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Abstract

Mass action and standard incidence are two major infection mechanisms in modelling spread of infec-
tious diseases. Spatial heterogeneity plays an important role in spread of infectious diseases, and hence, 
motivates and advocates diffusive models for disease dynamics. By analyzing a diffusive SIS model with 
the standard incidence infection mechanism, some recent works [2,12] have investigated the asymptotical 
profiles of the endemic steady state for large and small diffusion rates, and the results show that control-
ling the diffusion rate of the susceptible individuals can help eradicate the infection, while controlling the 
diffusion rate of the infectious individuals cannot. This paper aims to reveal the difference between the 
two infection mechanisms in a spatially heterogeneous environment. To this end, we consider a diffusive 
SIS model of the same structure but with the mass action infection adopted, and explore the asymptotic 
profiles of the endemic steady state for small and large diffusion rates. It turns out that the new model poses 
some new challenges due to the nonlocal term in the equilibrium problem and the unboundedness of the 
nonlinear term. Our results on this new model reveal some fundamental differences between the two trans-
mission mechanisms in such spatial models, which may provide some implications on disease modelling 
and controls.
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1. Introduction

In modelling disease dynamics, an infection mechanism needs to be assumed and adopted. 
Among the various infection mechanisms are the most frequently used mass action and standard 
incidence mechanisms. Indeed, in the classic and pioneering Kermack–McKendrick model [9], 
the mass action term βSI was used to describe the interactions between susceptible and infected 
individuals. Much later, in de Jong et al. [8], the standard incidence transmission term βSI/N

was suggested as an alternative to mass action. In [11], McCallum et al. compared the mass action 
and the standard incidence theoretically by looking at some host-pathogen models. According to 
McCallum et al., the basic reproduction number is dependent on the population size N in mass 
action models, which can be used to explain why population culling is a common strategy for the 
control of the outbreak of many diseases. But if the transmission obeys the standard incidence 
mechanism, the basic reproduction number is independent on the total population. However, 
despite of the above mentioned advantage of mass action, they also observed that many models 
that used simple mass action did not fit the empirical data as accurately as the models that used 
standard incidence mechanism.

The aforementioned studies are for a spatially homogeneous environment, meaning that only 
ODE models are involved. On the other hand, it is known that spatial heterogeneity and diffusion 
are ubiquitous in the real world and they play important roles in the spread of many diseases. 
A very natural question arises: Would incorporation of spatial heterogeneity and diffusion lead to 
any new phenomenon in disease spread under different infection mechanisms? Answering such 
a question may not only give insights into disease spread and control in reality, but also suggest 
new aspects and considerations for modelling spatial-temporal dynamics of infectious diseases. 
Indeed, these or similar questions have attracted many researchers in recent years, and there have 
been quite a few publications along this line. See, e.g., [1,2,5,6,12–17] and the references therein.

Among the above works, Allen et al. [2] proposed a simple diffusive SIS model with space-
dependent disease transmission rate β(x) and recovery rate γ (x), given by

⎧⎪⎪⎨
⎪⎪⎩

St = dS�S − β(x)SI

S + I
+ γ (x)I,

It = dI�I + β(x)SI

S + I
− γ (x)I,

x ∈ �, t > 0, (1.1)

where � ⊂ Rm is a bounded domain with smooth boundary ∂� and N = ∫
�

(S + I )dx. They 

showed that if the disease is of low risk in some part of the habitat, the disease can be potentially 
controllable by limiting the diffusion rate of the susceptible individuals. More precisely, they 
proved that if there are some low risk spots in the domain (i.e., β(x) < γ (x) for some x ∈ �), 
then the disease component of the endemic equilibrium vanishes as the diffusion rate of the 
susceptible individuals approaches zero. In a subsequent work [12], Peng showed that for this 
model, limiting the diffusion rate of the infected individuals cannot help annihilate the disease. 
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Thus the results in [2,12] suggest that the diffusion rate of susceptible individuals should be target 
of control in order to eradicate the disease.

