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Abstract

We consider a delayed reaction-diffusion equation that models the population dynamics of a single 
species with the mature population living in the 1-D whole space R while the immature population only 
living in the half space R+, with homogeneous Dirichlet condition for the immatures at the boundary 
point. One of the important features of this model system is that it does have the translational-invariance. 
By linking the non-translational-invariant solution map for this equation to travelling wave maps for an-
other related 1-D spatial homogeneous delay reaction-diffusion equation, we obtain some traveling-like a 
priori estimates for nontrivial solutions. We then establish the existence, uniqueness, and attractivity of 
heterogeneous steady states. As a result, we are able to describe the traveling-like asymptotic behaviours 
of nontrivial solutions in space-time region. These enable us to develop a new method for exploring the 
spreading speeds and asymptotic propagation phenomena for a class of non-translation-invariant delay 
reaction-diffusion equations on R. As a corollary, we also recover some results on the asymptotic spread-
ing speeds and traveling waves for monostable and spatial homogeneous delay reaction-diffusion equations 
in R.
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1. Introduction

When studying the population dynamics of a species that has obvious age structure and is sig-
nificantly mobile in the habitat, one is typically and naturally led to reaction diffusion equations 
of the form

∂u

∂t
(t, x) = Dm�u(t, x) − dmu(t, x)

+ ε

∫
�

�(ϑ,x, y)b(u(t − τ, y) dy, (t, x) ∈ (0,∞) × �. (1.1)

Here u(t, x) is the mature population of the species at time t and location x, Dm and dm are 
the diffusion rate and death rate of the mature population, τ is the maturation time for the 
species. The other two indirect parameters ε and ϑ are defined by ε = exp(− 

∫ τ

0 dI (a)da)

ϑ = ∫ τ

0 DI (a)da where DI (a), dI (a), a ∈ [0, τ ] are the age dependent diffusion rate and death 
rate of the immature individuals and hence, ε actually accounts for probability of surviving the 
immature period and ϑ measures the mobility of the immatures. Here, b : R+ →R+ is the birth 
function of the species.

As for the kernel �(ϑ, x, y), it explains the probability that an individual born at location y
will have dispersed to location x when becoming mature (τ time units later), provided that it 
can survive the immature period. Its form depends on the spatial domain �, and also on the 
conditions posed on the boundary of � when it has a boundary. For example, when � is a 
bounded 1-D domain (interval), [23] derived the forms of the kernel corresponding to various 
boundary conditions; when � is a general bounded domain in Rn and the homogeneous Robin 
boundary condition is posed, [51] obtained the kernel expressed as a Green function. When 
� = R, [39] derived �(ϑ, x, y) to be �(ϑ, x, y) = �ϑ(x − y) where �ϑ(z) is the heat kernel 
(Gaussian function)

�ϑ(z) = 1√
4πϑ

e−z2/4ϑ . (1.2)

For more details about the background of such spatially non-local dynamic models, see [23,39,
51,62] or the survey by Gourley and Wu [16].

We would particularly like to mention the case � = (0, ∞) in which, the spatial domain �
is unbounded but is not the whole space, and hence, it has a boundary at x = 0. Such a spatial 
domain accounts for a scenario of species with both mature and immature individuals live and 
move, for example, in a big land that has a shore of ocean or lake on one side of the land, or 
species living in a large area of water (ocean or lake) with an obvious shore boundary on one 
side. For such a semi-infinite domain with a homogeneous Dirichlet boundary condition at x = 0
(hostile boundary), the kernel becomes �(ϑ, x, y) = �ϑ(x − y) − �ϑ(x + y). See [62] for more 
details about the model and the dynamics of the model.

We note that in all those spatially non-local reaction diffusion models mentioned above rep-
resented by (1.1), it is assumed that both the matures and the immatures live and diffuse in the 
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same spatial region. However, in the real world there are biological species whose matures and 
immatures have different regions to live and diffuse. For instance, for an amphibious animal, its 
juveniles can only live in the water (lake or ocean), while its adults can live and diffuse both in 
the water (lake or ocean) and land (so that they can have more food resources). In [57], for the 
case of bounded domain � for the immatures, a general model has been derived to account for 
the differences of juvenile and adult habitat regions, assuming a hostile condition (homogeneous 
Dirichlet condition) on the boundary of the corresponding regions. By developing domain de-
composition methods, Yi and Chen in [57] have obtained the existence and global attractivity 
of a positive steady-state solution, and the persistence of other solutions to the Dirichlet prob-
lem under the usual supremum norm, regardless of the mature population living in a bounded 
or unbounded environment. However, when the living environment � of immature population 
is unbounded, some completely different and difficult mathematical problems arise, and these 
motivate this paper.

In this paper, motivated by [57,62], we consider the case of adults individuals living in 
R = R− ∪ R+ while juveniles living in R+ with the hostile boundary characteristics at x = 0. 
Following the same procedure in deriving (1.1) in [39,57,62], but noting the difference in the spa-
tial domain for immatures, we can obtain the following initial value problem (IVP) of nonlocal 
delayed reaction-diffusion equations on R for the mature population:

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= Dm

∂2u

∂x2 − dmu +
⎧⎨
⎩

ε
∫ ∞

0 b(u(t − τ, y))[�ϑ(x − y) − �ϑ(x + y)]dy,

(t, x) ∈ (0,∞) ×R+,

0, (t, x) ∈ (0,∞) × (−∞,0);
u0 = ϕ ∈ C+,

(1.3)

and ϕ : [−τ, 0] ×R → R+ is a bounded and continuous function. Here the meanings of unknown 
u(t, x) and all parameters remain the same as for (1.1).

To stimulate our study on (1.3), let us have a quick review of some works on (1.1). When 
the spatial domain � is bounded, various boundary conditions can be posed for (1.1), leading 
to different kernel �(θ, x, y) (see, e.g., [23,51]), among which are the homogeneous Neumann 
boundary value condition or zero flux condition (NBVC) and the homogeneous Dirichlet bound-
ary value condition (DBVC) with the former accounting for an isolated domain and the latter 
explaining a scenario that the boundary is hostile for the species. The global dynamics of the 
semiflow generated by such models subject to either the Dirichlet or the Neumann boundary 
condition have been intensively and successfully studied (see, e.g., [6,13,17,20,38,40,49,52,53,
58–60,63]).

When the spatial domain � is unbounded, the existence and other qualitative properties of 
traveling wave solutions, as well as the theory of asymptotic spreading of (1.1) are the main 
concerns, and have been investigated by many authors under some particular forms of the kernel 
function �(τ, x, y) (see, e. g., [1,10,11,9,14,15,24,25,29,33,35,39,41,42,44,45,50,55,64] and the 
references therein). The study on traveling waves can be traced back to the celebrated papers of 
Fisher [12] and Kolmogorov et al. [21], while the study of asymptotic propagation was pioneered 
by Aronson and Weinberger [2]. Since solutions of initial value problems of reaction-diffusion 
equations can be considered as solutions to some discrete dynamical systems in appropriate 
spaces, Weinberger [46] and Lui [28] established the theory of spreading speeds and monostable 
traveling wavefronts for monotone discrete dynamical systems. This theory has been further de-
veloped recently in [8,24,47,61] for more general monotone/non-monotone semiflows so that it 
can be applied to a variety of discrete and continuous time evolution equations in homogeneous 
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or periodic media. Moreover, Berestycki and Hamel [3] and Berestycki et al. [4] have obtained 
the existence and the minimal wave speed of pulsating fronts, and explored the notion of asymp-
totic spreading speed for a general periodic framework together with the Neumann boundary 
conditions on the boundary of a periodic domain.

However, very little attention has been paid to evolution equations for spatially heterogeneous 
but non-periodic cases. By applying some Hanack inequality, Berestycki et al. [5] have dealt 
with various notions of asymptotic spreading speeds for solutions with compactly supported 
initial data about the Neumann problem of Kolmogorov-Petrovsky-Piskunov type equations in 
non-periodic domains. By making links between travelling wave maps and solution maps, Yi and 
Chen [56] explored the spreading speed and asymptotic propagation phenomena for the Dirichlet 
boundary value problem of reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov 
type nonlinearities on R+.

In this paper, we consider equation (1.3) with unimodal nonlinearity. For unimodal nonlinear 
reaction terms, global stability is of great interest when the spatial domain is bounded; while for 
the case of unbounded domain, traveling wave solutions of various forms and asymptotic prop-
agation characteristics are of great interest and significance, and are thus the main concerns. We 
point out that the existence of (periodic) traveling wave solutions heavily depends on the spatial 
(periodic) translation invariance of the equation and the domain. However, for equation (1.3), 
the kernel function �(ϑ, x, y) = �ϑ(x −y) −�ϑ(x +y) is neither spatial periodic no translation 
invariant. This implies that the solution map of (1.3) is neither spatially periodic no translation 
invariant, and therefore, the theory and method of Weinberger et al. cannot be applied directly to 
such Dirichlet problems. On the other hand, because the Harnack inequality cannot be extended 
to the boundary for Dirichlet problems and solutions for Dirichlet problems are zeros on the 
boundary, the methods of Berestycki et al. [5] are not feasible for Dirichlet problems in general 
domains. Fortunately, Yi and Chen [56] have provided a new class of methods to study asymp-
totic propagation for Dirichlet problem of KPP equations by using the iterative characteristics of 
travelling wave maps and integral operators associated with the Dirichlet diffusion kernel. It is 
natural to ask whether it is possible to, by developing the methods in [56], study the existences of 
heterogeneous steady states and the asymptotic spreading of other solutions of (1.3). This paper 
will seek answers to this question.

The rest of this paper is organized as follows. In Section 2, we investigate some basic prop-
erties of (1.3). In Section 3, as direct consequence of Theorem 3.6 in [61], we first establish 
some asymptotic properties of travelling wave maps with non-symmetric spatial kernels that are 
associated to the symmetric equation

⎧⎪⎨
⎪⎩

∂u

∂t
(t, x) = Dm�u(t, x) − dmu(t, x) + ε

∫
R

�ϑ(x − y)b(u(t − τ, y) dy, (t, x) ∈ (0,∞) ×R

u(t, x) = ϕ(t, x), (t, x) ∈ [−τ,0] ×R.

(1.4)

By linking travelling wave maps associated with (1.4) on R to another integro-difference equa-
tion with non-symmetric and non-translation invariant spatial kernels for (1.3), we obtain some 
iteration properties for the heat kernels and nonlocal kernels. In Section 4, with considerable 
modifications of the methods in [54,62], we give what will be very useful in proving traveling-
like a priori estimates on nontrivial solutions to (1.3). With these estimates, in Section 5, we then 
establish the existence, uniqueness, and attractivity of heterogeneous steady states. In Section 6, 
we explore the traveling-like asymptotic behaviour of nontrivial solutions in space-time region. 
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This enables us to develop a new method for studying the spreading speeds and asymptotic prop-
agation phenomena for (1.3). As a corollary of our main results, we easily re-establish the results 
on the travelling waves, spreading speeds and asymptotic propagation for (1.4) on R obtained 
in [9,24,39,55]. In Section 7, we apply our main results to two particular birth functions: the 
Ricker function and the Mackey-Glass hematopoiesis function, leading to some more specific 
results explicitly in terms of the parameters in this two functions.

2. Preliminary results

We first introduce some notations. Let R, R+, and N be the sets of all reals, nonnegative reals, 
positive integers, respectively. Let X = C(R, R) ∩L∞(R, R) and C = C([−τ, 0], X). Equipped 
with the usual supremum norm || · ||X = || · ||L∞(R,R) and || · ||C = || · ||L∞([−τ,0]×R,R) re-
spectively, X and C are Banach spaces. Let X+ = {φ ∈ X : φ(x) ≥ 0 for all x ∈ R}, X++ =
{φ ∈ X+ : φ(R+) 
= {0}}, X◦+ = {φ ∈ X : φ(x) > 0 for all x ∈ R}, C+ = {ϕ ∈ C : ϕ(θ, x) ≥
0 for all (θ, x) ∈ [−τ, 0] × R}, C++ = {ϕ ∈ C+ : ϕ([−τ, 0) × R+ ∪ {0} × R) 
= {0}} and 
C◦+ = {ϕ ∈ C : ϕ(θ, x) > 0 for all (θ, x) ∈ [−τ, 0] × R}. Clearly, X+, C+ are closed cones in 
X, C, respectively. For any ξ , η ∈ X (resp. C), we write ξ ≥ η if ξ − η ∈ X+ (resp. C+), ξ > η

if ξ ≥ η and ξ 
= η, ξ � η if ξ − η ∈ X◦+ (resp. C◦+). Moreover, for γ ∈ X+, Xγ = {φ ∈ X+ :
φ(x) ≤ γ (x) for all x ∈ R} and Cγ = {ϕ ∈ C+ : ϕ(θ, x) ≤ γ (x) for all (θ, x) ∈ [−τ, 0] × R}. 
Sometimes, we also write BC(X , Y) for C(X , Y) ∩ L∞(X , Y), where X , Y are topological 
spaces. For any ζ ∈ BC(X , Y), we denote supremum norm of ζ by ||ζ ||L∞ .

