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Abstract

In a recent work [1], a mathematical model is derived to explore the role that the white-tail deer plays
in the geographic spread of the black-legged tick Ixodes scapularis in the northeast of the United States
of America. The threshold dynamics is rigorously investigated in terms of the basic reproduction number,
for the cases of the 1-D whole space 2 = R and general bounded spatial domain €2 with homogeneous
Neumann and Direchlet boundary conditions. However, the minimal wave speed and spread speed of the
model, which are the motivation of this model and thus most important, are only explored numerically.
In the present paper, we offer a rigorous theoretical confirmation of what are numerically observed in [1],
concluding that if the basic reproduction number is larger than one, the model allows a spread speed which
is also the minimal speed of traveling wave fronts, and this speed is linearly deterministic.
© 2020 Elsevier Inc. All rights reserved.
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Table 1

Explanation of parameters.

Parameters Meaning

b Birth rate of tick

1/r Average time that a questing larvae needs to feed and moult
1/r Average time that a questing nymph needs to feed and moult
1/r3 Average time that a questing adult needs to successfully attach to a deer
r4 Proportion of fed adults that can lay eggs

di Per-capita death rate of larvae

dy Per-capita death rate of nymphs

d3 Per-capita death rate of questing adults

dy Per-capita death rate of fed adults

7] Average time between last blood feeding and hatch of laid eggs
1) Average time tick is attached to a deer

1. Introduction

Lyme disease is transmitted via blacklegged tick Ixodes scapularis, and thus, the spatial spread
of this tick is responsible for the spread of the Lyme disease. It has been conjectured that the
geographical expansion of the blacklegged tick’s habitat in some eastern states of the USA is
mainly through the transport on white-tailed deer when successful questing adult ticks are having
blood meals on the deer. In order to model the role of the deer’s random diffusion on the spatial
spread of the blacklegged ticks, Gourley et al. [1] recently have derived a mathematical model
to describe the tick’s spatial dynamics. The model is given by the following system differential
equations with time delays and spatial non-locality:

oL(x,t _
%:bme UUA L (x,t —11) —diL(x, 1) — r1 L(x, 1),
ON(x,t
%:rlg(L(x,t))—dzN(X,t)—VzN(xJ)»
dA,4(x, 1) (b
T=r2N(x,z)—d3Aq(x,t)—r3Aq(x,t),
0A r(x,t
fa(tx ):%/k(x,y)e_dBtZAq(y7t—fz)dy—r4Af(.x,t)_d4Af(x3t)'
Q

Here L(x,t) and N(x,t) be the population densities of larvae and nymphs at time ¢, location
x € Q. Denote by A, (x,t) and A ¢ (x, t) the populations of questing adults and female fed adults
respectively. The model parameters are described in Table 1.

The nonlinear function g(L) is increasing and saturating function. A prototype is

_ NeapkaL  NeapL  NegpL
CkithkL  ki/ko+L Ch+L

g(L) (1.2)

The kernel function k(x, y) depends on the diffusion rate of the deer and the average time 7, that
an adult tick needs to be fully fed on dear, and it accounts for the probability that an adult tick
attached a dear at location y will drop to the ground in location x. It tracks the movement of the
dear when a tick is on the dear feeling itself and can be determined by solving a heat equation
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with the respective boundary conditions, depending on the situation of the spatial domain 2. In
particular, when Q2 =R, k(x, y) is given by the following formula

1 —(—y)?
k(x,y) = ———¢ *Pn 1.3
(x, ) JiDrs (1.3)

In addition to the well-posedness of the model, Gourley et al. [1] also analyzed the thresh-
old dynamics in terms of the basic reproduction number R, which predicts whether the tick
population will go to extinction or become persistent. In the persistence scenario (Ro > 1) and
for the case of 2 = R, they also performed some numerical simulations, which seem to suggest
that the tick population spread at a speed c* to both direction in R, and this spread speed is also
precisely the minimum speed of traveling wave fronts connecting the extinction equilibrium and
the unique positive equilibrium (persistence equilibrium). In this paper, we theoretically prove
the above results that have been numerically observed in Gourley et al. [1].

The rest of the following the paper is organized as below. In Section 2, by following the
framework and applying the results in [2,3], we rigorously prove that the existence of spread
speed. The proof also gives the way this speed is determined. In Section 3, by employing the
approach developed in Wu and Zou [4], that is, by constructing a pair of suitable upper-lower
solution and establishing a monotone iteration scheme, we show that the spread speed confirmed
in Section 2 is actually the minimal wave speed from traveling wavefronts. We point out that
since the model is a system of four equations containing a time delay and spatial non-locality,
the construction of upper-lower solution is quite challenging, involving some subtle inequalities
and estimates. Our results also imply that both spread speed and minimal wave speed are linearly
deterministic.

2. Asymptotic speed of spread

In this section, we follow the framework of [2,3,5,6] to prove the existence of spread speed.
To this end, we first note that in the model system (1.1), there is an heterogeneity in delays for
different unknown variables. This requires some slight modifications in notations. For readers’
convenience, we will introduce the and notions and notations from [2,3] with minor modifications
to accommodate the heterogeneity in delays.

