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Abstract

We consider a class of bistable reaction-diffusion equations in the plane. First we introduce a partition of 
the plane into infinitely many sectors and consider Dirichlet problems in these sectors. By establish some 
a priori estimates for nontrivial solutions to these sub-systems, we obtain the existence and attractivity 
of a heterogeneous steady state of the Dirichlet problem in each of the sectors and prove the existence 
of a maximum positive steady state and describe the asymptotic behaviours of positive steady states at 
the infinities. We also estimate ω−limit sets at the vicinities of the boundaries of the sectors near origin 
and at infinities. Further assuming the sub-linearity for the reaction term, we obtain the uniqueness and 
attractivity of a heterogeneous steady state by applying the dynamical and sliding methods. These results 
help us describe the multiplicity, shape and attractivity of the heterogeneous steady states for the equation.
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1. Introduction

Consider the following reaction-diffusion equation

∂u

∂t
(t, x) = �u(t, x) + f (u(t, x)), t > 0, x ∈ � ⊂RN (1.1)

where � is the Laplacian in RN and f : R → R is a continuously differentiable function. Nat-
urally, one would like to understand the global structure of the trajectories of equation (1.1) and 
their asymptotic behaviours as t → ∞. However, with very few exceptions of special cases, this 
problem is far too complicated to deal with as a whole. A basic question for (1.1) is the fol-
lowing: do globally defined and bounded solutions converge to a steady state as t → ∞? This 
question is, in general, mathematically challenging and still largely remains open. Depending on 
the situations of spatial domains � and reaction terms f , different problems may arise.

When � is a bounded domain in RN , various boundary conditions can be posed depending 
on the practical scenario of the problem, and accordingly, various topics would be the focus. 
Among these boundary conditions are the typical homogeneous Dirichlet boundary value condi-
tion and Neumann boundary value condition, and corresponding major concerns are convergence 
or quasi-convergence of bounded solutions. For example, under the homogeneous Neumann 
boundary condition, (1.1) is gradient like with an energy function, and thus, by standard parabolic 
regularity estimates, one can easily conclude that each bounded solution approaches a set of equi-
libria (see e.g., [3,28] for details). Moreover, by applying the zero number method, convergence 
to equilibria has been proven on a bounded interval (N = 1) in [6,27,37] or in a circle in [5]. 
By the Lojasiewicz-Simon inequality, Jendoubil [23] showed and Simon [34] also confirmed 
that each bounded solution converges to an equilibrium when the nonlinearity f is analytic. By 
posing some strong restrictions on the linearization at any equilibrium or assuming a special 
structure of the set of equilibria, other convergence results have also been obtained in [21,22,25]. 
A reader is referred to the nice survey [29] for more details on the methods and results in case 
of bounded domains. On the other hand, it is known that if the equation is not spatially homoge-
neous, then on a multidimensional domain there may exist non-convergent bounded trajectories 
(see, e.g., [31,32]).

When the spatial domain is unbounded, the asymptotic behaviours of the bounded solutions 
of equations (1.1) become extremely complicated. It turns out that one usually has to impose 
more restrictions on initial functions and reaction terms, and sometimes on the spatial domains 
to obtain results for more elaborate systems. For systems with the domain being the whole space, 
traveling wave solutions and asymptotic propagation are two important topics [1,18,24]. Travel-
ing wave solutions may quite often determine the long term behaviour of other solutions while 
asymptotic propagation describes how other solutions converge to an equilibrium as t → ∞. 
The study on traveling waves for R-D equation with monostable reaction terms can be traced 
back to the celebrated papers of Fisher [18] and Kolmogorov et al. [24] while exploration of the 
asymptotic spreading speeds was mathematically started by Aronson and Weinberger [1]. Re-
cently, Berestycki et al. [2] have outlined a theory of various asymptotic spreading speeds for 
(1.1) in general non-periodic spatially unbounded domains under Neumann boundary conditions 
and exhibited that spatial domains may affect the spreading speeds.

For bistable or more complicated reaction terms, traveling waves was initially studied in [17]. 
There are some essential differences between bistable and monostable nonlinearities. For exam-
ple, by the results in [9], it is seen that every bounded steady state of (1.1) is constant when f
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is monostable and � is the full Euclidean space. However, this shall not be case for a bistable 
or general f since a bounded steady states of (1.1) may be a ground steady solution or other 
heterogeneous steady state, see [4,30] and the references therein. As pointed out in [30], both 
quasiconvergent and non-quasiconvergent solutions are possible even for � =R, pending on the 
initial functions. Moreover, there are examples of spatially non-homogeneous equations on RN

with N ≥ 3, which possess nontrivial recurrent orbits (see, e.g., [20]). The existence of hetero-
geneous steady states and recurrent orbits impede us to explore the idea of general solutions 
tending to constant steady states in some sense. On the other hand, it is obvious that a traveling 
front with the speed c �= 0 does not approach globally any equilibrium although it can locally 
approach a constant. Therefore, the choice of the underlying topology becomes a trickier and 
more important issue than in bounded domains.

Luckly, with some proper assumptions on the reaction term f , the results in [7,8,10–16,19,
30,38], roughly speaking, indicate that each bounded positive solution converges to a single 
steady state solution if the initial value u0 is a nonnegative function with compact support or 

lim|x|→∞u0(x) exists, together with some extra assumption(s). Moreover, an involving steady state 

solution is either a constant, or radially symmetric and radially decreasing about some x0 ∈ RN

with lim|x−x0|→∞u0(x) = Constant. These restrictions on the initial functions and involving steady 

states do not seem to allow us to obtain information about other types of steady states and their 
asymptotic behaviours. For example, when N = 1, there can be spatially periodic steady states 
and spatially strictly increasing or decreasing steady states. For N ≥ 2, more complicated steady 
state solutions are also possible. As such, it is worthwhile to explore the existence and asymptotic 
behaviour of other types of steady state solutions and this constitutes the goal of this paper.

In this paper, we focus on the following semilinear reaction-diffusion equation in R2, i.e. 
N = 2,

{
∂u
∂t

(t, x, y) = �x,yu(t, x, y) + f (u(t, x, y)), t > 0, (x, y) ∈R2,

u(0, x, y) = φ(x, y), (x, y) ∈ R2,
(1.2)

where φ ∈ L∞(R2) and f ∈ C1(R, R) with f (u) = −f (−u) for all u ∈R (implying f (0) = 0).
It is well-known that for a given φ ∈ L∞(R2), (1.2) has a unique mild solution on the maximal 

time interval [0, ηφ) for some ηφ ∈ (0, ∞] in the sense of Lunardi [26]. Denote this solution by 
uφ(t, x, y). If the solution uφ(t, x, y) is bounded, that is, uφ ∈ L∞([0, ηφ) × R2), then its exis-
tence is global: ηφ = ∞. Moreover, if φ is also continuous in R2, then uφ ∈ C1,2((0, ηφ) ×R2))

and uφ(t, ·, ·) ∈ L∞(R2) for all t ∈ (0, ηφ), and thus, the solution uφ(t, x, y) is also a classical 
solution of (1.2). This suggests that we only need to consider the initial functions belonging to 
C(R2) ∩ L∞(R2).

The remainder of the paper is organized as follows. In Section 2, we give some basic proper-
ties of (1.2). In Section 3, to further describe the complicated dynamics of this type of equations, 
we shall identify some positively invariant sets (sectors) that can not be mutually transformed 
under the translations and orthogonal transformations. These sets play a key role in obtaining the 
multiplicity of steady states in this work. More precisely, in each of these sectors, we consider 
the Dirichlet problem for (1.2) with (x, y) restricted to the sector, treating it as a sub-system of 
(1.2). We show that some dynamical properties of these sub-systems remain valid for (1.2) as 
well. Making use of these properties, we can obtain the multiplicity, shape and attractivity of het-
erogeneous steady states for the bistable reaction-diffusion equations in the plane. In Section 4, 
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by developing some methods similar to those in [35,36] but with considerable modifications, we 
establish some a priori estimates for the sub-systems. More specifically, we give some iteration 
property of the diffusion, which turns out to be very useful for establishing a priori estimates for 
nontrivial solutions. We establish such an a priori estimate for nontrivial solutions after describ-
ing the delicate asymptotic properties of the diffusion operator. These allow us to show that the 
positive limit set of a positive solution is far away from zero at infinity locations away from the 
boundary of the sector domain. This finding plays a key role in the proof of existence and at-
tractivity of heterogeneous steady states of (1.2). In Section 5, we shall establish the existence of 
heterogeneous steady state of Dirichlet boundary problem by using the a priori estimate obtained 
in the previous section, and we shall also establish the existence of a maximum positive steady 
state and explore the asymptotic behaviours of the positive steady state at infinities. In Section 6, 
by further assuming the sublinearity for the nonlinear term, we address the uniqueness and at-
tractivity of the maximal positive steady state obtained in Section 5, by using the dynamical and 
sliding methods. Finally, Section 7 summarizes the main results about the multiplicity, shape and 
attractivity of the heterogeneous steady states for the bistable reaction-diffusion equation in R2

from the previous sections.

2. Preliminary results

In this section, we shall introduce some notations and present some preliminary results on the 
problem.

Let N , R, R+ and R2 be the sets of all positive integers, reals, nonnegative reals, and 
2-dimension vectors, respectively. Denote the Euclidean norm of R2 by || · ||.

Equip X = C(R2) ∩ L∞(R2) with the usual supremum norm || · ||X = || · ||L∞(R2). Then X
is a Banach space. Let X+ = {φ ∈ X : φ(x, y) ≥ 0 for all x, y ∈ R}. For a given number r > 0, 
define Xr = {φ ∈ X : ||φ||X ≤ r}.

For any functions ξ : R2 ⊇ Dom(ξ) → R, η : R2 ⊇ Dom(η) → R, we write ξ ≥ η if 
ξ(x, y) ≥ η(x, y) for all (x, y) ∈ Dom(ξ) ∩ Dom(η), ξ > η if ξ ≥ η and ξ �= η, ξ � η if 
ξ(x, y) > η(x, y) for all (x, y) ∈ Int (Dom(ξ) ∩ Dom(η)).

We will consider the mild solution of system (1.2), which solves the following integral equa-
tion with the given initial function,

{
u(t, ·) = T (t)[φ] + ∫ t

0 T (t − s)[F(u(s, ·))]ds, t ≥ 0,

u0 = φ ∈ X,
(2.1)

where

⎧⎪⎪⎨
⎪⎪⎩

T (0)[φ](x, y) = φ(x, y)

T (t)[φ](x, y) = 1

4πt

∫
R2

φ(x̃, ỹ)[exp(− (x − x̃)2

4t
) exp(− (y − ỹ)2

4t
)]dx̃dỹ for t > 0 (2.2)

for (x, y, φ) ∈ R2 × X and F : X → X is defined by

F(φ)(x, y) = f (φ(x, y)) for (x, y) ∈R2 and φ ∈ X.
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As stated in the introduction, for any given φ ∈ X, (2.1) has a unique solution on a maximal in-
terval [0, ηφ), denoted by uφ(t, x, y), which is also the classical solution of (1.2) on (0, ηφ) with 
[0, ηφ)  t �→ uφ(t, ·, ·) ∈ X being continuous and lim sup

t→η+
φ

||uφ(t, x, y)||X = ∞ when ηφ < ∞.

Due to the non-compactness of the spatial domain, it is generally difficult and inconvenient to 
describe the global asymptotic behaviour of solutions with respect to the L∞ norm. To overcome 
this difficulty, we shall introduce a weaker topology induced by the local L∞-norm for φ ∈
X. For simplicity of notation, when there is no confusion about the spaces involved, we will 
just write || · ||L∞

loc
for the local L∞-norm. Moreover, we also denote the normed vector space 

(X, || · ||L∞
loc

) still by X.
The following proposition establishes the monotonicity and global existence of the solution 

to (2.1) (hence, (1.2)). It involves the following hypothesis:

(H1) There exists u∗ ≥ 0 such that f (±u∗) = 0 and uf (u) ≤ 0 for all |u| ≥ u∗.

Proposition 2.1. Let ψ, φ ∈ X with φ ≤ ψ . Then uφ(t, x, y) ≤ uψ(t, x, y) for all (t, x, y) ∈
[0, min{ηφ, ηψ }) ×R2. Moreover, if (H1) holds, then ηφ = ∞ for all φ ∈ X.

