1. Finally, part (iii) is similar to 
part (ii). �

In Proposition 5.1, the results of part (ii) and part (iii) seem to be symmetric. Actually, the 
change of variable ũ= 1 − u allows us to transform all analysis made for �0 and �1, yielding 
relatively symmetric results that can be read by interchanging the roles of u ≡ 0 and u ≡ 1. In 
the following, we mainly consider the cases (5.4) and (5.5).

5.1. Case (5.4)

It follows from Proposition 5.1 (i) that no bifurcation occurs from �0 and �1. That is, the 
bifurcation theory for simple eigenvalue can not be applied to �0 and �1. Indeed, we can calculate 
that

DuF(0, ū)[φ] =
(

∇ · [eαP (x)∇φ]
,
∂φ

∂ �n
)
,

DλuF(0, ū)[φ] = (
0,−r(x)[b(ū)+ ūb′(ū)]φ)
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for φ ∈ W 2
l (�), where ū = 0 or ū = 1. Since N(DuF(0, ū)) = span{1}, by (5.4), it holds that 

DλuF(0, ū)[1] ∈ R(DuF(0, ū)). Then the transversality condition of Crandall-Babinowitz theo-
rem [20] is not satisfied. Moreover, we see that the conditions in Theorems 4.6, 4.7 and 4.8 are 
also not satisfied. So we need to use other approach to study bifurcation from (0, ū) or �u1 .

In the following, we perform a Lyapunov-Schmidt reduction to show the solution set bifurcat-
ing from �u1 . Notice that DuF(0, u1) =

(∇ · [eαP (x)∇]
, ∂
∂ �n

)
and N(DuF(0, u1)) = span{1} for 

any constant u1 > 0. Make the decomposition

X =N(DuF(0, u1))⊕X1 and Y =R(DuF(0, u1))⊕ Y1.

Define the operator l ∈ Y ∗ by

〈l, y〉 =
∫
�

y1(x)dx −
∫
∂�

eαP (x)y2(x)dS, ∀y = (y1, y2) ∈ Y,

and then N(l) = R(DuF(0, u1)). Now, we let P be a projection operator from Y to Y1 along 
R(DuF(0, u1)), namely, Py = 〈ψ, y〉ϕ for y ∈ Y . Set u = u1 +σ +η, where σ ∈ R and η ∈X1. 
Following the argument in Section 4.2, there exist an open neighborhood U of (0, 0) in R2, and 
a continuously differentiable map η̃ : U →X1 such that η̃(0, 0) = η̃σ (0, 0) = 0 and

(I − P)F(λ,u1 + σ + η̃(λ, σ ))≡ 0. (5.8)

Then solving (5.2) is equivalent to finding zeros of G(λ, σ) = 0, where

G(λ,σ )� 〈l,PF(λ,u1 + σ + η̃(λ, σ ))〉
= 〈l,F(λ,u1 + σ + η̃(λ, σ ))〉

= λ

∫
∂�

eαP (x)r(x)b(u1 + σ + η̃(λ, σ )) · (u1 + σ + η̃(λ, σ ))dS.

(5.9)

In case (5.4), there holds that DλF(0, u1) ∈R(DuF(0, u1)), ∇G(0, 0) = 0 and η̃λ(0, 0) = v1
is the unique solution of

⎧⎪⎨
⎪⎩

∇ · [eαP (x)∇v] = 0, x ∈�,

∂�nv = r(x)b(u1)u1, x ∈ ∂�,∫
�
v(x)dx = 0.

(5.10)

Moreover, we can derive that Gλσ (0, 0) =Gσσ (0, 0) = 0, which implies that Hess(G) = 0. Thus 
one can not apply Lemma 2.5 of Liu, Shi and Wang [39] to G. Meanwhile, the assumption (H4)
in Theorem 4.6 does not hold. To overcome this difficulty, we define

�(λ,σ )=
∫
∂�

eαP (x)r(x)b(u1 + σ + η̃(λ, σ )) · (u1 + σ + η̃(λ, σ ))dS. (5.11)

Thus, solving (5.2) is transformed to find zero of �(λ, σ) = 0 since we look for non-
trivial solution to (5.2) with λ > 0. Notice that � ∈ C2 for (λ, σ) ∈ U and �(0, 0) =
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u1b(u1) 
∫
∂�
eαP (x)r(x)dS = 0. Then we have the following results regarding the existence of 

nontrivial solution of (5.2) bifurcating from �u1 .

Lemma 5.2. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.4). The following statements are valid:

(i) The point (0, ū1), where 0 < ū1 < 1 and b(ū1) + b′(ū1)ū1 = 0, is a bifurcation point of 
(5.2) with respect to �u1 , and the solutions of (5.2) near (0, ū1) consist exactly of the curve 
�u1 and

S1 = {(λ1(s), u1(s)) : s ∈ (−δ, δ)⊂ R},

where λ1(s) and u1(s) = ū1 + σ1(s) + η̃(λ1(s), σ1(s)) are C1 functions such that λ1(0) =
σ1(0) = 0, λ′

1(0) = 1 and σ ′
1(0) = − ū1b(ū1)

∫
∂�
eαP (x)r(x)[v1]2dS

2
∫
∂�
eαP (x)|∇v1|2dS

, where v1 ∈X1 is the 

unique solution of (5.10) with u1 = ū1.
(ii) If b(u1) + b′(u1)u1 �= 0 with 0 < u1 < 1, then (0, u1) is not a bifurcation point of (5.2) on 

�u1 .
(iii) There is no nonconstant solution of (5.2) near (0, 0) and (0, 1).

Proof. 1. For part (i), we note that 
[
ub(u)

]′∣∣
u=0 = b(0) > 0, 

[
ub(u)

]′∣∣
u=1 = b′(1) < 0 and [

ub(u)
]′′ = 2b′(u) + ub′′(u) < 0 for u ∈ (0, 1), then there exists a unique ū1 ∈ (0, 1) satisfy-

ing b(ū1) + b′(ū1)ū1 = 0. From the information of the partial derivatives of η̃ at (0, 0), by (5.4), 
we calculate that

�λ(0,0)= 0, �σ (0,0)= 0,

�λλ(0,0)= [
2b′(u1)+ u1b

′′(u1)
] ∫
∂�

eαP (x)r(x)
[
η̃λ(0,0)

]2dS

= [
2b′(u1)+ u1b

′′(u1)
] ∫
∂�

eαP (x)r(x)
[
v1

]2dS,

�λσ (0,0)= [
2b′(u1)+ u1b

′′(u1)
] ∫
∂�

eαP (x)r(x)
[
1 + η̃σ (0,0)

]
η̃λ(0,0)dS

= [
2b′(u1)+ u1b

′′(u1)
] ∫
∂�

eαP (x)r(x)v1(x)dS,

�σσ (0,0)= [
2b′(u1)+ u1b

′′(u1)
] ∫
∂�

eαP (x)r(x)
[
1 + η̃σ (0,0)

]2dS = 0.

At the point (0, ū1), by (5.10), we can infer that

∫
eαP (x)r(x)v1(x)dS = 1

ū1b(ū1)

∫
eαP (x)|∇v1|2dx > 0,
∂� �
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which implies that

�λσ (0,0)= [
2b′(u1)+ u1b

′′(u1)
] ∫
∂�

eαP (x)r(x)v1(x)dS < 0.

Thus we conclude that the Hessian matrix of � at (0, 0) and u1 = ū1 is indefinite and non-
degenerate since

det Hess(�)=�λλ(0,0) ·�σσ (0,0)−�λσ (0,0)2 = −�λσ (0,0)2 < 0.

It follows from Lemma 2.5 of Liu, Shi and Wang [39] that the solution set of �(λ, σ) = 0
near (λ, σ) = (0, 0) is a pair of intersecting curves. Consequently, the solution set of (5.2) near 
(λ, u) = (0, 0) is precisely a pair of intersecting curves which solve �(λ, σ) = 0 and has the 
form

{(λi(s), ui(s)) : |s|< δ} (i = 1,2)

for some δ > 0 with ui(s) = σi(s) + η̃i (λi(s), ui(s)), where (λ′
1(0), σ

′
1(0)) and (λ′

2(0), σ
′
2(0))

are non-zero linear independent solutions of

�λλ(0,0)x2 + 2�λσ (0,0)xy = 0.

Now we choose (λ′
1(0), σ

′
1(0)) = (1, − �λλ(0,0)

2�λσ (0,0)
), (λ′

2(0), σ
′
2(0)) = (0, 1) such that the curve 

{(λ2(s), u2(s))} coincides with the trivial solution set �u1 , while the curve S1 = {(λ1(s), u1(s))}
must be distinct from �u1 . This proves part (i).

2. For part (ii), we suppose that u1 ∈ (0, 1) and b(u1) + b′(u1)u1 �= 0. Notice that �(0, 0) = 0
and

�λ(0,0)= [
b(u1)+ u1b

′(u1)
] ∫
∂�

eαP (x)r(x)η̃λ(0,0)dS

= [
b(u1)+ u1b

′(u1)
] ∫
∂�

eαP (x)r(x)v1(x)dS

= b(u1)+ u1b
′(u1)

u1b(u1)

∫
�

eαP(x)|∇v1|2dx �= 0.

It follows from the implicit function theorem that the unique solution set of �(λ, σ) = 0 in a 
neighborhood U1 ⊂ U of (0, 0) consists of the graph of a C2 function λ = λ(σ ) for (λ, σ) ∈ U1, 
which satisfies λ(0) = 0. Recalling the equation (5.2), we see that for λ = 0, u = u1 +σ + η̃(0, σ)
must be a constant. This combined with η̃ ∈X1 means that η̃(0, σ) ≡ 0. Thus, we obtain that

�(0, σ )=
∫
eαP (x)r(x)b(u1 + σ) · (u1 + σ)dS = b(u1 + σ) · (u1 + σ)

∫
eαP (x)r(x)dS = 0.
∂� ∂�
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By the uniqueness of solution of �(λ, σ) = 0 in U1, we must have λ(σ ) = 0 near σ = 0. There-
fore, the solution set of (5.2) near (0, u1) is only the branch �u1 and no bifurcation occurs. This 
proves part (ii).