For convenience of tracking the indices of delays, we let 7, =0, 7, =0, 73 =1 and 74 = 7).
Denote by C the set of all bounded and continuous functions from ]_[?: 1([—7;, 0] x R). Let
C= ]_[?=1 C; where C; = C([—7;,0],R) fori = 1,2, 3,4 and X be the set of all bounded and
continuous functions from R to R*. Clearly, any vector in R* or any element in the space C or
X can be regarded as a function in C. We equip C with the compact open topology, meaning
that the convergence ¢" — ¢ € C with respect this topology is equivalent to ¢" (0, x) — ¢ (6, x)
uniformly for (0, x) in every compact set. Moreover, we can define the metric function d(-, -) in
C with respect to this topology by

max;e(1,2,3,4) MaXge[—4;,0), x| <k [$i (0, x) — ¥i (0, x)|

A, )= o7 . Vo, ¥ eC,
k=1

so that (C, d) is a metric space.
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Define the reflection operator R on C by R[u](@, x) = u(6, —x). Given y € R, define the
translation operator T, by T,[u](@, x) = u(6,x — y). For any given 8 > 0, define Cg := {¢ €
C:0<¢ <p}and (f,g :={p €C:0<¢ < B} In order to use the theory developed in [2], for a
given operator Q : Cg — Cg, we make the following assumptions:

(A1) Q[RI9ll=RIQI#11, Ty[Ql#]] = Q[Ty[#]], Vy € R.

(A2) Q:Cg — Cp is continuous with respect to the compact open topology.

(A3) One of the following two properties holds:
(@) {O[u](-,x) : u € Cg, x € R} is precompact in C_ﬂ.
(b) The set Q[Cg](0, -) is precompact in X, and there is a positive number { < 7 such that
Ole10,x) =9 + ¢, x) for —t <0 < —¢, and the operator

¢ (0, x), —10 < —¢,

S 0,x):=
19100 {Q[m(e,x),—; <6 <0,

has the property that S[D](-, 0) is precompact in (f,g for any T-invariant set D C Cg, with
D(0, -) precompact in X.

(A4) Q :Cg — Cg is monotone (order preserving) in the sense that Q[¢] > Q[y/] whenever
¢ >y inCg.

(AS) Q: C_ﬁ — C_ﬁ admits exactly two fixed points 0 and 8, and for any positive number €, there
isae (fﬁ with ||a|| < € such that Q[a] > «o.

Define

[Ti (1)il(x) =e 4T g (x),Vp e X, t >0, x eR, i =1,2,3,4.

Then

'
L, x)=T1()LO,x)+ br4efd4t‘ / Tt —s)Ar(s — 11, x)ds,
0

t

N, x) = To()N 0, ) + i Neap / Ta(t — 5)
0

L(s,x)
h+ L)

3

t
Ay(t,x) =T3(1)A40,x) + r2/ T3(t — s)N(s, x)ds,
0

t
Ap(t.x) = T A (0.x) + Zd =" / / k(. )Tu(t — $)Ag (s — 72, y)dyds,
0 Q

fort > 0.
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Let Q; be the solution map of (1.1), that is,

0/[P10,x) :=u(t+0,x;¢)
= (L(t,x; Lo), N(t, x; No), Ag(t + 604, %, ¢g), Ay (t + 07, x;05)),
V0, € [—12,01, 07 €[—71,0], x €R, ¢ = (Lo, No, ¢, ¢ ) €Cp.

Lemma 2.1. For each t > 0, the map Q satisfies (Al)-(A5) with p = (L*, N*, AL, A}').

Proof. (Al) is confirmed by the property that both u(¢, —x) and u(t,x + y), y € R, are also
solutions whenever u(t, x) is a solution, which holds for Q;, since the kernel function k(x) is
symmetric at x = 0. (A2) follows from the continuity of solutions for initial values with respect
to the compact open topology. Since the model system (1.1) is cooperative and irreducible, O,
satisfies (A4). Furthermore, using the similar argument as proof of Lemma 2.4 in [3], we get that
Q; satisfies (AS), where the spatially homogeneous equilibria of (1.1) are ug = (0, 0, 0, 0) and
B=(LT,NT, A;, AJ;). In the following, we prove that Q, satisfies (A3).

Since {L(t,x;¢) : ¢ € Cg, x € R} and {N(t,x;¢) : ¢ € Cg, x € R} are bounded subsets
of R, for any ¢ > 0. Therefore, L(¢, x; Lo) and N (z, x; No) satisfy (A3)(a). (A3) is equivalent
to that {Q[u](-,x) : u € Cg,x € R} is a family of equicontinuous functions of 6 € [—7, 0].
We only need to prove A; and Ay are equicontinuous functions of 6 € [—12,0] and 6 €
[—11, 0] respectively. For A,, we need to prove, for every € > 0, there exists a § > 0 such
that

|Ag(t +61.x:0) = Ay(t + 02, x:¢)| <€,

for all 6y, 6, € [—13, 0] with |0; — 6] < §.
Fort > 17,

|Aq(t+91,x;¢q) _Aq(t+9LX;¢q)|

< |T3(1 +61) — T3(t + 62) 194 (0, x)

146, 146
+r / T3(t+ 61 —s)N(s, x)ds — / T3(t + 62 —s)N (s, x)ds

0 0

<|T3(t +61) — T3(t + 62)|¢4 (0, x)

t+0;

+r2 / |T3(t + 61 —s) — T3(t + 62 — 5)|N(s, x)ds

0

1462

+r / T3(t + 6, —s)N(s, x)ds

t+6;

=|T3(t + 01) — T5(t + 62) |94 (0, x)
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146,

) / T3t +61) — T(t + O)le™ 5 N (s, x)ds
0
t+6,

47 /T3(t+6’2)e_(d3+r3)SN(s,x)ds,
t+6,

IT3(t + 61) — T3(t + 62)| = |e*(d3+r3)(l+91) _ e*(d3+r3)(t+92)|

— e*(d3+r3)t|e*(d3+r3)91 _ e*(d3+r3)92|
— e*(d3+r3)(l+9m)|1 _ e*(d3+r3)(9M*9m)|

< ‘1 — o~ (d3+73) (O —6m)

’

_ ‘1 _ o= (d3+r3)101—02]

where 0); = max{6, 6»}, 6,,, = min{0y, 6,}.