Note that above conclusions are for the model (1.1) where the standard incidence infection 
mechanism is adopted. One naturally wonder what happens if standard incidence is replaced by 
the mass action. Considering the fact that the mass action is still dominantly adopted by biologists 
and mathematicians in the host-pathogen and host-parasite models, answering this question is of 
both theoretical and practical importance. As an initial attempt, Deng and Wu [5] proposed and 
analyzed the following model

{
St = dS�S − β(x)SI + γ (x)I,

It = dI�I + β(x)SI − γ (x)I,
x ∈ �, t > 0, (1.2)

which is parallel to (1.1). Here, as in (1.1), � ⊂ Rm is a bounded domain with smooth boundary 
∂� and N = ∫

�

(S + I )dx denoting the total population. The main results in [5] are the threshold 

dynamics in terms of the model’s basic reproduction number R0. This paper is a continuation 
of [5] and [2,12], aiming to explore the asymptotic profiles of the endemic steady state (under 
R0 > 1) for large and small diffusion rates. To this end, we will firstly summarize, in Section 2, 
some preliminary and relevant results on the dynamics of (1.2) from [5], and then present our 
main results on the asymptotic profiles of the endemic equilibrium for large and small diffu-
sion rate. We give the proofs of the main results in Section 3. Finally we conclude the paper by 
Section 4 in which we briefly discuss the biological interpretations of our results and also com-
pare them with the results for (1.1), revealing some differences between the two transmission 
mechanisms with spatial effects presented.

We point out that unlike in ODE models, adoption of mass action in (1.2) makes the analysis 
more difficult and challenging than the analysis of (1.1) on the above mentioned topics. For 
example, the equilibrium problem for (1.1) can be reduced to a local elliptic problem while the 
corresponding problem for (1.2) is a nonlocal elliptic problem. Moreover the standard incidence 
term βSI/(S + I ) assumes bounded infection force while the mass action term βSI uses a 
unbounded infection force.

2. The model and main results

Suppose that the host individuals live in an open and bounded domain � ⊆Rm with smooth 
boundary ∂�. Let S̄(x, t) and Ī (x, t) be the populations of susceptible and infectious individuals 
at position x and time t , respectively. The individuals are assumed to randomly move around 
in the domain with diffusion rates dS and dI for susceptible and infectious individuals, respec-
tively. Let β(x) and γ (x) be the disease transmission and recovery rates, respectively, which 
are assumed to be dependent on position x. For biological reason, we assume that they are non-
negative and for mathematical tractability, we suppose that they are Hölder continuous in �. 
As in [2], we consider a fast disease by ignoring the demography of the host; but unlike in [2]
we will adopt the mass action infection mechanism. These leads to the SIS model system with 
diffusion (1.2) (see [5]):

{
S̄t = dS�S̄ − β(x)S̄Ī + γ (x)Ī ,

Ī = d �Ī + β(x)S̄Ī − γ (x)Ī ,
x ∈ �, t > 0. (2.1)
t I
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We consider a scenario that the domain � is isolated from outside for the host, implying the 
homogeneous Neumann boundary condition:

∂S̄

∂n
= ∂Ī

∂n
= 0, x ∈ ∂�, t > 0. (2.2)

For initial conditions, we pose the following

(H1) S̄(x, 0) and Ī (x, 0) are nonnegative continuous functions in �, and 
∫
�

Ī (x, 0) dx > 0.

The positivity of the integral means that there are infectious individuals initially at t = 0 in the 
region.

Adding the two equations in (2.1) and integrating over �, we find that

∂

∂t

∫
�

(S̄ + Ī )dx = 0.