3. Finally, for part (iii), we let û1 ∈ {0, 1}. In this situation, we still have η̃(0, σ) ≡ 0, which 
implies that η̃σ (0, 0) = η̃σσ (0, 0) = 0. Moreover, since v1 ∈ X1, from (5.10) with u1 ∈ {0, 1}, 
one can derive that η̃λ(0, 0) = v1 ≡ 0. By (5.8), we calculate that

0 = (I − P)
(
DλuF(0, û1)

[
1 + η̃σ (0,0)

] +DuuF(0, û1)
[
1 + η̃σ (0,0), η̃λ(0,0)

]
+DuF(0, û1)

[
η̃λσ (0,0)

])
=DλuF(0, û1)

[
1
] +DuF(0, û1)

[
η̃λσ (0,0)

]
,

and

0 = (I − P)
(
DλuF(0, û1)

[
η̃λ(0,0)

] +DuuF(0, û1)
[
η̃λ(0,0), η̃λ(0,0)

]
+DuF(0, û1)

[
η̃λλ(0,0)

])
=DuF(0, û1)

[
η̃λλ(0,0)

]
.

Note that

〈
l,DλuF(0, û1)

[
1
]〉 = [b(û1)+ û1b

′(û1)]
∫
∂�

eαP (x)r(x)dS = 0.

Then DλuF(0, û1)
[
1
] ∈ R(DuF(0, û1)). We now can infer that η̃λλ(0, 0) = 0 and η̃λσ (0, 0) =

v2 ∈X1 is the unique solution of

{
∇ · [eαP (x)∇v] = 0, x ∈�,

∂�nv = r(x)[b(û1)+ û1b
′(û1)], x ∈ ∂�.

(5.12)

Hence, we have that �λ(0, 0) =�λλ(0, 0) = 0 and

�λσ (0,0)= [b(û1)+ û1b
′(û1)]

∫
∂�

eαP (x)r(x)v2(x)dS =
∫
�

eαP(x)|∇v2|2dx �= 0.

This leads to that det Hess(�) < 0. Likewise, the intersecting solution curves of �(λ, σ) = 0
near (0, 0) coincide with the trivial solution sets �0, �u1 for û1 = 0, and �1, �u1 for û1 = 1. This 
completes the proof. �
Remark 5.3. Lemma 5.2 implies that the point (0, ū1), where 0 < ū1 < 1 and b(ū1) +b′(ū1)ū1 =
0, is the unique bifurcation point of (5.2) with respect to �u1 .

The following lemma can help us getting better understanding of the bifurcation and stability 
structures of nonconstant steady states to (5.1).
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Lemma 5.4. Let uλ be a nontrivial steady state of (5.1) for λ > 0. Then the operator 
DuF(λ, uλ) :W 2

l (�) → Ll(�) ×W
1−1/l
l (∂�), l > N , given by

DuF(λ,uλ)[v] =
(
∇ · [eαP (x)∇v], ∂�nv − λr(x)[b(uλ)+ uλb

′(uλ)]v
)

for all v ∈W 2
l (�), is an injective mapping.

Proof. Suppose to the contrary that DuF(λ, uλ) is not injective. Then the elliptic problem

{
∇ · [eαP (x)∇ξ] = 0, x ∈�,

∂�nξ = λr(x)[b(uλ)+ uλb
′(uλ)]ξ, x ∈ ∂�

(5.13)

admits a nontrivial solution ξ ∈ W 2
l (�). By elliptic regularity (refer to [44]) ξ is a classical 

solution of above equation. By applying the maximum principle and Hopf’s Lemma, we obtain 
that uλ > 0 and 1 − uλ > 0 on �. Thus b(uλ) > 0 on �.

Define a function ζ = ξ
uλb(uλ)

. By letting ξ = ζuλb(uλ) into (5.13), we have

∇ · [eαP (x)∇ξ] = ∇ · [eαP (x)∇(
ζuλb(uλ)

)]
= eαP (x)

[
∇ · ∇(

ζuλb(uλ)
) + ∇P · ∇(

ζuλb(uλ)
)]

= eαP (x)
[
uλb(uλ)	ζ + 2∇ζ · ∇(

uλb(uλ)
) + ζ	

(
uλb(uλ)

)
+ uλb(uλ)∇P · ∇ζ + ζ∇P · ∇(

uλb(uλ)
)] = 0 in �,

and

0 = ∂
(
ζuλb(uλ)

)
∂ �n − λr(x)[b(uλ)+ uλb

′(uλ)]ζuλb(uλ)

= uλb(uλ)
∂ζ

∂ �n + [
b(uλ)+ uλb

′(uλ)
]
ζ
∂uλ

∂ �n − λr(x)[b(uλ)+ uλb
′(uλ)]ζuλb(uλ)

= uλb(uλ)
∂ζ

∂ �n in ∂�.

Note that by (A1), there holds

eαP (x)
[
	

(
uλb(uλ)

) + ∇P · ∇(
uλb(uλ)

)]
= ∇ · [eαP (x)∇(

uλb(uλ)
)]

= ∇ · [(b(uλ)+ uλb
′(uλ)

)
eαP (x)∇uλ

]
= (

b(uλ)+ uλb
′(uλ)

)∇ · [eαP (x)∇uλ] + (
2b′(uλ)+ uλb

′′(uλ)
)
eαP (x)|∇uλ|2

= (
2b′(uλ)+ uλb

′′(uλ)
)
eαP (x)|∇uλ|2 ≤ 0.

Then ζ satisfies an elliptic equation
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{
	ζ + ∑N

i=1 bi(x)ζxi + c(x)ζ = 0, x ∈�,

∂�nζ = 0, x ∈ ∂�,

where the coefficients bi and c are smooth and c(x) ≤ 0 for x ∈ �. Combining the maximum 
principle and the Hopf’s Lemma, we can derive that ζ ≡ 0, a contradiction. �

We can infer from Lemma 5.4 and the implicit function theorem that there is no secondary 
bifurcation of steady state solution to (5.1), and have the following result.

Theorem 5.5. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.4). Then for each λ > 0 there is a unique nonconstant solution uλ to (5.2), which 
coincides with a global smooth curve bifurcating from �u1 . Moreover, the bifurcating solution 
curve is globally parameterized in λ. That is, the mapping

(0,+∞) � λ �−→ uλ ∈ [
W 2
l (�)∩X

]
(l > N),

is smooth.

Proof. It follows from Lemma 5.2 that there is a local smooth solution curve S1 of (5.2) bi-
furcating from �u1 at the point (0, ū1) with 0 < ū1 < 1 and b(ū1) + b′(ū1)ū1 = 0. Clearly, this 
bifurcating solution is nonconstant. By applying the implicit function theorem, Lemma 5.2 and 
the continuation of S1 in λ, we can extend such local curve to a global smooth solution curve, 
denoted by S , parameterized by λ, where S1 coincides with S for λ near 0. In view of Lemma 5.2
(iii), since there is no secondary bifurcation of steady state solution to (5.1), the obtained global 
solution curve is defined for all λ > 0.

For the uniqueness, it is true for λ near 0. Suppose that there exists λ̂� 0 such that u
λ̂

∈ X \S
is a nonconstant solution to (5.2). By the argument as above, since no secondary bifurcation 
occurs, one can get a global smooth solution curve Ŝ to (5.2), in which (λ̂, u

λ̂
) ∈ Ŝ and Ŝ does 

not coincide with S1 for λ near 0. This is impossible by the uniqueness of S1 near (0, ū1). Thus 
the existence of a unique nonconstant steady state solution uλ of (5.2) for λ > 0 is obtained. 
Meanwhile, we see that the mapping (0, +∞) � λ �−→ uλ ∈ [

W 2
l (�) ∩ X

]
(l > N), is smooth. 

The proof is completed. �
In the following, we give a stability analysis for the steady state solutions of (5.1). From the 

previous argument, we know that (5.1) admits the constant steady states u = 0 and u = 1, and 
a unique nonconstant steady state uλ define for all λ > 0. Their stability can be classified as 
follows.

Theorem 5.6. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.4). Let uλ be the unique nonconstant solution to (5.2).

(i) The constant steady states u = 0 and u = 1 of (5.1) are both unstable for all λ > 0.
(ii) For any λ > 0, the steady state uλ of (5.1) is globally asymptotically stable, i.e., for any 

initial value u0 ∈ X, satisfying u0 �≡ 0, 1, the solution u(·, t; u0) of (5.1) converges to uλ in 
the W 1

l -norm, l > N .

This theorem will be proved by several steps, and the proof for part (i) is as follows.
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Proof of Theorem 5.6 (i). Linearizing the equation (5.1) at ū (ū = 0 or ū = 1), we obtain the 
corresponding eigenvalue problem

{
−e−αP (x)∇ · [eαP (x)∇ψ] = μψ, x ∈�,

∂�nψ − λr(x)
[
b(ū)+ ūb′(ū)

]
ψ = μψ, x ∈ ∂�.

(5.14)

Since 
∫
∂�

eαP (x)r(x)dS = 0, following the proof of Theorem 3.4 (ii), we have that no matter for 

ū = 0 or for ū = 1, the principal eigenvalue μ1 of (5.14) must be negative. Then by Proposi-
tion 3.2, the constant steady states u = 0 and u = 1 of (5.1) are both unstable. �

We now provide a stronger conclusion regarding the instability property of the constant steady 
states u = 0 and u = 1 of (5.1), which shows that any nontrivial semi-orbit of the dynamical 
system generated by (5.1) in X would not converge to u = 0 or u = 1.

Lemma 5.7. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.4). Then for any initial value u0 ∈ X, satisfying u0 �≡ 0, 1, the solution u(·, t; u0) of 
(5.1) has the properties that

‖u(·, t;u0)‖W 1
l (�)

� 0 and ‖u(·, t;u0)− 1‖W 1
l (�)

� 0

as t → +∞, where l > N .

Proof. We only prove the nonexistence of nontrivial positive semi-orbit converging to u = 0, 
and that for u = 1 can be proved similarly.

By way of contradiction, we suppose that there exists u0 ∈X with u0 �≡ 0, 1, such that

‖u(·, t;u0)‖W 1
l (�)

−→ 0, as t → +∞,

for some l > N . Let μ1 = μ1(λ) be the principal eigenvalue of the problem

{
−e−αP (x)∇ · [eαP (x)∇ψ] = μψ, x ∈�,

∂�nψ − λr(x)b(0)ψ = μψ, x ∈ ∂�,

and ψ1 be the eigenfunction corresponding to μ1 normalized by ‖ψ1‖L2(�) = 1. By the proof of 
Theorem 5.6 (i), it holds that μ1 < 0. Define � :R+ → R by

�(t)=
∫
�

eαP(x)u(·, t;u0)ψ1dx.