1461
f I T5(t +61) — Ts(t + 62)|e " BTN (s, x)ds
0
146,
=|T5(t +61) — T5(t + 62)| /e*dﬁ’»*)w(s,x)ds
0

N+
< T30 +6) = T3t + 6] |1 — "t =
d3 +r3

+
d; +r3

<IT3(t +61) — T5(t + 02)|

t+60,
/ Ts(t + 62)e~ B3 N (s, x)ds
t+6;
Nt
< T3t +62)]| ‘ o~ @33 (t461) _ ,—(ds+r3)(i+62)
- d3+r3

4
d3+713
[Ag(t + 01, x5 ¢g) — Ag(t + 62, x5 @)
- (2r2N+
T \d3+r3
Nt
dz+13

<|T3(t +61) — T3(t + 6)]

+A;> IT5(t + 61) — T3(t + 62))|

=

‘1 _ e~ trlea-ail| _
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when

1 (d3 +r3)e
§=— 1 1—— .
di+r3 0g< N )

In the similar way, we can prove that Ay(t + 6, x;¢y) are equicontinuous functions of
0el[-11,0]. O

According to Theorem 2.11 and Theorem 2.15 in [2], the map Q1 : Cg — Cp admits a spread-
ing speed c*.

Theorem 2.1. Assume that Ry > 1. Let u(t, x; ¢) be the solution of system (1.1) with u(o, -; ¢) =
¢ € Cg. Then the following statements are valid:

(i) For any ¢ > c*, if € Cg with 0 < ¢ < B, and ¢ (-, x) = 0 for x outside a bounded interval,
then lim;_, oo, |x|>c: u(t, x5 @) = (0,0, 0,0).

(ii) For any c € (0, ¢*), if ¢ € Cg and ¢ # 0, then 1im;_ oo |x|<cr u(t, x; ) = B.

Proof. Since Q, satisfies (A1)-(AS), the statement (i) holds according to Theorem 2.17(i) in
[2]. Because u = 0 and u = 8 are solutions of (1.1), it follows from comparison principle
that Q,(Cg) C Cg, t > 0. For any ¢ € Cg and p € [0, 1], pu(t, x;¢) is a lower solution
to (1.1), which implies pQ,(¢) < Q;(p¢). Hence, Q; is subhomogeneous on Cg. By The-
orem 2.17(ii) in [2], we can choose 8 = B, to be independent of o > 0. Let ¢ € Cg\{0},
and f9 = t9(¢) > 0 such that u(¢,x;¢) >0, Vit >1y, x € R, by Lemma 3.1 in [1]. De-

fine o := el tmirg]x[ 5.5 M, then 0 < 0 < Q+:[¢](:, x) for x € [, B]. For any
s 0,10 —P»

¢ € Cg\{0} and any 0 < ¢ < c*, we use Theorem 2.17(ii) of [2] with v = Q;4[¢] to ob-
tain

lim O:Qiy+-[¢11(0, x) = B, uniformly for 6 € [—7, 0].

t—o00,|x|<Zct
This implies that limy— o0, x|<c: u(t, x; ¢) = B. O

In order to compute ¢*, we consider the linearized system of (1.1) at the zero solution

duq (¢,
% = brae” MM uy(r — 71, x) — (di + rui(t, x),
Jur(t, x r1 N,
20, %) = Ly (t, x) — (da + r2ua(t, x),
at h
dusz(t, x 2.1
# =raua(t, x) — (d3 +r3)us(t, x),
dug(t,x) r3 _
— = E/k(x, y)e d3’2u3(t — 12, y)dy — (dg + ra)us(t, x).

R

Let M, : C — C be the solution map of this linear system, that is, M;[¢] := u,(0, x; ¢), ¢ €C.
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For any 1 € Ry, let u; (¢, x) = e " v;(t). Then v(t) = (v((t), ..., va(t)) satisfies

dvi(t)
dt

duy(t N,
U;t( ) = rl%vl(t) — (dr +r)va(2),

=brae " “T vt — 1) — (dy + r)v (),

2.2)
dvs(t)
T rav2(t) — (d3 +r3)v3(t),
dvy(t r
40) = —3Kue_d3r2v3(t — 1) — (ds +ra)va(t),
dt 2
where
Ky = / T(s)e M ds = ePmH,
R
Notice that

/k(X, Y)e_uydyZ/F(y—x)e_ﬂydy:/F(s)e_“(s"'x)ds
R R R

_ e _ 2
=e ’“‘/F(s)e HS s = g~ Hx gDTalt™
R

G—y)?

\‘2
k(x,y) = e P2 dy, T(y)= Do dy.