Thus, if we assume

(H2)
∫
�
(S̄(x, 0) + Ī (x, 0)) dx ≡ N > 0,

then the total population remains the constant N , i.e.,

∫
�

(S̄ + Ī )dx = N for all t ≥ 0. (2.3)

Steady state solutions of (2.1) are governed by the following elliptic system:

{
dS�S − β(x)SI + γ (x)I = 0, x ∈ �,

dI�I + β(x)SI − γ (x)I = 0, x ∈ �,
(2.4)

with the same zero flux boundary condition as (2.2):

∂S

∂n
= ∂I

∂n
= 0, x ∈ ∂�, (2.5)

and subject to the same constraint on the total population as in (2.3):

∫
�

(S + I )dx = N. (2.6)

System (2.4)–(2.6) always has a solution E0 = (N/|�|, 0), which is the unique disease free 
equilibrium (DFE). A nonnegative solution E1 = (S, I ) of (2.4)–(2.6) is an endemic equilibrium 
(EE) of (2.1)–(2.2) if I (x) > 0 for some x ∈ �. In [5], it is shown that (S, I ) is an EE if and only 
if I is a positive solution to the nonlocal elliptic problem
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dI�I + I

⎛
⎝ N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

Idx − dIβ

dS

I

⎞
⎠ = 0, x ∈ �,

∂I

∂n
= 0, x ∈ ∂�,

(2.7)

and S is given by

S = N

|�| −
(

1 − dI

dS

) ∫
�

Idx

|�| − dI

dS

I. (2.8)

As for (1.1) in [2], for (2.1) the basic reproduction number R0 is given by the variational 
formula

R0 = sup

{
N
|�|

∫
�

βϕ2 dx∫
�
(dI |∇ϕ|2 + γ ϕ2) dx

: ϕ ∈ H 1(�) and ϕ 	= 0

}
.

Let λ∗ denote the principal eigenvalue of the following eigenvalue problem:

dI�φ + (
N

|�|β − γ )φ + λφ = 0, in �,

∂φ

∂n
= 0, on ∂�.

It has been shown in [5] that R0 and λ∗ are related and they both serve as threshold parameters 
in the sense stated in the following lemma.

Lemma 2.1. The following statements about λ∗ and R0 hold.

(i) 1 −R0 and λ∗ have the same sign;
(ii) If 

∫
�

N
|�|β dx ≥ ∫

�
γ dx, then λ∗ ≤ 0 for all dI > 0;

(iii) If N
|�|β −γ changes sign on � but 

∫
�

N
|�|β dx <

∫
�

γ dx, then there exists d∗
I > 0 such that 

λ∗ = 0 when dI = d∗
I , λ∗ < 0 when dI < d∗

I , and λ∗ > 0 when dI > d∗
I .

Motivated by [2], we define the high-risk region and low-risk region respectively by

�+ = {x ∈ � : N

|�|β(x) − γ (x) > 0}

and

�− = {x ∈ � : N

|�|β(x) − γ (x) < 0}.

We say the domain � is a high-risk domain if 
∫
�

(Nβ/|�| − γ )dx > 0 and it is a low-risk 

domain if 
∫
(Nβ/|�| − γ )dx < 0.
�
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In [5], the following result on the existence and non-existence of an endemic equilibrium (EE) 
has been proved.

Theorem 2.2. When dS ≥ dI , then the EE does not exist if R0 ≤ 1, and there exists a unique EE 
if R0 > 1; when dS < dI , then the EE does not exist if R0 ≤ dS/dI , and there exists an EE if 
R0 > 1.

By Lemma 2.1 and Theorem 2.2, we can see that if � is a high-risk domain, then the EE 
always exists. If � is a lower risk domain but there are also high risk locations in � (i.e., �+ is 
non-empty), then there exists d∗

I > 0 such that the EE exists for dI < d∗
I .

In the rest of this paper, we always assume R0 > 1 so that (2.1)–(2.2) has a unique EE. For 
convenience, when no confusion arises, we simply use (S, I ) to denote the EE of (2.1)–(2.2)
(i.e., the positive solution of (2.4)–(2.6)). We now investigate the asymptotic profile of the EE as 
the diffusion rates approaching zero. We first consider the case dS → 0 and have the following 
main theorem for this case.