For convenience, we shall also treat an element ϕ ∈ C as a function from [−τ, 0] ×R into R. 
For any a ∈ R or φ ∈ X, we also use a, φ to denote the constant function taking constant value 
a, φ in the corresponding function space, when no confusion arises. So, we sometimes consider 
R, X as subsets of X, C, respectively, that is, R ⊆ X ⊆ C.

For an interval I ⊆R, let I +[−τ, 0] = {t + θ : t ∈ I and θ ∈ [−τ,0]}. For u : (I +[−τ, 0]) ×
R → R and t ∈ I , we write ut (·, ·) for the function defined by ut(θ, x) = u(t + θ, x) for (θ, x) ∈
[−τ, 0] ×R.

For convenience, by letting d = Dm, μ = dm, and f (u) = εb(u)
dm

for all u ∈ R+, we transform 
system (1.3) to the following initial value problem (IVP) of nonlocal delayed reaction-diffusion 
equations in R with spatial switch:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u

∂t
= d

∂2u

∂x2 − μu +
⎧⎨
⎩

μ
∫ ∞

0 f (u(t − τ, y))[�ϑ(x − y) − �ϑ(x + y)]dy,

(t, x) ∈ (0,∞) ×R+,

0, (t, x) ∈ (0,∞) × (−∞,0);
u0 = ϕ ∈ C+.

(2.1)

We will consider the mild solution of system (2.1) which solves the following integral equa-
tion with the given initial function,

{
u(t, ·) = T (t)[ϕ(0, ·)] + μ

∫ t

0 T (t − s)[K[f (u(s − τ, ·))]]ds, t ≥ 0,

u0 = ϕ ∈ C+.
(2.2)

Here K : X → X is defined by

K[φ](x) =
{ ∫ ∞

0 φ(y)[�ϑ(x − y) − �ϑ(x + y)]dy, x ∈R+,

0, x ∈ (−∞,0),
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and T (t) is the semigroup generated by the linear system,

{
∂u
∂t

= d�u(t, x) − μu, t > 0,

u(0, x) = φ(x), x ∈ R,

that is, for (x, φ) ∈ R × X,

{
T (0)[φ](x) = φ(x),

T (t)[φ](x) = exp(−μt)√
4dπt

∫ ∞
−∞ φ(y) exp

(
− (x−y)2

4dt

)
dy, t > 0.

(2.3)

For given ϕ ∈ C+, by the method of steps and the definitions of K[·] and T (t), it is easy to 
see (2.2) has a unique solution which exists for all t ≥ 0. Denote by uϕ(t, x) the unique solution 
of (2.2). Then it is clear that (uϕ(·, ·))t ∈ C+ for all t ≥ 0 and ϕ ∈ C+ (see, e.g., Martin and 
Smith [31,32]). Thus, the solution map of (2.2) induces a continuous semiflow in C+. Since the 
semigroup T (t) is analytic, we know that a mild solution of (2.1) (i.e., solution of (2.2)) is also a 
classical solution of (2.1) for all t > τ when f is continuously differentiable (see, e.g., see [31,
32,43,48]). Therefore, in the sequel, we only need to consider solutions of (2.2).

Denote by � the solution semiflow of (2.2), that is, � : R+ × C+ → C+ is defined by 
�(t, ϕ) = (uϕ)t for all (t, ϕ) ∈ R+ × C+. Sometimes, we also write �(t, ϕ; f, K) for �(t, ϕ) to 
emphasize the dependence on the nonlinearity f and the nonlocal kernel K , if there is a need.

For any 0 < s < t < ∞, let us define the mapping �s(t, ·) : C+ � ϕ �→ �s(t, ·)[ϕ] ∈
L∞([−s, 0] ×R, R) where �s(t, ·)[ϕ](θ, x) = �(t + θ, ϕ)(0, x) for all (θ, x) ∈ [−s,0] ×R.

In this section, we establish some basic results on the boundedness, compactness, and com-
parison principle of the solution maps to (2.1) or (2.2). We first collect some basic properties of 
K[·] and T (t) established in [7,36,38,54].

Lemma 2.1. K[X] ⊆ X, K[X+] ⊆ X+, K[X+ \ X++] = {0} and K[X++] ⊆ {φ ∈ X+ :
φ((−∞, 0]) = {0} and φ((0, ∞)) ⊆ (0, ∞)} ⊆ X++.

Lemma 2.2. The following statements hold.

(i) T (t)[X] ⊆ UBC(R, R) for all t > 0, and T (t)|UBC(R,R) is an analytic and strongly con-
tinuous semigroup on X.

(ii) T (t)[X+] ⊆ X+ for all t ∈R+.
(iii) T (t)[X+ \ {0}] ⊆ X◦+ and for t > 0.
(iv) ||T (t)[φ]||X ≤ ||φ||Xe−μt for all t > 0.
(v) If a, r > 0, then {T (t)[φ]|[−a,a] : φ ∈ X with − r ≤ φ ≤ r} is pre-compact in

L∞([−a, a], R).

Due to the non-compactness of the spatial domain, it is generally difficult and inconvenient 
to describe the asymptotic behaviour of solutions to (1.4) with respect to the L∞-norm. To over-
come this difficulty, we use the following norms on X and C, defined respectively by

||φ|| �
∞∑

2−n sup{|φ(x)| : |x| ≤ n} for all φ ∈ X,
n=1
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||ϕ|| �
∞∑

n=1

2−n sup{|ϕ(θ, x)| : (θ, x) ∈ [−τ,0] × [−n,n]} for all ϕ ∈ C.

Similarly, for a ≤ b, let Ca,b = C([a, b] × R, R) ∩ L∞([a, b] × R, R), and ||ϕ|| �
∞∑

n=1
2−n sup{|ϕ(θ, x)| : (θ, x) ∈ [a, b] × [−n, n]} for all ϕ ∈ Ca,b . Moreover, we shall still de-

note the corresponding topological vector spaces (X, || · ||), (C, || · ||), and (Ca,b, || · ||a,b) by 
X, C and Ca,b . Accordingly, we always assume that the tacit topologies on X, C and Ca,b are 
induced by the new norms || · || and || · ||a,b in the sequel. In particular, X = C0,0 and C = C−τ,0.

In what follows, we shall always assume the following for the nonlinearity f :

(H1) f :R+ → R+ is continuous with f being continuously differentiable in some right neigh-
borhood of 0 with f (0) = 0 and f ′(0) > 1; moreover, there exists u∗ ∈ (0, ∞) such that 
f (u∗) = u∗, f (u) > u for all u ∈ (0, u∗), and 0 < f (u) < u for all u ∈ (u∗, ∞).

Under (H1), sup{f (u) : u ∈ [0, u∗]} exists and is denoted by M in the rest of this paper. Then, 
we have the following proposition which establishes the positivity, boundedness, and compact-
ness for the solution semiflow of (2.2).

Proposition 2.1. The following results hold.

(i) �(R+ × C+) ⊆ C+, �(R+ × (C+ \ C++)) = {0}, and �((τ, ∞) × C++) ⊆ C◦+.
(ii) �(R+ × Cδ+M) ⊆ Cδ+M for any δ > 0.
(iii) lim

t→∞(sup{||�(t, ϕ)||C : ϕ ∈ Cδ+M}) ≤ M for any δ > 0.

(iv) �(t, ·) is a continuous semiflow on Cδ+M for any δ > 0.
(v) The mapping �s(t, ·) : Cδ+M → C−s,0 is precompact in C for any 0 < s < t and δ > 0. In 

particular, �(t, ·)|Cδ+M is precompact in C for t > τ and δ > 0.

Proof. The poofs of (i), (ii) and (iii) follow from (2.2), Lemma 2.1, Lemma 2.2 and (H1). Note 
that �(t, ·) is a semigroup on Cδ+M. By a similar proof to that of Theorem 2.8 in [54], we can 
show (iv) and (v). The proof is completed. �

By Proposition 2.1-(i), the solution is positive for all t > 0 if and only if the initial function 
is from ϕ ∈ C++. The following result gives a comparison principle for the solution semiflow of 
(2.2).

Proposition 2.2. Let K̃ : C → C be a linear bounded operator satisfying (K̃ − K)[X+] ⊆ X+. 
Let g ∈ C(R+, R+) be nondecreasing on R+ satisfying f − g ∈ C(R+, R+). Then, for any 
ϕ, ψ ∈ C+ with ϕ ≥ ψ , it hods that �(t, ϕ; f, K̃) ≥ �(t, ψ; g, K) for all t ≥ 0.

Proof. Suppose that (ϕ, ψ) ∈ C+ × C+ and ϕ ≥ ψ . It follows from Lemmas 2.1–2.2 and (2.2)
that for any t ∈ [0, τ ], we have

�(t,ϕ;f, K̃)(0, ·) = T (t)[ϕ(0, ·)] + μ

t∫
T (t − ς)[K̃[f (ϕ(ς − τ, ·))]]dς
0
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≥ T (t)[ϕ(0, ·)] + μ

t∫
0

T (t − ς)[K[g(ϕ(ς − τ, ·))]]dς

≥ T (t)[ψ(0, ·)] + μ

t∫
0

T (t − ς)[K[g(ψ(ς − τ, ·))]]dς

≥ �(t,ψ;g,K)(0, ·).

This, together with the semigroup properties of �, implies �(t, ϕ; f, K̃) ≥ �(t, ψ; g, K) for all 
t ∈ R+. The proof is completed. �

Before proceeding further, we collect some standard notions and notations.

Definition 2.1. An element ϕ ∈ C+ is called an equilibrium of � if �(t, ϕ) = ϕ for all t ∈ R+. 
A subset A of C+ is said to be positively invariant under � if �(t, ϕ) ∈ A for all ϕ ∈ A and 
t ∈ R+.

We write O(ϕ) = {�(t, ϕ) : t ∈ R+} for the positive semi-orbit through the point ϕ ∈ C+. 
The ω-limit set of O(ϕ) is defined by ω(ϕ) = ⋂

t∈R+ O(�(t,ϕ)), where O(�(t,ϕ)) represents 
the closure of O(�(t, ϕ)). In what follows, we also write O(f, K; ϕ) and ω(f, K; ϕ) for O(ϕ)

and ω(ϕ), respectively, to emphasize dependence on the nonlinearity f and nonlocal kernel K , 
if there is a need.

Definition 2.2. Let φ∗ be an equilibrium of the semi-flow � and A be a positively invariant set 
of �. We say that φ∗ is globally attractive in A if ω(ϕ) = {φ∗} for all ϕ ∈ A.

3. An integro-difference equation and its properties

Let k(t, x) = μe−μt�dt (x), that is,

k(t, x) = μe−μt

√
4dπt

exp

(
− x2

4dt

)
for t ∈ (0,∞) and x ∈R.

Given c ≥ 0, define kc :R → R by

kc(x) = μ√
4dμ + c2

e
− c

2d
x−

√
4dμ+c2

4d2 |x|
for x ∈ R.

Note that 
∫
R+ k(s, x + cs)ds = kc(x) for all x ∈ R by Lemma 2.1-(vi) in [54]. Clearly, ∫

R kc(y)dy = 1, and 
∫
R eλykc(y)dy < ∞ if and only if λ ∈ (−�−, �+), where

�± = ± c +
√

4dμ + c2

2 > 0.

2d 4d
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In our pursuing, we will need to relate our discussion to the following integro-difference 
equation

⎧⎨
⎩

un+1(x) = ∫
R2 g(un(y + τc))�ϑ(z − y)kc(x − z)dydz �Qc[g;un](x),

u0 ∈ X+.

(3.1)

In other words, un = (Qc[g; ·])n[u0] � Qn
c [g; u0], for u0 ∈ X+. Here g : R+ → R+ is assumed 

to satisfy (H1) and g(u) ≤ g′(0)u.
Let

l(c, ρ) = μg′(0)e− ρτc
d

ρc + μ − dρ2

∫
R

eρy�ϑ(y)dy for all c,ρ ∈ R.