1 1
- S
NZYX23 / V4Dt /

R R
Define the linear map BL :C— Cby

B, [v0](6) = M;[voe™**1(6,0), V6 €[—,0], Vv €C.

Then BL is the solution map of (2.2). Since (2.2) is cooperative and irreducible, it follows that
its characteristic equations

A+ (di +r1) 0 0 —brge"dng A, n
Ol (da ) 0 0 0

0 —r A+ (ds +13), 0 n3

0 0 —BKuemBRemmh A4 (dy+r4) 4

admit a real root A(n) which is greater than the real parts of other ones, that is, A(u) is the
principal eigenvalue. Then e*¥)" is the principal eigenvalue of BL with a positive eigenfunction.
Now we define the function

A0

1
D) = m Ine*®™ = Yu > 0.
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Lemma 2.2. Let c* be the spreading speed of the map Q1 on Cg. Then

¢* = inf ®(u), (2.3)
n>0

where inf,,~o ® (1) is attained at some finite u* > 0 and hence c* > 0.

Proof. Note that A(0) = s(P). Since Ry > 1, we then have A(0) = s(P) > 0. We see that
lim,, 4 oo () = 400 and lim;, .o ®(u) = +00. Therefore, ®(u) has a finite infimum which
is attained at some u* > 0, i.e., ®(u*) =inf,~o P(u) for some finite u* > 0. The map M; satis-
fies the assumptions (C1)-(C7) in [2] for each ¢ > 0. Since each mild solution of (1.1) is a lower
solution of (2.1), it follows that Q;[¢] < M;[¢], ¥Vt > 0, ¢ € Cg. It follows from Theorem 3.10
of [2] that

¢ < inf ®(w).
u>0

By the continuous dependence on initial values of solutions to the spatially homogeneous system,
we have that Ve > 0, o > 0, 3n > O such that the solution u(¢; ) of the spatially homo-
geneous system with u(0, n) = n satisfies u(t; n) < €, Vt € [0, fy], where € = (¢, €, €,€) and
n = (n,n,n,n). Thus, for the solution u(¢, x; ¢) of (1.1), the comparison principle implies that

ut,x;¢) <u(t;n) <€, VxeR, ¢eCj, te[0, 1]

It then follows that for all r € [0, fp] and x e R, u(t, x; ) = (L, N, Ay, Af)(t, x; ¢) with ¢ € Cj
satisfies

JdL(t,

;t %) > brae ™ “M A p(t — 11, x) — (di +r1)L(t, x),
ON(,x) _ rilNeap

> L(t,x)—(d N(t,x),

= Thte (t,x) —(d2 +r2)N(t,x)
d0A,(t,
BT NG — s+ r A ),
0A ¢(t,x r _
% > g/k(x,y)e dmAq(t —12,y)dy — (da +ra) Ay (2, x).

Q

Let {M[ };>0 be the solution semiflow associated with the linear system

ouq(t,
% = brae” 4Ty (t — 11, x) — (dy + r)up (¢, x),
QupN(t,x) riNegp
_ _ 2.4
Py Wt e uy(t, x) — (da +r2us(t, x), (24)
dus(t, x)
7381‘ :rzuz(t,x)—(d3 +r3)u3(t7x)’
dug(t,x) r3 -
— = E/k()c, y)e B2yt — 1, y)dy — (r4 + da)ua(t, x).

Q
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Since Q;[¢] is an upper solution of system (2.4) for ¢ € [0, o] and ¢ € Cj, it follows that

Mf[¢] < QO/l¢]l, V¢ GCﬁ, t € [0, 1o].

In particular, Mf [¢]1 < Q1l¢], V¢ € C;;. As we did for {M;};>0, a similar analysis can be made
for {M[ };>0. By Theorem 3.10 in [2], we have

inf ®.(n) <c* < inf ®(u), Ve>O0.
n>0 n>0

Letting € — 0, we then obtain ¢* = inf,.o ®(u), proving (2.3). Moreover, c* = ®(u*) =

)‘(ML:) > 0, and the proof is completed. O

3. Traveling wave solution

A traveling wave front solution of (1.1) is a solution with the form

Lix,t)y=¢p1(x +ct), Nx,t) =2 (x +ct), Ag(x,1) =@3(x +ct), Ap(x,t) =@a(x +ct),
(3.1)
where ¢ > 0 is the wave speed, and ¢ = (¥, ¢2.93, 1) is the wave profile. Let the traveling
wave variable be s = x + ct. Substituting (3.1) into (1.1) yields

—dy1)

@ (s) = brae” %" p4(s — ct1) — (d1 + )i (s),

c@s(s) =r18(p1(s)) — (d2 + r2)a(s),

c@i(5) = rag2(s) = (d3 +13)@3(s), (3.2)
+00
,
cpy(s) = 33 / k(y)e B2p3(s — y — cto)dy — (ds + r4)@a(s),
—0Q0
where
1 )2
k(y) = ———e P72,
) J4Dtw ¢

According to Lemma 2.2, there is a u* € (0, 00), such that ®(u*) = inf,~o ®(u), that is,

c*=d(u*) = )‘(ML:) > 0. Furthermore, by Lemma 3.8 in [2], (¢*, u*) actually also solves the

following system

P
P(Cv I‘L) = 07 a_(ca //L) - O, (33)
1%
where
cu+(dp +r1) 0 0 _br4e—d4rle—rlcu’
P(c, u) = — A e+ (dr+r2) 0 0
7 0 - cp+ (ds +r3), 0 ’