We claim that � is strictly increasing for sufficiently large t .
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For the proof of above claim, we write u(t) := u(·, t; u0) and have that

d�(t)

dt
=

∫
�

eαP(x)utψ1dx =
∫
�

ψ1∇ · [eαP (x)∇u]dx
=

∫
�

u(t)∇ · [eαP (x)∇ψ1
]
dx −

∫
∂�

u(t)eαP (x)∂�nψ1dS +
∫
∂�

ψ1e
αP (x)∂�nudS

= −μ1

⎛
⎝∫
�

eαP(x)ψ1u(t)dx +
∫
∂�

eαP (x)ψ1u(t)dS

⎞
⎠

+ λ

∫
∂�

eαP (x)ψ1[b(u(t))− b(0)]u(t)dS.

Notice that by the maximum principle and Hopf’s Lemma, 0 < u(t) < 1 on � for all t > 0. 
Moreover, we see that

‖u(t)‖C(�) −→ 0, as t → +∞, (5.15)

as the embedding W 1
l (�) ↪→ C(�) holds for l > N . Combining (5.15) and the continuation of 

b(u) at u = 0, and using μ1 < 0, one infer that there is t0 > 0 large enough such that

d�(t)

dt
= −μ1

⎛
⎝∫
�

eαP(x)ψ1u(t)dx +
∫
∂�

eαP (x)ψ1u(t)dS

⎞
⎠

+ λ

∫
∂�

eαP (x)ψ1[b(u(t))− b(0)]u(t)dS > 0

for t ≥ t0. This proves the claim.
Next we choose t∗ > t0 such that ‖u(t∗)‖C(�) < inf� u(t0). It follows from above claim that 

�(t0) < �(t∗), consequently, 
∫
�
eαP(x)

[
u(t0) − inf� u(t0)

]
ψ1dx < 0, which is a contradiction. 

The proof is finished. �
Define a function Jλ :X → R as

Jλ(u)= 1

2

∫
�

eαP(x)|∇u|2dx − λ

∫
∂�

eαP (x)r(x)B̄(u)dS, (5.16)

where B̄ =
u∫

0

ξb(ξ)dξ . Then Jλ is a Lyapunov function for the dynamical system generated 

by (5.1) for all λ > 0, which is a gradient system (see [2]). Further, Jλ decreases along the 
semi-orbits except at steady states of (5.1). Meanwhile, the corresponding semi-orbit in gradient 
system would converge to the set C of steady state solutions of (5.1) as time goes to infinite 
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(see [27]). For more details, one can see from [27, Theorems 4.3.3 and 4.3.4] that, for any initial 
value u0 ∈ X, the omega limit set ω(u0) associated with the dynamical system generated by 
(5.1), which is nonempty, compact, connected and invariant, is contained in C . Then we have the 
following result.

Lemma 5.8. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.4). Then the nonconstant steady state uλ of (5.1) is a global minimizer of the energy 
functional Jλ in X for all λ > 0.

Proof. It is known that critical points of Jλ defined by (5.16) are weak solutions of (5.2) for 
λ > 0. Firstly, we show that Jλ|X has a global minimizer in X. Define

{r ≥ 0} := {x ∈ ∂� : r(x)≥ 0} and {r ≤ 0} := {x ∈ ∂� : r(x)≤ 0}.

Then for any u ∈X, we have

Jλ(u)= 1

2

∫
�

eαP(x)|∇u|2dx − λ

∫
{r≥0}

eαP (x)r(x)B̄(u)dS − λ

∫
{r≤0}

eαP (x)r(x)B̄(u)dS

≥ 1

2
eαmin� P(x)‖u‖2

H 1(�)
− 1

2
eαmin� P(x)

∫
�

u2dx − λ

∫
{r≥0}

eαP (x)r(x)

u∫
0

ξb(ξ)dξdS

≥ 1

2
eαmin� P(x)‖u‖2

H 1(�)
−K,

where K = K(λ, �, r, b) > 0, which means that Jλ is bounded from below in X. Thus one 
can define the infimum χ := infu∈XJλ and take a minimizing sequence {um} ⊂ X such that 
Jλ(um) → χ as m → ∞.

In view of the estimate from below for Jλ, we see that {um} is bounded in H 1(�). By passing 
to a subsequence of {um} if necessary, there exists ûλ ∈H 1(�) satisfying that, as m → ∞,

• um ⇀ ûλ in H 1(�),

• um → ûλ in L2(�) and L2(∂�),

• um → ûλ a.e. in ∂�,

which also implies that ûλ ∈ X. Noticing that ‖ûλ‖2
H 1(�)

≤ lim infm→∞ ‖um‖2
H 1(�)

, we obtain

χ ≤ Jλ(ûλ)≤ lim inf
m→∞ Jλ(um)= χ,

thus, Jλ(ûλ) = χ , and then ûλ is a global minimizer of Jλ in X for all λ > 0. On the other hand, 
by Theorem 5.5, we obtain C = {0, uλ, 1} for all λ. So ûλ must be one of 0, uλ and 1.

In the following, we exclude the possibility for ûλ = 0 or ûλ = 1. In fact, let μ0
1 be the principal 

eigenvalue of (5.14) with ū= 0, and ψ0
1 be the corresponding positive eigenfunction satisfying 

‖ψ0‖L2(�) = 1. Since (5.4) holds, then μ0 < 0. For a fixed δ > 0, there holds that
1 1
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Jλ(δψ0
1 )= 1

2

∫
�

eαP(x)|∇(δψ0
1 )|2dx − λ

∫
∂�

eαP (x)r(x)B̄(δψ0
1 )dS

= δ2

2

⎡
⎣∫
�

eαP(x)|∇ψ0
1 |2dx − λ

∫
∂�

eαP (x)r(x)b(0)
(
ψ0

1

)2dS

⎤
⎦

− λδ3

3

∫
∂�

eαP (x)r(x)b(θ)
(
ψ0

1

)3dS

= δ2

2
μ0

1

⎡
⎣∫
�

eαP(x)
(
ψ0

1

)2
dx +

∫
∂�

eαP (x)
(
ψ0

1

)2
dS

⎤
⎦ − λδ3

3

∫
∂�

eαP (x)r(x)b(θ)
(
ψ0

1

)3
dS,

where θ(x) is a function between 0 and δψ0
1 (x) for x ∈ ∂�. Then it can be inferred that 

Jλ(δψ0
1 ) < 0 for δ > 0 small enough. This is to say Jλ(ûλ) < 0. Since Jλ(0) = Jλ(1) = 0 for all 

λ > 0, and δψ0
1 ∈ X for δ > 0 small, it must be ûλ = uλ, consequently, uλ is a global minimizer 

of the energy functional Jλ in X for all λ > 0. The proof is completed. �
In this position, we can complete the proof of Theorem 5.6 (ii).

Proof of Theorem 5.6 (ii). Linearizing equation (5.1) at the steady state uλ, we obtain the eigen-
value problem

{
−e−αP (x)∇ · [eαP (x)∇ψ] = μψ, x ∈�,

∂�nψ − λr(x)
[
b(uλ)+ uλb

′(uλ)
]
ψ = μψ, x ∈ ∂�.

(5.17)

The principal eigenvalue μ1 of (5.17) has the variational characterization

μ1 = inf
ψ∈H 1(�)

∫
�
eαP(x)|∇ψ |2dx − λ

∫
∂�
eαP (x)r(x)

[
b(uλ)+ uλb

′(uλ)
]
ψ2dS∫

�
eαP(x)ψ2dx + ∫

∂�
eαP (x)ψ2dS

.

Notice that 0 < uλ < 1 on � by the maximum principle, and W 1
l (�) ↪→ C(�) for l > N . Then 

there is a small ball in the W 1
l -topology, with l > N , which is centered at uλ and contained in X. 

Thus there holds that

−J ′′
λ (uλ)[ψ]2 ≤ 0, ∀ψ ∈W 1

l (�), l > N,

since uλ is local minimizer of the functional Jλ in W 1
l (�), l > N , by Lemma 5.8. Hence, we 

have μ1 ≥ 0. However, it follows from Lemma 5.4 that μ1 = 0 is not an eigenvalue of (5.17) and 
thus μ1 > 0. Now, by Proposition 3.2, uλ is locally stable. This together with Lemma 5.7 proves 
Theorem 5.6 (ii). �
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5.2. Case (5.5)

In this subsection, we consider the dynamics of (5.1) when (5.5) holds. Note that the trivial 
solution sets �0 and �u1 of (5.2) intersect at the point (0, 0), while �1 and �u1 intersect at the 
point (0, 1). We first have the following conclusion.

Proposition 5.9. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.5). Then there is no nonconstant solution of (5.2) near (0, 0) and (0, 1).

Proof. Since (5.5) holds true, by Theorem 4.7, the solution set of (5.2) near (0, 0) is a union of �0
and �u1 , which implies the nonexistence of nonconstant solution of (5.2) near (0, 0). Secondly, 
if u1 is replaced by 1, then Theorem 4.6 can also be applied to the point (0, 1) since f (x, u) ≡ 0
and ∫

∂�

eαP (x)[β(x,1)+ βu(x,1)]dS = b′(1)
∫
∂�

eαP (x)r(x)dS �= 0.

Thus we can obtain that the solution set of (5.2) near (0, 1) is a union of �1 and �u1 , and then 
there is no nonconstant solution of (5.2) near (0, 1). �

It can be seen from Theorem 2.2 that problem (5.6) admits a unique positive principal eigen-
value λ1 when (5.5) is satisfied, which shows that λ1 is the unique bifurcation point with respect 
to �0. The next result concerning the solution set of (5.2) in the range λ ∈ (0, λ1].

Lemma 5.10. Suppose that r : ∂� → R is sign-changing on ∂� and 
∫
∂�
eαP (x)r(x)dS �= 0. 

Then for all 0 < λ ≤ λ1, the only steady state solutions to (5.2) are constant ones.

Proof. Similar to [46, Theorem 3.1], we can infer that for all λ sufficiently small, (5.1) only 
has the constant steady states. To prove our aim, we suppose to the contrary that there exists 
0 < λ̂ < λ1 such that (5.2) has a nonconstant steady state u

λ̂
for λ = λ̂. Since DuF(λ̂, uλ̂) is a 

Fredholm operator with zero index, by Lemma 5.4, we know that DuF(λ̂, uλ̂) is a bijection. It 
then follows from the implicit function theorem that there is an interval Î := (λ̂−δ, ̂λ+δ), δ > 0, 
and solutions u

λ̂
(λ) ∈W 2

l (�), l > N , of (5.2) for all λ ∈ Î such that u
λ̂
(λ̂) = u

λ̂
. One can easily 

have that, reducing δ > 0 if necessary, u
λ̂
(λ) ∈ X \ {0, 1} are nonconstant solutions of (5.2) for 

all λ ∈ Î .
Choose a sequence {λ(k)} ⊂ Î satisfying λ(k) → λ̂− δ as k → ∞, and denote u

λ̂
(λ(k)) by u(k), 

then ∫
�

eαP(x)|∇u(k)|2dx = λ(k)

∫
∂�

eαP (x)r(x)b(u(k))u
2
(k)dS =O(λ(k)).