Then, for c, ρ ∈R, one can easily evaluate the integral to obtain

l(c, ρ) = μg′(0)eϑρ2− ρτc
d

ρc + μ − dρ2 for all c,ρ ∈R.

Let us define

l±(c, ρ) =

⎧⎪⎪⎨
⎪⎪⎩

l(c,±ρ) for 0 < ρ <
±c + √

c2 + 4dμ

2d
;

∞ for ρ ≥ ±c + √
c2 + 4dμ

2d
.

(3.2)

Set

c∗±(c) = inf
ρ>0

1

ρ
log l±(c, ρ) for c ∈ R

and

c∗ = inf{c ∈ R : c∗+(c) ≤ 0}.
In what follows, we also write c∗±(g; c), c∗(g) for c∗±(c), c∗, respectively, to emphasize the 
dependence on the nonlinearity g, if there is a need.

The following lemma follows from Lemma 4.4 in [62] by replacing (μ, c, k) with (μ
d
, c

d
, �ϑ).

Lemma 3.1. Assume that c∗±(c), c∗ are defined as above. If c ≥ 0, then min{c∗−(c) > 0, c∗+(c)} >
0 if and only if c < c∗.

Lemma 3.1, together with Theorem 3.6 and Lemma 4.2 in [61] with (μ, c, k, f ) replaced by 
(
μ
d
, c

d
, �ϑ, g), gives the following results.

Proposition 3.1. Assume that c ≥ 0. If g2 = g ◦ g has a unique positive fixed point u∗, then the 
following statements are valid.
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(i) If c < c∗(g), then lim
n→∞||Qn

c [g; φ] − u∗|| = 0 for any φ ∈ BC(R, R+) \ {0}.
(ii) If c ≥ c∗(g), then (3.1) has a decreasing steady state φ(x) with φ(∞) = 0 and φ(−∞) = u∗.

Remark 3.1. It is easy to verify that the steady state φ in Proposition 3.1-(ii) satisfies the follow-
ing equation,

−cφ′(x) = dφ′′(x) − μφ(x) + μ

∫
R

g(φ(y + cτ))�ϑ(x − y)dy.

In other words, φ(x − ct) is indeed a travelling wave of the following delayed reaction-diffusion 
equation

∂u

∂t
(t, x) = d

∂2u

∂x2 − μu + μ

∫
R

f (u(t − τ, y))�ϑ(x − y)dy, (t, x) ∈ (0,∞) ×R (3.3)

with f = g such that φ(∞) = 0 and φ(−∞) = u∗. On the basis of this observation, we call Qc

a travelling wave map with wave speed c.

In the remainder of this paper, in addition to (H1) and g(u) ≤ g′(0)u, we also further assume 
that g is nondecreasing on R+. This implies that the self-composition g2 = g ◦ g has a unique 
positive fixed point u∗

Lemma 3.2. Let c ∈ [0, c∗) and let φ ∈ C(R, [0, u∗)) \ {0} have a compact support. Then, for 
any γ ∈ (1, u∗

||φ||L∞ ), there is an n = n(c, φ, γ ) ∈ N such that Qn
σ [g; φ] ≥ γφ for all σ ∈ [0, c].

Proof. Clearly, by Proposition 3.1-(i), for any σ ∈ [0, c] and γ ∈ (1, u∗
||φ||L∞ ), there is an 

N = N(σ,φ, γ ) ∈ N such that QN
σ [g; φ] � γφ. Note that QN

σ [g; φ](x) is continuous at 
(σ, x) ∈ [0, c] × R+ due to the definition of QN

σ [g; ·]. This, together with the compactness 
of supp(φ), implies that there is δ = δ(σ,φ, γ ) > 0 such that QN

ς [g; φ] � γφ for all ς ∈
[0, c] ∩ (σ − δ, σ + δ). Clearly, there exist c1, c2, . . ., cl ∈ [0, c] such that [0, c] ⊆

l⋃
i=1

(ci −

δ(ci, φ, γ ), ci + δ(ci, φ, γ )). Let n = nc,φ,γ �
l∏

i=1
N(ci, φ, γ ). Then, by γ > 1, the choice of n, 

and the monotonicity of Qσ , we have Qn
σ [g; φ] ≥ γφ for all σ ∈ [0, c]. �

For any c ≥ 0, and α, β > 0, we define linear operators

Qc,α[g; ·] : C([−α,α],R) → C([−α,α],R)

and

Qc,0,∞[g; ·],Q∞
c,β [g; ·] : BC(R+,R) � C(R+,R) ∩ L∞(R+,R) → BC(R+,R)

respectively by
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Qc,α[g;φ](x) =
α∫

−α

kc(x + τc − y)

α∫
−α

�ϑ(y − z)g(φ(z))dzdy, x ∈ [−α,α],

Qc,0,∞[g; ζ ](x) =
∞∫

0

kc(x − y)

∞∫
0

�ϑ(y − z)g(ζ(z + cτ))dzdy, x ∈ R+,

Q∞
c,β [g; ζ ](x) =

β∫
0

∞∫
0

k(s, x + cs − y)

∞∫
0

[�ϑ(y − z) − �ϑ(y + z)]g(ζ(z + cτ))dzdyds,

x ∈R+.

It is easy to verify that these operators are order preserving.

Lemma 3.3. If c ∈ [0, c∗) and φ, ψ ∈ BC(R, R+) \ {0} have compact supports, then there exist 
nc,φ,ψ ∈ N and α∗

c,φ,ψ > 0 such that Q
nc,φ,ψ
σ,α [g; φ](0) ≥ 2u∗

3 and Q
nc,φ,ψ
σ,α [g; ψ](0) ≥ 2u∗

3 for all 
σ ∈ [0, c] and α ≥ α∗

c,φ,ψ .

Proof. Take β∗ > 0 and ϕ ∈ C(R, [0, u∗)) \ {0} with compact support such that ||ϕ||L∞ = ϕ(0), 
ϕ ≤ Qσ,β∗ [φ] and ϕ ≤ Qσ,β∗ [ψ] for all σ ∈ [0, c].

By Lemma 3.2 with

γ = max{1, 2u∗
3ϕ(0)

} + u∗
ϕ(0)

2
,

we know that there is n1 ∈ N such that Qn1
σ [g; ϕ] ≥ γ ϕ for all σ ∈ [0, c]. According to 

lim
α→∞Q

n1
σ,α[g; ϕ](0) = Q

n1
σ [g; ϕ](0) > 2u∗

3 for all σ ∈ [0, c], we know that for any σ ∈ [0, c], 
there exist ασ > 0 such that Q

n1
σ,ασ [g; ϕ](0) > 2u∗

3 . Since Q
n1
ρ,α[g; ϕ](0) is continuous at 

ρ ∈ [0, c], there exist l ∈ N and (c1, δ1), (c2, δ2), . . ., (cl, δl) ∈ [0, c] × (0, 1) with [0, c] ⊆
l⋃

i=1
(ci −δi, ci +δi) such that Qn1

σ,αci
[g; ϕ](0) ≥ 2u∗

3 for all σ ∈ (ci −δi, ci +δi) and i ∈ [0, l] ∩N . 

Let α∗ = max{αi : i ∈ [0, l] ∩N}. Then Qn1
σ,α[g; ϕ](0) ≥ 2u∗

3 for all σ ∈ [0, c] and α ≥ α∗ due to 
the monotonicity of Qn1

σ,α[g; ϕ](0) with respect to α ∈ [0, ∞).
Thus, by the choice of ϕ and the monotonicity of Qσ,α[g; ·](0) with respect to α, we have 

Q
n1+1
σ,α [g; φ](0) ≥ Q

n1
σ,α[g; ϕ](0) ≥ 2u∗

3 and Qn1+1
σ,α [g; ψ](0) ≥ Q

n1
σ,α[g; ϕ](0) ≥ 2u∗

3 for all σ ∈
[0, c] and α ≥ α∗

c,φ,ψ := max{α∗, β∗}. �
Lemma 3.4. Let c ∈ [0, c∗), δ ≥ α + τc > τc, φ ∈ C([−α, α], R+) \ {0} and ψ ∈ BC(R+, R+) \
{0}. If ψ(x+δ) ≥ φ(x) for all x ∈ [−α, α], then Qc,0,∞[g; ψ](x+δ) ≥ Qc,α[g; φ](x) and hence 
Qn

c,0,∞[g; ψ](x + δ) ≥ Qn
c,α[g; φ](x) for all x ∈ [−α, α] and n ∈N .

Proof. By the definitions of Qc,0,∞[g; ·] and Qc,α[g; ·], we can conclude that for any x ∈
[−α, α],

Qc,0,∞[g;ψ](x + δ)
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=
∞∫

0

kc(x + δ − y)

∞∫
0

�ϑ(y − z)g(ψ(z + τc))dzdy

=
∞∫

−δ

kc(x − y)

∞∫
−δ

�ϑ(y − z)g(ψ(z + δ + τc))dzdy

≥
α−τc∫

−α−τc

kc(x − y)

α−τc∫
−α−τc

�ϑ(y − z)g(ψ(z + δ + τc))dzdy

=
α∫

−α

kc(x + τc − y)

α∫
−α

�ϑ(y − z)g(ψ(z + δ))dzdy

≥
α∫

−α

kc(x + τc − y)

α∫
−α

�ϑ(y − z)g(φ(z))dzdy

= Qc,α[g;φ](x).

This completes the proof. �
For any given T > 1, define the function hT : R →R+ by

hT (x) =

⎧⎪⎪⎨
⎪⎪⎩

1, x ∈ [T ,2T ],
x − T + 1, x ∈ [T − 1, T ),

2T − x + 1, x ∈ (2T ,2T + 1],
0, x ∈R \ [T − 1,2T + 1].

Proposition 3.2. If c ∈ [0, c∗) and ε > 0, then there exist n0 = n0(c, ε) ∈ N and t0 = t0(c, ε) > 4
such that (Q∞

σ,β)n0 [g; εhT ] ≥ u∗
2 hT for all β, T ≥ t0, and σ ∈ [0, c].

Proof. Let ξ(x) = ε max{0, 1 − |x|} for all x ∈ R. By Lemma 3.3 with φ = ξ(· + 1) and ψ =
ξ(· −1), there exist nξ ∈N and αξ > 1 +τc such that Q

nξ
σ,α[g; ξ(· ±1)](0) ≥ 2u∗

3 for all σ ∈ [0, c]
and α > αξ . In particular, Q

nξ

σ,1+αξ
[g; ξ(· ± 1)](0) ≥ 2u∗

3 for all σ ∈ [0, c]. This, together with 
Lemma 3.4 and the fact that

εhT (x + δ)

{ ≥ ξ(x − 1), δ ∈ [T − 1,1.5T ]
≥ ξ(x + 1), δ ∈ (1.5T ,2T + 1]

for all T > 4 +2αξ and x ∈ [−1 −αξ , 1 +αξ ], implies that, for all T > 4 +2αξ , δ ∈ [T −1, 2T +
1], and σ ∈ [0, c], we have

Q
nξ

σ,0,∞[g; εhT ](δ) ≥ min{Qnξ

σ,1+αξ
[g; ξ(· − 1)](0),Q

nξ

σ,1+αξ
[g; ξ(· + 1)](0)} ≥ 2u∗

3
.