Proof. The monotonicity follows from the Phragmén-Lindelöf type maximum principle in [33].
When ψ is a constant function in R2, by (H1), we easily see that − max{||ψ ||X, u∗} ≤

uψ(t, x, y) ≤ max{||ψ ||X, u∗} for all (t, x, y) ∈ R+ × R2. For any φ ∈ X, applying the mono-
tonicity to φ and ψ = ||φ||X , one conclude that ηφ = ∞. �

In the rest of the paper, we shall always assume (H1) holds so that ηφ = ∞ for all φ ∈ X. Thus, 
we may define � : R+ × X → X by �(t, φ) = uφ(t, ·) for all (t, φ) ∈ R+ × X. To emphasize 
the dependence on the nonlinearity f , we sometimes write �(t, φ, f ) for �(t, φ). It is obvious 
that for any r ≥ u∗, �|R+×Xr

is a continuous, compact and monotone semiflow on Xr . Here, the 
topology of Xr is induced by the norm || · ||L∞

loc
. Accordingly, we always assume that the tacit 

topology of X is induced by the L∞
loc-norm in the sequel.

Definition 2.1. An element φ ∈ X is called an equilibrium of � if �(t, φ) = φ for all t ∈ R+. 
A subset A of X is said to be positively invariant under � if �(t, φ) ∈ A for every φ ∈ A and 
t ∈ R+.

We write O(φ) = {�(t, φ) : t ∈ R+} for the positive semi-orbit through the point φ. 
The ω-limit set of O(φ) (or of φ) is defined by ω(φ) = ⋂

t∈R+ Cl(O(�(t,φ))), where 
Cl(O(�(t,φ))) represents the closure of O(�(t, φ)) with respect to the L∞

loc-norm.

Definition 2.2. Let φ be an equilibrium and A be a positively invariant set of the semiflow �. 
We say that φ is globally attractive in A if ω(ψ) = {φ} for all ψ ∈A.

By the local parabolic estimates and the related discussions in [11], we may obtain a relation 
between the topologies defined by the L∞

loc(R
2)-norm and the C2

loc(R
2)-norm for the positive 

semi-orbits of uniformly bounded subsets, which shall be very useful for proving the existence 
and attractivity of heterogeneous steady states for (1.2).
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Proposition 2.2. If t, γ > 0 and K ⊆ Xγ , then �(t, K) is precompact with C2
loc(R

2)-norm, 
and hence the L∞

loc(R
2)-norm and C2

loc(R
2)-norm define the same topology (in the sense of 

equivalence) on �(t, K). In particular, for any φ ∈ X, O(φ) and ω(φ) are precompact with 
C2

loc(R
2)-norm, and hence the L∞

loc(R
2)-norm and C2

loc(R
2)-norm define the same topology in 

Cl(O(φ)) as well as in ω(φ).

From this proposition, if ψ is globally attractive in A then lim
t→∞||uφ(t, ·) − ψ ||L∞

loc
= 0 and 

hence lim
t→∞||uφ(t, ·) − ψ ||C2

loc(R
2) = 0 for all φ ∈A.

Definition 2.3. We say that ψ is globally attractive in X with respect to the usual supremum 
norm if lim

t→∞||uφ(t, ·) − ψ ||X = 0 for all φ ∈ X.

For the trivial steady state ψ = 0, we have the following result.

Theorem 2.1. If uf (u) < 0 for all u �= 0, then 0 is a globally attractive equilibrium of (2.1) in X
with respect to the L∞(R2)-norm.

Proof. Note that each solution u(t) of u′(t) = f (u(t)) tends to 0 as t → ∞. By the comparison 
principal, we know that for any φ ∈ X, u−||φ||X(t, ·) ≤ uφ(t, ·) ≤ u||φ||X(t, ·) for all t ∈ [0, ∞). 
Thus, ||uφ(t, ·)||L∞(R2) → 0 as t → ∞, and the proof is complete. �

The condition on f in Theorem 2.1 implies that f ′(0) ≤ 0. If f ′(0) > 0, then 0 is not a locally 
attractive equilibrium. In the next sections, we tackle the global dynamics of the bistable form 
for (2.1) under the condition f ′(0) > 0 together with the following assumption for a bistable 
scenario:

(H2) f ′(0) > 0 and there is u∗ > 0 such that f (±u∗) = 0 and (u − u∗)f (u) < 0 for all u ∈
(0, ∞) \ {u∗}.

It is clear that (H2) implies (H1). The following result shows that every solution of (1.2) is 
attracted to Xu∗ under the above bistable condition.

Theorem 2.2. If (H2) holds, then lim sup
t→∞

||uφ(t, ·)||X ≤ u∗ for all φ ∈ X.

Proof. Proposition 2.1 implies that ηφ = ∞ and uφ−(t, ·) ≤ uφ(t, ·) ≤ uφ+(t, ·) for all (t, φ) ∈
R+ ×X, where φ+(x, y) = max{u∗, φ(x, y)} and φ−(x, y) = min{−u∗, φ(x, y)} for all (x, y) ∈
R2. Hence, it suffices to prove lim sup

t→∞
||uφ(t, ·)||X = u∗ for all φ ≥ u∗. Now, let us suppose φ ≥

u∗. Again, Proposition 2.1 implies uφ(t, ·) ≥ u∗ for all t ∈ R+. Let u(t, x, y) = uφ(t, x, y) − u∗
and let f̃ (u) = sign(u)f (|u| + u∗) for all u ∈ (−∞, ∞). Then u(t, x, y) ≥ 0 satisfies (2.1)
with f = f̃ . By applying Theorem 2.1 with f = f̃ , we have lim sup

t→∞
||u(t, ·)||X = 0. Thus, 

lim sup
t→∞

||uφ(t, ·)||X = u∗, completing the proof. �
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3. Invariant sub-systems

In this section, we construct a sequence of domains in R2 with which a sequence of positive 
invariant sub-systems of (2.1) is associated. By studying the invariance of (2.1) under trans-
lations and orthogonal transformations, we identify those subsystems that cannot be mutually 
transformed and use these subsystems to establish the multiplicity of steady states for (2.1).

Denote the orthogonal transformation group on R2 by O(2). One can easily verify that the 
solutions of (2.1) are invariant under translations and orthogonal transformations, that is, for any 
φ ∈ X, uφ(t, a11x + a12y + b1, a12x + a22y + b2) satisfies the integral equation of (2.1) where 
(aij )2×2 ∈ O(2) and b = (b1, b2) ∈ R2.

For a given non-negative integer m, set

A =
(

1 0
0 −1

)
, B0 =

(
1 0
0 1

)
, Bm =

(
cos 2π

m
sin 2π

m

− sin 2π
m

cos 2π
m

)
for m ≥ 1,

and accordingly define the following sets in R2 depending on m:

�m =

⎧⎪⎪⎨
⎪⎪⎩
R2, m = 0,

R×R+, m = 1,

R2+, m = 2,

{(x, y) ∈ R2+ : y ≤ x tan( π
m

)}. m ≥ 3.

Denote by ∂
∂ν

the derivative in the outward normal direction of ∂�m \ {(0, 0)}. Let

Xm = {φ ∈ C(�m,R) ∩ L∞(�m,R) : φ|∂�m = 0},
X+

m = {φ ∈ Xm : φ(x, y) ≥ 0 for all (x, y) ∈ �m},
X r

m = {φ ∈X+
m : ||φ||X ≤ r}, for r > 0.

For any φ, ψ ∈ Xm, we write φ ≥ ψ if φ − ψ ∈ X+, φ > ψ if φ ≥ ψ and φ �= ψ , φ � ψ if 
φ(x, y) > ψ(x, y) for all (x, y) ∈ Int (�m).

Define the operator Pm : Xm −→ X such that

Pm[φ]|�m = φ, (Pm[φ]) ◦ A|�m = −φ and (Pm[φ]) ◦ Bm = Pm[φ] for all φ ∈ Xm

where (φ ◦ B)(x, y) = φ((x, y)B) for all (x, y) ∈R2, φ ∈ X and B ∈ O(2). Also define

kt,m(x, y, x̃, ỹ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4πt

exp(−||(x,y)−(x̃,ỹ)||2
4t

), m = 0,

m−1∑
l=0

1
4πt

[exp(−||(x,y)B−l
m −(x̃,ỹ)||2
4t

) − exp(−||(x,y)B−l
m A−1−(x̃,ỹ)||2

4t
)] m ≥ 1

for (x, y), (x̃, ỹ) ∈ �m. For m ≥ 0 define

{
Tm(0)[φ](x, y) = φ(x, y),

Tm(t)[φ](x, y) = ∫
kt,m(x, y, x̃, ỹ)φ(x̃, ỹ)dx̃dỹ
�m
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for all (t, φ) ∈ R+ ×Xm and (x, y), (x̃, ỹ) ∈ �m.
The next lemma shows that for every m ≥ 0, Pm[Xm] is a positively invariant set with respect 

to �.

Proposition 3.1. For any positive integer m, Pm[Xm] is a positively invariant subset for �, that 
is, �(t, Pm[Xm]) ⊆ Pm[Xm] for all t ∈ R+.

Proof. It follows from the expression of T (t) and (2.1) that for any (t, φ) ∈ R+ × X and B ∈
O(2), we have

uφ(t, ·) ◦ B = T (t)[φ] ◦ B + μ

t∫
0

T (t − s)[f (uφ(s, ·) ◦ B)]ds

= T (t)[φ ◦ B] + μ

t∫
0

T (t − s)[f (uφ(s, ·) ◦ B)]ds,

which implies that uφ(t, ·) ◦ B satisfies (2.1) with the initial value φ ◦ B . Note that φ ◦ A = −φ

and φ ◦ Bm = φ for all φ ∈ Pm[Xm]. Thus, by the uniqueness of solution to (2.1), we conclude 
that uφ(t, ·) = −uφ(t, ·) ◦ A and uφ(t, ·) = uφ(t, ·) ◦ Bm for all (t, φ) ∈ R+ × Pm[Xm]. In other 
words, uφ(t, ·) ∈ Pm[Xm] for any (t, φ) ∈R+ × Pm[Xm]. This completes the proof. �

Now, we consider the following auxiliary problem for the nonlinear reaction-diffusion equa-
tion in �m: ⎧⎪⎨

⎪⎩
∂u
∂t

= �u + f (u(t, x, y)), t > 0,

u(t, x, y) = 0, (t, x, y) ∈ (0,∞) × ∂�m,

u(0, x, y) = φ(x, y), φ ∈ �m.

(3.1)

A mild solution of system (3.1) solves the following integral equation with the given initial 
function,

{
u(t, ·) = exp(−μt)Tm(t)[φ] + ∫ t

0 exp(−μ(t − s))Tm(t − s)[Fm(u(s, ·))]ds, t ≥ 0,

u0 = φ ∈ Xm,

(3.2)

where μ ≥ 0, and Fm : X+
m →Xm is defined by

Fm(φ)(x, y) = μφ(x, y) + f (φ(x, y)), (x, y) ∈ �m.

In what follows, we sometimes need to emphasize the parameter μ ≥ 0 and thus, will refer (3.2)
as (3.2)μ, and simply denote (3.2)0 by (3.2).

Proposition 3.2. For any positive integer m and φ ∈ Xm, uPm[φ](t, ·)|�m satisfies (3.2)μ for μ ≥
0, and thus, satisfies (3.1). Moreover, uPm[φ](t, ·)|�m ∈ X+

m for all (t, φ) ∈ R+ ×X+
m .
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Proof. By Proposition 3.1, we easily see that uPm[φ](t, ·)|�m satisfies (3.2)0. Thus, a standard 
argument shows that uPm[φ](t, ·)|�m satisfies (3.2)μ for all μ > 0.

Now, we prove uPm[φ](t, ·)|�m ∈ X+
m for all (t, φ) ∈ R+ × X+

m . Indeed, for any φ ∈ X+
m , let 

us denote v(t, x, y) = uPm[φ](t, x, y) for all (t, x, y) ∈ R+ × �m. It follows from (3.1) that v
satisfies the following equation

⎧⎪⎨
⎪⎩

∂v
∂t

(t, x, y) = �v + c(t, x, y)v(t, x, y), (t, x, y) ∈ (0,∞) × �m,

v(0, x, y) = 0, (x, y) ∈ �m,

v(t, x, y) ≥ 0, (t, x, y) ∈ [0,∞) × ∂�m.

(3.3)

Here,

c(t, x, y) =
{

f (v(t,x,y))
v(t,x,y)

, v(t, x, y) �= 0,

f ′(0) v(t, x, y) = 0.

By the Phragmén-Lindelöf type maximum principle in [33], we have v(t, x, y) ≥ 0 for all 
(t, x, y) ∈ [0, ∞) × �m, completing the proof. �

In the following, if there is no confusion, we will abuse the notation uφ(t, ·) for uPm[φ](t, ·)|�m

for all (t, φ) ∈ R+ ×Xm. The actual meaning of uφ(t, ·) depends on whether φ is in X or in Xm

which will be clear from the context.
The following proposition reveals a key relation between solutions of (2.1) and (3.2).

Proposition 3.3. For any non-negative integer m, Pm[uφ(t, ·)] = uPm[φ](t, ·) for any (t, φ) ∈
R+ ×Xm.