This equality implies that the sequence {u(k)} is bounded in H 1(�) and, passing to a subsequence 
of {u(k)} if necessary, there exists û ∈H 1(�) satisfying that, as k → ∞,

• u(k) ⇀ û in H 1(�),

• u(k) → û in L2(�) and L2(∂�),
47



Z. Li, B. Dai and X. Zou Journal of Differential Equations 363 (2023) 1–66
• u(k) → û a.e. in ∂�.

Thus, û ∈ X is a weak solution of (5.2) with λ = λ̂ − δ, which is also nonconstant. Now, by 
proceeding all precious argument for û, a induction can be applied to obtain a sequence {uλ(j)}
consisting of nonconstant steady states of (5.1), in which λ(1) = λ̂ and λ(j) → 0 as j → ∞. This 
is a contradiction with the fact that (5.1) has no nonconstant steady state for λ > 0 sufficiently 
small. �

In what follows, we consider the local bifurcation from �0 at the point (λ1, 0). From the 
argument in Section 4.1, one has

Theorem 5.11. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.5). Then (5.6) has a unique positive principal eigenvalue λ1, which is a bifurcation 
point with respect to �0, and the nonnegative solution set of (5.2) near (λ1, 0) consists exactly of 
the curves �0 and

S0 = {(λ0(s), u0(s)) : s ∈ I = (0, ε)⊂ R+},
where λ0(s) = λ1 + z2(s), u0(s) = sφ0 + sz1(s) are C1 function so that zi(0) = 0, i = 1, 2, φ0
is the positive eigenfunction associated with λ1. Moreover, the bifurcation occurring at (λ1, 0)
is transcritical and the bifurcating positive solution of (5.2) from �0 is locally asymptotically 
stable.

Proof. By Proposition 5.1, λ1 is a bifurcation point of (5.2) with respect to �0. Then it follows 
from Theorem 4.3 that a positive solution of (5.2) bifurcates from �0 near (λ1, 0). Moreover, by 
applying (4.12) to S0, one can derive that

λ′
0(0)= −2λ1 · b

′(0)
b(0)

·
∫
�
eαP(x)|∇φ0|2φ0dx∫
�
eαP(x)|∇φ0|2dx

> 0. (5.18)

Then a transcritical bifurcation occurs at (λ1, 0). This combined with (4.21) shows that the bi-
furcating positive solution of (5.2) from �0 is stable. �

The above theorem gives a local branch of nonconstant steady state of (5.2) for λ near λ1. 
Lemma 5.10 presents the uniqueness result for constant steady states to (5.1) in the range (0, λ1]. 
Then similar to Theorem 5.5, from Lemma 5.4, Proposition 5.9, Lemma 5.10 and the implicit 
function theorem, we can obtain the following result concerning on a uniqueness result for non-
constant steady state, and we omit its proof here.

Theorem 5.12. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.5). Then for each λ > λ1 there is a unique nonconstant solution uλ to (5.2), which 
coincides with a global smooth curve bifurcating from �0. Moreover, the bifurcating solution 
curve is globally parameterized in λ. That is, the mapping

(λ1,+∞) � λ �−→ uλ ∈ [
W 2
l (�)∩X

]
(l > N),

is smooth.
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To end this subsection, we analyze the stability of nonnegative steady states of (5.1). Their 
stability can be classified as follows.

Theorem 5.13. Suppose that (A1) and (A2) hold, and r : ∂� → R is sign-changing on ∂� and 
satisfies (5.5). Let uλ be the unique nonconstant solution to (5.2).

(i) The constant steady state u = 1 of (5.1) is unstable for all λ > 0.
(ii) The constant steady state u = 0 of (5.1) is globally asymptotically stable for 0 < λ ≤ λ1, 

and unstable for λ > λ1.
(iii) For each λ > λ1, the nonconstant steady state uλ of (5.1) is globally asymptotically stable.

Proof. 1. For part (i), since b′(1) < 0, one can infer from Theorem 2.2 that if (5.5) is satisfied, 
then the nonnegative principal eigenvalue of the weighted eigenvalue problem

{
−e−αP (x)∇ · [eαP (x)∇φ] = 0, x ∈�,

∂�nφ = λr(x)b′(1)φ, x ∈ ∂�,

is λ̃1 = 0. Linearizing (5.1) at u = 1, we obtain the eigenvalue problem

{
−e−αP (x)∇ · [eαP (x)∇ψ] = μψ, x ∈�,

∂�nψ − λr(x)b′(1)ψ = μψ, x ∈ ∂�,

which admits a unique principal eigenvalue μ1 = μ1(λ). Since b′(1) < 0 and (5.5) holds, follow-
ing the proof of Theorem 3.4 (ii), we can derive that μ1 < 0, which together with Proposition 3.2
(ii) means that the constant steady state u = 1 of (5.1) is unstable for all λ > 0. Part (i) is proved.

2. Note that (5.1) is a special case of (1.5) with f (x, u) ≡ 0 and β(x, u) = r(x)b(u). For part 
(ii), since (5.5) holds, we have

∫
�

eαP(x)f (x,0)dx +
∫
∂�

eαP (x)β(x,0)dS = b(0)
∫
∂�

eαP (x)r(x)dS < 0.

It then follows from Theorem 3.4 that the constant steady state u = 0 of (5.1) is locally asymp-
totically stable for 0 < λ < λ1, and unstable for λ > λ1. Moreover, when λ ∈ (0, λ1], we see from 
Lemma 5.10 that the solution set of (5.2) is {0, 1}. Recall the Lyapunov function Jλ :X → R for 
the dynamical system generated by (5.1), defined as

Jλ(u)= 1

2

∫
�

eαP(x)|∇u|2dx − λ

∫
∂�

eαP (x)r(x)B̄(u)dS, u ∈X.

Similar to the proof of Lemma 5.8, one obtain that Jλ with 0 < λ ≤ λ1 has a global minimizer in 
X. Then u ≡ 0 is the global minimizer of the energy functional Jλ|X since Jλ(0) < Jλ(1) and 
the critical point of Jλ is the weak solution of (5.2). Therefore, from [27], the constant steady 
state u = 0 attracts all orbits dissipating energy, and this completes the proof of part (ii).

3. The proof of part (iii) is similar to that of Theorem 5.6 (ii). We omit it here. �
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For the case (5.7), we can similarly obtain that the principal eigenvalue λ̃1 is a bifurcation 
point with respect to �1, and a local bifurcation occurs at (λ̃1, 1), which ia transcritical. More-
over, the local bifurcating positive solution can be extended to a global one parameterized by 
λ ∈ (λ̃1, +∞). Likewise, we can give a detailed discussion for the stability of the steady state 
solutions to (5.1).

6. Application to parabolic equation with sublinear growth and superlinear boundary 
condition

In this section, we study the dynamics of the following semilinear parabolic equation with a 
nonlinear boundary condition

⎧⎪⎨
⎪⎩
ut = e−αP (x)∇ · [eαP (x)∇u] + λk(x)(1 − up−1)u, x ∈�, t > 0,

∂�nu= λr(x)uq, x ∈ ∂�, t > 0,

u(x,0)= u0(x) > 0, x ∈�,

(6.1)

where p > 1, q > 1, � ∈ RN(N ≥ 1) is a bounded domain with smooth boundary ∂�, λ is a 
positive parameter, k(x) ∈ Cθ(�) and r(x) ∈ C1+θ (∂�) for some θ ∈ (0, 1). The nonnegative 
steady state solutions of (6.1) satisfy the elliptic equation

{
∇ · [eαP (x)∇u] + λeαP(x)k(x)(1 − up−1)u= 0, x ∈�,

∂�nu= λr(x)uq, x ∈ ∂�.
(6.2)

Obviously, (6.2) has the trivial solution curves

�0 := {(λ,0) : λ > 0}, and �u1 := {(0, u1) : u1 > 0}.
Firstly, from Theorem 3.4, the stability of constant steady state u = 0 of (6.1) can be described 

as follows.

Proposition 6.1. Suppose that (H1) holds and k : � → R is sign-changing in �. Then the fol-
lowing statements hold true:

(i) If 
∫
�
eαP(x)k(x)dx < 0, then the problem

{
−∇ · [eαP (x)∇v] = λeαP(x)k(x)v, x ∈�,

∂�nv = 0, x ∈ ∂�
(6.3)

has a unique positive principal eigenvalue λ1. Moreover, the trivial steady state u = 0 of 
(6.1) is locally asymptotically stable for 0 <λ < λ1, while unstable for λ > λ1.

(ii) If 
∫
�
eαP(x)k(x)dx ≥ 0, then the trivial steady state u = 0 of (6.1) is unstable for all λ > 0.

Proof. Clearly, when f (x, u) = k(x)(1 − up−1) and β(x, u) = r(x)uq−1, (1.5) is reduced to 
(6.1). The existence of positive principal eigenvalue λ1 of (6.3) can be obtained from The-
orem 2.2. By checking the condition in Theorem 3.4, one can obtain the conclusions of this 
proposition directly. �
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In the following, we will apply the bifurcation results established in Section 4 to obtain the 
existence for the nontrivial steady states to (6.1). Notice that the sign of 

∫
�
eαP(x)k(x)dx deter-

mines the stability of the trivial steady state to (6.1). Our argument will be divided into three 
cases: (1) 

∫
�
eαP(x)k(x)dx < 0, (2) 

∫
�
eαP(x)k(x)dx = 0 and (3) 

∫
�
eαP(x)k(x)dx > 0.

6.1. Case (1): 
∫
�
eαP(x)k(x)dx < 0

First, we discuss local and global bifurcation from the line of trivial solution curve �0.