Theorem 2.3. Suppose that R0 > 1. Then, for any fixed dI > 0, there exists a sequence {dSn}
with dSn → 0 such that the corresponding EE (Sn, In) of (2.1)–(2.2) satisfies (Sn, In) → (S∗, I ∗)
in C(�), where S∗ is a positive function and I ∗ is a nonnegative constant. Moreover, either (a)

(S∗, I ∗) =
⎛
⎝γ (x)

β(x)
,

N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx

⎞
⎠ ,

or (b) I ∗ = 0 and S∗ is the positive solution of the following problem

−�S = α(−βS + γ ), x ∈ �,

∂S

∂n
= 0, x ∈ ∂�,∫

�

Sdx = N,

where α is some positive continuous function on � satisfying

−dI�α = (βS∗ − γ )α, x ∈ �, (2.9)
∂α

∂n
= 0, x ∈ ∂�. (2.10)

If N − ∫
�

[γ (x)/β(x)]dx < 0, then (i) in Theorem 2.3 is excluded, leading to the following 

corollary which indicates that the disease can be eradicated by limiting the mobility of the sus-
ceptible individuals.

Corollary 2.4. Suppose that R0 > 1 and N − ∫
�

[γ (x)/β(x)]dx < 0. If dI is fixed, then there 

exists a sequence {dSn} with dSn → 0 as n → ∞ such that the corresponding EE of (2.4)–(2.6)
satisfies that (S, I ) → (S∗, 0) in C(�), where S∗ is the positive solution of the following problem
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−�S = α(−βS + γ ), x ∈ �,

∂S

∂n
= 0, x ∈ ∂�,∫

�

Sdx = N,

where α is some positive continuous function on �.

If N − ∫
�

[γ (x)/β(x)]dx > 0, we conjecture that (ii) of Theorem 2.3 is impossible. At the 

present, we are only able to prove this for a special case, that is, when β is a positive constant, as 
stated in the following corollary.

Corollary 2.5. Suppose that β is a positive constant with N − ∫
�

[γ (x)/β]dx > 0. If dI is fixed, 

then as dS → 0 the corresponding EE satisfies that (S, I ) → (S∗, I ∗) in C(�), where

(S∗, I ∗) =
⎛
⎝γ (x)

β
,

N

|�| − 1

|�|
∫
�

γ (x)

β
dx

⎞
⎠ .

Remark 2.6. When β is a constant, the condition N − ∫
�

[γ (x)/β]dx > 0 actually implies that �

is a high-risk domain. The above two corollaries tell that in order for the strategy of limiting the 
mobility of susceptible individuals to succeed in eradicating the disease, if and only if the whole 
region � is a lower-risk domain. This result is considerably different from the corresponding 
conclusion for the model system (1.1) obtained in [2], where it is shown that the same strategy 
will succeed as long as the lower-risk region �− is non-empty, regardless it is the whole region �

or not.

Next, we explore the asymptotical profile of the EE as dI → 0 and dI /dS → d > 0. As is 
customary, for any function h defined on �, we use �+ to denote the function �+(x) =
max{h(x), 0}.

Theorem 2.7. Assume that �+ is non-empty. Then the following statements hold:

(a) If dI → 0 and dI /dS → d ∈ (0, ∞), then (S, I ) → (S∗, I ∗) in C(�), where I ∗ is the unique 
positive solution of

⎧⎨
⎩ N

|�|β − γ − (1 − d)β

|�|
∫
�

I ∗dx

⎫⎬
⎭

+
− dβI ∗ = 0, (2.11)

and S∗ is given by

S∗ = N

|�| − (1 − d)

∫
�

I ∗dx

|�| − dI ∗.
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(b) If dI → 0 and dI /dS → 1, then (S, I ) → (S∗, I ∗) in C(�), where

S∗ = N

|�| −
(

N

|�| − γ

β

)+
and I ∗ =

(
N

|�| − γ

β

)+
.