Proof. Let m ≥ 0 be given and φ ∈ X+
m . It follows from (3.2), the definition of Pm and 

Lemma A.2-(iii) that for any t ∈ R+, we have

Pm[uφ(t, ·)] = Pm[Tm(t)[φ]] + Pm[
t∫

0

Tm(t − s)[f (uφ(s, ·))]ds]

= T (t)[Pm[φ]] +
t∫

0

T (t − s)[f (Pm[uφ(s, ·)])]ds.

This, together with the uniqueness of solutions of (2.1), implies Pm[uφ(t, ·)] = uPm[φ](t, ·) for 
all t ∈R+. This completes the proof. �

To explore the dynamics of (2.1), we only focus on (3.2). In what follows, we always assume 
that the tacit topology of X+

m is induced by L∞
loc(�m)-norm.

According to Proposition 3.2, we may define � : R+ × X+
m → X+

m by �(t, φ) = uφ(t, ·) for 
all (t, φ) ∈ R+ × X+

m , where the topology and the partial ordering of X+
m are induced by the 

norm || · || � || · ||L∞
loc(�m) and X+

m respectively. To emphasize the nonlinearity f , we sometimes 
write �(t, φ; f ) for �(t, φ).
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Definition 3.1. An element φ ∈ X+
m is called an equilibrium of � if �(t, φ) = φ for all t ∈ R+. 

A subset A of X+
m is said to be positively invariant under � if �(t, φ) ∈ A for every φ ∈ A and 

t ∈ R+.

We write O(φ) = {�(t, φ) : t ∈ R+} for the positive semi-orbit through the point φ. The 
ω-limit set of φ is defined by ω(φ) = ⋂

t∈R+ Cl(O(�(t,φ))), where Cl(O(�(t,φ))) represents 
the closure of O(�(t, φ)) with respect to the L∞

loc(�m)-norm.

Definition 3.2. Let φ be an equilibrium and A be a positively invariant set of the semiflow �. 
We say that φ is globally attractive in A if ω(φ) = {φ} for all φ ∈A.

To continue, we collect some basic properties of � as follows.

Proposition 3.4. For any r ≥ u∗, �|R+×X r
m

is a continuous, compact and monotone semiflow 
on X r

m with respect to the topology of X r
m induced by the L∞

loc-norm and the partial ordering 
induced by X+

m .

Proof. By Propositions 2.1 and 3.3, we easily see that �|R+×X r
m

is a continuous and compact 
semiflow on X r

m. But these two Propositions can not directly give the monotonicity of � due 
to the fact that Pm[X+

m ] \ X+ �= ∅. Indeed, for any φ, ψ ∈ X+
m with ψ − φ ∈ X+

m , by letting 
v(t, x, y) = uψ(t, x, y) − uφ(t, x, y) and

c(t, x, y) =
{

f (uψ (t,x,y))−f (uφ(t,x,y))
v(t,x,y)

, v(t, x, y) �= 0,

f ′(0) v(t, x, y) = 0,

we easily check that v(t, x, y) satisfies (3.3). By the Phragmén-Lindelöf type maximum principle 
in [33], we have v(t, x, y) = uψ(t, x, y) −uφ(t, x, y) ≥ 0 for all (t, x, y) ∈ [0, ∞) ×�m. In other 
words, � is monotone with respect to the ordering induced by X+

m . This completes the proof. �
Moreover, by the strong maximum principle and the Hopf boundary lemma, we can obtain 

some further information about the monotonicity and boundary property of �, as stated in the 
following proposition.

Proposition 3.5. If ψ, φ ∈ X+
m with ψ < φ, then �(t, ψ)(x, y) < �(t, φ)(x, y) for all (t, x, y) ∈

(0, ∞) × Int (�m) and ∂�(t,φ)
∂ν

(x, y) < 0 for all (t, x, y) ∈ (0, ∞) × (∂�m \ {(0, 0)}).

By Theorem 2.2 and Proposition 3.3, we have the following result.

Proposition 3.6. lim sup
t→∞

||Pm[uφ(t, ·)]||X ≤ u∗ for all φ ∈X+
m .

In the following sections, we shall explore the existence, shape and attractivity of the hetero-
geneous steady states for (3.2) with the initial function φ ∈X+

m .

4. Some priori estimates

To overcome the difficulty in showing that the trivial equilibrium expels nontrivial solutions 
due to the lack of compactness and smoothness of the spatial domain �m, we establish an a 
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priori estimate for nontrivial solutions after describing the delicate asymptotic properties of the 
diffusion operator.

Let μ = 1 + max{|f ′(u)| : u ∈ [−1 − u∗, 1 + u∗]}. Define fμ :R −→R by fμ(u) = u + f (u)
μ

for all u ∈ R. Then μu +f (u) = μfμ(u) > 0 and μ +f ′(u) ≥ 1 for all u ∈ (0, 1 +u∗]. It suffices 
to study (3.2)μ with the initial function φ ∈X 1+u∗

m , according to Proposition 3.6.

Let l(x) =
√

μ

2 exp (−√
μx2) and l(t, x) = 1√

4πt
exp(− x2

4t
) for all t ∈ (0, ∞) and x ∈ R. To 

proceed further, we define some new linear operators Lt, H [t, ·], H [·], Ht : Xm → Xm as be-
low:

Lt [ζ ](x, y) = Tm(t)[ζ ](x, y),

H [t, ζ ](x, y) =
t∫

0

μ exp(−μs)Ls[ζ ](x, y)ds,

H [ζ ](x, y) =
∫
R+

μ exp(−μs)Ls[ζ ](x, y)ds,

Ht [ζ ] = H [ζ ] − H [t, ζ ],
for all ζ ∈Xm, t ∈ [0, ∞) and (x, y) ∈ �m.

It is easily seen that these operators can be extended from Xm to L∞(�m, R) and the exten-
sions are also order preserving in the sense of pointwise ordering due to the nonnegativity of 
kt,m, see Lemma A.2-(v) in the Appendix.

For given T̃ > 2T > 0, let

�
T,T̃
0 = [−T̃ , T̃ ]2,

�
T,T̃
1 = {(x, y) ∈ �1 : x ∈ [−T̃ , T̃ ] and y ∈ [T , T̃ ]},

�
T,T̃
2 = {(x, y) ∈ �2 : x, y ∈ [T , T̃ ]},

�
T,T̃
m = (T ,T tan( π

2m
)) + {(x, y), (x, y)AB2m : (x, y) ∈ �2m with T ≤ x ≤ T̃ − T }, m ≥ 3.

Note that for m ≥ 3, �T,T̃
m is a result of sliding the region D1 ∪ D2 along the direction of the 

line y = x tan(π/2m) by T sec(π/2m), where D1 = {(x, y) : (x, y) ∈ �2m with T ≤ x ≤ T̃ −
T }, D2 = {(x, y)AB2m : (x, y) ∈ �2m with T ≤ x ≤ T̃ − T }. It is easy to see that �T,T̃

m is a 

hexagon with each angle ≥ π
2 . See Fig. 1 for an illustration. Define the function hT,T̃

m : �m →R+
by hT,T̃

m (x, y) = 1 for all (x, y) ∈ �
T,T̃
m and hT,T̃

m (x, y) = 0 for all (x, y) ∈ �m \�
T,T̃
m . Let hT,T̃ :

R2 →R be the extension of hT,T̃
m through Pm in the sense that hT,T̃ (x, y) = Pm[hT,T̃

m ](x, y) for 

all (x, y) ∈ R2. Let AT,T̃ = {φ ∈X+
m : φ(x, y) ≥ h

T,T̃
m (x, y) for all (x, y) ∈ �m}.

For any n ∈ N , (x, y) ∈ R2, B ∈ O(2) and D ⊆ R2, let us define B[(x, y)] = (x, y) ◦ B =
(x, y)B , B[D] = {d ◦ B : d ∈ D} and

Ix,y(n;D) = {y = (x̃1, ỹ1, . . . , x̃n, ỹn) ∈ R2n : (x +
n∑

i=1

x̃i , y +
n∑

i=1

ỹi ) ∈ D}.
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Fig. 1. Illustration of the set �
T,T̃
m : the shaded region in R2 represents this hexagon.

Lemma 4.1. If T > 0, T̃ ≥ 4T , n ∈ N and (x, y) ∈ �
T,T̃
m , then Ix,y(n; �T,T̃

m ) ⊇ I0,0(n;
B[�m,Tm ]) for some B ∈ O(2) where �m,Tm = [0, Tm

2 ]2 with Tm = T for all m ≤ 2 and 
Tm = T tan( π

2m
) for all m > 2.

Proof. Fix T > 0, T̃ ≥ 4T , n ∈ N and (x, y) ∈ �
T,T̃
m . Note that for m ≤ 2, �T,T̃

m is a rectangle 

with lengths of the sides ≥ T ; and for m > 2, �T,T̃
m is a hexagon with each angle ≥ π

2 and length 

of a side ≥ T tan( π
2m

). Thus, �T,T̃
m − (x, y) contains a square with (0, 0) being one of the four 

vertices and length of the sides equaling to Tm

2 . In other words, there exists B ∈ O(2) such that 

Ix,y(n; �T,T̃
m ) ⊇ I0,0(n; B[�m,Tm]). This completes the proof. �

Lemma 4.2. If T > 0, T̃ ≥ 4T , n ∈ N and (x, y) ∈ �
T,T̃
m , then Ix,y(n; Bl

mAj [�T,T̃
m ]) ⊆

DT
m,n for all nonnegative integers l ≤ m − 1 and j ≤ 1 with (j, l) �= (0, 0), where DT

m,n �

{(x̃1, ỹ1, . . . , x̃n, ỹn) ∈ R2n :
√

n∑
i=1

[x̃2
i + ỹ2

i ] ≥ Tm√
n
} with Tm = T for all m ≤ 2 and Tm =

T tan( π
2m

) for all m > 2.

Proof. Suppose that T > 0, T̃ ≥ 4T , n ∈ N , l ≤ m − 1, j ≤ 1 with (j, l) �= (0, 0), and 

(x, y) ∈ �
T,T̃
m . Let Tm = T for all m ≤ 2 and Tm = T tan( π

2m
) for all m > 2. Note that 

dist (�
T,T̃
m , Bl

mAj [�T,T̃
m )) ≥ Tm, and hence dist ((x, y), Bl

mAj [�T,T̃
m )) ≥ Tm. By the definition 

of Ix,y(n; Bl
mAj [�T,T̃

m ]), we have

√√√√[
n∑

x̃i]2 + [
n∑

ỹi]2 ≥ dist ((x, y),Bl
mAj [�T,T̃

m )) ≥ Tm
i=1 i=1
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for all (x̃1, ỹ1, . . . , x̃n, ỹn) ∈ Ix,y(n; Bl
mAj [�T,T̃

m ]). This gives

√√√√ n∑
i=1

[x̃2
i + ỹ2

i ] ≥ Tm√
n

for all (x̃1, ỹ1, . . . , x̃n, ỹn) ∈ Ix,y(n; Bl
mAj [�T,T̃

m ]), and thus Ix,y(n; Bl
mAj [�T,T̃

m ]) ⊆ DT
m,n. �

Lemma 4.3. For any n ∈ N and δ ∈ (0, 14 ), there exists Tn,δ > 0 such that Hn[hT,T̃
m ] ≥ ( 1

4 −
δ)h

T,T̃
m for all T ≥ Tn,δ and T̃ ≥ 4T , and hence Hn[AT,T̃ ] ⊆ ( 1

4 − δ)AT,T̃ for all T ≥ Tn,δ and 
T̃ ≥ 4T , where Hn represents the nth-composition of H .

Proof. Fix n ∈ N and δ ∈ (0, 14 ). It suffices to prove that there exists Tn,δ > 0 such that 

Hn[hT,T̃
m ] ≥ ( 1

4 − δ)h
T,T̃
m for all T ≥ Tn,δ and T̃ ≥ 4T due to the monotonicity of H .

Define gn,μ :R2n →R by

gn,μ(y) =
n∏

i=1

(l(−x̃i )(l(−ỹi )) = (

√
μ

2
)n exp (−√

μ

n∑
i=1

[|x̃i | + |ỹi |]),

where y = (x̃1, ỹ1, . . . , x̃n, ỹn) ∈ R2n. Actually, since 
∫
R+ l(t, x)dt = l(x) for all x ∈ R due to 

Lemma 2.1-(vi) in [35], it follows from Fubini’s Theorem and the linear transformations of vari-
ables that for any T̃ ≥ 4T > 0 and (x, y) ∈ �m, we have

Hn[hT,T̃
m ](x, y) =

∫
R2n

hT ,T̃

(
x +

n∑
i=1

x̃i , y +
n∑

i=1

ỹi

)
gn,μ(y)dy.