Proposition 6.2. Suppose that (H1) holds, k : � → R is sign-changing in �, and∫
�
eαP(x)k(x)dx < 0. Then

(i) the positive principal eigenvalue λ1 of (6.3) is a bifurcation point of (6.2) with respect to 
�0. Precisely, in a neighborhood of (λ1, 0) in R+ ×X, the only positive solution to (1.6)
lies in the curve

�0 = {(λ0(s), u0(s)) : s ∈ I = (0, ε)⊂ R+},
where λ0(s) = λ1 + z2(s), u0(s) = sφ1 + sz1(s) are C1 function so that zi(0) = 0, i = 1, 2, 
φ1 is the positive eigenfunction associated with λ1.

(ii) Denote by C the connected component of positive solutions of (6.2) which contains the 
bifurcation curve �0 obtained in part (i). Then the following conclusions are valid:
(ii.a) C is unbounded in R+ ×C(�).
(ii.b) C ∩ {

(λ, 0)|λ is not an eigenvalue of (6.3)
} = ∅.

Proof. When f (x, u) = k(x)(1 − up−1) and β(x, u) = r(x)uq−1, (1.6) is reduced to (6.2). By 
checking the condition (H3) in Theorem 4.3, one can obtain the existence of nontrivial steady 
state bifurcation directly.

Denote X = {ϕ ∈ C(�)|ϕ ≥ 0 on �}. Clearly, the interior of X is given by X̊ = {ϕ ∈
C(�)|ϕ > 0 on �}. For two positive constants M1, M2 and two functions ϕ1 ∈ Cθ(�) and 
ϕ2 ∈ C1+θ (∂�) with some θ ∈ (0, 1), consider the following two boundary value problems:

{
−∇ · [eαP (x)∇v] +M1v = ϕ1, x ∈�,

∂�nv +M2v = 0, x ∈ ∂�,
(6.4)

and {
−∇ · [eαP (x)∇w] +M1w = 0, x ∈�,

∂�nw+M2w = ϕ2, x ∈ ∂�.
(6.5)

By the theory of linear elliptic equation, we define the solution operators K� : Cθ(�) →
C2+θ (�) and K∂� : C1+θ (∂�) → C2+θ (∂�) associated with (6.4) and (6.5), respectively, in 
the sense that for any given ϕ1 ∈ Cθ(�) (resp. ϕ2 ∈ C1+θ (∂�)), v = K�ϕ1 (resp. w = K∂�ϕ2) 
is the unique solution to (6.4) (resp. (6.5)). In fact, K� and K∂� are two bijections and home-
omorphisms [25]. The result of Amann [3] shows that K� and K∂� can be extended to con-
tinuous linear maps from C(�) to W 2(�) and from C(∂�) to W 1(�) for any 1 < l < ∞, 
l l
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respectively. It then follows from the strong maximum principle and Hopf’s lemma that K�

and K∂� are both strongly positive in the sense that K�ϕ1 ∈ X̊ for any ϕ1 ∈ X \ {0}, while 
K∂�ϕ2 ∈ X̊ for any nonnegative and nontrivial ϕ2 ∈ C(∂�). Consider the operator A(λ)v :=
K�((M1 + λeαP(x)k(x))v) + K∂�(M2v) and choose a constant M1 > 0 large enough such that 
M1 + λ1e

αP (x)k(x) > 0 on �, then A(λ1) is also strongly positive. Note that if a nonnegative 
function u ∈C(�) solves the equation

u−A(λ)u− λ[K�(e
αP (x)k(x)up)+K∂�(r(x)u

q)] = 0, (6.6)

then u is a solution of (6.2). Set L(λ)v := v − A(λ)v and B(λ, v) = −λ[K�(e
αP (x)k(x)vp) +

K∂�(r(x)v
q)]. By checking the conditions N(L(λ1)) = span{φ1}, codimR(L(λ1)) = 1 and 

L′(λ1)[φ1] /∈R(L(λ1)), we can still obtain the local bifurcating solution in part (i) from Crandall-
Rabinowitz’s Theorem [20].

Next, we prove the global bifurcation result in part (ii). Here we can adopt a global bifurcation 
theorem [54, Theorems 4.3 and 4.4] to the operator equation L(λ)u + B(λ, u) = 0, and obtain 
the following three alternatives for the connected component C :
(a) it is not compact;
(b) it meets another bifurcation point (λ̂, 0) with λ̂ �= λ1;
(c) it contains a point (λ, ψ) ∈R ×R(L(λ1)) \ {0}.

We can prove that the third case is impossible. We observe that u ∈ X̊ if u ∈ X \ {0} satisfies 
(6.6). Suppose to the contrary that case (c) holds, then ψ ∈ X̊ by the fact that ψ ∈ C and ψ �= 0. 
Since ψ ∈ R(L(λ1)), there exists v ∈ C(�) such that v − A(λ1)v = ψ . By the positivity of 
φ1, we can choose γ > 0 large enough so that vγ := v + γφ1 ∈ X̊. Thus vγ − A(λ1)vγ = ψ ∈
X̊, which combined with the strong positivity of A(λ1) contradicts Theorem 3.2 in [4]. Hence
case (c) is impossible. As for case (b), we can obtain from Lemma 4.2 (i) that λ̂ must be the 
principal eigenvalue of (6.3), and then λ̂ = 0, which is impossible since there is no bifurcation 
near (λ, u) = (0, 0) by 

∫
�
eαP(x)k(x)dx < 0 and Theorem 4.7. Therefore, C is not compact and 

part (ii.a) is proved.
For part (ii.b), suppose to the contrary that there exists a sequence of positive solutions 

(λj , uj ) of (6.6) converging to (λ̄, 0) ∈ R+ × C(�) with λ̄ �= 0, λ1. Set wj = uj/‖uj‖C(�), 
then passing to a subsequence if necessary, there exists nonnegative and nontrivial w∗ such that 
wj →w∗ as j → ∞. Thus, w∗ −A(λ̄)w∗ = 0, which means that λ̄ is a principal eigenvalue of 
(6.3), a contradiction. This completes the proof. �

Secondly, we study the bifurcation from the line of trivial solution curve �u1.

Proposition 6.3. Suppose that (H1) holds, and 
∫
�
eαP(x)k(x)dx < 0. Set

T (u) := (1 − up−1)

∫
�

eαP(x)k(x)dx + uq−1
∫
∂�

eαP (x)r(x)dS = 0. (6.7)

If one of the following three conditions holds:

(a) p > q > 1; or
(b) p = q > 1 and 

∫
�
eαP(x)k(x)dx <

∫
∂�
eαP (x)r(x)dS; or

(c) q > p > 1, and 
∫

eαP (x)r(x)dS > 0,

∂�
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then (6.7) admits a zero u∗ > 0 and (0, u∗) is a bifurcation point with respect to �u1 . That is, the 
solution set of (6.2) near (0, u∗) consists exactly of the trivial solution curve �u1 and the curve

�1 = {(λ1(s), u1(s)) : s ∈ (−δ, δ)⊂ R},

where λ1(s) and u1(s) = u∗ + σ1(s) + η̃(λ1(s), σ1(s)) are C1 functions satisfying λ1(0) =
σ1(0) = 0, λ′

1(0) = 1,

σ ′
1(0)= − (1 − pu

p−1∗ )
∫
�
eαP(x)k(x)v1dx + qu

q−1∗
∫
∂�
eαP (x)r(x)v1dS

(1 − pu
p−1∗ )

∫
�
eαP(x)k(x)dx + qu

q−1∗
∫
∂�
eαP (x)r(x)dS

,

and v1 is the unique solution of

⎧⎪⎨
⎪⎩

∇ · [eαP (x)∇v] + eαP (x)k(x)(u∗ − u
p∗ )= 0, x ∈�,

∂�nv = r(x)u
q∗, x ∈ ∂�,∫

�
v(x)dx = 0.

Proof. It follows from Lemma 4.2 (ii) that a bifurcation point (0, u∗) in �u1 satisfies (6.7). Note 
that

T (u)=
∫
�

eαP(x)k(x)dx − uq−1
(
up−q

∫
�

eαP(x)k(x)dx −
∫
∂�

eαP (x)r(x)dS
)
.

Obviously, T (0) = ∫
�
eαP(x)k(x)dx < 0 and limu→∞ T (u) = +∞. This implies that there exists 

a positive constant u∗ satisfying (6.7) and then the assumptions (H2) and (H4) in Theorem 4.6
hold. �

The above proposition only shows the existence of bifurcation points on the line of trivial 
solution �u1 . In the case p = 2, we can further explore exact number of bifurcation points on 
�u1 .

Proposition 6.4. Suppose that (H1) holds, and 
∫
�
eαP(x)k(x)dx < 0. Set p = 2.

(a) For 1 < q < 2, problem (6.2) has only one bifurcation point (0, u∗) on �u1 .
(b) For q = 2, if 

∫
�
eαP(x)k(x)dx <

∫
∂�
eαP (x)r(x)dS, then problem (6.2) has only one bifurca-

tion point (0, u∗) on �u1 , otherwise, it has no bifurcation point on �u1 .
(c) For q > 2, if 

∫
∂�
eαP (x)r(x)dS ≥ 0, then problem (6.2) has only one bifurcation point 

(0, u∗) on �u1 ; if either 
∫
�
eαP(x)k(x)dx ≥ ∫

∂�
eαP (x)r(x)dS, or 

∫
�
eαP(x)k(x)dx <∫

∂�
eαP (x)r(x)dS < 0 and ĉ < (q−1)q−1

(q−2)q−2 , then problem (6.2) has no bifurcation point on 

�u1 ; if 
∫
�
eαP(x)k(x)dx <

∫
∂�
eαP (x)r(x)dS < 0 and ĉ > (q−1)q−1

(q−2)q−2 , then problem (6.2) has 
exactly two bifurcation points (0, u1∗) and (0, u2∗) on �u1 , where u1∗ and u2∗ are two zeros 

of (6.7) with u1∗ < u2∗. Here ĉ=
∫
� e

αP (x)k(x)dx∫
αP (x) .
∂� e r(x)dS
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Proof. Thanks to Lemma 4.2 (ii), we know that if (0, u∗) with u∗ > 0 is a bifurcation point of 
(1.6) with respect to �u1 , then u∗ satisfies (6.7). Notice that

T ′(u)= (q − 1)uq−2
∫
∂�

eαP (x)r(x)dS −
∫
�

eαP(x)k(x)dx,

then when u∗ > 0 satisfies (6.7) and T ′(u∗) �= 0, (0, u∗) is a bifurcation point of (1.6) on �u1 . 
When 

∫
∂�
eαP (x)r(x)dS ≥ 0, T ′(u) > 0 for all u > 0. In view of the fact that T (0) < 0 and 

limu→∞ T (u) = +∞, we obtain a unique bifurcation point (0, u∗) on �u1 , where u∗ is the unique 
positive zero of (6.7). In the following, we consider the situation 

∫
∂�
eαP (x)r(x)dS < 0.