(c) Let d and (S∗, I ∗) be as in (a). If d ∈ (0, 1), then {x ∈ � : I ∗(x) > 0} � �+; if d ∈ (1, ∞), 
then {x ∈ � : I ∗(x) > 0} � �+ and this inclusion is strict if �− is non-empty.

We now consider the profile when the diffusion rates are large.

Theorem 2.8. The following statements hold.

(a) Suppose that � is a high-risk domain. If dS → ∞ and dI → ∞, then (S, I ) → (S∗, I ∗) in 
C2(�), where

(S∗, I ∗) =
(∫

�
γ (x)dx∫

�
β(x)dx

,
N

|�| −
∫
�

γ (x)dx∫
�

β(x)dx

)
.

(b) Suppose that R0 > 1. If dI is fixed and dS → ∞, then (S, I ) → (S∗, I ∗) in C2(�), where 
I ∗ is the unique positive solution of the following problem

−dI�I = I

⎛
⎝ N

|�|β − γ − β

|�|
∫
�

Idx

⎞
⎠ , x ∈ �,

∂I

∂n
= 0, x ∈ ∂�,

(2.12)

and

S∗ = N − ∫
�

I ∗dx

|�| .

(c) Suppose that � is a high-risk domain. If dS is fixed, then there exists a sequence {dIn} with 
dIn → ∞ as n → ∞ such that the corresponding EE (Sn, In) → (S∗, I ∗) in C2(�), where 
I ∗ is a positive constant and S∗ is the positive solution of the following problem

−dS�S = (−βS + γ )I ∗, x ∈ �,

∂S

∂n
= 0, x ∈ ∂�,∫

�

Sdx = N − I ∗|�|.
(2.13)

Furthermore, there exists a sequence {dSn} with dSn → 0 as n → ∞ such that the corre-
sponding solution (S∗

n, I ∗
n ) of (2.13) satisfies (S∗

n, I ∗
n ) → (S̃∗, Ĩ ∗) in C(�), where S̃∗ is a 

positive function and Ĩ∗ is a nonnegative constant satisfying the two alternatives in Theo-
rem 2.3.
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Part (c) of the above Theorem 2.8 shows that if we let dI → ∞ first and then take dS → 0, the 
asymptotic profile is consistent with what obtained in Theorem 2.3 by directly letting dS → 0
(see [12] for similar observations). Naturally, one would expect a similar situation with dI → 0
in (2.12). Of course, to fully understand the asymptotic profile of EE when dI is small, one needs 
to study (2.7) by letting dI → 0. We leave this as an open problem.

Theorem 2.9. Assume that �+ is nonempty. Let k0 > 0 be such that

max
x∈�̄

{
(N − k0)

|�| β(x) − γ (x)

}
= 0,

and define

M =
{
x ∈ �̄ : (N − k0)

|�| β(x) − γ (x) = 0

}
.

Then there exists d̂I > 0 such that for each dI < d̂I , the problem (2.12) has a unique positive 
solution I ∗ with 

∫
�

I ∗dx ≤ N . If further letting dI → 0, the solution satisfies 
∫
�

I ∗dx → k0. 

Moreover, there exists a sequence {dIn} with dIn → 0 as n → ∞ such that the corresponding 
solution I ∗

n satisfies I ∗
n → k0μ weakly, where μ is a probability measure with support contained 

in M.

3. Proof of the main results

3.1. Preliminary results

In this section, we present the proofs of our main results. Before that, we collect several useful 
lemmas. If a ∈ L∞(�) and d > 0, we denote by λ1(d, a) the principal eigenvalue of

d�φ + aφ + λφ = 0, in �,

∂φ

∂n
= 0, on ∂�.

(3.1)

It is well-known that λ1(d, a) is given by the following variational formula

λ1(d, a) = min

⎧⎨
⎩

∫
�

(d|�ϕ|2 − aϕ2)dx : ϕ ∈ H 1(�) and
∫
�

ϕ2dx = 1

⎫⎬
⎭ .