This together with Lemmas 4.1 and 4.2, shows that for any T > 0, T̃ ≥ 4T and (x, y) ∈ �
T,T̃
m , 

letting J l,j
x,y = Ix,y(n; Bl

m[Aj [�T,T̃
m ]]) with given nonnegative integers j ≤ 1 and l ≤ m − 1, we 

know that there exists B ∈ O(2) such that

Hn[hT,T̃
m ](x, y) =

∫
J

0,0
x,y

gn,μ(y)dy +
∑

(l,j)�=(0,0)

(−1)j
∫

J
l,j
x,y

gn,μ(y)dy

≥
∫

I0,0(n;B[�m,Tm ])
gn,μ(y)dy − (2m − 1)

∫
DT

m,n

gn,μ(y)dy.

By the definition of gn,μ and the fact that 
∫
R l(y)dy = 1, we easily see that

∫
n

gn,μ(y)dy = 1.
R



T. Yi, X. Zou / J. Differential Equations 267 (2019) 4014–4046 4027
This together with the definition of DT
m,n implies that

lim
T →∞

∫
DT

m,n

gn,μ(y)dy = 0.

Let V T
i = (B4)

i[B[�m,Tm ]] for i = 0, 1, 2, 3. Then lim
T →∞∪4

i=1V
T
i =R2, which implies that

4∑
i=1

lim
T →∞

∫
I0,0(n;V T

i )

gn,μ(y)dy = 1.

It follows from the definitions of B4 and gn,μ that for any i ∈ {0, 1, 2, 3}, we have

∫
I0,0(n;V T

i )

gn,μ(y)dy =
∫

I0,0(n;V T
0 )

gn,μ(y)dy.

By letting T → ∞, we obtain lim
T →∞

∫
I0,0(n;B[�m,Tm ]) gn,μ(y)dy = 1

4 . Therefore, there exists Tn,δ >

0 such that for all T ≥ Tn,δ ,

∫
I0,0(n;B[�m,Tm ])

gn,μ(y)dy − (2m − 1)

∫
DT

m,n

gn,μ(y)dy ≥ 1

4
− δ.

So, for any T ≥ Tn,δ , T̃ ≥ 4T and (x, y) ∈ �
T,T̃
m , we have Hn[hT,T̃

m ](x, y) ≥ 1
4 − δ, that is, 

Hn[hT,T̃
m ] ≥ ( 1

4 − δ)h
T,T̃
m and hence the proof is completed. �

To continue our discussions, we give some iteration property of the diffusion, which shall be 
very useful to prove a priori estimate for nontrivial solutions for (3.2)μ.

Lemma 4.4. For any n ∈ N and δ ∈ (0, 14 ), there exist Tn,δ > 0 and sn,δ > 0 such that 

Hn[hT,T̃
m ] ≥ ( 1

4 − δ)h
T,T̃
m and (H(s, ·))n[hT,T̃

m ] ≥ ( 1
4 − δ)h

T,T̃
m for all T ≥ Tn,δ , T̃ ≥ 4T and 

s ≥ sn,δ , where Hn and (H(s, ·))n represent the nth-composition of H and H(s, ·), respectively.

Proof. Fix n ∈ N and δ ∈ (0, 14 ). By Lemma 4.3, there exists Tn,δ > 0 such that Hn[hT,T̃
m ] ≥

[ 1
4 − δ

2 ]hT,T̃
m for all T ≥ Tn,δ and T̃ ≥ 4T .

Let sn,δ = 1
μ

ln( 21+n

δ
). Now fix T ≥ Tn,δ , T̃ ≥ 4T and s ≥ sn,δ . By the definitions of 

H, Hs, H(s, ·), we have Hs ◦ H(s, ·) = H(s, ·) ◦ Hs , Hs[1] ≤ e−μs , (Hs)
j [hT,T̃

m ] ≤ 1 and 

(H(s, ·))j [hT,T̃
m ] ≤ 1 for all j ∈N . It follows that
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Hn[hT,T̃
m ] =

n∑
j=0

C
j
n(Hs)

j (H(s, ·))n−j [hT,T̃
m ]

= (H(s, ·))n[hT,T̃
m ] + Hs[

n∑
j=1

C
j
n(Hs)

j−1(H(s, ·))n−j [hT,T̃
m ]]

≤ (H(s, ·))n[hT,T̃
m ] + (2n − 1)Hs[1]

≤ (H(s, ·))n[hT,T̃
m ] + 2ne−μs

≤ (H(s, ·))n[hT,T̃
m ] + δ

2
.

This, combined with the fact that Hn[hT,T̃
m ] ≥ [ 1

4 − δ
2 ]hT,T̃

m , implies that (H(s, ·))n[hT,T̃
m ] ≥

( 1
4 − δ)h

T,T̃
m . This completes the proof. �

The following result gives a priori estimate for nontrivial solutions for (3.2)μ, which plays a 
key role in the proof of existence and attractivity for the heterogeneous steady states of (3.2)μ.

Proposition 4.1. Suppose that M ≥ u∗. Then there exist ε0 > 0, T0 > 0 and T ∗ > 0 such that for 
all ε ∈ [0, ε0], T ∈ [T0, ∞), T̃ ∈ [4T , ∞) and a solution u : [0, ∞) ×�m → [0, M] of (3.2)μ with 

u(t, ·) ≥ εh
T,T̃
m for all t ∈ [0, T ∗], we have u(t, ·) ≥ εh

T,T̃
m for all t ∈ [0, ∞) and u(t, ·) � εh

T,T̃
m

for all t ∈ [T ∗, ∞).

Proof. Obviously, there exist n ∈N and β ∈ (1, 1 + 1
μ
f ′(0)) such that βn > 10.

By the choices of β and μ, one can easily see that there exists a ε1 ∈ (0, M) such that u +
1
μ
f (u) ≥ βu for all u ∈ [0, ε1] and u + 1

μ
f (u) ≥ βε1 for all u ∈ [ε1, M].

By applying Lemma 4.4 with δ = 1
8 , we know that there exists sn > 0 such that Hn[hT,T̃

m ] ≥
1
8h

T,T̃
m and (H(s, ·))n[hT,T̃

m ] ≥ 1
8h

T,T̃
m for all T̃4 ≥ T ≥ sn and s ≥ sn.

Let ε0 = ε1
βn+1 , T0 = sn and T ∗ = nsn. Suppose that ε ∈ [0, ε0], T ∈ [T0, ∞), T̃ ∈ [4T , ∞)

and u : [0, ∞) × �m → [0, M] is a solution of (3.2)μ such that u(t, ·) ≥ εh
T,T̃
m for all 

t ∈ [0, T ∗]. Let φ = u(0, ·). Then u(t, x, y) = uφ(t, x, y) = �(t, φ)(x, y) for all (t, x, y) ∈
[0, ∞) × �m. Due to the choices of ε and β , one can easily obtain βj (H(t, ·))j [εhT,T̃

m ] < ε1

and βj (H(t, ·))j [εhT,T̃
m ] + 1

μ
f (βj (H(t, ·))j [εhT,T̃

m ]) ≥ βj+1(H(t, ·))j [εhT,T̃
m ] for all t ≥ 0 and 

j = 0, 1, . . ., n.

Let n∗ = sup{j ∈ {0, 1, 2, · · · , n} : u(t, ·) ≥ εβj (H(sn, ·))j [hT,T̃
m ] for all t ∈ [jsn, T ∗]}. We 

claim n∗ = n; otherwise, n∗ ∈ [0, n − 1] and u(t, ·) ≥ εβn∗
(H(sn, ·))n∗ [hT,T̃

m ] for all t ∈
[n∗sn, T ∗]. These, combined with (3.2)μ and Fubini’s theorem imply that for any t ∈ [(1 +
n∗)sn, T ∗],

u(t, ·) = u(sn + (t − sn), ·)
= �(sn,�(t − sn,φ))(·)
= e−μsnTm(sn)[u(t − sn, ·)]
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+
sn∫

0

e−μ(sn−s)Tm(sn − s)[μu(s + t − sn, ·) + f (u(s + t − sn, ·))]ds

≥ H(sn, ·)[εβn∗
(H(sn, ·))n∗ [hT,T̃

m ], · + 1

μ
f (εβn∗

(H(sn, ·))n∗ [hT,T̃
m ])]

≥ εβn∗+1(H(sn, ·))n∗+1[hT,T̃
m ],

which yields a contradiction and thus means that u(t, ·) ≥ εβn(H(sn, ·))n[hT,T̃
m ] for all t ∈

[nsn, T ∗]. That is, u(T ∗, ·) ≥ εβn(H(sn, ·))n[hT,T̃
m ]) ≥ ε

βn

8 h
T,T̃
m , and thus u(T ∗, ·) � εh

T,T̃
m . Let 

T ∗∗ = sup{t ≥ 0 : u([0, t], ·) ≥ εh
T,T̃
m }. Then T ∗∗ > T ∗ due to the continuity of u(·, ·) and the 

fact that u(T ∗, ·) � εh
T,T̃
m . We claim that T ∗∗ = ∞; otherwise, T ∗∗ < ∞. By applying the above 

discussions with u�(t∗,φ)(t, ·) with t∗ ∈ [0, T ∗∗ − T ∗], we have u(t, ·) = u�(t−T ∗,φ)(T ∗, ·) �
εh

T,T̃
m for all t ∈ [T ∗, T ∗∗]. In particular, u(T ∗∗, ·) � εh

T,T̃
m , a contradiction with choice of T ∗∗. 

Hence, T ∗∗ = ∞, and the previous discussions also give u(t, ·) � εh
T,T̃
m for all t ∈ [T ∗, ∞). �

Given T > 0, let us define �T,∞
m = lim

T̃ →∞
�

T,T̃
m and hT,∞

m (x, y) = 1 for all (x, y) ∈ �
T,∞
m and 

h
T,∞
m (x, y) = 0 for all (x, y) ∈ �m \ �

T,∞
m .

The following theorem shows that the positive limit set of a positive solution of (3.2) is far 
away from zero for locations away from the boundary of �m.

Theorem 4.1. Suppose that f ′(0) > 0. If φ ∈ X+
m \ {0}, then there exist εφ > 0 and Tφ > 0 such 

that ω(φ) ≥ εφh
T,T̃
m for all T ≥ Tφ and T̃ ≥ 4T . In other words, ω(φ) ≥ εφh

Tφ,∞
m .

Proof. By Propositions 3.5 and 3.6, we may assume that φ ∈ X 1+u∗
m with φ(x, y) > 0 for all 

(x, y) ∈ Int (�m), and hence uφ(t, x, y) ∈ (0, 1 + u∗] for all (t, x, y) ∈ [0, ∞) × Int (�m). 
Choose T0, T ∗, and ε0 as in Proposition 4.1. Let Tφ = T0, ε1 = inf{uφ(t, x, y) : (t, x, y) ∈
[0, T ∗] × �

T0,4T0
m } and εφ = min{ε0, ε1}. Then ε1 > 0 and εφ > 0. By Proposition 4.1 and the 

choices of T0, T ∗ and ε0, we get uφ(t, ·) ≥ εφh
Tφ,4Tφ
m for all t ≥ 0. This, combined with the 

definition of ω(φ), implies ξ ≥ εφh
Tφ,4Tφ
m for all ξ ∈ ω(φ).

For any ξ ∈ ω(φ), let aξ = sup{a ≥ Tφ : ξ(x, y) ≥ εφ for all (x, y) ∈ �
Tφ,a
m }. Then aξ ≥ 4Tφ

for all ξ ∈ ω(φ). Let T φ = inf{aξ : ξ ∈ ω(φ)}. Then T φ ≥ 4Tφ .
We claim that T φ = ∞. By way of contradiction, suppose that T φ < ∞. Take ξ∗ ∈ ω(φ). 