To complete the proof, we define two new maps Rσ,0,∞, R∞
σ,β : BC(R+, R) → BC(R+, R) re-

spectively by



1612 T. Yi, X. Zou / J. Differential Equations 268 (2020) 1600–1632
Rσ,0,∞[g; ζ ](x) =
∞∫

0

kσ (x − y)

∞∫
0

�ϑ(y + z)g(ζ(z + στ))dzdy,

R∞
σ,β [g; ζ ](x) =

∞∫
β

∞∫
0

k(s, x + σs − y)

∞∫
0

[�ϑ(y − z) − �ϑ(y + z)]g(ζ(z + στ))dzdyds

for all x ∈R+ and ζ ∈ BC(R+, R). Clearly,

||Qσ,0,∞[g; ζ ]||L∞ ≤ max{u∗, ||ζ ||L∞},
||Rσ,0,∞[g; ζ ]||L∞ ≤ max{u∗, ||ζ ||L∞},

||R∞
σ,β [g; ζ ]||L∞ ≤ max{u∗, ||ζ ||L∞}

for all ζ ∈ BC(R+, R). It is also obvious that

|R∞
σ,β [g; ζ ](x)| ≤ max{u∗, ||ζ ||L∞}

∞∫
β

∞∫
−∞

k(s, x + σs − y)dyds ≤ max{u∗, ||ζ ||L∞}e−μβ

for all x, σ, β ∈ R+, and ζ ∈ BC(R+, R). It then follows that, for any x, σ ∈ R+, and ζ ∈
BC(R+, R), we have

|Rσ,0,∞[g; ζ ](x)|

≤ max{u∗, ||ζ ||L∞}
∞∫

0

kσ (x − y)

∞∫
0

�ϑ(y + z)dzdy

≤ max{u∗, ||ζ ||L∞}
∞∫

0

kσ (x − y)

∞∫
0

e− y2

4ϑ �ϑ(z)dzdy

= max{u∗, ||ζ ||L∞}
2

[
x∫

0

kσ (x − y)e− y2

4ϑ dy +
∞∫

x

kσ (x − y)e− y2

4ϑ dy]

≤ μmax{u∗, ||ζ ||L∞}
2
√

4dμ + σ 2
[e−[ σ

2d
+

√
4dμ+σ2

4d2 ]x
x∫

0

e
σ
2d

y+
√

4dμ+σ2

4d2 y
e− y2

4ϑ dy + e− x2
4ϑ

∞∫
x

kσ (x − y)dy]

≤ μmax{u∗, ||ζ ||L∞}
2
√

4dμ + σ 2
[e−[ σ

2d
+

√
4dμ+σ2

4d2 ]x
∞∫

−∞
e

σ
2d

y+
√

4dμ+σ2

4d2 y
e− y2

4ϑ dy + e− x2
4ϑ ]

= μmax{u∗, ||ζ ||L∞}√
2

[2√
ϑπe

ϑ[ σ
2d

+
√

4dμ+σ2

4d2 ]2

e
−[ σ

2d
+

√
4dμ+σ2

4d2 ]x + e− x2
4ϑ ]
2 4dμ + σ
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≤ μmax{u∗, ||ζ ||L∞}
4
√

dμ
[2√

ϑπe
ϑ[ σ

2d
+

√
4dμ+σ2

4d2 ]2

e
−

√
μ
d
x + e− x2

4ϑ ].

Take n0 � n0(c, ε) = nξ ∈ N and t0 = t0(c, ε) > 4 + 2αξ such that 3n0 max{ε, u∗}e−μt0 ≤ u∗
12

and

3n0μmax{u∗, ε}
4
√

dμ
[2√

ϑπe
ϑ[ c

2d
+

√
4dμ+c2

4d2 ]2

e
−

√
μ
d
(t0−1) + e− (t0−1)2

4ϑ ] ≤ u∗

12
.

It follows that, for any β, T ≥ t0, σ ∈ [0, c], and x ∈ [T − 1, 2T + 1], we have

(Q∞
σ,β)n0 [g; εhT ](x) = [Qσ,0,∞ − Rσ,0,∞ − R∞

σ,β ]n0 [g; εhT ](x)

=
n0∑
l=0

Cl
n0

[Qσ,0,∞]n0−l[−Rσ,0,∞ − R∞
σ,β ]l[g; εhT ](x)

= [Qσ,0,∞]n0 [g; εhT ](x)

+
n0∑
l=1

Cl
n0

[Qσ,0,∞]n0−l[−Rσ,0,∞ − R∞
σ,β ]l[g; εhT ](x)

≥ [Qσ,0,∞]n0 [g; εhT ](x) − [Rσ,0,∞ + R∞
σ,β ][g;3n0 max{ε,u∗}](x)

≥ [Qσ,0,∞]n0 [g; εhT ](x) − 3n0 max{ε,u∗}e−μβ

−3n0μmax{u∗, ε}
4
√

dμ
[2√

ϑπe
ϑ[ σ

2d
+

√
4dμ+σ2

4d2 ]2

e
−

√
μ
d
x + e− x2

4ϑ ]

≥ [Qσ,0,∞]n0 [g; εhT ](x) − 3n0 max{ε,u∗}e−μβ

−3n0μmax{u∗, ε}
4
√

dμ
[2√

ϑπe
ϑ[ σ

2d
+

√
4dμ+σ2

4d2 ]2

e
−

√
μ
d
(t0−1) + e− (t0−1)2

4ϑ ]

≥ u∗

2
,

completing the proof. �
4. A priori estimates

In this section, we present several iteration properties involving the diffusion, nonlocal ker-
nels, and the maturation time τ , which will be very useful in proving a priori traveling-like 
estimates on nontrivial solutions to (2.2).

For any g satisfying (H1) and g(u) ≤ min{g′(0)u, f (u)} for u ∈ R+, we define three 
new operators H+(g, ·), H−(g, ·), H(g, ·) : BC([−τ, ∞) × R+, R) := C([−τ, ∞) × R+, R) ∩
L∞([−τ, ∞) ×R+, R) → BC([−τ, ∞) ×R+, R) by
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H+[g; ζ ](t, x) =
t∫

0

∞∫
0

k(t − s, x − y)

∞∫
0

�ϑ(y − z)g(ζ(s − τ, z))dzdyds,

H−[g; ζ ](t, x) =
t∫

0

∞∫
0

k(t − s, x − y)

∞∫
0

�ϑ(y + z)g(ζ(s − τ, z))dzdyds,

H [g; ζ ](t, x) =
t∫

0

∞∫
0

k(t − s, x − y)

∞∫
0

[�ϑ(y − z) − �ϑ(y + z)]g(ζ(s − τ, z))dzdyds,

for all ζ ∈ BC([−τ, ∞) × R+, R) and t, x ∈ R+. Clearly, H [g; ζ ] = H+[g; ζ ] − H−[g; ζ ] for 
all ζ ∈ BC([−τ, ∞) ×R+, R).

In the following, we also further assume that g is nondecreasing on R+.

Lemma 4.1. Suppose that c, α ≥ 0, β > 0, ζ ∈ BC([−τ, ∞) × R+, R+) � C([−τ, ∞) ×
R+, R+) ∩ L∞([−τ, ∞) × R+, R), η ∈ BC([−τ, ∞) × R, R+) � C([−τ, ∞) × R, R+) ∩
L∞([−τ, ∞) × R, R), and φ ∈ BC(R+, R+) such that η(t, x) ≥ ζ(t, x) for all (t, x) ∈
[−τ, β] ×R+ and ζ(t, x +α + ct) ≥ φ(x) for all (t, x) ∈ [−τ, β] ×[cτ, ∞). Then the following 
statements are valid.

(i) g(||ζ ||L∞([−τ,∞)×R+,R)) ≥ H±[g; ζ ](t, x) ≥ 0 for all (t, x) ∈R2+.

(ii)
∫ t

0 T (t − s)[K[g(η(s − τ, ·))]](x)ds ≥ H [g; ζ ](t, x) for all (t, x) ∈ [0, β + τ ] ×R+.

(iii) H−[g; ζ ](t, x) ≤ µg′(0)||ζ ||L∞
4
√

dμ
[2√

ϑπe
μϑ
d

−
√

μ
d
x + e− x2

4ϑ ] for all (t, x) ∈R2+.

(iv) H [g; ζ ](t, x + α + ct) ≥ Q∞
c,t [g; φ](x) for all (t, x) ∈ [0, β + τ ] ×R+.

Proof. (i) and (ii) follow from the definitions of H and H±. For (iii), according to the proof of 
Proposition 3.2, we easily see that for any t, x ∈R+,

H−[g; ζ ](t, x) ≤ |R0,0,∞[g; ||ζ ||L∞](x)|

≤ g′(0)||ζ ||L∞

∞∫
0

k0(x − y)

∞∫
0

�ϑ(y + z)dzdy

≤ µg′(0)||ζ ||L∞

4
√

dμ
[2√

ϑπe
μϑ
d

−
√

μ
d
x + e− x2

4ϑ ].

For (iv), by the definitions of �ϑ , k and H , and the Fubini’s theorem, we can see that, for any 
(t, x) ∈ [0, β + τ ] ×R+,

H [g; ζ ](t, x + α + ct)

=
t∫ ∞∫

k(t − s, x + α + ct − y)

∞∫
[�ϑ(y − z) − �ϑ(y + z)]g(ζ(s − τ, z))dzdyds
0 0 0
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=
t∫

0

∞∫
−cs−α

k(t − s, x + c(t − s) − y)

×
∞∫

−cs−α

[�ϑ(y − z) − �ϑ(y + z + 2cs + 2α)]g(ζ(s − τ, z + cs + α))dzdyds

≥
t∫

0

∞∫
0

k(t − s, x + c(t − s) − y)

×
∞∫

0

[�ϑ(y − z) − �ϑ(y + z + 2cs + 2α)]g(ζ(s − τ, z + cs + α))dzdyds

≥
t∫

0

∞∫
0

k(t − s, x + c(t − s) − y)

∞∫
0

[�ϑ(y − z) − �ϑ(y + z)]g(ζ(s − τ, z + cs + α))dzdyds

≥
t∫

0

∞∫
0

k(t − s, x + c(t − s) − y)

∞∫
0

[�ϑ(y − z) − �ϑ(y + z)]g(φ(z + cτ))dzdyds

=
t∫

0

∞∫
0

k(s, x + cs − y)

∞∫
0

[�ϑ(y − z) − �ϑ(y + z)]g(φ(z + cτ))dzdyds

= Q∞
c,t [g;φ](x). �

Lemma 4.2. Let c ≥ 0, β > 0 and φ ∈ BC(R+, R+). If u ∈ BC([−τ, ∞) ×R, R+) is a solution 
of (2.2) such that u(t, x + ct) ≥ φ(x) for all (t, x) ∈ [−τ, β] × R+, then, for any I ∈ N and 
i ∈ [1, I ] ⋂N , we have u(t, x + ct) ≥ (Q∞

c,
β

1+I

)i[g; φ](x) for all (t, x) ∈ [ iβ
1+I

+ (i − 1)τ, β +
iτ ] ×R+. In particular, u(t, x + ct) ≥ (Q∞

c,
β

1+I

)I [g; φ](x) for all (t, x) ∈ [ Iβ
1+I

+ (I − 1)τ, β +
Iτ ] ×R+.

Proof. Given I ∈ N , by (2.2) combined with Lemma 4.1 and the fact that u(s, x + cs) ≥ φ(x)

for all (s, x) ∈ [−τ, β] × [cτ, ∞), we have, for any (t, x) ∈ [0, β + τ ] ×R+,

u(t, x + ct) = T (t)[φ](x + ct) + μ

t∫
0

T (t − s)[K[f (u(s − τ, ·))]](x + ct)ds

≥ T (t)[φ](x + ct) + μ

t∫
T (t − s)[K[g(u(s − τ, ·))]](x + ct)ds
0
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≥ μ

t∫
0

T (t − s)[K[g(u(s − τ, ·))]](x + ct)ds

≥ H [g;u(·, ·))](t, x + ct)

≥ (Q∞
c,t )[g;φ](x).

Thus u(t, x + ct) ≥ Q∞
c,

β
1+I

[g; φ](x) for any (t, x) ∈ [ β
1+I

, β + τ ] ×R+ due to the monotonicity 

of Q∞
c,t [g; φ](x) with t ∈ R+, leading to the conclusion for i = 1. Let

Ij,β = [ jβ

1 + I
+ (j − 1)τ,β + jτ ] for all j ∈ [1, I ]

and

i∗ = sup{i ∈ [1, I ]
⋂

N : u(t, x + ct) ≥ (Q∞
c,

β
1+I

)j [g;φ](x) for all j ∈ [1, i]

and (t, x) ∈ Ij,β ×R+}.