0 0 —%K,Le’dme’fz““ e+ (ds +714)
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that is,

4 4
P(e,w) =] Jlen+ @i +rid)1 = Ro [H(di + r,»)} eProm(rtmen,

i=1 i=1

Let c = ®(u), and ¢* = ®(u*). Then j—;luzﬂ* =0. Let ¢ > ¢* be given. There exist at least
one w1 € (0,00) such that ®(u1) = c. If there are two values w; and wo such that ®(u;) =
¢, i =1, 2, we always choose the smaller one, say 1, such that ®(u1) =c. Let A; = A(u1), and
n :=n(u1) > 0 be the eigenvector associated with A(w1). For any p > 0, if v(¢; vg) is a solution
of (2.2), then u(t, x) = e " v(t; vg) is a solution of (2.1). Note that u(z, —x) = e**v(t; vg) is
also a solution of (2.1). Taking p = 1, vo = n(iL1), we have

Auy)
u(t, —x) zeltlxe?»(ﬂl)tn('ul) :eﬂl(x+ w1 t>7}(l¢1)~

Lets =x+ Ml, then ¢(s) := u(t, —x) = e"*n(w1) is a solution of the linearized wave equa-
tions of (3.2) at zero solution
—dyT)

@ (s) = brae” %" pa(s — ct1) — (d1 + )i (s),

, r Ncap
cpy(s) = @1(s) — (d2 +r2)p2(s),
c@s(s) = ra@a(s) — (d3 +r3)e3(s), 3.4
+00
cpy(s) = %3 / k(y)e ™ B23(s — y — cra)dy — (da + r4)pa(s).

Thus, w1 is the positive root of P(u,c) =0.

In the following, we construct upper and lower solutions of the system (3.1) as in [4]. For
€>0,let e : =1 + €, he := A(le), Cc := % = ®(u,). For sufficiently small € > 0, we have
¢* < ce < c. Assume that the strongly positive eigenvector associated with A is

n¢ =i, ....n5 > 0.
Notice that
u([, —)C) — e'u“fxe)‘et — el’ve(xJFCel)nE

is also a solution of (2.1). Thus ¢(s) := e*<*w, is a solution of the linearized wave equations
system (3.4), where s = x + c¢t. Therefore, c. and p. also satisfy P(ce, e) = 0. Thus,

Celbe + (dy +11) 0 0 —brge d4Tig " T1Ce ke nS
_rlNhﬂ Cefte + (d2+12) 0 0 773

0 —r Cette + (d3 +13), 0 n3

0 0 —3K,, e Bne=nlele ¢y + (da + 1) ng
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Let 8 := ¢ — cc. Then we have

Clhe + (dl + r]) 0 0 _br4e_d4rl e TICHe , nelf

—rllv% Cle + (d2+12) 0 0 n5

0 - cle + (d3z +r13), 0 s

0 0 —F Ky e BT cpe + (dy + 1) 4
Cle + (dl + rl) 0 0 —br4efd4fle*flce,ue ,_ 77?
> _rll\/# cle + (d2 +12) 0 0 ng
B 0 ) cle + (d3z +r3), 0 s
0 0 —BKyemBReT M cpe 4 (dy+ra) ] \nj

=8 pten® > 0.
Let n = (1, ..., n4) and 7 := (n{, ..., ny) be the strongly positive eigenvectors associated

with A(u1) and A (i), respectively, such that n€ > n and

N
deptens > =50 1T-

Define the function @(s) = (@ (s), ..., 94(s)), where

1 ¢
Ej(s)zmin{nje“”,go;}, 5 =—1In—-L, VseR, j=1,..,4.
M1 Ny

We see that = (pj and

X _
<@¥, s<7;

“r - ehS s <3

wis ) x _ = d o _ s Si,

nje =¢; s=5j, and @;(s)=1 ", o

97, §>5;.

“|

>(pj, §>5j,

Lemma 3.1. For any ¢ > c*, the above defined ©(s) is an upper solution of (3.2), whenever € > 0
is sufficiently small.

Proof. We consider the equations of (3.2) separately in each different location cases of s.
@®Jj=1I
Case 1. s > max{sy,s54 + c11}:
@\ (s) = brae” MGy (s — ct) + (d1 + )P ()
= —brge”“N g} 4 (dy 4 r1)gf =0.

Case 2. s < min{s|, 54 + c11}:
@) (5) — brae™ T gy(s — cT1) + (di + 1)@ (5)

= cniprets — brae 4T e S L (dy + ) e’

=’ [(cm +di )y —brge” HteT e n4] =0.



6412 X. Lai, X. Zou / J. Differential Equations 269 (2020) 6400-6421

Case3.51 <s <S54+ cT11:

@1 (s) — brae" g, (s — ct1) + (di + 1)@, (5)
= —brae” @t TN 4 (dy + g

> —bi’4e_d‘m QDI + (d1 + rl)(pi6 =0.

Case4.54+ct1 <85 <751:

@ (s) — brae” g, (s — ct1) + (dy + 1)@ (5)
= nicpie!’ — brae W gF + (dy +ri)ni et
> nicprets — brae™ Mg ST 4 (d) + rp)netts

= M5 [(cpy +dy + 1)1 — brae 4T e T, = 0.