Then, the invariance of ω(φ) implies that uξ∗
(t, ·) ≥ εφh

Tφ,T φ

m for all t ∈ [0, ∞). Again, 

by Proposition 4.1 and the choices of T0, T ∗ and ε0, we have uξ∗
(t, ·) � εφh

Tφ,T φ

m for all 

t ∈ [T ∗, ∞). In particular, there exists T̃ > T φ such that uξ∗
(t, ·) � εφh

Tφ,T̃
m for all t ∈

[T ∗, 2T ∗]. On the other hand, by the definition of ω(φ), there exists a sequence {sn}n∈N such 
that limn→∞ ||(uφ)sn − ξ∗||L∞

loc
= 0. It follows that lim

n→∞(sup{|uφ(sn + t, x, y) − uξ∗
(t, x, y)| :

(t, x, y) ∈ [T ∗, 2T ∗] × �
Tφ,T̃
m }) = 0. Thus there exists n∗ > 1 such that uφ(sn∗ + t, ·) ≥ εφh

Tφ,T̃
m

for all t ∈ [T ∗, 2T ∗]. It follows from Proposition 4.1 that uφ(sn∗ + t, ·) = u�(sn∗+T ∗,φ)(t −
T ∗, ·) ≥ εφh

Tφ,T̃
m for all t ∈ [T ∗, ∞). This and the definition of ω(φ) produce ξ ≥ εφh

Tφ,T̃
m for 
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all ξ ∈ ω(φ). In view of T̃ > T φ , we have aξ ≥ T̃ > T φ for all ξ ∈ ω(φ). Then T φ = inf{aξ :
ξ ∈ ω(φ)} ≥ T̃ > T φ , a contradiction. This proves the claim, that is, T φ = ∞. By the definition 
of T φ , we conclude that ω(φ) ≥ εφh

Tφ,∞
m , completing the proof. �

5. Existence and properties of heterogeneous steady states

In this section, we first establish the existence of heterogeneous steady state of (3.2) by using 
the a priori estimate established in the previous section. Then we will discuss the asymptotic 
behaviours of the positive steady state at infinities.

To proceed, we first explore some properties of the first derivatives of elements in the ω-limit
set, which shall be very useful for proving the existence and attractivity of heterogeneous steady 
state for (3.2).

Lemma 5.1. If ψ ∈X+
m , then

sup{|∂φ

∂x
(x, y)| + |∂φ

∂y
(x, y)| : (x, y) ∈ �m and φ ∈ ω(ψ)} ≤ Cf ,

where Cf is a constant depending on f only.

Proof. By Proposition 3.6, ω(ψ) ⊆ X u∗
m . Thus, the conclusion follows from the standard 

parabolic estimates. �
Lemma 5.2. Assume that D is a convex, closed and nonempty subset of Xm such that 0 /∈ D ⊆
X u∗

m and �(t, D) ⊆ D for all t ∈R+. Then (3.2) has a positive steady state, located in D.

Proof. Let I = { 1
2i : i = 1, 2, · · · }. Then for any T ∈ I , �(T , ·) : D → D is compact due to 

Proposition 3.4. By the Schauder fixed point theorem, there is ψT ∈ D such that �(T , ψT ) = ψT . 
According to the compactness of � due to Proposition 3.4 and the fact that {ψT : T ∈ I } ⊆
�(1, D), we know that {ψT : T ∈ I } is pre-compact in Xm, and thus there exist ψ ∈ D and 
a sequence {Tk} in I such that lim

Tk→0
ψTk

= ψ . For any t ∈ (0, ∞), there exist rk ∈ [0, Tk) and 

nonnegative integer Nk such that t = NkTk + rk . Obviously, lim
k→∞ rk = 0. Hence, for all t ≥ 0, 

we have �(t, ψ) = lim
k→∞�(t, ψTk

) = lim
k→∞�(rk, ψTk

) = ψ , which implies that ψ is as required, 

completing the proof. �
Proposition 5.1. Eq. (3.2) has at least on positive steady state, located in X u∗

m .

Proof. Take M = u∗ and φ∗ ∈ XM
m \ {0}. Let εφ∗ , Tφ∗ be defined as in Theorem 4.1. Let 

D = {φ ∈ X+
m : ω(φ∗) ≤ φ ≤ M}. Then εφ∗hTφ∗ ,∞ ≤ ω(φ∗) ≤ D, and hence D ⊆ X+

m and 
φ(x, y) > 0 for all (x, y, φ) ∈ Int (�m) × D. Clearly, D is a convex and closed subset of 
Xm and �(t, D) ⊆ D for all t ≥ 0. On the other hand, Lemma 5.1 ensures that there exists a 
γ > 1 such that | ∂φ(x,y)

∂x
|2 + | ∂φ(x,y)

∂y
|2 ≤ γ 2 for all (x, y, φ) ∈ �m × ω(φ∗). Let ζ(·, x, y) =

min{γ dist ((x, y), ∂�m), M} for all (x, y) ∈ �m. Then the choices of γ and ζ imply that 
ζ ≥ ω(φ∗) and ζ ≤ M . Thus ζ ∈ D and D �= ∅. Thus the result follows from Lemma 5.2, com-
pleting the proof. �



T. Yi, X. Zou / J. Differential Equations 267 (2019) 4014–4046 4031
In what follows, we denote by Em the set of all positive steady states of (3.2). The following 
result implies the existence of the maximum element of Em.

Proposition 5.2. supEm ∈ Em ⊆ X u∗
m \ {u∗}, where supEm(x, y) = sup{φ(x, y) : φ ∈ Em} for all 

(x, y) ∈ �m.

Proof. Clearly, Proposition 3.6 implies Em ⊆X u∗
m \ {u∗}. By the Zorn’s lemma and the compact-

ness of �, we easily see that Em has a maximal element ζ . We shall prove ζ = supEm; otherwise, 
there is η ∈ Em such that ζ − η /∈ X+

m . Let D = {φ ∈X u∗
m : φ − ζ, φ − η ∈ X+

m }. Then D is a con-
vex, closed and nonempty subset of Xm such that 0 /∈ D ⊆X u∗

m and �(t, D) ⊆ D for all t ∈R+. 
Thus Lemma 5.2 shows that (3.2) has a positive steady state ψ , located in D. Thus, ψ ∈ Em and 
ψ > ζ , a contradiction. Consequently, ζ = supEm and hence the proof is completed. �

For φ ∈ Xm, define |φ|T = inf{φ(x, y) : (x, y) ∈ �
T,∞
m } and |φ|T = sup{φ(x, y) : (x, y) ∈

�
T,∞
m }. Clearly, |φ|T (|φ|T ) is nondecreasing (nonincreasing) in T . Let φ = lim

T →∞|φ|T and φ =
lim

T →∞|φ|T for any φ ∈Xm.

The next result gives some information about the asymptotic behaviour of positive steady 
states at infinity location.

Proposition 5.3. If φ ∈ Em, then lim
T →∞|φ|T = lim

T →∞|φ|T = u∗ and ||Pm[φ]||X = u∗; in other 

words, for any ε > 0 there exists Tε > 0 such that |φ(x, y) − u∗| < ε for all (x, y) ∈ �
Tε,∞
m .

Proof. Fix φ ∈ Em. By Proposition 3.6 and Theorem 4.1, u∗ ≥ φ ≥ εh
T,∞
m for some ε and T ∈

(0, ∞). Thus, we have u∗ ≥ φ ≥ φ > ε and thus I � [φ, φ] ⊆ [ε, u∗].
We claim that φ ≤ Tm(t)[φ] ≤ Tm(t)[φ] ≤ φ for all (t, φ) ∈ R+ ×X+

m . Indeed, it follows from 
the definitions of �m and Tm(t) that, for any (t, φ) ∈ (0, ∞) ×X+

m , we have

Tm(t)[φ]
= lim

T →∞|Tm(t)[φ]|T
= lim

T →∞|T (t)[Pm[φ]]|�m |T

≤ 1

4πt

m−1∑
l=0

lim
T →∞{sup{

∫
Bl

m[�m]
Pm[φ](x̃, ỹ) exp(− (x − x̃)2 + (y − ỹ)2

4t
)dx̃dỹ : (x, y) ∈ �T,∞

m }}

≤ 1

4πt
lim

T →∞{sup{
∫

�m

Pm[φ](x̃, ỹ) exp(− (x − x̃)2 + (y − ỹ)2

4t
)dx̃dỹ : (x, y) ∈ �T,∞

m }}

+ (m − 1)||Pm[φ]||X
4πt

lim
T →∞

∫
√

x̃2+ỹ2≥Tm

exp(− x̃2 + ỹ2

4t
)dx̃dỹ

= 1

4πt
lim

T →∞{sup{
∫

φ(x̃, ỹ) exp(− (x − x̃)2 + (y − ỹ)2

4t
)dx̃dỹ : (x, y) ∈ �T,∞

m }}

�m
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≤ 1

4πt
lim

T →∞{sup{
∫

�m\�
T
2 ,∞
m

φ(x̃, ỹ) exp(− (x − x̃)2 + (y − ỹ)2

4t
)dx̃dỹ : (x, y) ∈ �T,∞

m }}

+ 1

4πt
lim

T →∞{sup{
∫

�
T
2 ,∞
m

φ(x̃, ỹ) exp(− (x − x̃)2 + (y − ỹ)2

4t
)dx̃dỹ : (x, y) ∈ �T,∞

m }}

≤ 1

4πt
||Pm[φ]||X lim

T →∞

∫
√

x̃2+ỹ2≥ Tm
2

exp(− x̃2 + ỹ2

4t
)dx̃dỹ

+ 1

4πt
lim

T →∞{sup{
∫

�
T
2 ,∞
m

φ(x̃, ỹ) exp(− (x − x̃)2 + (y − ỹ)2

4t
)dx̃dỹ : (x, y) ∈ �T,∞

m }}

≤ 1

4πt
lim

T →∞{|φ| T
2 sup{

∫
�

T
2 ,∞
m

exp(− (x − x̃)2 + (y − ỹ)2

4t
)dx̃dỹ : (x, y) ∈ �T,∞

m }}

≤ 1

4πt

∫
R2

exp(− x̃2 + ỹ2

4t
)dx̃dỹ lim

T →∞|φ| T
2

≤ φ.

Here, Tm = T for all m ≤ 2 and Tm = T tan( π
2m

) for all m > 2. Similarly, Tm(t)[φ] ≥ φ for all 
(t, φ) ∈ R+ ×X+

m .
Let fμ(x) = x + 1

μ
f (x) for all x ∈ R. Since φ is a positive steady state of (3.2)μ, we obtain

φ = e−μtTm(t)[φ] +
t∫

0

e−μ(t−s)Tm(t − s)[μfμ(φ)]ds for any t ∈ R+.

This, together with the above claim, implies that

φ ≥ e−μtTm[φ] +
t∫

0

μe−μ(t−s)Tm(t − s)[fμ(φ)]ds

≥ e−μtφ +
t∫

0

μe−μ(t−s)fμ(φ)ds

≥ e−μtφ + μ

t∫
0

e−μ(t−s)fμ(φ)ds

= e−μtφ + (1 − e−μt )fμ(φ).
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Thus, φ ≥ fμ(φ). A similar argument yields φ ≤ fμ(φ). Hence, I ⊆ f (I), which together 
with the fact that fμ(x) > x for all x ∈ I \ {u∗}, implies that I = {u∗}. Hence, lim inf

T →∞ |φ|T =
lim sup
T →∞

|φ|T = u∗ and ||Pm[φ]||X = u∗. This completes the proof. �
6. Global attractivity of heterogeneous steady state

In this section, we shall investigate the uniqueness and attractivity of heterogeneous steady 
states of (3.2). In the sequel, we denote by u+ the maximal positive steady states obtained in 
Proposition 5.2. Then we have the following attractivity result for u+.

Proposition 6.1. ω(ψ) = {u+} for all ψ ∈X+
m \ {0} with ψ ≥ u+.

Proof. Otherwise, there exists ψ ∈ X+
m \ {0} such that ψ ≥ u+ and ω(ψ) �= {u+}. By the mono-

tonicity of � and Proposition 3.6, we have u+ ≤ ω(ψ) ≤ u∗. Let D = {φ ∈ X+
m : ω(ψ) ≤ φ ≤

u∗}. Clearly, by the definition of D and Lemma 5.1, we know that u+ < D and D is a convex, 
closed and nonempty set in Xm. These together with �(R+ ×D) ⊆ D and Lemma 5.2, show that 
(3.2) has a steady state in D, a contraction with the choice of u+. This completes the proof. �

To address the attractiveness of u+ for (3.2), we further need the following sublinear condition
on the function f :

(H3) f (αx) ≥ αf (x) for all (α, x) ∈ [0, 1] × [0, u∗].

Clearly, (H3) holds if and only if f (x)
x

is nonincreasing on [0, u∗]. For example, (H1)-(H3) hold 
for f (x) = px(q − x2) for p, q > 0.

Theorem 6.1. Assume that (H1) and (H3) hold. Then for any nonnegative integer m, (3.2) has 
a unique positive steady state u+ which attracts all solutions of (3.2) with the initial value ψ ∈
X+

m \ {0}.

Proof. The existence of u+ is already established in Proposition 5.1, and the uniqueness will be 
a consequence of the global attractiveness of u+ in X+

m \ {0}. So, we only need to show that u+
attracts all solutions of (3.2) with the initial value ψ ∈ X+

m \ {0}.
We claim that if l > 0 and lu+ is a positive steady state of (3.2), then l = 1. Otherwise l �= 1. 

By using Proposition 5.3, we have ||Pm[lu+]||X = u∗ and thus l = 1, a contradiction.
Let ψ ∈ X+

m \ {0}. To prove ω(ψ) = {u+}, we may assume that ψ ≤ u+ due to the mono-
tonicity of � and Proposition 6.1.