Then i∗ ≥ 1 and u(t, x + ct) ≥ (Q∞
c,

β
1+I

)i
∗ [g; φ](x) for all (t, x) ∈ Ii∗,β ×R+. If i∗ < I , then by 

the semi-group property of the solution flow of (2.2), Lemma 4.1, and the choice of i∗, we easily 
see that, for any (t, x) ∈ Ii∗+1,β ×R+,

u(t, x + ct)

= u i∗β
1+I

+i∗τ

(
t − i∗β

1 + I
− i∗τ, x + c

(
t − i∗β

1 + I
− i∗τ

)
+ i∗βc

1 + I
+ i∗τc

)

= T

(
t − i∗β

1 + I
− i∗τ

)[
u

(
i∗β

1 + I
+ i∗τ, ·

)]
(x + ct)

+μ

t− i∗β
1+I

−i∗τ∫
0

T

(
t − i∗β

1 + I
− i∗τ − s

)[
K

[
f (u(s + i∗β

1 + I
+ (i∗ − 1)τ, ·))

]]
(x + ct)ds

≥ μ

t− i∗β
1+I

−i∗τ∫
0

T

(
t − i∗β

1 + I
− i∗τ − s

)[
K[f (u(s + i∗β

1 + I
+ (i∗ − 1)τ, ·))]

]
(x + ct)ds

≥ μ

t− i∗β
1+I

−i∗τ∫
0

T

(
t − i∗β

1 + I
− i∗τ − s

)[
K[g(u(s + i∗β

1 + I
+ (i∗ − 1)τ, ·))]

]
(x + ct)ds

≥ H

[
g;u(· + i∗β + i∗τ, ·)

](
t − i∗β − i∗τ, x + c(t − i∗β − i∗τ) + i∗βc + i∗τc

)

1 + I 1 + I 1 + I 1 + I
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≥ (Q∞
c,t− i∗β

1+I
−i∗τ

)[g; (Q∞
c,

β
1+I

)i
∗ [g;φ]](x)

≥ (Q∞
c,

β
1+I

)1+i∗ [g;φ](x),

which yields a contradiction with the choice of i∗. Hence i∗ = I . This completes the proof. �
The following result produces some a priori traveling-like estimates on nontrivial solutions 

to (2.2), which play a key role in the proof of the repellency of the trivial equilibrium, the global 
attractivity of the nontrivial equilibrium, as well as the traveling-like asymptotic behavior of 
nontrivial solutions to (2.2).

Proposition 4.1. Suppose that c ∈ [0, c∗(f )). Then there exist ε0 > 0, T0 > 4, and T ∗ > T0 such 
that, for all ε ∈ (0, ε0], T ∈ [T0, ∞), σ ∈ [0, c], and solutions u : [−τ, ∞) × R → [0, M + 1]
of (2.2) satisfying u(t, σ t + x) ≥ εhT (x) for all (t, x) ∈ [−τ, T ∗] × R, we have u(t, σ t + ·) ≥
εhT (x) for all t ∈ R+ and u(t, σ t + ·) � εhT for all t ∈ (T ∗, ∞).

Proof. Obviously, there exists δ ∈ (0, 1) and δ∗ ∈ (0, f ′(0) − 1) such that (1 + δ∗)δ < u∗, c <

c∗(g) ≤ c∗(f ) and f (u) ≥ g(u) for all u ∈ [0, M +1], where g :R+ → R+ is defined by g(u) =
(1 + δ∗) min{u, δ} for all u ∈ R+. Then for this g, clearly g(εu) ≥ εg(u) for all u ∈ [0, 1 +M]
and ε ∈ [0, 1]. By applying Proposition 3.2, we know that there exist n0 ∈ N and t0 > 4 such that 
(Q∞

σ,β)n0 [g; ε∗hT ] ≥ 2ε∗hT with ε∗ = (1+δ∗)δ
5 for all β, T ≥ t0 and σ ∈ [0, c].

Let ε0 = ε∗
(g′(0))n0+2 , T0 = t0, and T ∗ = (1 + n0)t0 + n0τ . Suppose that ε ∈ (0, ε0], T ∈

[T0, ∞), σ ∈ [0, c], and a solution u : [−τ, ∞) × R+ → [0, 1 + M] of (2.2) with u(t, σ t +
·) ≥ εhT for all t ∈ [−τ, T ∗]. It follows from Lemma 4.2 that, for any t ∈ [T ∗, T ∗ + n0τ ], 
we have u(t, σ t + ·) ≥ (Q∞

σ, T ∗
n0+1

)n0 [g; εhT ] ≥ (Q∞
σ,T0

)n0 [g; εhT ] = (Q∞
σ,T0

)n0 [g; ε
ε∗ ε∗hT ] ≥

ε
ε∗ (Q∞

σ,T0
)n0 [g; ε∗hT ] ≥ 2εhT . Let T ∗∗ = sup{t ≥ 0 : u(s, σs + ·) ≥ εhT for all s ∈ [0, t]}. Then 

T ∗∗ ≥ T ∗+n0τ > T ∗. We claim that T ∗∗ = ∞. Otherwise, T ∗∗ < ∞. By applying the above dis-
cussions, we have u(t, σ t + ·) ≥ (Q∞

σ,
T ∗∗−n0τ

n0+1

)n0 [g; εhT ] ≥ ε
ε∗ (Q∞

σ,T0
)n0 [g; ε∗hT ] ≥ 2εhT for all 

t ∈ [T ∗∗, T ∗∗ +n0τ ]. Hence, u(t, σ t +·) ≥ εhT for all t ∈ [−τ, T ∗∗ +n0τ ], a contradiction with 
the choice of T ∗∗. Hence, T ∗∗ = ∞. Note that the previous discussions, together with Proposi-
tion 2.1(i) and the definition of hT , also produce u(t, σ t + ·) � εhT for all t ∈ [T ∗, ∞). �

Define �σ,α = {(t, x) ∈ R2+ : t ≥ α and α ≤ x ≤ 2α + σ t} for all α > 0, σ ∈ R+. The follow-
ing shows that the positive limit set of any nontrivial solution of (2.2) is far away from the trivial 
equilibrium.

Proposition 4.2. Suppose that c ∈ [0, c∗(f )). If ϕ ∈ C++, then there exist εc,ϕ > 0 and αc,ϕ > 0
such that uϕ(t, x) ≥ εc,ϕ for all (t, x) ∈ �c,αc,ϕ and thus ω(ϕ) ≥ εc,ϕhαc,ϕ,∞, where hαc,ϕ,∞(x) =
1 for all x ∈ [αc,ϕ, ∞) and hαc,ϕ,∞(x) = 0 for all x ∈ [0, αc,ϕ).

Proof. Choose T0, T ∗, and ε0 as in Proposition 4.1. By Proposition 2.1, we may assume that 
1 +M ≥ uϕ(t, x) > 0 for all (t, x) ∈ [−τ, ∞) ×R. Let ε1 = inf{uϕ(t, x) : t ∈ [−τ, T ∗] and T0 −
1 ≤ x ≤ 1 + 4T0 + ct} and εc,ϕ = min{ε0, ε1}. Then ε1 > 0, εc,ϕ > 0, and uϕ(t, σ t + ·) ≥ εc,ϕhT

for all t ∈ [−τ, T ∗], T ∈ [T0, 2T0], and σ ∈ [0, c]. It follows from Proposition 4.1 and the choices 
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of T0, T ∗, and ε0 that uϕ(t, σ t + ·) ≥ εc,ϕhT for all t ∈ R+, T ∈ [T0, 2T0], and σ ∈ [0, c]. 
In particular, uϕ(t, x) ≥ εc,ϕ for all (t, x) ∈ �c,αc,ϕ with αc,ϕ = T0. This, combined with the 
definition of ω(ϕ), implies ξ ≥ εc,ϕhαc,ϕ,∞ for all ξ ∈ ω(ϕ). �
5. Unique positive heterogeneous steady state of (2.2) and its properties

In this section, we shall establish the existence, limit at ±∞, uniqueness, and attractivity of 
the heterogeneous steady state of (2.2).

Proposition 5.1. Let E be the set of all nontrivial steady states of (2.2). Then the following 
statements are valid.

(i) ∅ 
= E ⊆ X◦+ ∩ CM.

(ii) For any u ∈ E , u(x) = u(0)e

√
μ
d
x

for all x ∈ (−∞, 0] and hence lim
x→−∞u(x) = 0.

(iii) If f 2 = f ◦ f has a unique positive fixed point u∗, then lim
x→∞u(x) = u∗.

Proof. (i) Clearly, E ⊆ X◦+ ∩ CM due to Proposition 2.1 if E 
= ∅. Next, it suffices to prove 
E 
= ∅. Note that by (H1), there is an εM ∈ (0, M) such that f ′(x) > 1 for all x ∈ [0, εM] and 
f (εM) = minf ([εM, M]). Define f̃ : R+ →R+ by

f̃ (u) =
{

f (u), u ∈ [0, εM),

f (εM), u ∈ [εM,∞).

Then by Proposition 2.2, we have �(t, ψ; f̃ ) ≤ �(t, ϕ; f̃ ) ≤ �(t, ϕ) for all (t, ϕ) ∈ R+ × CM
and ψ ∈ CM with ψ ≤ ϕ. Choose ϕ∗ ∈ C++ with ϕ∗ ≤M and let εϕ∗ , Tϕ∗ defined as in Propo-
sition 4.2 with f replaced by f̃ . Then ω(ϕ∗; f̃ ) ≥ εϕ∗hTϕ∗ ,∞, and hence ω(ϕ∗; f̃ ) ⊆ C◦+ ∩ CM. 
Let A = {ϕ ∈ C+ : ω(ϕ∗; f̃ ) ≤ ϕ ≤ M}. Clearly, A is a nonempty, closed, and convex subset in 
C such that εϕ∗hTϕ∗ ,∞ ≤ A ⊆ C◦+ and �(t, A) ⊆ A for all t ≥ 0.

Let gT (B) � co(�(T , B)) for any B ⊆ A and T > 0. Then by the induction, we have 
�(T , (gT )k−1(A)) ⊆ (gT )k(A) ⊆ (gT )k−1(A) for any positive integers k and T > 0. We claim 
that there exists a compact convex subset AT in A such that �(T , AT ) ⊆ AT for any T ∈ I �
{ 2τ

3i : i = 1, 2, · · · }. Indeed, by Proposition 2.1-(v) and the fact that �(t, ϕ)(θ, x) = uϕ(t + θ, x)

for all (t, θ, x) ∈ [0, ∞) × [−τ, 0] ×R, we know that gT (A)|[− T
2 ,0]×R is precompact in C− T

2 ,0

for any T ∈ I . By applying Proposition 2.1-(v) and the fact that �(t, ϕ)(θ, x) = uϕ(t + θ, x)

for all (t, θ, x) ∈ [0, ∞) × [−τ, 0] × R repeatedly, for any T > 0 and positive integers i, k, l
with l ≤ k ≤ 3i and T = 2τ

3i , we may conclude that (gT )k(A)|[( 1
2 −l)T ,(1−l)T ]×R is precom-

pact in C
( 1

2 −l)T ,(1−l)T
for all l ≤ 1 + 3i

2 and (gT )k(A)|[( 1
2 −l)T +τ,(1−l)T +τ ]×R is precompact in 

C
( 1

2 −l)T +τ,(1−l)T +τ
for all l > 1 + 3i

2 . These, combined with some simple computations, imply 

that (gT )3i
(A) is precompact in C. Let AT = (gT )3i

(A). Then AT is a compact convex sub-
set in C such that �(T , AT ) ⊆ AT . By the Schauder fixed point theorem, there is ψT ∈ AT

such that �(T , ψT ) = ψT . According to Proposition 2.1-(v) and the fact that {ψT : T ∈ I } =
�(2τ, {ψT : T ∈ I }) ⊆ �(2τ, A), we know that {ψT : T ∈ I } is pre-compact in C, and thus there 
exist ψ ∈ A and a sequence {Tk} in I such that lim ψTk

= ψ . For any t ∈ (0, ∞), there ex-

Tk→0
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ist rk ∈ [0, Tk) and a nonnegative integer Nk such that t = NkTk + rk . Obviously, lim
k→∞ rk = 0. 

Hence, �(t, ψ) = lim
k→∞�(t, ψTk

) = lim
k→∞�(rk, ψTk

) = ψ , which implies that u+ � ψ ∈ E is a 

positive steady state, located in C◦+ ∩ CM of (2.2).
(ii) Suppose that u ∈ E . Then by (2.1) and the definition of K , we easily see that ||u||L∞(R) <

∞ and du′′(x) = μu(x) for all x ∈ (−∞, 0]. Thus, u(x) = u(0)e

√
μ
d
x

for all x ∈ (−∞, 0], which 
implies lim

x→−∞u(x) = 0.

(iii) Let u = lim sup
x→∞

u(x), u = lim inf
x→∞ u(x) and I = [u, u]. Then by u ≥ εhT,∞ for some 

ε and T ∈ (0, ∞) due to Proposition 4.2, we have u > 0 and thus I ⊆ (0, ∞).
Define φ = lim inf

x→∞ φ(x), φ = lim sup
x→∞

φ(x) and P [φ](x) = ∫ ∞
0 φ(y)[p(x −y) −λp(x +y)]dy

for all x ∈ R+ and φ ∈ X, where λ ≥ 0, p : R → R+ is a continuous and even function on R
such that 

∫
R p(y) = 1 and p is decreasing on R+. According to the proof of Proposition 3.3 in 

[62], we may obtain that φ ≤ P [φ] ≤ P [φ] ≤ φ for all φ ∈ X+.