(i) j =2:
Case 1. s > max{s, 52}:

c@y(s) —r1g(@1(5)) + (d2 +r2)@a(s)
=—r18(¢]) + (dr + r)e; =0.
Case 2. s < min{s1, s2}:

@5 (s) —r1g@(5)) + (d2 + )@ (s)

rlNcap_ _
@1(s) + (d2 +r2)@a(s)

> cgh(s) —
1N,
= [(C,ul +dyr+r)m — %m] e =0.

Case3.5] <5 <7528

c@5(s) = r1g(@1(s) + (d2 +r2)Pa(s)

_ 1 Neap _ _
> @y (s) — —LG(s) + (d2 + r2)Pa (5)
N,
= (cu| +do +ra)met’’ — rl% T
r1 N,
> (cp1 +da + ettt — %me””

N,
= |:(C,M1 o+ ) — = hwp m] e =0.
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Case4.5sp <s <5s71:

c@)(s) —r18(@1(s)) + (da + )@, (s)
= —rig(me''’) + (dr + )3
> —r1g(@}) + (da + )i =0.
(i) j = 3:
Case 1. s > max{sy, 5s3}:
c@5(s) — ra@a(s) + (dz + r3)@3(s)
= —r; + (d3 +r3)p; =0.

Case 2. s < min{sy, 53}:
c@4(s) — ra@a(s) + (d3 + r3)@3(s)
=M [(epy +d3 +r3)n3 — ranz] =0.
Case 3.5 <5 < 53:
c@4(s) — ra@a(s) + (d3 + r3)@3(s)
= (cp1 +d3 + r3)nze’’ —rp3

> (cp1 +d3 +r3)nze’® —ranpett®

= e [(cpur +d3 +r3)m3 —ramp] =0.
Case 4.53 <5 < 53:
c@5(s) — r2@(s) + (d3 + r3)@3(s)

= —rymet" + (d3 +r3)¢;
> —r@; + (d3 +1r3)93 =0.

@v) j=4:
+oo
r3 _ _
5 | ke BRGy(s — y — cr)dy
—00
[~ s—cTp—53 “+o00
= Jehm / k(g3dy + / k(y)nze! 3T dy
L —o0 S—CT)—53

[~ s—CcTy—s83 +00
< %36—(1312 / k(y)meul(s—y—crz)dy + / k(y)r]3e“1(s_y_”2)dy

—00 §—CT2—S3
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+0oo

2%36701312 f k(y)pzet 6=y=et) gy,
—o0

— eidﬂze*m”zl;(ul)e“”r;3.

Similarly,

+oo
r3 _ _
2 f k(e 25 (s — y — cra)dy

—00
[ s—cTy—s3 +00
= %e*dﬂz / k(y)pidy + / k(y)nzet1 6Ty gy
L — S—CTr—53
[ s—cT2—S3 +0o0
r3 7d3‘[2 * *
< Ee / k(y)p3dy + / k(y)psdy
L —o© S—CTr—53
+o00
= %e"‘m f k(y)pidy
—00
_ 13—ty
2 e (03.
Case 1.5 > 54:
+o00
_ r3 —dhtr— _
@y(s) — = | k(e BPgs(s — y — cta)dy + (da + ra)Pa(s)
2
—00
r3

=—3 eidﬂzq)g‘ + (ds +ra)e; =0.

Case 2.5 < 54:

—+00
_ r3 _ _ _
By - 2 / k(e B2g(s — y — cra)dy + (ds + ra)@a(s)
—00
+oo
. r3 _ _
= (cp1 +ds + ra)naett’ — > / k(y)e B2gs(s — y — crp)dy
-0

12 -
> (i1 + dy + rq)ae’ — ge—dﬂ%—kaw)e“”na

, _
=t [(cm +dy+ra)ns — ge_dme_mmkwl)%] =0
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This proves that @(s) is an upper solution of (3.2). O

Let
: . 1 7 .
fj(s) =max{0, n;e""" —niel’}, 5= gln—é <0, j=12,3,4 (3.5)
J
‘We see that

>0, s<s;
3 ; ’ = jels —pSete’, s <.,
njelt —nSel* =0, s=s;, and ¢ .(s)= 1 ") =i
! - -/ 0, s>5;.
<0, s>s —=J

j b
Lemma 3.2. For any ¢ > c*, the above defined p(s) = (gl ), ..., &(s)) is a lower solution of

(3.2), whenever € > 0 is sufficiently small.

Proof. We consider the equations of (3.2) separately in each different location cases of s.
M j=1:
Case 1. s > max{s;, s, +c11}:

g (s) — brye 44T @, (s —ct) +(d + g, (s) =0.

Case 2. s < min{s;, 54 +c11}:

cg' (s) — brae™ Mg (s — 1) + (di + 1)@ ()

=c(npure™ — nfpeeles) — brye™ MM [nget1 ST — pfette(mem))
+(dy +r) (et —niet<’)

= [enipr — brae” M e My + (dy + r)nilet
—[epen§ — brae™ MM e Tlens + (dy + r)nlete

= —[cpen — brae” MM e Tl ens 4 (dy + ry)nf et

= [(Ce — C) e — brae M7 (e7CTIte — = CTIe) e pHes

<0.