Suppose that 1 < q < 2 and 
∫
∂�
eαP (x)r(x)dS < 0. Then the equation T ′(u) = 0 admits a 

unique zero û so that T ′(u) < 0 in (0, û) and T ′(u) > 0 in (û, +∞). Hence, we can obtain a 
unique bifurcation point (0, u∗) on �u1 .

Suppose that q = 2 and 
∫
∂�
eαP (x)r(x)dS < 0. If 

∫
�
eαP(x)k(x)dx <

∫
∂�
eαP (x)r(x)dS, then 

T ′(u) > 0 for all u > 0. Since T (0) < 0 and limu→∞ T (u) = ∞, we obtain a unique bifurcation 
point (0, u∗) on �u1 . If 

∫
�
eαP(x)k(x)dx ≥ ∫

∂�
eαP (x)r(x)dS, then T (u) ≤ ∫

�
eαP(x)k(x)dx < 0, 

which implies the nonexistence of bifurcation point on �u1 .
Suppose that q > 2 and 

∫
∂�
eαP (x)r(x)dS < 0. Then the equation T ′(u) = 0 admits a unique 

zero û= (
ĉ

q−1

) 1
q−2 so that T ′(u) > 0 in (0, û) and T ′(u) < 0 in (û, +∞). If 

∫
�
eαP(x)k(x)dx ≥∫

∂�
eαP (x)r(x)dS, then ĉ ≤ 1 < (q−1)q−1

(q−2)q−2 , and

T (û)= (1 − û)

∫
�

eαP(x)k(x)dx + ûq−1
∫
∂�

eαP (x)r(x)dS

=
[
1 − q − 2

q − 1

( ĉ

q − 1

) 1
q−2

]∫
�

eαP(x)k(x)dx < 0,

which implies that T (u) < 0 for all u > 0. Hence problem (6.2) admits no bifurcation point on 

�u1 . In the case of 
∫
�
eαP(x)k(x)dx <

∫
∂�
eαP (x)r(x)dS < 0 and ĉ < (q−1)q−1

(q−2)q−2 , we can still obtain 

the nonexistence of bifurcation point on �u1 . Finally, if 
∫
�
eαP(x)k(x)dx <

∫
∂�
eαP (x)r(x)dS <

0 and ĉ > (q−1)q−1

(q−2)q−2 , then T (û) > 0. Note that T (0) < 0 and limu→∞ T (u) = −∞, we can exactly 
obtain two bifurcation points (0, u1∗) and (0, u2∗) on �u1 . The proof is completed. �

From Theorem 4.7, we have the profile of solutions to (6.2) near (0, 0).

Proposition 6.5. Suppose that (H1) holds, and 
∫
�
eαP(x)k(x)dx < 0. Then the nonnegative so-

lution set of (6.2) near (0, 0) is the union of �0 and �u1 .

6.2. Case (2): 
∫
�
eαP(x)k(x)dx = 0

When 
∫
�
eαP(x)k(x)dx = 0, the conditions in Theorems 4.3 and 4.6 cannot hold. If ∫

∂�
eαP (x)r(x)dS �= 0, then the condition (H2)′ in Theorem 4.5 is satisfied, which means there 

is no bifurcation point on �u1 . In the following, we investigate the positive solution of (6.2)
bifurcating from (0, 0).
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Proposition 6.6. Suppose that (H1) holds, and 
∫
�
eαP(x)k(x)dx = 0 >

∫
∂�
eαP (x)r(x)dS. When 

p ≥ 2 and q = 2, the solution set of (6.2) near (0, 0) consists exactly of the curves �0, �u1 and

�2 = {(λ2(s), u2(s)) : s ∈ (−δ, δ)⊂ R},

where λ2(s) and u2(s) = σ2(s) + η̃(λ2(s), σ2(s)) are C1 functions such that λ2(0) = σ2(0) = 0, 

λ′
2(0) = 1, σ ′

2(0) = −
∫
� e

αP (x)|∇ξ1|2dx∫
∂� e

αP (x)r(x)dS
, and ξ1 is the unique solution of

{
−∇ · [eαP (x)∇ξ] = eαP (x)k(x), x ∈�,

∂�nξ = 0, x ∈ ∂�.

Proof. In this case, we see that f (x, u) = k(x)(1 − up−1) and β(x, u) = r(x)u. One can easily 
check that the conditions (H3)′′ and (H5) hold. Thus, Theorem 4.8 can be applied to obtain the 
desired conclusions. �

Proposition 6.6 establishes the existence of a positive solution (λ, u2λ) of (6.2) for 0 < λ � 1, 
which satisfies u2λ → 0 in C(�) as λ ↘ 0. Next, we show that (6.2) with p = q = 2 has a second 
positive solution growing up to infinity as λ ↘ 0. Suppose that u ∈ C2(�) is a nonnegative 
solution to (6.2) with p = q = 2. Let u = u2λ + v, then v satisfies

{
∇ · [eαP (x)∇v] + λeαP(x)k(x)(v − 2u2λv − v2), x ∈�,

∂�nv = λr(x)(2u2λv + v2), x ∈ ∂�.
(6.8)

When N = 2 or 3, the Sobolev space W 1
2 (�) is compactly embedded into L3(�) and the usual 

trace operator W 1
2 (�) → L3(∂�) is also compact. (λ, vλ) ∈ (0, +∞) ×W 1

2 (�) is called a weak 
solution of (6.8) if

∫
�

eαP(x)∇vλ · ∇ϕdx − λ

∫
�

eαP(x)k(x)(1 − 2u2λ)vλϕ + λ

∫
�

eαP(x)k(x)(vλ)
2ϕdx

− 2λ
∫
∂�

eαP (x)r(x)u2λvλϕdS − λ

∫
∂�

eαP (x)r(x)(vλ)
2ϕdS = 0

for any ϕ ∈W 1
2 (�). It follows from the regularity theory of elliptic equation that a weak solution 

of (6.8) belongs to C2(�), as the desired sense.
Now we can formulate a constrained minimization problem related to (6.8): for the function

Jλ(v) := λ

3

∫
�

eαP(x)k(x)|v|3dx − λ

3

∫
∂�

eαP (x)r(x)|v|3dS, ∀v ∈Mλ,

where
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Mλ =
{
v ∈W 1

2 (�)

∣∣∣Eλ(v) := 1

2

∫
�

eαP(x)|∇v|2dx − λ

2

∫
�

eαP(x)k(x)(1 − 2u2λ)v
2

− λ

∫
∂�

eαP (x)r(x)u2λv
2dx ≤ 1

}
,

seek for vλ ∈Mλ such that

vλ �= 0 and Jλ(vλ)= inf
v∈Mλ

Jλ(v). (6.9)

To achieve this aim, we first prove that

inf
v∈Mλ

Jλ(v) < 0. (6.10)

In fact, when k :� → R is sign-changing in � and 
∫
∂�
eαP (x)r(x)dS < 0, there exists a suitable 

C1-function ṽ defined on �, whose support is contained in a neighborhood of x ∈� satisfying 
k(x) < 0, so that Jλ(ṽ) < 0. Then Jλ(εṽ) < 0 and Eλ(εṽ) ≤ 1 for sufficiently small ε > 0. This 
proves (6.10).

Proposition 6.7. Let N = 2 or 3. Suppose that (H1) holds, k : � → R is sign-changing in �
and 

∫
�
eαP(x)k(x)dx = 0 >

∫
∂�
eαP (x)r(x)dS. Then we can find a constant λ̄ > 0 satisfying that 

for λ ∈ (0, ̄λ], there exist some constant C(λ) > 0 and a minimizing sequence for (6.9), i.e., 
Jλ(vj ) ↘ infv∈Mλ Jλ(v) ∈ [−∞, 0), such that ‖vj‖W 1

2 (�)
≤ C(λ).

Proof. Decompose the space W 1
2 (�) = R ⊕ W , in which W = {ξ ∈ W 1

2 (�)| 
∫
�
ξdx = 0} is 

equipped with a reduced norm ‖ · ‖W in W 1
2 (�). Clearly, for v = c+ ξ ∈W 1

2 (�) with c ∈ R and 
ξ ∈W , ‖v‖2

W 1
2 (�)

and |c|2 + ‖ξ‖2
W are equivalent. One can also verify that for ξ ∈W , ‖ξ‖2

W is 

equivalent to 
∫
�

|∇ξ |2dx. In addition, since W ⊂ L2(�), L2(∂�) are both continuous, we can 
find constants C0 > 0 and λ∗ satisfying that C0‖ξ‖2

W ≤ Eλ(ξ) for all ξ ∈ W and λ ∈ (0, λ∗]. 
Based on this fact, a similar manner as that in [58, Proposition 5.2] can be carried out to prove 
that for any {vj } ∈W 1

2 (�) satisfying that Eλ(vj ) ≤ 1 and ‖vj‖W 1
2 (�)

→ +∞ as j → +∞, where 

vj = cj + ξj ∈ R ⊕W , there exists a constant C1(λ) > 0 such that lim sup
j→+∞

∥∥∥ ξj
cj

∥∥∥
W

≤ C1(λ) and 

C1(λ) → 0 as λ ↘ 0. Since W ⊂ L3(�), L3(∂�) are both continuous and 
∫
�
eαP(x)k(x)dx >∫

∂�
eαP (x)r(x)dS, there exist constants ε0 > 0, C2 > 0 and λ̄ ∈ (0, λ∗) so that

C1(λ) <
ε0

2
for λ ∈ (0, λ̄], (6.11)

and∫
eαP (x)k(x)|1 + ξ |3dx −

∫
eαP (x)r(x)|1 + ξ |3dS ≥ C2 for ξ ∈W and ‖ξ‖W ≤ ε0. (6.12)
� ∂�

56



Z. Li, B. Dai and X. Zou Journal of Differential Equations 363 (2023) 1–66
Now, we complete the proof. On the contrary, suppose that there is λ ∈ (0, ̄λ] such that 
a minimizing sequence {vj } ⊂ Mλ contains a subsequence, still denoted by {vj }, satisfying 
‖vj‖W 1

2 (�)
→ +∞ as j → +∞. Since Eλ(vj ) ≤ 1, for the subsequence {vj }, it follows from 

(6.11) that lim sup
j→+∞

∥∥∥ ξj
cj

∥∥∥
W

≤ ε0
2 , where vj = cj + ξj ∈ R ⊕ W . Hence, by (6.12), we can find 

j0(λ) ≥ 1 so that for any j ≥ j0(λ),

Jλ(vj )= λ|cj |3
3

∫
�

eαP(x)k(x)

∣∣∣∣1 + ξj

cj

∣∣∣∣
3

dx − λ|cj |3
3

∫
∂�

eαP (x)r(x)

∣∣∣∣1 + ξj

cj

∣∣∣∣
3

dS ≥ λ|cj |3
3

C2,

a contradiction with (6.10) as j → +∞. The proof is completed. �
Consequently, we can obtain the existence of a second positive solution growing up to infinity 

as λ ↘ 0.