If u+ is a positive steady state of (2.2), then u+ = T (t)[u+] +μ 
∫ t

0 T (t − s)[K[f (u+)]]ds for 
any t ∈R+. This, together with the above claim, implies that

u+ ≥ e−μtS(t)[u+] + μ

t∫
0

e−μ(t−s)S(t − s)[K[f (u+)]]ds

≥ e−μtu+ + μ

t∫
0

e−μ(t−s)K[f (u+)])ds

≥ e−μtu+ + μ

t∫
0

e−μ(t−s)f (u+)ds

= e−μtu+ + (1 − e−μt )f (u+).

Thus, u+ ≥ f (u+), and a similar argument yields u+ ≤ f (u+). Consequently, I ⊆ f (I). But, 
by (H1) and the assumption that f 2 = f ◦ f has a unique positive fixed point u∗, we know that 

there is a closed integer J such that I ⊆ J ⊆ (0, ∞), f (J ) ⊆ J , and I ⊆
∞⋂

n=0
f n(J ) = {u∗}. So, 

I = {u∗}. In other word, lim inf
x→∞ u(x) = lim sup

x→∞
u(x) = u∗. The proof is completed. �

In the following, we denote by u+, the positive steady state of (2.2) obtained in Propo-
sition 5.1-(i), and let u∗+ = ||u+||. To address the attractiveness of u+, we further need the 
following conditions on the nonlinear function f (in addition to (H1)), see [60,62]:

(H2) f (u) < f ′(0)u for all u ∈ (0, ∞).
(H3) For any closed interval [a, b] 
= {1} with 0 < a ≤ b < ∞, either (i) G((0, u∗+] × [a, b]) ⊆

(a, ∞) or (ii) G((0, u∗+] ×[a, b]) ⊆ (0, b), where G : (0, u∗+] ×(0, ∞) → (0, ∞) is defined 
by G(k, u) = f (ku)

f (k)
.
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Theorem 5.1. Assume that (H2) and (H3) hold. Then (2.2) has a unique positive steady state 
u+ which attracts all solutions of (2.2) with the initial value ψ ∈ C++, in the sense that 

lim
t→∞|||(uψ)t − u+||| = 0 for all ψ ∈ C++, where |||ϕ||| �

∞∑
n=1

2−n sup{|ϕ(θ, x)| : (θ, x) ∈
[−τ, 0] × (−∞, n]} for all ϕ ∈ C.

Proof. The existence of u+ is already established in Proposition 5.1-(i), and the uniqueness will 
be a consequence of the global attractiveness of u+ in C++. So, we firstly need to show that u+
attracts all solutions of (2.2) with the initial value ψ ∈ C++.

Suppose ψ ∈ C++. Let a∗ = sup{a > 0 : ϕ(0, x) ≥ au+(x) for all (ϕ, x) ∈ ω(ψ) × R+} and 
b∗ = inf{b > 0 : bu+(x) ≥ ϕ(0, x) for all (ϕ, x) ∈ ω(ψ) ×R+}. By the choices of a∗, b∗, Propo-
sition 2.1, Proposition 4.2, and Proposition 5.1-(iii) give 0 < a∗u+(x) ≤ ϕ(0, x) ≤ b∗u+(x) <
∞ for all (ϕ, x) ∈ ω(ψ) × R+. Hence, we have a∗u+(0) ≤ lim

t→∞
uψ(t, 0) ≤ lim

t→∞uψ(t, 0) ≤
b∗u+(0), which implies that for any ε > 0, there exists tε > 0 such that (a∗ − ε)u+(0) ≤
uψ(t, 0) ≤ (b∗ + ε)u+(0) for all t ≥ tε . Let M = max{M, ||ψ ||L∞ , (b∗ + ε)u∗+} and v(t, x) =
(b∗ + ε)u+(x) − uψ(t + tε, x) + Me−μt for all (t, x) ∈ R+ × R. Then v(t, x) satisfies the fol-
lowing equation:

⎧⎨
⎩

∂v
∂t

(t, x) = dvxx(t, x) − μv(t, x), (t, x) ∈ (0,∞) × (−∞,0),

v(t,0) ≥ 0, t ∈ R+,

v(0, x) ≥ 0, x ∈ (−∞,0].
(5.1)

Then by the Phragmén-Lindelöf type maximum principle in [37], we have v(t, x) ≥ 0 for 
all (t, x) ∈ R+ × (−∞, 0]. These imply that lim

t→∞(inf{(b∗ + ε)u+(x) − uψ(t + tε, x) : x ∈
(−∞, 0]}) ≥ 0. This, together with the definition of ω(ψ) and arbitrariness of ε, implies 
ω(ψ) ≤ b∗u+. Similarly, we have ω(ψ) ≥ a∗u+.

Now, we shall prove that a∗ = b∗ = 1. Otherwise, a∗ 
= 1 or b∗ 
= 1. We shall show that this 
is impossible. By the assumption (H3) with [a, b] = [a∗, b∗], we know that either (I) f (ku) >
a∗f (u) for all (k, u) ∈ [a∗, b∗] × (0, u∗+] or (II) f (ku) < b∗f (u) for all (k, u) ∈ [a∗, b∗] ×
(0, u∗+].

We only consider (I) since we are similarly led to a contradiction for (II). By (I), there exists 
ε > 0 such that f (ku) > a∗f (k) + ε for all (k, u) ∈ [u∗

2 , u∗+] × [a∗, b∗]. Proposition 5.1-(iii) 
shows that there is T1 > 0 such that u+(x) ≥ u∗

2 for all x ≥ T1. This, together with ω(ψ) ≥ a∗u+
and the invariance of ω(ψ), implies that b∗u∗+ ≥ ϕ(−τ, x) ≥ a∗u∗

2 for all (x, ϕ) ∈ [T1, ∞) ×
ω(ψ) and thus f (ϕ(−τ, ·)) − a∗f (u+) ≥ εhT1,∞ for all ϕ ∈ ω(ψ). Note that K[f (ϕ(−τ, ·)) −
a∗f (u+)](x) ≥ ε

∫ ∞
T1

[�ϑ(x − y) − �ϑ(x + y)]dy for all (x, ϕ) ∈ R+ × ω(ψ). Thus, there is 
T2 > T1 such that K[f (ϕ(−τ, ·)) − a∗f (u+)](x) ≥ ε

2 for all (x, ϕ) ∈ [T2, ∞) × ω(ψ). Let us 

define η : R2+×ω(ψ) ×R → R by η(t, x, ϕ, α) = uϕ(t, x+T2) −a∗u+(x+T2) − ε
2 +αe

−
√

μ
d
x +

αe−μt for all (t, x, ϕ) ∈ R2+ × ω(ψ). Then η(·, ·, ϕ, ε2 + a∗u∗+) ∈ B(R2+, R) ∩ L∞(R2+, R) for 
all ϕ ∈ ω(ψ)}. Let

ζ ∈D � {η(·, ·, ϕ,
ε

2
+ a∗u∗+) ∈ BC(R2+,R) : ϕ ∈ ω(ψ)}.

It follows from the definition of D and (2.2) that ζ(t, x) satisfies the following equation:
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⎧⎨
⎩

∂ζ
∂t

(t, x) ≥ dζxx(t, x) − μζ(t, x), (t, x) ∈ (0,∞) × [0,∞),

ζ(t,0) ≥ 0, t ∈R+,

ζ(0, x) ≥ 0, x ∈ R+.

(5.2)

Then ζ(t, x) ≥ 0 for all (t, x, ζ ) ∈ R2+ × D due to the Phragmén-Lindelöf type maximum 
principle in [37]. Hence, there is T3 > T2 such that uϕ(t, x) − a∗u+(x) > ε

3 for all (t, x, ϕ) ∈
[T3, ∞)2 × ω(ψ) Hence the invariance of ω(ψ) forces that ϕ(0, ·) − a∗u+ ≥ ε

3hT3,∞ for all 
ϕ ∈ ω(ψ). From (2.2), we have, for all ϕ ∈ ω(ψ) and t > 0,

uϕ(t, ·) − a∗u+ = T (t)[uϕ(0, ·)] + μ

t∫
0

T (t − s)[K[f (uϕ(s − τ , ·))]]ds − a∗u+

= T (t)[uϕ(0, ·) − a∗u+]

+ μ

t∫
0

T (t − s)[K[f (uϕ(s − τ , ·))] − a∗K[f (u+)]]ds

≥ T (t)[uϕ(0, ·) − a∗u+],
and thus uϕ(t, ·) − a∗u+ ∈ X◦+ for all t > 0 and ϕ ∈ ω(ψ). Again the invariance of ω(ψ) forces 
that ϕ(0, ·) − a∗u+ ∈ X◦+ for all ϕ ∈ ω(ψ), which together with the compactness of ω(ψ), 
implies that there is δ > 0 such that ϕ(0, x) − a∗u+(x) > δ for all (x, ϕ) ∈ [0, T3] × ω(ψ). So, 
ϕ(0, x) − a∗u+(x) ≥ min{δ, ε3 } > 0 for all (x, ϕ) ∈ R+ × ω(ψ), a contradiction to the choice of 
a∗.

For (II), we are similarly led to a contradiction. Consequently we see that a∗ = b∗ = 1 and 
hence ω(ψ) = {u+}.

To prove lim
t→∞|||(uψ)t − u+||| = 0, it suffices to prove lim

t→∞ sup{|uψ(t + θ, x) − u+(x)| :
(θ, x) ∈ [−τ, 0] × (−∞, 0]} = 0. Indeed, for any ε > 0, by Proposition 5.1, there is σ = σ(ε) > 0
such that u+(x) < ε

3 for all x ∈ (−∞, −σ ]. In view of the previous discussions, there is t∗ =
t∗(ε, ψ) > 0 such that |uψ(t, x) − u+(x)| < ε

3 for all (t, x) ∈ [t∗, ∞) × [−σ, 0]. Let v(t, x) =
uψ(t + t∗, x − σ) − 2ε

3 e

√
μ
d
x − max{M, ||ψ ||L∞}e−μt for all (t, x) ∈ R+ × R. Then by (2.2), 

v(t, x) satisfies⎧⎨
⎩

∂v
∂t

(t, x) = dvxx(t, x) − μv(t, x), (t, x) ∈ (0,∞) × (−∞,0),

v(t,0) ≤ 0, t ∈R+,

v(0, x) ≤ 0, x ∈ (−∞,0].
(5.3)

By the Phragmén-Lindelöf type maximum principle in [37], we easily see that v(t, x) ≤ 0 for 
all (t, x) ∈ R+ × (−∞, 0]. Hence, uψ(t, x) ≤ 2ε

3 + max{M, ||ψ ||L∞}e−μ(t−t∗) for all (t, x) ∈
[t∗, ∞) × (−∞, −σ ]. It follows that there is t∗∗ = t∗∗(ε, ψ) > t∗ such that uψ(t, x) ≤
ε for all (t, x) ∈ [t∗∗, ∞) × (−∞, 0]. This completes the proof. �

Note that verifying (H3) is the key for applying Theorem 5.1. However since u∗+ = ||u+||X
cannot be explicitly obtained in general, verifying (H3) becomes impractical in applications. 
Motivated by [62], we seek a similar alternative condition that is given in terms of f only, as 
below:
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(H4) lim inf
k→0+ G(k, u; f ) ≡ u and ∂G(k,u;f )

∂k
(1 − u) > 0 in (0, f ∗] × ((0, ∞) \ {1}), where f ∗ �

max{f (x) : x ∈ [0, u∗]} and G(k, u; f ) = f (ku)
f (k)

.

As a direct corollary of Theorem 5.1, applying Lemma 3.7 in [62], we have the following 
theorem.

Theorem 5.2. Assume that (H2) and (H4) hold. If F 2 = F ◦ F has a unique positive fixed point 
u∗ with F(·) = G(f ∗, ·; f ), then u+ is a globally attractive positive steady state of (2.2) in C++
in the sense that lim

t→∞|||(uψ)t − u+||| = 0 for all ψ ∈ C++.