Case3.5) <5 <54 +c11!

o' (s) = brae™ Mg (s — 1) + (d1 + )@, ()

— —br4e_d4” [n4eu1(S—CT1) _ nieue(s—cfl)] <0.

Case 4. s, +c1) <5 <s;:
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cg/l (s) — br4e—d4r1£4(s —c11)+ (d1 + rl)f1(s)
=c(mupie"™ —njuce”) + (di +ri)(me"* —njes)
= (cpr +dv +rme’” — (cpe +di +rinje”
< (cp1 +dy +rme™ — (cepe +di +ri)njels’

= br4e*d47| 7746111(3*“1) _ br4e*d4f1 nie,ue(sfcen)
< bmeid‘m [mem(é‘*ﬂl) _ nieue(&‘*ﬂl)]

<0.

(i) j=2:
Case 1. s > max{s, s,}:

cg () = r18(@,(5)) + (d2 +r2)g,(5) = 0.

Case 2. s < min{s,, 5,}:

Notice that
Neapp N, N i
8(21)2 LS capgl_ Capf] 1 .
l+g, h h h+¢,
Since
2
Ncap f] < Ncap 2
nohte, - nEE
N, 2
=5 [me" —nfel’]
N,
< —;;p n%ezl‘” (Note, n1et"® > niet<’)
N,
< ;;p nieles, (e <)
we have

N, N,
gly) > % [mes —nfel] - h‘—;wnfe"”-

g (s) —r1g(e, () + (d2 +r2)g, (s)
=c(muie"” —nSpee’) + (da + r2) (met'’ —n5et<’)y —rig(niet —nie*)
= (cu1 +dr +r)me" — (cpe +do +r2)n5ete* —rig(met’ —njet<’)

VlNcap

< (ep1 +dy +r)me™” — (cpe +dp + ro)mpe® — —

(e’ —niet<’]

Neap 2 e
+ h2 Uit
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N,
= |:(Ce — ) pens + ;;,, ’7%} ettt
0.

IA

Case 3. 5) <5 < §,:

cg) () — r18(p, () + (d2 + r2)@, (5)
=c(mu1e® —niuee’) 4 (da + r2) (me* — niet<’)
= (cu1 +da + r2)me’" — (cpe + da + r2)n5ete’
< (cp1 +da+r)met’’ — (cepre +da +r2)nyele’
_ rlNcap (me’“s _ nieués)

h
<0.

Case 4.5, <5 <s5;:

c@y(s) —r1g(g, () + (d2 + 1)@, (5)
=—r18(¢,(s)) =0.

(iii) j = 3: Case 1. s > max{s,, s3}:

e (5) = ra, (5) + (d3 + r3)g, () = 0,

Case 2. s < min{s,, s3}:

c@y(5) =129, (s) + (d3 +13) @, (5)
=c(nzp1e!’® —nspeete®) —ra(naet'® —n5ele®) 4 (ds +r3) (n3e™* — nse*”)
=[(cp1 +d3 +r3)nz —ram2le!™ — [(cpe + d3 +r3)n5 — ranslets’
= (ce — ) peets’

<0.

Case 3. 5, <5 < 53!

@y (s) — 20, (5) + (d3 +73)@5(s5)
=c(mpure™”® —nspee®) + (dz + r3) (m3el'® — njet<’)
= (cp1 +d3 +r3)nzel’ — (cpe +dz +r3)nsel<
< (cp1 +d3 +r3)nzel’ — (cepre +ds +r3)nsee”
= ry(ne""’ —net'<t)

<0.



6418

X. Lai, X. Zou / J. Differential Equations 269 (2020) 6400-6421

Case 4. 53 <5 < §,:

(iv) j = 4:

@y (s) = 129, (8) + (d3 +13)@, ()
=—n@,(s) <0.

+oo

3 _
5 / k(e B2 (s —y — cra)dy
—0o0

2

2

§—CT2—S3 “+o00

r3 _
= 2 hn f k() (s —y —cro)dy + / k(y)g (s —y —cma)dy

—00 S—CTy—53

+00

_ r_3€*d312 / k(y) |:,73em(sfyft‘fz) _ ngelte(b‘*y*cfz)] dy

S—CT2—S3

“+o00

. %e_d*m / k() [mem(s—y—crz) _ ngeue(s—y—crz)] dy

Case 1. s > s4:

Case 2.5 < 54

—0oQ
+00
r3 _
g5~ 2 / k(e B0 (s — v — cr)dy + ([ds +r4)g, 5)
—00
+00
= —%3 k(y)e_dm£3(s —y—cm)dy <0.
—0oQ
+00
g (s) — %3 f k(e g (s —y — cta)dy + (da + ra)g, (5)
—0oQ
=c(nap1e"® — niueet<®) + (dy +rq) (nae™ — nie*e”)
“+00
_%e—dm / k(y) [mem(s—y—crz) — nSele (s—y—crz)] dy
S—CTy—53
< (cp1 +da+rnaet’’ — (cpe +ds + ra)nge’)
+o00

r . S
_ge*dﬂz / k(y) [,Bem@*y*cfz) _ ngeue(A*) cfz)] dy

—0o0
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+oo

= —(cpe +ds+ra)njete + %e*dm / k(y)nset< SR dy
—0o0
+o00
< —(Celte +dy +ra)uses + %36"’3’2 / k(y)nget< 0 dy
—0o0

=0.
Thus, f(s) is a lower solution of (3.2). 0O

Notice that (3.2) is equivalent to the following system

dej(s)
ds

+rj

d; 1
+8(pj(s)=(5— / )(pj(s)+zfj(<p(s)), j=1..4, (3.6)

c

where ¢(s) = (¢1(s), ..., pa(s)) and

fi(p(s)) = brae ™ 1 gu(s —ct1),  fr(p(s)) =r1g(@1(s)),
+00
f3(p(s)) =rpa(s), falp(s)) = %3 / k(y)e B2g3(s — y — cta)dy.