The following result about the principal eigenvalue can be found in [2,3].

Lemma 3.1. If a1(x) ≤ a2(x) in � with ai ∈ L∞(�) for i = 1, 2, then λ1(d, a1) ≥ λ1(d, a2) with 
equality holds if and only if a1 = a2 a.e. in �. If a ∈ L∞(�) is non-constant, then λ1(d1, a) <
λ1(d2, a) if d1 < d2. Moreover, λ1(d, a) depends continuously on a and d , and it satisfies

lim
d→0

λ1(d, a) → min{−a(x) : x ∈ �} and lim
d→∞λ1(d, a) → −ā, (3.2)

where ā is the spatial average of a, i.e. ā = (
∫

a(x)dx)/|�|.

�
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Remark 3.2. Regarding the principal eigenvalue λ1(d, a), Allen et al [2] obtained the following 
more information. Assume that a ∈ C(�) is non-constant and a(x0) > 0 for some x0 ∈ � in 
the previous lemma. If 

∫
�

a(x)dx ≥ 0, then Lemma 3.1 implies that λ1(d, a) < 0 for all d > 0; 

if
∫
�

a(x)dx < 0, then there exists d∗ > 0 such that λ1(d, a) < 0 for all d < d∗ and λ1(d, a) > 0

for all d > d∗.

The main reason that we are interested in the sign of λ1(d, a) is that it can be used to determine 
the existence of unique positive solution of the related elliptic problem. The following lemma is 
such an example, which can be found in [3], or can be directly proved by an upper/lower solution 
argument.

Lemma 3.3. Suppose that a, b ∈ Cα(�) with b(x) > 0 for x ∈ �. Then the following statements 
hold about the problem:

0 = d�u + [a(x) − b(x)u]u x ∈ �,

0 = ∂u

∂n
x ∈ ∂�.

(3.3)

(a) If λ1(d, a) ≥ 0, then the problem (3.3) has no positive solution;
(b) If λ1(d, a) < 0, then the problem (3.3) has a unique positive solution in C2+α(�).

Remark 3.4. The asymptotic profile (as d → 0 or d → ∞) of the positive solution of (3.3) is also 
well-known. Let u(d, a, b) be the unique positive solution of (3.3) if it exists. If a(x0) > 0 for 
some x0 ∈ � in the previous lemma, then the positive solution u(d, a, b) exists for small d and it 
satisfies that u(d, a, b) → (a/b)+ as d → 0; if a(x) is non-constant and 

∫
�

a(x)dx ≥ 0, then the 

positive solution u(d, a, b) exists for all d > 0 and it satisfies u(d, a, b) → ā/b̄ as d → ∞.

The following maximum/minimum principle is from Lou and Ni [10].

Lemma 3.5. Suppose that g ∈ C(� ×R).

• Assume that w ∈ C2(�) ∩ C1(�) and satisfies

�w(x) + g(x,w(x)) ≥ 0 x ∈ �,

∂w

∂n
≤ 0 x ∈ ∂�,

and w(x0) = max
x∈�

w(x), then g(x0, w(x0)) ≥ 0.

• Assume that w ∈ C2(�) ∩ C1(�) and satisfies

�w(x) + g(x,w(x)) ≤ 0 x ∈ �,

∂w

∂n
≥ 0 x ∈ ∂�,

and w(x0) = minw(x), then g(x0, w(x0)) ≤ 0.

x∈�
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We also need the following Harnack’s inequality from [4].

Lemma 3.6. Let w ∈ C2(�) ∩ C1(�) be a positive solution of

�w(x) + c(x)w = 0 x ∈ � ⊂Rm,

∂w

∂n
= 0 x ∈ ∂�,

where c ∈ C(�). Then there exists a positive constant C = C(m, �, ‖c‖∞) such that

sup
�

w ≤ C inf
�

w.

The above two lemmas are also collected in [12].