6. Asymptotic propagation and spreading speed

In this section, we explore the traveling-like asymptotic behaviour of nontrivial solutions in 
space-time region. This enables us to develop a unified method for studying spreading speeds 
and asymptotic propagation phenomena for (2.2) and (3.3).

The following lemma gives the space-time decision region for large (t0, x0).

Lemma 6.1. For any ε > 0, γ ≥ M, and 0 < a ≤ b < ∞, there exists � = �(ε, γ, a, b) > 0 such 
that (1 +ε) maxf ([a, b]) ≥ uϕ(t0, x0) ≥ (1 −ε) minf ([a, b]) for any (ϕ, t0, x0) ∈ Cγ × (�, ∞)2

whenever a ≤ uϕ(t, x) ≤ b for all (t, x) ∈ (t0, x0) + [−� − τ, −τ ] × [−�, �].

Proof. Note that

lim
x→∞

x∫
0

x
2∫

− x
2

k(s, y)[
x
2∫

− x
2

�ϑ(z)dz −
∞∫

x
2

�ϑ(z)dz]dyds = 1

and

lim
x→∞(maxf ([a, b])+γ e−μx +maxf ([0, γ ])[2

∫
|y|≥ x

2

k0(y)dy+
∫

|z|≥ x
2

�ϑ(z)dz]) = maxf ([a, b]).

Suppose that ε > 0, γ ≥ M, and 0 < a ≤ b < ∞. Then, there exists � = �(ε, γ, a, b) > 0
such that

�∫
0

�
2∫

− �
2

k(s, y)[
�
2∫

− �
2

�ϑ(z)dz −
∞∫

�
2

�ϑ(z)dz]dyds > 1 − ε

and

maxf ([a, b])+γ e−μ� +maxf ([0, γ ])[2
∫

|y|≥ �

k0(y)dy+
∫

|z|≥ �

�ϑ(z)dz] < (1+ε)maxf ([a, b]).

2 2
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Let ϕ ∈ Cγ and (t0, x0) ∈ (�, ∞)2 be such that a ≤ u(t, x) � uϕ(t, x) ≤ b for all (t, x) ∈
(t0, x0) + [−� − τ, −τ ] × [−�, �]. By (2.2) and the Fubini’s theorem,

u(t0, x0) = uut0−� (�, x0)

≥ T (�)[u(t0 − �, ·)](x0) + μ

�∫
0

T (� − s)[K[f (u(s + t0 − � − τ, ·))]](x0)ds

≥ μ

�∫
0

T (� − s)[K[f (u(s + t0 − � − τ, ·))]](x0)ds

≥
�∫

0

∞∫
0

k(� − s, x0 − y)[
∞∫

0

[�ϑ(y − z) − �ϑ(y + z)]f (u(s + t0 − � − τ, z))dz]dyds

=
�∫

0

∞∫
−x0

k(� − s, y)[
∞∫

−x0

[�ϑ(y − z) − �ϑ(y + z + 2x0)]f (u(s + t0 − � − τ, z + x0))dz]dyds

≥ minf ([a, b])
�∫

0

∞∫
−�

k(� − s, y)[
�∫

−�

[�ϑ(y − z) − �ϑ(y + z + 2x0)]dz]dyds

≥ minf ([a, b])
�∫

0

�
2∫

− �
2

k(s, y)[
�∫

−�

[�ϑ(y − z) − �ϑ(y + z + 2x0)]dz]dyds

≥ minf ([a, b])
�∫

0

�
2∫

− �
2

k(s, y)[
�∫

−�

�ϑ(y − z)dz −
∞∫

�

�ϑ(y + z)dz]dyds

≥ minf ([a, b])
�∫

0

�
2∫

− �
2

k(s, y)[
�
2∫

− �
2

�ϑ(z)dz −
∞∫

�
2

�ϑ(z)dz]dyds

≥ (1 − ε)minf ([a, b]).

On the other hand, again by (2.2) and Fubini’s theorem, we have

u(t0, x0) = uut0−� (�, x0)

= T (�)[u(t0 − �, ·)](x0) + μ

�∫
T (� − s)[K[f (u(s + t0 − � − τ, ·))]](x0)ds
0



1624 T. Yi, X. Zou / J. Differential Equations 268 (2020) 1600–1632
≤ γ e−μ� + μ

�∫
0

T (� − s)[K[f (u(s + t0 − � − τ, ·))]](x0)ds

= γ e−μ� +
�∫

0

∞∫
0

k(� − s, x0 − y)[
∞∫

0

[�ϑ(y − z) − �ϑ(y + z)]f (u(s + t0 − � − τ, z))dz]dyds

= γ e−μ� +
�∫

0

∞∫
−x0

k(s, y)[
∞∫

−x0

[�ϑ(y − z) − �ϑ(y + z + 2x0)]f (u(t0 − s − τ, z + x0))dz]dyds

≤ γ e−μ� +
�∫

0

∞∫
−x0

k(s, y)[
∞∫

−x0

�ϑ(y − z)f (u(t0 − s − τ, z + x0))dz]dyds

≤ γ e−μ� +
�∫

0

∞∫
−x0

k(s, y)[
�∫

−�

�ϑ(y − z)f (u(t0 − s − τ, z + x0))dz]dyds

+
�∫

0

∞∫
−x0

k(s, y)[
∫

|z|≥�

�ϑ(y − z)f (u(t0 − s − τ, z + x0))dz]dyds

≤ γ e−μ� +
�∫

0

�
2∫

− �
2

k(s, y)[
�∫

−�

�ϑ(y − z)f (u(t0 − s − τ, z + x0))dz]dyds

+
�∫

0

∫
|y|≥ �

2

k(s, y)[
�∫

−�

�ϑ(y − z)f (u(t0 − s − τ, z + x0))dz]dyds

+
�∫

0

∞∫
−∞

k(s, y)[
∫

|z|≥�

�ϑ(y − z)f (u(t0 − s − τ, z + x0))dz]dyds

≤ γ e−μ� + maxf ([a, b])
�∫

0

�
2∫

− �
2

k(s, y)[
�∫

−�

�ϑ(y − z)dz]dyds

+maxf ([0, γ ])
�∫

0

[
∫

|y|≥ �
2

k(s, y)

�∫
−�

�ϑ(y − z)dzdy +
∞∫

−∞
k(s, y)

∫
|z|≥�

�ϑ(y − z)dzdy]ds

≤ γ e−μ� + maxf ([a, b])

+maxf ([0, γ ])
�∫

0

[
∫

|y|≥ �

k(s, y)

�∫
−�

�ϑ(y − z)dzdy +
∞∫

−∞
k(s, y)

∫
|z|≥�

�ϑ(y − z)dzdy]ds
2
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≤ γ e−μ� + maxf ([a, b])

+maxf ([0, γ ])
�∫

0

[2
∫

|y|≥ �
2

k(s, y)dy +
∫

|y|≤ �
2

k(s, y)

∫
|z|≥ �

2

�ϑ(z)dzdy]ds

≤ maxf ([a, b]) + γ e−μ� + maxf ([0, γ ])[2
∫

|y|≥ �
2

k0(y)dy +
∫

|z|≥ �
2

�ϑ(z)dz]

≤ (1 + ε)maxf ([a, b]). �
Now, we are ready to derive the traveling-like asymptotic behavior of nontrivial solutions of 

(2.2) in space-time region.

Proposition 6.1. Assume that f 2 = f ◦f has a unique positive fixed point u∗. Let c ∈ [0, c∗(f ))

and ϕ ∈ C++. Then

lim
α→∞[inf{uϕ(t, x) : (t, x) ∈ �∗

α,c}] = lim
α→∞[sup{uϕ(t, x) : (t, x) ∈ �∗

α,c}] = u∗,

where �∗
c,α = {(t, x) ∈ R2+ : t ≥ α and α ≤ x ≤ ct} for all α ∈ R+.

Proof. In view of Proposition 2.1, we may assume that ϕ ∈ C([−τ, 0] × R, (0, 12 + M]) and 
hence 0 < uϕ(t, x) ≤ 1

2 +M for all (t, x) ∈ [−τ, ∞) ×R. By Proposition 4.2, there exist α∗ > 0

and ε∗ > 0 such that u(t, x) ≥ ε∗ for all t ≥ α∗ and α∗ ≤ x ≤ 2α∗ + c+c∗(f )
2 t . For any ε ∈

[0, c
∗(f )−c

2 ], define

U−(ε) = lim
α→∞[inf{uϕ(t, x) : (t, x) ∈ �∗

c+ε,α}]

and

U+(ε) = lim
α→∞[sup{uϕ(t, x) : (t, x) ∈ �∗

c+ε,α}].

Then ε∗ ≤ U−(ε) ≤ U+(ε) ≤ 1
2 + M for all ε ∈ [0, c

∗(f )−c
2 ]. Note that U±(ε) are monotone 

in ε ∈ [0, c
∗(f )−c

2 ]. Due to the monotonicity of U±, we easily see that U±(ε) are continuous in 

ε ∈ [0, c
∗(f )−c

2 ] except possibly for ε from a countable set of [0, c
∗(f )−c

2 ]. Therefore, we may 

assume, without loss of generality, that U− and U+ are continuous at some ε1 ∈ [0, c
∗(f )−c

2 ].
We claim U−(ε) = U+(ε) = u∗ for some ε ∈ (0, c

∗(f )−c
2 ]. Otherwise, {U−(ε), U+(ε)} 
= {u∗}

for all ε ∈ (0, c
∗(f )−c

2 ]. In particular, U−(ε1) < U+(ε1) or U−(ε1) = U+(ε1) 
= u∗. Since f 2 has 
a unique positive fixed point u∗, by Lemma 5.3 in [55], we have maxf ([U−(ε1), U+(ε1)]) <
U+(ε1) or minf ([U−(ε1), U+(ε1)]) > U−(ε1). Thus, there is δ1 ∈ (0, min{1, U−(ε1)

3 }) such that 
(1 +δ1) maxf ([U−(ε1) −δ1, U+(ε1) +δ1]) < U+(ε1) or (1 −δ1) minf ([U−(ε1) −δ1, U+(ε1) +
δ1]) > U−(ε1).

It suffices to consider the case of (1 + δ1) maxf ([U−(ε1) − δ1, U+(ε1) + δ1]) < U+(ε1)

since similarly we may deal with the case of (1 − δ1) minf ([U−(ε1) − δ1, U+(ε1) + δ1]) >
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U−(ε1). In view of the definitions of U±(ε1), there is α1 > 0 such that U+(ε1) + δ1 >

uϕ(t, x) ≥ U−(ε1) − δ1 for all (t, x) ∈ �∗
c+ε1,α1

. Applying Lemma 6.1 with a = U−(ε1) − δ1, 
b = U+(ε1) + δ1, ε = δ1, and γ = 1

2 + M, there is � = �(ε, γ, a, b) > 0 such that uϕ(t, x) ≤
(1 + δ1) maxf ([U−(ε1) − δ1, U+(ε1) + δ1]) when t, x ∈ [�, ∞) with (t, x) + [−� − τ, −τ ] ×
[−�, �] ⊆ �∗

c+ε1,α1
. Suppose ς ∈ (0, ε1). According to the definition of �∗

c+ε,α , there exists 
α2 > α1 such that (t, x) + [−� − τ, −τ ] × [−�, �] ⊆ �∗

c+ε1,α1
for all (t, x) ∈ �∗

c+ς,α2
. So, 

uϕ(t, x) ≤ (1 + δ1) maxf ([U−(ε1) − δ1, U+(ε1) + δ1]) for all (t, x) ∈ �∗
c+ς,α2

, and hence 
U+(ς) ≤ (1 + δ1) maxf ([U−(ε1) − δ1, U+(ε1) + δ1]). By the continuity of U+ at ε1 and letting 
τ → ε1, we have U+(ε1) ≤ (1 + δ1) maxf ([U−(ε1) − δ1, U+(ε1) + δ1]) < U+(ε1), a contra-
diction. Therefore, U−(ε2) = U+(ε2) = u∗ for some ε2 ∈ (0, c

∗(f )−c
2 ]. This, together with the 

monotonicity of U±, yields that U−(ε) = U+(ε) = U−(0) = U+(0) = u∗ for all ε ∈ [0, ε2] and 
hence the conclusion follows. This completes the proof. �

The following gives the spreading speeds and asymptotic propagation phenomena for (2.2).

Theorem 6.1. Assume that (H2) and either (H3) or (H4) hold. Then the following statements 
hold.

(i) (2.2) has a unique positive steady state u+ in X◦+ with lim
x→−∞u(x) = 0 and lim

x→∞u(x) = u∗.