Suppose that ω(ψ) �= {u+}. If m = 0, then by Proposition 3.6 and Theorem 4.1, we have 
0 < a∗ � inf{φ(x, y) : (x, y, φ) ∈ R2 × ω(ψ)} ≤ b∗ � sup{φ(x, y) : (x, y, φ) ∈ R2 × ω(ψ)} ≤
u∗. Clearly, a∗ < u∗. Thus, there is δ > 0 such that fμ(φ(x, y)) ≥ a∗ + δ for all (x, y, φ) ∈
R2 × ω(ψ). It follows from (3.2)μ that we know that for all (x, y, φ) ∈R2 × ω(ψ),

uφ(1, x, y) = exp(−μ)T (1)[φ](x, y) + μ

1∫
exp(−μ(1 − s))T (1 − s)[fμ(uφ(s, ·))](x, y)ds
0
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≥ exp(−μ)T (t)[a∗](x, y) + μ

1∫
0

exp(−μ(1 − s))T (1 − s)[a∗ + δ](x, y)ds

= a∗ + δ(1 − exp(−μ)).

Hence the invariance of ω(ψ) forces that φ(x, y) ≥ a∗ +δ(1 −exp(−μ)) > a∗ for all (x, y, φ) ∈
R2 × ω(ψ), a contradiction to choice of a∗. So, ω(ψ) = {u+}.

Suppose that m ≥ 1. We now use the famous sliding method to finish the proof. Define 
(am, bm) : R+ → R2 by

(am(T ), bm(T )) =
⎧⎨
⎩

(0, T ), m = 1,

(T ,T ), m = 2,

(T ,T tan( π
2m

)), m ≥ 3.

Let α(T ; φ) = sup{α ≥ 0 : φ(t, x + am(T ), y + bm(T )) ≥ αu+(x, y) for all (x, y) ∈ �m} for 
all T ∈ R+ and φ ∈ ω(ψ). Then 0 ≤ α(T ; φ) ≤ 1 and φ(t, x + am(T ), y + bm(T )) ≥
α(T , φ)u+(x, y) for all T ∈ R+, (x, y) ∈ �m and φ ∈ ω(ψ).

Now we shall prove α(T ; φ) = 1 for all (T , φ) ∈ (0, ∞) × ω(ψ) by two steps.
Step 1: Prove that for any T > 0, there is ε = εT ,ψ > 0 such that α(T ; φ) ≥ ε > 0 for all 

φ ∈ ω(ψ).
Fix T > 0. By Theorem 4.1, there exist ε1, T1 > 0 and ζ ∈ X 1

m such that φ(· + am(T ), · +
bm(T )) ≥ ε1ζ ≥ ε1h

T1,∞ for all φ ∈ ω(ψ). This together with u+ ≤ u∗ implies that

φ(t, x + am(T ), y + bm(T )) ≥ ε1

u∗ u+(x, y) for all (x, y,φ) ∈ �T1,∞
m × ω(ψ). (6.1)

It follows from (3.2)μ and Lemma A.3-(ii) and (iv) that for any (t, φ) ∈ (0, ∞) × ω(ψ) and 
(x, y) ∈ �m \ �

T1,∞
m with 

√
x2 + y2 ≥ 1, we have

uφ(t, x + am(T ), y + bm(T ))

= exp(−μt)Tm(t)[φ](x + am(T ), y + bm(T )) +

μ

t∫
0

exp(−μ(t − s))Tm(t − s)[fμ(uφ(s, ·))](x + am(T ), y + bm(T ))ds

≥ ε1 exp(−μt)Tm(t)[ζ ](x, y)

≥ ε1b(1, t, T1){exp(−μt)Tm(t)[u
+

u∗ ](x, y) +

μ

t∫
0

exp(−μ(t − s))Tm(t − s)[ fμ(u+)

maxfμ([0, u∗]) ](x, y)ds}

≥ ε1b(1, t, T1)

∗ ∗ {exp(−μt)Tm(t)[u+](x, y) +

max{u ,maxfμ([0, u ])}



T. Yi, X. Zou / J. Differential Equations 267 (2019) 4014–4046 4035
μ

t∫
0

exp(−μ(t − s))Tm(t − s)[fμ(u+)](x, y)ds}

= ε1b(1, t, T1)

max{u∗,maxfμ([0, u∗])}u
+(x, y).

In particular, we have

uφ(1, x + am(T ), y + bm(T )) ≥ ε1b(1,1, T1)

max{u∗,maxfμ([0, u∗])}u
+(x, y)� ε2u

+(x, y)

for all φ ∈ ω(ψ) and (x, y) ∈ �m \ �
T1,∞
m with 

√
x2 + y2 ≥ 1. Note that ε2 > 0. Hence by the 

invariance of ω(ψ), we may get that for all φ ∈ ω(ψ) and (x, y) ∈ �m \�
T1,∞
m with 

√
x2 + y2 ≥

1,

φ(x + am(T ), y + bm(T )) ≥ ε2u
+(x, y). (6.2)

Let

ε3 = min{φ(x + am(T ), y + bm(T )) : (x, y,φ) ∈ �m × ω(ψ) with x2 + y2 ≤ 1}
max{u+(x, y) : (x, y) ∈ �m with x2 + y2 ≤ 1} .

Then ε3 > 0 and φ(x + am(T ), y + bm(T )) ≥ ε3u
+(x, y) for all φ ∈ ω(ψ) and (x, y) ∈

�m with x2 +y2 ≤ 1. This together with (6.1) and (6.2), implies that φ(x+am(T ), y+bm(T )) ≥
min{ ε1

u∗ , ε2, ε3}u+(x, y) for all (x, y, φ) ∈ �m ×ω(ψ). So, by the definition of α(T ; φ), we have 
α(T ; φ) ≥ ε ≡ εT ,ψ � min{ ε1

u∗ , ε2, ε3} > 0 for all φ ∈ ω(ψ).
Step 2: Prove that α(T ; φ) = 1 for all (T , φ) ∈ (0, ∞) × ω(ψ).

Fix T > 0. Suppose that 0 < α(T ; φ̄) < 1 for some φ̄ ∈ ω(ψ). Let α∗ = inf{α(T ; φ) :
φ ∈ ω(ψ)}. Then by Step 1 and the definition of α∗, we have 1 > α∗ > 0 and φ(· + am(T ),

· + bm(T )) ≥ α∗u+ for all φ ∈ ω(ψ).
For any φ ∈ ω(ψ), let us define vT,φ : R+ × �m →R by

vT,φ(t, x, y) = uφ(t, x + am(T ), y + bm(T )) − α∗u+(x, y).

It follows from (3.1) and (H3) that vT,φ satisfies the following equation

⎧⎪⎨
⎪⎩

∂vT,φ

∂t
(t, x, y) ≥ �vT,φ + c(t, x, y)vT ,φ(t, x, y), (t, x, y) ∈ (0,∞) × �m,

vT,φ(0, x, y) ≥ 0, (x, y) ∈ �m,

vT,φ(t, x, y) > 0, (t, x, y) ∈ [0,∞) × ∂�m,

(6.3)

where

c(t, x, y) = f (uφ(t, x + am(T ), y + bm(T ))) − f (α∗u+(x, y))

T ,φ
.

v (t, x, y)
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By the Phragmén-Lindelöf type maximum principle in [33] and the strong maximum principle, 
we know that vT,φ(t, x, y) > 0 for all (t, x, y) ∈ (0, ∞) × �m. Thus, by the invariance of ω(ψ), 
we may obtain that

φ(x + am(T ), y + bm(T )) > α∗u+(x, y) for all (x, y,φ) ∈ �m × ω(ψ). (6.4)

By (6.4) and a contradict argument, we may show that there is γ ∗ > 0 such that

φ(x + am(T ), y + bm(T )) ≥ (α∗ + γ ∗)u+(x, y), (x, y,φ) ∈ �m × ω(ψ) with
√

x2 + y2 ≤ 1.

(6.5)

Note that there exist ε > 0 and δ ∈ (0, u∗) such that fμ(α∗u) > α∗fμ(u) + ε for all u ∈ [u∗ −
δ, u∗]. By applying Theorem 4.1 and Proposition 5.3, we know that there exist T ∗ > 0 and 
ε∗ ∈ (0, δ) such that φ(x, y) ≥ ε∗ and u+(x, y) ≥ u∗ − ε∗ > u∗ − δ for all (x, y, φ) ∈ �

T ∗,∞
m ×

ω(ψ). These, together with (H3) and the monotonicity of fμ, give fμ(φ(· + (am(T ), bm(T )))) −
α∗fμ(u+(·)) ≥ εh

T ∗,∞
m for all φ ∈ ω(ψ).

Applying Lemma 4.4 with n = 1 and δ = 1
8 , we obtain that there exists T ∗∗ > max{T , T ∗}

such that H(s, hT̃ ,∞
m ) ≥ 1

8h
T̃ ,∞
m for all s, T̃ ≥ T ∗∗.

It follows from (3.2)μ and Lemma A.3-(ii) that we know that for all (x, y, φ) ∈ �m × ω(ψ)

and t ≥ T ∗∗,

vT,φ(t, x, y) = uφ(t, x + am(T ), y + bm(T )) − α∗u+(x, y)

= exp(−μt)Tm(t)[φ](x + am(T ), y + bm(T )) − exp(−μt)Tm(t)[α∗u+](x, y)

+μ

t∫
0

exp(−μ(t − s))Tm(t − s)[fμ(uφ(s, ·))](x + am(T ), y + bm(T ))ds

−μ

t∫
0

exp(−μ(t − s))Tm(t − s)[α∗fμ(u+) + εhT ∗,∞](x, y)ds

+μ

t∫
0

exp(−μ(t − s))Tm(t − s)[εhT ∗,∞](x, y)ds

≥ μ

t∫
0

exp(−μ(t − s))Tm(t − s)[εhT ∗,∞](x, y)ds

≥ εH(t, ·)[hT ∗∗,∞](x, y)

≥ ε

8
hT ∗∗,∞(x, y).

Hence the invariance of ω(ψ) forces that

φ(x + am(T ), y + bm(T )) ≥ α∗u+(x, y) + ε
for all (x, y,φ) ∈ �T ∗∗,∞

m × ω(ψ). (6.6)

8
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Again, from (3.2)μ and Lemma A.3-(ii) and (iv) that we know that for all (x, y, φ) ∈ (�m \
�

T ∗∗,∞
m ) × ω(ψ) with 

√
x2 + y2 ≥ 1,

vT,φ(1, x, y) = uφ(1, x + am(T ), y + bm(T )) − α∗u+(x, y)

≥ exp(−μ)Tm(1)[φ](x + am(T ), y + bm(T )) − exp(−μ)Tm(1)[α∗u+](x, y)

≥ exp(−μ)Tm(1)[ε
8
hT ∗∗,∞](x, y)

≥ εb(1,1, T ∗∗)
8

[exp(−μ)Tm(1)[u
+

u∗ ](x, y) +

μ

1∫
0

exp(−μ(1 − s))Tm(1 − s)[ fμ(u+)

maxfμ([0, u∗]) ](x, y)ds]

≥ εb(1,1, T ∗∗)
8 max{u∗,maxfμ([0, u∗])} [exp(−μ)Tm(1)[u+](x, y) +

μ

1∫
0

exp(−μ(1 − s))Tm(1 − s)[fμ(u+)](x, y)ds]

= εb(1,1, T ∗∗)
8 max{u∗,maxfμ([0, u∗])}u

+(x, y).

So, by the invariance of ω(ψ), we know that for all (x, y, φ) ∈ (�m \ �
T ∗∗,∞
m ) × ω(ψ) with √

x2 + y2 ≥ 1,

φ(x + am(T ), y + bm(T )) ≥ α∗u+(x, y) + εb(1,1, T ∗∗)
8 max{u∗,maxfμ([0, u∗])}u

+(x, y). (6.7)

It follows from (6.5)-(6.7) that there is δ∗ > 0 such that φ(x + am(T ), y + bm(T )) ≥
[α∗ + δ∗]u+(x, y) for all (x, y, φ) ∈ �m × ω(ψ). Hence by the definition of α(T ; φ), we 
have α(T ; φ) ≥ α∗ + δ∗ > α∗ for all φ ∈ ω(ψ), a contradiction to choice of α∗. Therefore, 
α(T ; φ) = 1 for all (T , φ) ∈ (0, ∞) × ω(ψ).

Thus, by Step 2, we easily see that ω(ψ) ≥ u+. This together with ω(ψ) ≤ u+, yields ω(ψ) =
{u+}. This completes the proof. �
Corollary 6.1. Assume that (H1) and (H3) hold. Then for any nonnegative integer m, we have 
the following results:

(i) (3.2) has a unique positive steady state u+ in X+
m \ {0}.