Proposition 6.8. Let N = 2 or 3. Suppose that (H1) holds, k : � → R is sign-changing in �
and 

∫
�
eαP(x)k(x)dx = 0 >

∫
∂�
eαP (x)r(x)dS. Then Eq. (6.2) with p = q = 2 admits a positive 

solution (λ, uλ) for 0 < λ � 1, which satisfies that uλ > u2λ. In addition, uλ → +∞ in C(�) as 
λ ↘ 0.

Proof. By Proposition 6.7, the standard compactness argument can be carried out to show that 
there are a subsequence of {vj }, still denoted by {vj }, and a function vλ ∈W 1

2 (�) for λ ∈ (0, ̄λ]
such that vj → vλ weakly in W 1

2 (�) and vj → vλ strongly in both L3(�) and L3(∂�). Then 
taking j → +∞ yields that

Jλ(vj )→ λ

3

∫
�

eαP(x)k(x)|vλ|3dx − λ

3

∫
∂�

eαP (x)r(x)|vλ|3dS = Jλ(vλ)= inf
v∈Mλ

Jλ(v) >−∞.

It follows from the lower semi-continuity of Eλ(·) that Eλ(vλ) ≤ 1. Here, the minimizer vλ can 
be chosen as a nonnegative function (if not, then vλ can be replaced by |vλ|).

In what follows, we show that Eλ(vλ) = 1. By way of contradiction, suppose that Eλ(vλ) < 1, 
which means vλ is an interior point in Mλ. Then for any ϕ ∈ W 1

2 (�), vλ + sϕ ∈ Mλ (|s| � 1) 
and

d

ds
Jλ(vλ + sϕ)|s=0 = 0. (6.13)

A straightforward calculation gives that

d

ds
Jλ(vλ + sϕ)|s=0 = λ

⎛
⎝∫
�

eαP(x)k(x)(vλ)
2ϕdx −

∫
∂�

eαP (x)r(x)(vλ)
2ϕdS

⎞
⎠ , ∀ϕ ∈W 1

2 (�).

When ϕ = vλ, we have d
ds Jλ(vλ + sϕ)|s=0 = 3Jλ(vλ) < 0, contradicting with (6.13). Hence, 

Eλ(vλ) = 1. Moreover, vλ ≥, �≡ 0 and Jλ(vλ) = infv∈Mλ Jλ(v) < 0.
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In the following, it suffices to show that for any ϕ ∈ W 1
2 (�), the minimizer vλ satisfies 

J ′
λ(vλ)ϕ +KE′

λ(vλ)ϕ = 0, in which K is the corresponding Lagrange multiplier. Taking ϕ = vλ
gives that K = −3Jλ(vλ)/2. Let Vλ = vλ/K , then (λ, Vλ) is a weak solution of (6.8), which is 
nonnegative and nontrivial. Moreover, the strong maximum principle and Hopf’s Lemma imply 
that Vλ > 0 on �. Therefore, we obtain a second positive solution uλ = u2λ + Vλ of (6.2) as 
desired.

Finally, we prove that uλ → +∞ in C(�) as λ ↘ 0. On the contrary, suppose that λj ↘ 0
and ‖uλj ‖C(�) ≤ C3 for some constant C3 > 0 as j → +∞. It then follows from Amann’s Lp

regularity theory [3, Proposition 3.3] that ‖uλj ‖W 1
l (�)

is bounded in j ≥ 1 for any 1 < l <+∞. 
By the standard Lp theory and the Arzela-Ascoli theorem, we find a subsequence of {(λj , uλj )}, 
still denoted by {(λj , uλj )}, and a function ū ∈ C2(�) such that λj ↘ 0 and uλj → ū in C2(�), 
where ū is a nonnegative constant. However, Proposition 6.6 and Theorem 4.5 imply that there is 
a unique bifurcation curve near (0, 0) and (6.2) has no bifurcation point on �u1 , a contradiction. 
Consequently, we obtain that uλ → +∞ in C(�) as λ ↘ 0. �
6.3. Case (3): 

∫
�
eαP(x)k(x)dx > 0

When 
∫
�
eαP(x)k(x)dx > 0, the condition (H3) in Theorem 4.3 is not satisfied, but the con-

dition (H3)′ in Theorem 4.7 holds. Hence, the nonnegative solution set of (6.2) near (0, 0) is the 
union of �0 and �u1 . The following proposition shows the exact number of bifurcation points 
with respect to �u1 , which can be proved by a similar argument as Proposition 6.4.

Proposition 6.9. Suppose that (H1) holds, and 
∫
�
eαP(x)k(x)dx > 0. Set p = 2.

(a) For 1 < q < 2, problem (6.2) has only one bifurcation point (0, u∗) on �u1 .
(b) For q = 2, if 

∫
�
eαP(x)k(x)dx >

∫
∂�
eαP (x)r(x)dS, then problem (6.2) has only one bifurca-

tion point (0, u∗) on �u1 , otherwise, there is no bifurcation point on �u1 .
(c) For q > 2, if 

∫
∂�
eαP (x)r(x)dS ≤ 0, then problem (6.2) has only one bifurcation point 

(0, u∗) on �u1 ; if either 
∫
�
eαP(x)k(x)dx ≤ ∫

∂�
eαP (x)r(x)dS, or 

∫
�
eαP(x)k(x)dx >∫

∂�
eαP (x)r(x)dS > 0 and ĉ < (q−1)q−1

(q−2)q−2 , then problem (6.2) has no bifurcation point on 

�u1 ; if 
∫
�
eαP(x)k(x)dx >

∫
∂�
eαP (x)r(x)dS > 0 and ĉ > (q−1)q−1

(q−2)q−2 , then problem (6.2) has 
exactly two bifurcation points (0, u1∗) and (0, u2∗) on �u1 , where u1∗ and u2∗ are two zeros 

of (6.7) with u1∗ < u2∗. Here ĉ=
∫
� e

αP (x)k(x)dx∫
∂� e

αP (x)r(x)dS
.

7. Summary and discussion

In the theory of differential equations, steady-state bifurcation refers to the phenomenon that 
the non-trivial steady-state solution of the considered system goes from non-existence to ex-
istence or from existence to non-existence near the steady-state solution when the parameters 
change, which is often related to a breaking of symmetry [32]. One important tool for solv-
ing such problem is the Lyapunov-Schmidt reduction which reduces the original problem to a 
finite-dimensional one. A wide used steady-state bifurcation theorem is established by Cran-
dall and Rabinowitz [20,21], which deals with the case for simple eigenvalue. Such a result is 
very convenient, since in applications, only some linearized operators need to be checked, and 
the Lyapunov-Schmidt reduction is not required. Recently, Liu et al. [39,40] formulated two 
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symmetry-breaking bifurcation results in two kinds of degenerate cases, which are the comple-
ment of the work of Crandall and Rabinowitz [20,21]. Lyapunov-Schmidt reduction method is 
the main tool used in the work of Liu et al. [39,40].

In this paper, we study a general reaction-diffusion-advection single population model, where 
the boundary condition is assumed to be nonlinearly dependent on the population density, more 
complex than some existing work where the population is supposed to undergo the homogeneous 
no-flux boundary condition, or homogeneous Dirichlet boundary condition, see, e.g., [9,12,13,
30,34]. Firstly, we prove the existence of the principal eigenvalue of an eigenvalue problem with 
indefinite weighted function. Then in Section 3, in order to study the stability of the trivial steady 
state u = 0 to system (1.5), we establish the relationship of the stability of any nonnegative steady 
state u = û to (1.5) and the sign the principal eigenvalue μ1(λ, û) of the linearized eigenvalue 
problem at u = û. In Section 4, we provide three types of bifurcation results for system (1.5), 
which show the existence of the nonconstant positive steady states:

(i) The first type of bifurcation result is obtained by the Crandall-Rabinowitz bifurcation the-
orem, which shows that when (H1) and (H3) are satisfied, there exists a critical value λ1
such that a nonconstant positive steady state u0λ will bifurcate from �0 for |λ − λ1| � 1
(see Theorem 4.3);

(ii) The second type of bifurcation result is performed by the Lyapunov-Schmidt reduction, 
which shows that under the assumptions (H1), (H2) and (H4), system (1.5) admits a non-
constant positive steady state u1λ bifurcating from �u1 for 0 < λ � 1 (see Theorem 4.6);

(iii) The third type of bifurcation result concerning the degenerate simple eigenvalue is also 
derived by the Lyapunov-Schmidt reduction, which shows that under the assumptions (H1),
(H3)′′ and (H5), system (1.5) admits a nonconstant steady state u2λ bifurcating from (0, 0)
for 0 < λ � 1 (see Theorem 4.8).

Moreover, the stability of the above bifurcating steady state is provided by calculating the sign 
of the associated principal eigenvalue. We point out here that the second type of bifurcation 
(Theorem 4.6) and the third type of bifurcation (Theorem 4.8) can also be obtained by employ-
ing the crossing curve bifurcation result in [39, Theorem 2.1] and the bifurcation result from a 
degenerate simple eigenvalue in [40, Theorem 2.3], respectively. In this paper, we only use the 
Lyapunov-Schmidt reduction method to derive the second and third bifurcations, in order to bet-
ter understand the conditions under which the second and third bifurcations appear, under which 
conditions they cannot appear, and how these two bifurcations appear.