(ii) For any c > c∗(f ), if ϕ ∈ C+ has a compact support then

lim
t→∞(sup{uϕ(t, x) : |x| ≥ tc}) = 0.

(iii) For any 0 ≤ c < c∗(f ) and ϕ ∈ C++,

lim
t→∞(sup{|uϕ(t, x) − u+(x)| : −∞ < x ≤ tc}) = 0.

Proof. (i) follows from Proposition 5.1 and Theorem 5.1. For (ii), fix c > c∗(f ) and ϕ ∈ C+
with a compact support. Define f̃ : R+ → R+ by f̃ (x) = min{f ′(0)x, 1 + ||ϕ||L∞ + M} for 
all x ∈ R+. Let c̃ = c+c∗(f )

2 . Then by the remark after Proposition 3.1, there is φ ∈ X◦+ such 
that φ(x − c̃t) is a travelling wave of (3.3) with f = f̃ such that φ(∞) = 0 and φ(−∞) = 1 +
||φ||L∞ +M. Thus, by the compactness of supp(ϕ), without loss of generality, we may assume 
that ϕ ≤ φ. It follows from c̃ < c, Proposition 2.1 and the definition of f̃ that uϕ(t, x) ≤ φ(x− c̃t)

for all (t, x) ∈ R+ ×R, which implies

lim
t→∞ max{uϕ(t, x) : x ≥ tc} ≤ lim

t→∞ max{φ(x − c̃t) : x ≥ tc} = φ(∞) = 0.

Therefore, the conclusion holds.
For (iii), suppose that c < c∗(f ) and ϕ ∈ C++. For any ε > 0, by Proposition 5.1 and Proposi-

tion 6.1, there exists α1 > 0 such that |u+(x) −u∗| < ε
3 for all x ∈ [α1, ∞) and |uϕ(t, x) −u∗| <

ε
3 for all (t, x) ∈ R2+ with t ≥ α1 and α1 ≤ x ≤ ct . It follows that |uϕ(t, x) − u+(x)| < ε

for all (t, x) ∈ R2+ with t ≥ α1 and α1 ≤ x ≤ ct . Again by Theorems 5.1 and 5.2, we have 
lim

t→∞||uϕ(t, ·) − u+||L∞((−∞,α1],R) = 0 and hence there exists α2 > α1 such that |uϕ(t, x) −
u+(x)| < ε for all (t, x) ∈ [α2, ∞) × (−∞, α1]. In other words, |uϕ(t, x) − u+(x)| < ε for all 
t ≥ α2 and ct ≥ x > −∞. So, the conclusion follows. This completes the proof. �



T. Yi, X. Zou / J. Differential Equations 268 (2020) 1600–1632 1627
In terms of the description after Theorem 2.1 in [47], Theorem 6.1 states that if φ(x) is zero 
for all large values of x, then an observer who moves toward either of the two direction with a 
speed above c∗(f ) will see the solution go down to 0, while an observer who moves toward to 
the right at a speed below c∗(f ) will see the solution approach u+.

Finally, we would like to apply our approach to equation (3.3) on R with the initial value 
ϕ ∈ C+. This allows us to easily re-establish those results on spreading speed and traveling wave 
fronts for (3.3) with monostable nonlinearity.

To begin with, denote the solution of (3.3) on [−τ, ∞) by ũϕ(t, x). Then, by a similar proof 
in Lemma 6.1, we may obtain the following lemma.

Lemma 6.2. For any ε > 0, γ ≥ M, and 0 < a < b < ∞, there exists � = �(a, b, ε, γ ) > 0 such 
that (1 + ε) maxf ([a, b]) ≥ ũϕ(t0, x0) ≥ (1 − ε) minf ([a, b]) for any ϕ ∈ Cγ and (t0, x0) ∈
(�, ∞) ×R whenever a ≤ ũϕ(t, x) ≤ b for all (t, x) ∈ (t0, x0) + [−� − τ, −τ ] × [−�, �].

The following theorem gives the basic results for (3.3) on the spreading speed and travelling 
waves for monostable reaction-diffusion equations R in the line [2,21].

Theorem 6.2. Suppose that (H2) holds and f 2 = f ◦ f has a unique positive fixed point u∗. 
Then the following statements are true.

(i) For any c ≥ c∗(f ), there is φ ∈ X◦+ such that φ(x − ct) is a travelling wave of (3.3) with 
φ(∞) = 0 and φ(−∞) = u∗.

(ii) For any c > c∗(f ), if ϕ ∈ C+ has a compact support then

lim
t→∞(sup{ũϕ(t, x) : |x| ≥ tc}) = 0.

(iii) For any 0 ≤ c < c∗(f ) and ϕ ∈ C+,

lim
t→∞(sup{|ũϕ(t, x) − u∗| : |x| ≤ tc}) = 0.

Proof. (i) follows from Remark 3.1 and (ii) follows from a similar discussion in the proof of 
Theorem 6.1-(ii).

(iii) Fix ϕ ∈ C+ and c < c∗(f ). We claim that there exist κ = κ(ϕ) > 0, a∗ = a∗(ϕ) > 0, and 
b∗ = b∗(ϕ) > 0 such that b∗ ≥ ũϕ(t, x) ≥ a∗ for all (t, x) ∈ R+ × R with t ≥ κ and |x| ≤ ct . 
Indeed, letting b∗ = b∗(ϕ) = max{M, ||ϕ||L∞}, we know that, by Proposition 2.1, there exists 
κ1 = κ1(ϕ) > 0 such that b∗ ≥ ũϕ(t, x) for all (t, x) ∈ [κ1, ∞) × R. Note that there is ε0 =
ε0(ϕ) ∈ (0, 1) such that f ′(u) > f ′(0) − ε0 > 1 for all u ∈ [0, ε0], f (ε0) = minf ([ε0, b∗]), and 
c < c∗(f̃ ) where f̃ :R+ → R+ is defined by

f̃ (u) = (f ′(0) − ε0)min{u, ε0} for all u ∈R+.

By Theorem 6.1 with f = f̃ , there is φ∗ ∈ X◦+ such that φ∗(∞) = ε0(f
′(0) − ε0) and

lim (sup{|uϕ(t, x) − φ∗(x)| : x ≤ tc}) = 0.

t→∞
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Hence, by letting a∗ = a∗(ϕ) = 1
2 min{φ∗(x) : x ∈ R+}, there exists κ = κ(ϕ) > κ1 such that 

a∗ ≤ uϕ(t, x) ≤ ũϕ(t, x) for all (t, x) ∈ [κ1, ∞) × R+ with |x| ≤ ct . These, together with the 
fact that ũϕ(t, −·) = ũϕ(−·)(t, ·) satisfies (3.3), yield the above claim.

Let ϕ(ε) = lim
t→∞ max{ũϕ(t, x) : |x| ≤ t (c + ε)} and ϕ(ε) = lim

t→∞
min{ũϕ(t, x) : |x| ≤ t (c + ε)}

for any ε ∈ [0, c
∗(f )−c

2 ]. Then by the above claim, we have ∞ > b∗ ≥ ϕ(ε) ≥ ϕ(ε) ≥ a∗ >

0 for any ε ∈ [0, c
∗(f )−c

2 ]. By using similar discussions in the proof of Proposition 6.1 with 

Lemma 6.1 replaced by Lemma 6.2, we easily see that there exists an ε1 ∈ [0, c
∗(f )−c

2 ] such 
that ϕ(ε) = ϕ(ε) = ϕ(0) = ϕ(0) = u∗ for all ε ∈ [0, ε1] and hence the conclusion of (iii) follows. 
This completes the proof. �
7. Examples

In this section, we illustrate the results of Theorems 6.1 and 6.2 by considering two con-
crete examples, that is, the non-local diffusive Nicholson’s blowflies equation and the non-local 
diffusive Mackey-Glass equation.

Example 7.1. Consider the following birth function for (1.3) and (1.4):

b(u) = pu

1 + un
(7.1)

where p and n are all positive constants. This function was initially used by Mackey and 
Glass [30] to model the blood cell production in an ordinary differential equation model. Since 
then various modified models have been proposed and studied by many researchers. One of the 
main topics on these models is the stability of a positive equilibrium, accounting for a long term 
stable blood concentration level. See, for example, [22,59] and the references therein.

By applying Lemma 4.1 in [62] and Theorem 6.1, we then immediately obtain the following 
results for (1.3) with b(u) given by (7.1).

Theorem 7.1. If pε > dm and

n ≤ max

{
pε

pε − dm

,2
(pε)n(n − 1)n−1 + nndn

m

(pε)n(n − 1)n−1

}
,

then there is c∗∗ > 0 such that the following statements hold for (1.3) with b(u) given by (7.1).

(i) (1.3)–(7.1) has a unique positive steady state u+ in X◦+ satisfying lim
x→−∞u(x) = 0 and 

lim
x→∞u(x) = [pε−dm

dm
]1/n.

(ii) For any c > c∗∗, if ϕ ∈ C+ has a compact support then

lim
t→∞ sup{uϕ(t, x) : |x| ≥ tc} = 0.

(iii) For any 0 ≤ c < c∗∗ and ϕ ∈ C++,

lim
t→∞(sup{|uϕ(t, x) − u+(x)| : −∞ < x ≤ tc}) = 0.
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Applying Theorem 6.2 and taking advantage of the proof of Theorem 4.2 and Remark 4.3 in 
[59], we then obtain the following results for (1.4)–(7.1).

Theorem 7.2. If pε > dm and n ≤ max{2, 2pε
pε−dm

}, then there is c∗∗ > 0 such that the following 
statements are valid for (1.4)–(7.1)

(i) For any c ≥ c∗∗, there is φ ∈ X◦+ such that φ(x − ct) is a travelling wavefront of (1.4)–(7.1)

with φ(∞) = 0 and φ(−∞) = [pε−dm

dm
]1/n.

(ii) For any c > c∗∗, if ϕ ∈ C+ has a compact support then

lim
t→∞(sup{ũϕ(t, x) : |x| ≥ tc}) = 0.

(iii) For any 0 ≤ c < c∗∗ and ϕ ∈ C+,

lim
t→∞ sup

{∣∣∣∣∣ũϕ(t, x) −
[
pε − dm

dm

]1/n
∣∣∣∣∣ : |x| ≤ tc

}
= 0.

Example 7.2. Consider the following so-called Ricker birth function for (1.3) and (1.4)

b(u) = pue−u, (7.2)

where p is a positive constant. This birth function has been used in the Nicholson’s blowfly 
equation and its variations as well as in many other models for, e.g., fish population dynamics. 
See for example, [18,19,9,26,27,24,34,38,39,58,60,62] and the references therein.

Applying Lemma 4.2 in [62] and Theorem 6.1, we obtain the following results for (1.3) with 
the birth function given by (7.2).

Theorem 7.3. If 2edm ≥ pε > dm then there is c∗∗ > 0 such that the following statements hold 
for (1.3)–(7.2).

(i) (1.3)–(7.2) has a unique positive steady state u+ in X◦+ with lim
x→−∞u(x) = 0 and 

lim
x→∞u(x) = ln pε

dm
.

(ii) For any c > c∗∗, if ϕ ∈ C+ has a compact support then

lim
t→∞ sup{uϕ(t, x) : |x| ≥ tc} = 0.

(iii) For any 0 ≤ c < c∗∗ and ϕ ∈ C++,

lim
t→∞ sup{|uϕ(t, x) − u+(x)| : −∞ < x ≤ tc} = 0.

Applying Theorem 6.2 and making use of the proof of Theorem 4.1 and Remark 4.3 in [59], 
we then obtain the following results for (1.4) with the birth function given by (7.2).

Theorem 7.4. If e2dm ≥ pε > dm, then there is c∗∗ > 0 such that the following statements are 
valid for (1.4)–(7.2).
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(i) For any c ≥ c∗∗, there is φ ∈ X◦+ such that φ(x − ct) is a travelling wave of (1.4)–(7.2) with 
φ(∞) = 0 and φ(−∞) = ln pε

dm
.

(ii) For any c > c∗∗, if ϕ ∈ C+ has a compact support then

lim
t→∞ sup{ũϕ(t, x) : |x| ≥ tc} = 0.

(iii) For any 0 ≤ c < c∗∗ and ϕ ∈ C+,

lim
t→∞ sup

{∣∣∣∣ũϕ(t, x) − ln
pε

dm

∣∣∣∣ : |x| ≤ tc

}
= 0.
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