—00

Letd;(c):=6 — 4 :rrj , where § > 0 is large enough constant. Thus, (3.6) reduces to
S
gj(s)=e"% f ONFgli(ndt, j=1,..,4, (3.7)
—00

where Fo = ([F¢l1, ..., [Fels) and

[Folj(s) =68;(0);j(s) + filp(s), j=1,..4

It follows that [Fg](z) > [Fy](t), V¢t € R, provided that ¢, ¥ € C(R, [0, ¢*]) with ¢(t) >
¥(t), t € R. Moreover, we have F(0) =0 and F (¢*) = diag(s, ..., §)¢*.

Define an operator T = (T, ..., T4) on C(R, [0, ¢*]) by

N

Till(s) = ™% / OFoli(dt, VseR, j=1,..,4.

—00

The following observation is straightforward.
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Lemma 3.3. The operator T has the following properties:

(i) If p € C(R, [0, B]) is nondecreasing, then so is T ¢.

(i) If o >, then To > T

(iii) If ¢ is an upper (lower) solution of (3.2), then ¢(s) > [T ¢l(s) (p(s) < [TY¥](s)) for all
s eR.

(iv) If @ is an upper (lower) solution of (3.2), then T ¢ is also an upper (lower) solution of (3.2).

Theorem 3.1. Assume Ro > 1 and c* is the asymptotic speed of spread of Q1. Then for any
¢ > c*, system (1.1) has a traveling wave solution ¢(x + ct) connecting 0 to ¢* (that is, B) such
that ¢(s) is continuous and nondecreasing in s € R.

Proof. In the case where ¢ > ¢*, we construct a sequence of functions by the iteration scheme

(0(0) =0, g0(’”) — T(p(m—l)’ VYm > 1.

By Lemmas 3.1, 3.2 and 3.3, we have
0<¢() <. 9™ ) <" V) <. <P(s) <¢*, VseR,

By the Lebesgue’s dominated convergence theorem, it follows that lim,,_ go(m)(s) =: ¢(s)
exists, and ¢(-) is a fixed point of T'. Since ¢(-) is nondecreasing and

@) =9(s),Vs €R,

it follows that ¢(—o0) = 0 and ¢(4+00) > 0. It is easy to see that ¢(+00) is an equilibrium
of (3.2). By the uniqueness of the positive equilibrium, we have ¢(+00) = ¢*. Consequently,
¢ (x + ct) is a monotone traveling wave of (1.1) connecting 0 to ¢* (that is, ).

In the case where ¢ = ¢*, we use a limiting argument. Let {c,} C (c*,c* + 1] with
lim,,_, 00 ¢, = ¢*. Since ¢, > ¢*, (3.2) with ¢ = ¢, admits a nondecreasing solution P (s) =
((p{”), . wﬁ")) such that 9™ (—o0) = 0 and ¢™ (+00) = ¢*. Without loss of generality (due to

translation invariance), we may assume that (pf")(O) = % B1. Note that wﬁ.") (s) satisfies

S

o (s) =™ f 18, (e ) + £i(@M ()M, j=1,...4, (3.8)
—00
and
dg(" (s)
0”2175 = fi@™ ) = (@dj +rpeV(s). j=1....4. (3.9)
o'
Since {9 (s)} and (p’ds > are uniformly bounded on R, {9 (s)} is equicontinuous on R. Using

the Arzelia Ascoli theorem and the standard diagonal method, we can obtain a subsequence
of functions ¢ (s), which converges to ¢*(s), as k — oo, uniformly for s in any bounded
subset of R. Clearly, ¢*(s) is nondecreasing, ¢*(—o0) = 0 and ¢*(c0) is an equilibrium of



X. Lai, X. Zou / J. Differential Equations 269 (2020) 6400-6421 6421

(3.2). Moreover (p]“(O) = %,31 > 0, implying that (pi"(oo) > 0. This together with the structure of
equilibria of (3.2) further implies that ¢*(4-00) = 8. By the dominated convergence theorem and
(3.8), it follows that

N

pis)=e / '8, ()@ (s) + fi(p*(sNldt,  j=1,...4. (3.10)

—0o0o
Thus, ¢*(x 4 ¢*t) is a monotone traveling wave of (1.1) connecting 0 and 8. O

For the nonexistence of traveling wave solutions, we have the following result, according to
Theorem 4.3 in [2].

Theorem 3.2. Assume Ro > 1, and c* is the spreading speed of spread of Q1. Then for any
c €(0,c*), system (1.1) does not have traveling wave solution ¢(x + ct) connecting 0 to B.

It follows from Theorem 3.1 and 3.2 that the asymptotic speed of spread is exactly the mini-
mum wave speed for monotone traveling waves.

We conclude the paper by pointing out that the method provided in a more recent work [7]
(than [2]) may also provide an alternative way to prove the existence of traveling waves for the
model system (1.1).
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