As applications of our main result, we also investigate two special cases of system (1.5). For 
the case of Eq. (5.1), where the species is supposed to adopt zero interior growth and nonlinear 
boundary reaction of monostable type, we present a complete global dynamics when the coef-
ficient of linear term in the boundary condition is sign-changing; see Theorems 5.6 and 5.13. 
Especially, we use the Lyapunov-Schmidt reduction method to obtain the fourth type of the 
steady state bifurcation from the trivial solution curve �u1 ; see Lemma 5.2. As for the case of 
Eq. (6.1), where the species is supposed to adopt sublinear growth and superlinear boundary con-
dition, we show the stability of trivial steady state u = 0 and provide some sufficient conditions 
on the existence of three kinds of bifurcating positive steady states. Furthermore, we extend the 
first local bifurcation for (6.1) to be a global one, show the exact number of bifurcation points 
for the second local bifurcation for (6.1) with p = 2 (logistic interior growth case), and establish 
the existence of an additional positive solution occurring near the third type of the bifurcating 
positive steady state; see Propositions 6.2, 6.4, 6.8 and 6.9.
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Now, we give some conclusions for our original model (1.1), which has only one trivial steady 
state u = 0 for all d > 0 and a > 0. Recall the transformation in Section 1 and set the following 
conditions:

(C1)
∫
�
e
a
d
P (x)F (x, 0)dx + ∫

∂�
e
a
d
P (x)B(x, 0)dS < 0;

(C1)′
∫
�
e
a
d
P (x)F (x, 0)dx + ∫

∂�
e
a
d
P (x)B(x, 0)dS > 0;

(C1)′′
∫
�
e
a
d
P (x)F (x, 0)dx + ∫

∂�
e
a
d
P (x)B(x, 0)dS = 0;

(C2)
∫
�
e

2a
d
P (x)Fu(x, 0)dx + ∫

∂�
e

2a
d
P (x)Bu(x, 0)dS �= 0;

(C3)
∫
�
e
a
d
P (x)F (x, e

a
d
P (x)u∗)dx + ∫

∂�
e
a
d
P (x)B(x, e

a
d
P (x)u∗)dS �= 0 for any u∗ > 0;

(C3)′
∫
�
e
a
d
P (x)F (x, e

a
d
P (x)u∗)dx + ∫

∂�
e
a
d
P (x)B(x, e

a
d
P (x)u∗)dS = 0 for some u∗ > 0;

(C4)
∫
�
e

2a
d
P (x)Fu(x, e

a
d
P (x)u∗)dx + ∫

∂�
e

2a
d
P (x)Bu(x, e

a
d
P (x)u∗)dS �= 0 for some u∗ > 0.

Then we can conclude that, under the assumption (H1),

(i) if F(x, 0) is sign-changing in �, B(x, 0) is sign-changing on ∂�, and (C1) holds, then 
there exists a critical value d1 = 1

λ1
> 0 such that the trivial steady state u = 0 of (1.1)

is locally asymptotically stable for d > d1, while unstable for 0 < d < d1. Moreover, a 
positive steady state u0d = eaP (x)/d ũ0λ of (1.1) will bifurcate from u = 0 near d = d1, and 
there is no bifurcation occurring at u = 0 for sufficiently large d > d1 (see Theorems 3.4
(i), 4.3 and 4.7);

(ii) if F(x, 0) is sign-changing in �, B(x, 0) is sign-changing on ∂�, and (C1)′ holds, then the 
trivial steady state u = 0 of (1.1) is unstable for all d > 0, and (1.1) admits no nontrivial 
steady state near u = 0 for sufficiently large d > 0 (see Theorems 3.4 (ii), 4.7);

(iii) if F(x, 0) is sign-changing in �, B(x, 0) is sign-changing on ∂�, and (C1)′′ holds, then the 
trivial steady state u = 0 of (1.1) is unstable for all d > 0. Furthermore, if (C2) is satisfied, 
then a positive steady state u2d = eaP (x)/d ũ2λ will bifurcate from u = 0 for sufficiently 
large d > 0, which is stable (see Theorems 3.4 (ii) and 4.8);

(iv) if (C3) holds, then there is no bifurcation occurring at eaP (x)/du∗ for any constant u∗ > 0
and sufficiently large d > 0 (see Theorem 4.5);

(v) if (C3)′ and (C4) hold, then a positive steady state u1d = eaP (x)/d ũ1λ will bifurcate from 
eaP (x)/du∗ for sufficiently large d > 0, which is stable when 

∫
�
e

2a
d
P (x)Fu(x, e

a
d
P (x)u∗)dx+∫

∂�
e

2a
d
P (x)Bu(x, e

a
d
P (x)u∗)dS < 0, while unstable when 

∫
�
e

2a
d
P (x)Fu(x, e

a
d
P (x)u∗)dx +∫

∂�
e

2a
d
P (x)Bu(x, e

a
d
P (x)u∗)dS > 0 (see Theorem 4.6).

7.1. The effects of advection rate

From Section 4.1, we see that the first type of the positive bifurcating steady state occurs 
at the critical value λ1, which is the unique positive principal eigenvalue of (4.3), and the sign 
of λ′

0(0) determines the bifurcation direction. It was found in [9, Section 3] and [42,67] that the 
positive principal eigenvalue of the linear diffusion-advection operator with the no-flux boundary 
condition may not be monotone with respect to the advection rate, and the theoretical result about 
the monotonicity with respect to the advection rate is still unsolved. It is also difficult to discuss 
the dependence of λ1 and λ′

0(0) on the advection rate α (or a in model (1.1)). Here, we use the 
finite element and finite difference methods [65] to approximate the principal eigenvalue of (4.3)
and the value λ′ (0) in two situations: P(x) = f (x, 0) = F(x, 0) and P(x) = x.
0
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Fig. 1. The effects of advection rate a on the critical value λ1 and the value λ′
0(0) determining bifurcation direction. Here, 

the diffusion rate d = 2, and the function determining the advection direction is P(x) = x, which means the species lives 
in the river environment.

Choose the logistic interior growth f (x, u)u = k(x)[1 −u]u and the nonlinear boundary func-
tion β(x, u)u = −u2. In the situation P(x) = x, which means that the species lives in the river 
environment, Fig. 1 shows that for different resource functions k(x) = sinx or k(x) = 1 − x, the 
principal eigenvalue λ1 and the value λ′

0(0) may be monotone or nonmonotone with respect to 
the advection rate a. In the situation P(x) = f (x, 0) = F(x, 0), which represents the advection 
direction along the gradient of the resource, Fig. 2 also shows that for different resource func-
tions, the dependence of the principal eigenvalue λ1 and the value λ′

0(0) on the advection rate 
a is different, and the advection rate can even affect the bifurcation direction. As for the second 
and the third types of the positive bifurcating steady states, it can be seen in Theorems 4.6 and 
4.8, respectively, that λ′

1(0) = λ′
2(0) = 1, which means that these two types of bifurcations occur 

at the right side of λ = 0. Hence, the advection rate cannot affect the bifurcation directions of the 
second and the third types of steady state bifurcations.

Next, we display the influence of the advection rate on the density distribution of the species 
u. In river environment, i.e., P(x) = x for x ∈ (0, 2π), Fig. 3 (a) and (b) show that when the 
advection rate is not too large (a = 0.2 or a = 1), the density of the species u converges to a 
positive steady state, and such steady state concentrates more on the downstream end x = 2π of 
the river as the advection rate a increases. However, Fig. 3 (c) shows that when the advection 
rate a is large (a = 2), the species becomes extinct. These numerical results are consistent with 
the “drift paradox” in the literature [5,28]. When the species undergoes the directed movement 
along the gradient of the resource, i.e., P(x) = F(x, 0), Fig. 4 shows that the steady state concen-
trates more on the maximum point of resource F(x, 0) = sinx as the advection rate a increases. 
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Fig. 2. The effects of advection rate a on the critical value λ1 and the value λ′
0(0) determining bifurcation direction. 

Here, the diffusion rate d = 2, and the function determining the advection direction is P(x) = f (x, 0) = F(x, 0), which 
represents the directed movement along the gradient of the resource.

Meanwhile, Fig. 3 together with Fig. 4 shows that advection direction can also affect the density 
distribution of the species.

7.2. The effects of nonlinear boundary condition

Section 5 exhibits a complete global dynamics for the reaction-diffusion-advection model, 
which admits zero interior growth and monostable nonlinear boundary condition. For Eq. (5.1), 
Lemma 5.2 and Theorem 5.11 establish the existence of a positive steady state bifurcating from 
�u1 and �0, respectively, under different assumptions. Moreover, Theorems 5.6 and 5.13 show 
that the solution of (5.1) converges to a nonconstant positive steady state. The above results for 
the dynamics of (5.1) are quite similar to that of the model with interior growth of monostable 
type and no-flux boundary condition (see [10,24,35]). Clearly, the nonconstant positive steady 
state of (5.1) appears due to nonlinear boundary conditions, but the nonconstant positive steady 
state of the model considered in [10,24,35] appears due to nonlinear interior reaction.

Models (1.2) and (1.3) only contain logistic interior growth and linear boundary condition. 
It is shown in [12, Section 3] that the global dynamics of such scalar parabolic problem is only 
determined by the sign of the principal eigenvalue of the linearized operator at zero. Section 6
shows that the dynamics of the reaction-diffusion-advection model with logistic interior growth 
and nonlinear boundary condition is more complex. Proposition 6.2 establishes the existence 
of a global parameterized bifurcating positive steady state u0λ from (λ1, 0). Such result for the 
first type of the bifurcating solution is classical. One can refer to [12, Section 3] for some similar 
results for the model with linear boundary condition. For the second type of the bifurcating steady 
62



Z. Li, B. Dai and X. Zou Journal of Differential Equations 363 (2023) 1–66
Fig. 3. The effects of advection rate a on the density distribution of the species which lives in the river environment. 
Here, d = 2, P(x) = x, F(x, u) = (1 − u) sinx, B(x, u) = −e−ax/du for x ∈ (0, 2π), and the initial data is u0(x) =
0.1e

0.1
d

sin x
2 · e ad sinx for x ∈ (0, 2π).

state u1λ, Propositions 6.4 and 6.9 show that model (6.1) can even admit exact two bifurcation 
points on �u1 . As for the third type of the bifurcating steady state u2λ, Proposition 6.8 shows the 
existence of the other steady state for 0 < λ � 1, which is large than u2λ and will grow up to 
infinity as λ ↘ 0. Such multiplicity and growing-up property can not occur for the model with 
logistic interior growth and linear boundary condition.

At the end of this paper, we remark that in Theorem 4.8, the assumption (H3)′′ is a degenerate 
condition for the function G(λ, σ), and the assumption (H5) serves as a non-degenerate condition 
for the function H(λ, σ). However, when (H5) is invalid, a second degenerate case happens for 
the function H(λ, σ). Then one can still define function related to H and adopt Lemma 2.5 in 
[39]. In that case, a second degenerate bifurcation will occur at some points (0, u∗) with u∗ > 0.
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