(ii) lim
T →∞|u+|T = lim

T →∞|u+|T = u∗.

(iii) u+ is a symmetry function with respect to {y = tan( π
2m

)x}. In other words, u+(x, y) =
u+((x, y)B−1

4mAB4m) for all (x, y) ∈ �m.
(iv) For any (T , x, y) ∈ (0, ∞) × �m, we have

u+(x + am(T ), y + bm(T )) > u+(x, y), (6.8)
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where (am(T ), bm(T )) is defined in the proof of Theorem 6.1. Hence, u+(x, y) is strictly 
increasing from (x0, y0) ∈ ∂�m along the ray parallel to {y = tan( π

2m
)x}.

Proof. (i) and (ii) follow from Theorem 6.1 and Proposition 5.3, respectively.
(iii) Let B = B2mAB−1

2m . Then B ∈ O(2), B[�m] = �m and u+ ◦ B ∈ X+
m \ {0}. Thus by the 

proof of Proposition 3.1, we have

Pm[u+] ◦ B = T (t)[Pm[u+] ◦ B] + μ

t∫
0

T (t − s)[f (Pm[u+] ◦ B)]ds for any t ∈R+.

This, together with the fact that Pm[u+] ◦ B = Pm[u+ ◦ B], implies that

Pm[u+ ◦ B] = T (t)[Pm[u+ ◦ B]] + μ

t∫
0

T (t − s)[f (Pm[u+ ◦ B])]ds for any t ∈R+.

As a result, Lemma A.2 gives

u+ ◦ B = Tm(t)[u+ ◦ B] + μ

t∫
0

Tm(t − s)[f (u+ ◦ B)]ds for any t ∈ R+.

So, u+ ◦B is a positive steady state of (3.2) in X+
m \ {0}. By the uniqueness of the positive steady 

states for (3.2), we have u+ ◦ B = u+.
(iv) By the proof of Theorem 6.1, we know that for any (T , x, y) ∈ (0, ∞) × �m,

u+(x + am(T ), y + bm(T )) ≥ u+(x, y). (6.9)

This, together with the strong maximum principle, implies that for any (T , x, y) ∈ (0, ∞) × �m,

u+(x + am(T ), y + bm(T )) > u+(x, y). (6.10)

So, u+(x, y) is strictly increasing from (x0, y0) ∈ ∂�m along the ray parallel to {y = tan( π
2m

)x}. 
This completes the proof. �

Without assuming the sublinearity (H3), we have the following results.

Theorem 6.2. For any nonnegative integer m, we have the following results:

(i) If m = 0, then (3.2) has a unique positive steady state u+ ≡ u∗, which attracts all solutions 
of (3.2) with the initial value ψ ∈ X+ \ {0}.

(ii) There exist u+, u+ ∈ Em such that u+ ≤ u ≤ u+ for every u ∈ Em; moreover u+ (u+) at-
tracts all solutions of (3.2) with the initial value in {φ ∈X+

m \ {0} : φ ≤ u+} ({φ ∈ X+
m \ {0} :

φ ≥ u+}).
(iii) (3.2) has a unique positive steady state u+ if and only if u+ attracts all solutions of (3.2)

with the initial value ψ ∈X+
m \ {0}.
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Proof. (i) Clearly, u+ = u∗. By checking the proof of Theorem 6.1 for m = 0, we easily see that 
(3.2) has a unique positive steady state u+ ≡ u∗, which attracts all solutions of (3.2) with the 
initial value ψ ∈ X+ \ {0}.

(ii) By Propositions 5.2 and 6.1, there exist u+ ∈ Em such that Em ≤ u+, and u+ attracts all 
solutions of (3.2) with the initial value {φ ∈ X+

m \ {0} : ψ ≥ u+}.
Clearly, there is g ∈ C1(R, R) such that g|[0,u∗] ≤ f |[0,u∗] satisfies (H1) and (H3). For exam-

ple, there is a large α > 0 such that gα|[0,u∗] ≤ f |[0,u∗] satisfies (H1) and (H3) where gα(x) =
f ′(0)

2 x[1 − αx2] for all x ∈ R. By applying Theorem 6.1 with f = g, there is u+
g ∈ X+

m \ {0}
such that ω(ψ; g) = {u+

g } for all ψ ∈ X+ \ {0}. By the choice of g and the monotonicity of 
�, we have �(t, ψ) ≥ �(t, ψ; g) for all t ∈ R+ and ψ ∈ X+. Thus, the definition of ω−limit
set, we have u+

g ≤ ω(ψ) for all ψ ∈ X+ \ {0}. In particular, u+
g ≤ Em and thus ω(u+

g ) ≤ Em. 
Let D = {φ ∈ X u∗

m : u+
g ≤ φ ≤ ω(u+

g )}. Then D is a convex, closed and nonempty subset of 
Xm such that 0 /∈ D ⊆ X u∗

m and �(t, D) ⊆ D for all t ∈ R+. Thus Lemma 5.2 shows that 
(3.2) has a positive steady state u+, located in D. So, u+

g ≤ u+ = infEm ≤ ω(u+
g ). For any 

ψ ∈ {φ ∈ X+
m \ {0} : φ ≤ u+}, we have ω(ψ) ≤ u+ ≤ ω(u+

g ), and ω(ψ) ≥ ω(u+
g ) due to 

ω(ψ) ≥ u+
g , which imply ω(ψ) = {u+}.

(iii) The sufficiency is clear. Now suppose that (3.2) has a unique positive steady state u+. 
Then u+ = u+. For any ψ ∈X+

m \{0}, by statement (ii) we have ω(ψ+) = ω(ψ+) = {u+}, where 
ψ+(x, y) = min{ψ(x, y), u+(x, y)} and ψ+(x, y) = max{ψ(x, y), u+(x, y)} for all (x, y) ∈
�m. By the monotonicity of �, we easily see that ω(ψ) = {u+} for all ψ ∈ X+

m \ {0}, that is, u+
attracts all solutions of (3.2) with the initial value ψ ∈ X+

m \ {0}.
This completes the proof. �

7. Main results

In this section, the following theorem summarizes the main results about the bistable reaction-
diffusion equation in R2 by using Proposition 3.3 and Theorem 6.2.

Theorem 7.1. Assume that (H1) holds. Let | · |T , | · |T , �T,∞
m be defined as in Section 4. 

Then for every nonnegative integer m, there exist u+,m, u+,m ∈ Xm and Em ⊆ {φ ∈ X+
m :

φ(x, y) > 0 for all (x, y) ∈ Int (�m)} with u+,m = infEm, u+,m = supEm ∈ Em and lim
T →∞|u|T =

lim
T →∞|u|T = u∗ for all u ∈ Em such that the following hold:

(i) Pm[Em] is the set of all nontrivial steady states of (1.2) in Pm[X+
m ];

(ii) Pm[um,+] (resp. Pm[um,+]) attracts all solutions with initial functions in Pm[{φ ∈X+
m \{0} :

φ ≤ um,+}] (resp. Pm[{φ ∈X+
m \ {0} : φ ≥ um,+}]);

(iii) If um,+ = um,+, then Pm[um,+] = Pm[um,+] is a globally attractive steady state of (1.2) in 
Pm[X+

m ] \{0}; in other words, lim
t→∞||�(t, φ) −Pm[um,+]||C2

loc(R
2) = 0 for all φ ∈ Pm[X+

m ] \
{0}.

We also have the following results about the multiplicity, shape and attractivity of the hetero-
geneous steady states for the bistable reaction-diffusion equation in R2.

Theorem 7.2. Assume that (H1) and (H3) hold. Then the following hold:
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(i) -Multiplicity: for every positive integer m, (1.2) has a unique nontrivial steady state um in 
Pm[X+

m ].
(ii) -Shape: for the um in (i), we have um = Pm[um|�m ]; moreover,

(ii)-1: there is the asymptotic property: lim
T →∞|um|T = lim

T →∞|um|T = u∗, where |u|T =
inf{u(x, y) : (x, y) ∈ �

T,∞
m } and |u|T = sup{u(x, y) : (x, y) ∈ �

T,∞
m };

(ii)-2: there is the symmetry: um is a symmetric function with respect to {y = tan( π
2m

)x};
(ii)-3: there is the monotonicity:

um(x, y) is strictly increasing from (x0, y0) ∈ ∂�m along the ray parallel to {y =
tan( π

2m
)x}.

(iii) -Attractivity: um is a globally attractive steady state of (1.2) in Pm[X+
m ] \ {0}, in the sense 

that lim
t→∞||�(t, φ) − um||C2

loc(R
2) = 0 for all φ ∈ Pm[X+

m ] \ {0}.

Proof. (i) and (iii) follow from Proposition 3.3 and Theorem 6.1. (ii) follows from Proposi-
tion 3.3 and Corollary 6.1. This completes the proof. �
Appendix A. The linear operator semigroups

In this appendix, we give some basic properties of T (t) and Tm(t).
By the explicit expression of T (t), we easily get the following results.

Lemma A.1. Let T (t) be defined in Section 2. Then the following statements are true.

(i) T (t) : X → X is a linear operator such that ||T (t)[φ]||X ≤ ||φ||X for all (t, φ) ∈ R+ × X

and T |R+×Xr
: R+ × Xr → Xr is continuous, where t ∈ R+, r ∈ (0, ∞), Xr � {φ ∈ X :

||φ||X ≤ r} and T |R+×Xr
(t, φ) = T (t)[φ];

(ii) T (0) = IdX , T (t)[T (s)[φ]] = T (t + s)[φ] for all t, s ∈R+ and φ ∈ X.

Now, we give a lemma to establish some key properties of kt,m, T (t) and Tm(t) for all positive 
integers m.

Lemma A.2. For any positive integer m, we have the following results:

(i) kt,m(x, y, x̃, ỹ) = 0 for all (t, x, y, x̃, ỹ) ∈ R+ × ∂�m × �m, and hence Tm(t)[Xm] ⊆ Xm

for all t ∈R+;
(ii) φ ◦ A = −φ, φ ◦ Bm = φ, T (t)[φ] ◦ A = −T (t)[φ] and T (t)[φ] ◦ Bm = T (t)[φ] for all 

(t, φ) ∈ R+ × Pm[Xm]. Hence, Pm[Xm] is a positively invariant subset of T (t), that is, 
T (t)[Pm[Xm]] ⊆ Pm[Xm] for all t ∈R+;

(iii) Tm(t)[φ] = (Pm)−1|Pm[Xm] ◦ T (t) ◦ Pm[φ] for all (t, φ) ∈ R+ × Xm, in other words, Pm ◦
Tm(t)[φ] = T (t) ◦ Pm[φ] for all (t, φ) ∈ R+ ×Xm;

(iv) Tm(t)(t ≥ 0) is a linear operator semigroup such that Tm|R+×X r
m

: R+ ×X r
m →X r

m is con-

tinuous, where t ∈R+, r ∈ (0, ∞), X r
m � {φ ∈X+

m : ||Pm[φ]||X ≤ r} and Tm|R+×X r
m
(t, φ) =

Tm(t)[φ];
(v) Tm(t)[X+

m ] ⊆ X+
m and hence kt,m(x, y, x̃, ỹ) ≥ 0 for all (t, x, y, x̃, ỹ) ∈ R+ × �m × �m. 

Moreover, Tm(t)[φ](x, y) > 0 for all (t, x, y) ∈ (0, ∞) × Int (�m) and φ ∈ X+
m \ {0} and 

∂Tm(t)[φ]
∂ν

(x, y) < 0 for all (x, y) ∈ ∂�m \ {(0, 0)} and (t, φ) ∈ (0, ∞) × (X+
m \ {0}).

(vi) T (t)[φ] ∈ Pm[X+
m ] for all (t, φ) ∈ R+ × Pm[X+

m ].
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Proof. (i) Clearly, for any integers l, by some simple computations, we have

Bl
m =

(
cos 2lπ

m
sin 2lπ

m

− sin 2lπ
m

cos 2lπ
m

)
.

By the choice of �m, (x, y) ∈ ∂�m implies y = 0 or x = y. Note that (x, 0)B−l
m = (x, 0)Bl−m

m A−1

and (x, x)B−l
m = (x, x)Bl−m−1

m A−1 for all integers l ∈ [0, m − 1]. These together with the pre-
sentation of kt,m and B−m

m = B0
m, give (i).