3.2. Proof of Theorem 2.3

Note that R0 is independent of dS . Thus, under R0 > 1, EE (S, I ) exists for any dS > 0 by 
Theorem 2.2. By (2.6), we have 

∫
�

Idx ≤ N . Hence there exists a sequence {dSn} with dSn → 0

as n → ∞ such that the corresponding EE (Sn, In) satisfies

∫
�

Indx → k, for some k ≥ 0.

It then follows that

Fn ≡
(

N

|�|β − γ

)
dSn + (dI − dSn)

β

|�|
∫
�

Indx → dIβ
k

|�| as n → ∞.

We claim that

In → k

|�| uniformly on � as n → ∞. (3.4)

To show this, we first note that by (2.7), In satisfies

dSndI�In + In (Fn − dIβIn) = 0, x ∈ �,

∂In

∂n
= 0, x ∈ ∂�.

(3.5)

Now for any ε > 0, there exists n1 > 0 such that

dIβ

|�| (k − ε) ≤ Fn ≤ dIβ

|�| (k + ε) for all n > n1.

This implies that In is a lower solution of the problem
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dSndI�I + I

(
dIβ

|�| (k + ε) − dIβI

)
= 0, x ∈ �,

∂I

∂n
= 0, x ∈ ∂�,

(3.6)

and an upper solution of the problem

dSndI�I + I

(
dIβ

|�| (k − ε) − dIβI

)
= 0, x ∈ �,

∂I

∂n
= 0, x ∈ ∂�.

(3.7)

Observing that I = (k + ε)/|�| solves (3.6) and I = (k − ε)/|�| solves (3.7), we then have

(k − ε)/|�| ≤ In ≤ (k + ε)/|�| for all n > n1 (3.8)

Since ε > 0 is arbitrary, (3.8) indeed implies In → k/|�| uniformly on � as n → ∞, confirming 
the claim.

If k > 0, we consider the equations involving the S-component of the EE:

−dSn�Sn = (−βSn + γ )In, x ∈ �,

∂Sn

∂n
= 0, x ∈ ∂�.

(3.9)

Noticing In → k/|�| and using a standard singular perturbation theory technique (for example, 
see [7]), we can prove that

Sn → γ

β
uniformly on � as n → ∞.

It then follows from (2.6) that we must have

In → k

|�| = N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx.

We now consider the possibility that k = 0, i.e. In → 0 uniformly on � as n → ∞. Passing 
to a subsequence if needed, we then have either (i) ‖In‖∞/dSn → 0, or (ii) ‖In‖∞/dSn → ∞, or 
(iii) ‖In‖∞/dSn → C0 with C0 being a positive constant. We explore these three cases individu-
ally below.

If (i) occurs, i.e., ‖In‖∞/dSn → 0, then (
∫
�

Indx)/dSn → 0. Let În = In/dSn . Then În satisfies

dI�În + În

⎛
⎝ N

|�|β − γ + (dI − dSn)
β

|�|
1

dSn

∫
�

Indx − dIβÎn

⎞
⎠ = 0, x ∈ �,

∂În = 0, x ∈ ∂�.

∂n
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We claim that În → Î in C(�) as n → ∞, where Î is the unique positive solution of the following 
problem

dI�Î + Î

(
N

|�|β − γ − dIβÎ

)
= 0, x ∈ �,

∂Ī

∂n
= 0, x ∈ ∂�.

(3.10)

To see this, we first note that R0 > 1 implies λ1(dI , Nβ/|�| − γ ) < 0 by Lemma 2.1. 
It then follows from Lemma 3.3 that Problem (3.10) has a unique positive solution. Since 
[(dI − dSn)β/(|�|dSn)] 

∫
�

Indx > 0 for large n, În is an upper solution of (3.10). Let φ be a 

positive eigenvector of the following problem

dI�φ + (
N

|�|β − γ )φ + λφ = 0, in �,

∂φ

∂n
= 0, on ∂�

corresponding to the principal eigenvalue λ1(dI , Nβ/|�| − γ ). Since λ1(dI , Nβ/|�| − γ ) < 0, 
one can easily check that εφ is a lower solution of (3.10) if ε > 0 is small. Then by the method 
of upper/lower solutions and the uniqueness of the positive solution of (3.10), we find that εφ ≤
Î ≤ În. It then follows from [(dI −dSn)β/(|�|dSn)] 

∫
�

Indx → 0 that În → Î in C(�) as n → ∞. 