(ii) Suppose that (t, φ) ∈ R+ × Pm[Xm]. By the definitions of �m and Pm, we easily verify 
φ ◦ A = −φ and φ ◦ Bm = φ. Thus, T (t)[φ] ◦ A = −T (t)[φ] and T (t)[φ] ◦ Bm = T (t)[φ] when 
t = 0. If t > 0, then for any (x, y) ∈R2, we have

T (t)[φ] ◦ A(x,y) = 1

4πt

∫
R2

φ(x̃, ỹ) exp(−||(x, y)A − (x̃, ỹ)||2
4t

)dx̃dỹ

= 1

4πt

∫
R2

φ(x̃, ỹ) exp(−||(x, y) − (x̃, ỹ)A−1||2
4t

)dx̃dỹ

= 1

4πt

∫
R2

φ((x̃, ỹ)A) exp(−||(x, y) − (x̃, ỹ)||2
4t

)dx̃dỹ

= − 1

4πt

∫
R2

φ(x̃, ỹ) exp(−||(x, y) − (x̃, ỹ)||2
4t

)dx̃dỹ

= −T (t)[φ](x, y).

Similarly, by φ ◦Bm = φ due to the definition of Pm, we also easily see T (t)[φ] ◦Bm = T (t)[φ]. 
So, statement (ii) holds.

(iii) Fix φ in Xm and let ψ = Pm[φ]. Suppose that (t, x, y) ∈ R+ × �m. Clearly, Pm ◦
Tm(t)[φ] = T (t) ◦ Pm[φ] when t = 0. If t > 0, then it follows from the definition of ψ and 
the linear transformations of variables that

T (t)[ψ](x, y) = 1

4πt

∫
R2

ψ(x̃, ỹ) exp(−||(x, y) − (x̃, ỹ)||2
4t

)dx̃dỹ

= 1

4πt

m−1∑
l=0

[
∫

Bl
m[�m]

ψ(x̃, ỹ) exp(−||(x, y) − (x̃, ỹ)||2
4t

)dx̃dỹ

+
∫

Bl
m[A[�m]]

ψ(x̃, ỹ) exp(−||(x, y) − (x̃, ỹ)||2
4t

)dx̃dỹ]

= 1

4πt

m−1∑
l=0

[
∫

ψ((x̃, ỹ)Bl
m) exp(−||(x, y) − (x̃, ỹ)Bl

m||2
4t

)dx̃dỹ
�m
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+
∫

�m

ψ((x̃, ỹ)Bl
mA) exp(−||(x, y) − (x̃, ỹ)Bl

mA||2
4t

)dx̃dỹ]

= 1

4πt

m−1∑
l=0

[
∫

�m

ψ(x̃, ỹ) exp(−||(x, y)B−l
m − (x̃, ỹ)||2

4t
)dx̃dỹ

−
∫

�m

ψ(x̃, ỹ) exp(−||(x, y)A−1B−l
m − (x̃, ỹ)||2

4t
)dx̃dỹ]

=
∫

�m

ψ(x̃, ỹ)kt,m(x, y, x̃, ỹ)dx̃dỹ

= Tm(t)[φ](x, y).

This together with statement (ii) and the definitions of ψ and Pm, implies (iii).
(iv) follows from Lemma A.1-(i)-(ii), statements (ii) and (iii).
(v) By statements (i) and (iii), we know that for given φ ∈ Xm, Tm(t)[φ](x, y) solves the 

following initial-boundary problem,⎧⎪⎨
⎪⎩

∂u
∂t

(t, x, y) = �u(t, x, y), (t, x, y) ∈ (0,∞) × �m,

u(t, x, y) = 0, (x, y) ∈ R+ × ∂�m,

u(0, x, y) = φ(x, y), (x, y) ∈ �m.

(A.1)

This together with the Phragmén-Lindelöf type maximum principle in [33], implies Tm(t)[φ](x,

y) ≥ 0 for all (t, x, y) ∈ R+ ×�m. That is, Tm(t)[X+
m ] ⊆X+

m for all t ∈ R+ and thus by continu-
ity of kt,m and the definition of Tm(t), kt,m(x, y, x̃, ỹ) ≥ 0 for all (t, x, y, x̃, ỹ) ∈ R+ ×�m ×�m.

By the strong maximum principle, we easily see that Tm(t)[φ](x, y) > 0 for all (t, x, y) ∈
(0, ∞) × Int (�m) and φ ∈ X+

m \ {0}.
Finally, the Hopf boundary lemma implies that ∂Tm(t)[φ]

∂ν
(x, y) < 0 for all (x, y) ∈ ∂�m \

{(0, 0)} and (t, φ) ∈ (0, ∞) × (X+
m \ {0}).

(vi) follows from the definition of Pm[X+
m ] and statements (ii), (iii) and (v).

This completes the proof. �
For any L > 0, let XL = {φ ∈ C([0, L]2, R) : φ(x, y) = 0 for all (x, y) ∈ ∂([0, L]2)}, X+

L =
{φ ∈ XL : φ(x, y) ≥ 0 for all (x, y) ∈ [0, L]2} and gL(t, x, y, x̃, ỹ) = 1

L2

∞∑
n=1

{[cos(
nπ(x−x̃)

L
) −

cos(
nπ(x+x̃)

L
)] × [cos(

nπ(y−ỹ)
L

) − cos(
nπ(y+ỹ)

L
)] × e−2( nπ

L
)2t } for all L > 0 and (t, x, y, x̃, ỹ) ∈

(0, ∞) ×[0, L]4. Let us define SL(0)[φ](x, y) = φ(x, y) and SL(t)[φ](x, y) = ∫
[0,L]2 gL(t, x, y,

x̃, ỹ)φ(x̃, ỹ)dx̃dỹ for all t ∈ (0, ∞) and (x, y, φ) ∈ [0, L]2 × XL Note that {SL(t)}t≥0 is an 
analytic semigroup on XL generated by the XL-realization �XL

of �. Moreover, for given φ ∈
X, SL(t)[φ](x, y) solves the following initial-boundary problem for t > 0,⎧⎪⎨

⎪⎩
∂u
∂t

= �u, t > 0,

u(t, x, y) = 0, (x, y) ∈ ∂([0,L]2),

u(0, x, y) = φ(x, y), (x, y) ∈ [0,L]2.

(A.2)
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According to the definitions of Tm(t) and SL(t), the operators Tm(t), SL(t) can be extended 
to linear operators from L∞(�m), L∞([0, L]2) into itself, respectively, which are also order 
preserving in the sense of the pointwise order.

In addition to the basic properties for Tm(t) and SL(t), these two operators enjoy some further 
properties which are very useful for estimating the ω−limit sets near ∂�m in the vicinity of the 
origin and at infinity locations.

Lemma A.3. For a given positive integer m, we have the following results:

(i) Tm(t)[φ] ≤ Tm∗(t)[φ̃]|�m , where 0 ≤ m∗ ≤ m, (t, φ) ∈ R+ × X+
m and φ̃ ∈ X+

m∗ is defined 
by φ̃(x, y) = φ(x, y) for all (x, y) ∈ �m and φ̃(x, y) = 0 for all (x, y) ∈ �m∗ \ �m;

(ii) Let φ, ψ ∈ X+
m and let (a, b) ∈R2 with (a, b) +�m ⊆ �m. If φ(a +x, b+y) ≥ ψ(x, y) for 

all (x, y) ∈ �m, then Tm(t)[φ](a + x, b + y) ≥ Tm(t)[ψ](x, y) for all (t, x, y) ∈ R+ ×�m;
(iii) If x0 > 0 and L > 0 such that L ≤ x0 tan( π

m
) for all m ≥ 3 and L ≤ x0 for all m ≤ 2, 

then Tm(t)[φ]|(x0,0)+[0,L]2 ≥ SL(t)[φ(· + x0, ·)|[0,L]2 ](· − x0, ·)|(x0,0)+[0,L]2 for all (t, φ) ∈
R+ ×X+

m ;
(iv) Let a(t, T , x, y) = sup{a ≥ 0 : Tm(t)[ζ ](x, y) ≥ aTm(t)[η](x, y) + aμ 

∫ t

0 exp(μs)Tm(t −
s)[η](x, y)ds for all ζ, η ∈ X 1

m with ζ ≥ h
T,∞
m } and b(r, t, T ) = inf{a(t, T , x, y) : (x, y) ∈

�m \ �
T,∞
m with

√
x2 + y2 ≥ r} for all (r, t, T ) ∈ (0, ∞)3 and (x, y) ∈ �m. Then b(r,

t, T ) > 0 for all (r, t, T ) ∈ (0, ∞)3.

Proof. Clearly, (i), (ii) and (iii) follow from the Phragmén-Lindelöf type maximum principle in 
[33].

(iv) Fix (r, t, T ) ∈ (0, ∞)3. Note that a(t, T , ·, ·) is a continuous and positive function in 
� \ {(0, 0)} due to Lemma A.2-(v) in the Appendix.

By letting L = min{2T , 2T tan( π
2m

)}, we have (x0 − L
2 , 0) + [0, L] × [L

2 , L] ⊆ �
T,∞
m for all 

x0 ≥ 5T . It follows from Lemma A.3-(iii) that for any ζ ∈ X 1
m with ζ ≥ h

T,∞
m and (x, y) ∈

(x0 − L
2 , 0) + [0, L]2 with x0 ≥ 5T , we have

Tm(t)[ζ ](x, y) ≥ SL(t)[ζ(· + x0 − L

2
, ·)|[0,L]2 ](x − x0 + L

2
, y)

=
∫

[0,L]2

ζ(x̃ + x0 − L

2
, ỹ)gL(t, x − x0 + L

2
, y, x̃, ỹ)dx̃dỹ

≥
∫

[0,L]×[ L
2 ,L]

gL(t, x − x0 + L

2
, y, x̃, ỹ)dx̃dỹ.

Thus, for any ζ ∈ X 1
m with ζ ≥ h

T,∞
m and (x, y) ∈ [5T , ∞) × (0, L2 ], by taking x0 = x − L

2 and 
applying the previous inequality, we have

Tm(t)[ζ ](x, y) ≥
∫

[0,L]×[ L ,L]
gL(t,

L

2
, y, x̃, ỹ)dx̃dỹ
2
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=
∑
n≥1

{4(1 + (−1)n+1)sin(nπ
2 ) × sin(

nπy
L

) × e−2( nπ
L

)2t

(nπ)2 } > 0.

On the other hand, by applying Lemma 2.1-(iv) in [35], Lemma A.3-(i) and Fubini’s theorem, 
it follows that for any η ∈X 1

m and (x, y) ∈ [5T , ∞) × (0, L2 ], we have

Tm(t)[η](x, y) + μ

t∫
0

exp(μs)Tm(t − s)[η](x, y)ds

≤ T1(t)[1](x, y) + μ

t∫
0

exp(μs)T1(t − s)[1](x, y)ds

= 1

4πt

∫
R×R+

exp(− (x − x̃)2

4t
)[exp(− (y − ỹ)2

4t
) − exp(− (y + ỹ)2

4t
)]dx̃dỹ

+ μ exp(μt)

t∫
0

{exp(−μs)

4πs

∫
R×R+

exp(− (x − x̃)2

4s
)[exp(− (y − ỹ)2

4s
) − exp(− (y + ỹ)2

4s
)]dx̃dỹ}ds

≤ 1√
4πt

y∫
−y

exp(− ỹ2

4t
)dỹ + μ exp(μt)

∫
R+

exp(−μs)√
4πs

y∫
−y

exp(− ỹ2

4s
)dỹds

≤ 1√
4πt

y∫
−y

exp(− ỹ2

4t
)dỹ +

√
μ exp(μt)

2

y∫
−y

exp(−
√

μỹ2)dỹ.

Define ρ : [0, L2 ] → R by

ρ(0) =
∑
n≥1

4(1+(−1)n+1)sin( nπ
2 )×e

−2( nπ
L

)2 t

nLπ

1√
πt

+ √
μ exp(μt)

and for any y ∈ (0, L2 ],

ρ(y) =
∑
n≥1

4(1+(−1)n+1)sin( nπ
2 )×sin(

nπy
L

)×e
−2( nπ

L
)2t

(nπ)2

1√
4πt

∫ y

−y
exp(− ỹ2

4t
)dỹ +

√
μ exp(μt)

2

∫ y

−y
exp(−√

μỹ2)dỹ
.

Clearly, ρ is a continuous and positive function, and thus there exist ρ∗ > 0 such that ρ(y) ≥
ρ∗ for all y ∈ [0, L2 ]. By the definitions of a(t, T , x, y) and ρ(y), we have ρ∗ ≤ a(t, T , x, y)

for all (x, y) ∈ [5T , ∞) × [0, L ]}. Similarly, we have ρ∗ ≤ a(t, T , (x, y)AB2m) for all (x, y) ∈
2
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[5T , ∞) × [0, L2 ]}. Thus, a(t, T , x, y) ≥ ρ∗ for all (x, y) ∈ �m \ �
T,∞
m with 

√
x2 + y2 ≥ 6T . 

This together with the continuity and positivity of a(t, T , ·, ·), implies that b(r, t, T ) > 0 for all 
(r, t, T ) ∈ (0, ∞)3. This completes the proof. �
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