But this is a contradiction because the positivity of Î would imply

(dI − dSn)
β

|�|
∫
�

Indx/dSn → dI

β

|�|
∫
�

Îdx > 0.

Hence ‖In‖∞/dSn → 0 is impossible.
If (ii) holds, i.e., ‖In‖∞/dSn → ∞, we first prove the uniform boundedness of Sn in C(�). 

Noticing that Sn satisfies

−dSn�Sn = (−βSn + γ )In, x ∈ �,

∂Sn

∂n
= 0, x ∈ ∂�,

it then follows from Lemma 3.5 that

min

{
γ (x)

β(x)
: x ∈ �

}
≤ Sn(x) ≤ max

{
γ (x)

β(x)
: x ∈ �

}
.

Let Ĩn = In/‖In‖∞. Then, by (2.4), Ĩn satisfies that

−dI�Ĩn = (βSn − γ )Ĩn, x ∈ �, (3.11)

∂Ĩn = 0, x ∈ ∂�. (3.12)

∂n
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Since ‖Ĩn‖∞ = 1 and Sn is uniformly bounded, by the standard elliptic estimate, Ĩn is uniformly 
bounded in C1(�). So passing to a subsequence if necessary, we have Ĩn → Ĩ in C(�) with 
‖Ĩ‖∞ = 1. Moreover, Ĩ is strictly positive on �. To see this, by the uniform boundedness of Sn

and the Harnack inequality, there is a positive constant K independent of n such that

1 = sup
x∈�

Ĩn(x) ≤ K inf
x∈�

Ĩn(x).

Hence inf
x∈�

Ĩ ≥ 1/K > 0 and so Ĩ is strictly positive. We now turn to the equation for Sn:

−dSn/‖In‖∞�Sn = (−βSn + γ )In/‖In‖∞, x ∈ �,

∂Sn

∂n
= 0, x ∈ ∂�.

It then follows from dSn/‖In‖∞ → 0, In/‖In‖∞ → Ĩ and the standard singular perturbation 
method that

Sn → γ

β
uniformly on � as n → ∞.

Moreover by (2.6), we compute

In → N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx.

If N − ∫
�

(γ /β) dx 	= 0, this is a contradiction since In → 0; If N − ∫
�

(γ /β) dx = 0, we arrive at 

the alternative (a) of Theorem 2.3.
Lastly we consider case (iii), i.e., ‖In‖∞/dSn → C0 for some positive constant C0. From (2.4), 

one knows that

−�Sn = (−βSn + γ )
In

‖In‖∞
‖In‖∞

dSn

, x ∈ �,

∂Sn

∂n
= 0, x ∈ ∂�.

By a similar argument to that in case (ii), we obtain

In

‖In‖∞
‖In‖∞

dSn

→ Ĩ

C0
, in C(�) as n → ∞

for some positive Ĩ . Hence the conclusion (b) of the theorem holds with α = Ĩ /C0. Moreover 
by (3.11)–(3.12), it is not easy to see that α satisfies (2.9)–(2.10). The proof of Theorem 2.3 is 
completed.

Corollary 2.4 is a direct consequence of Theorem 2.3, and we give the proof of Corollary 2.5
below.
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Proof of Corollary 2.5. By Lemma 2.1 and the assumption that β is a positive constant with N −∫
�

[γ (x)/β]dx > 0, we know that R0 > 1 and that the EE (S, I ) exists for all dI > 0. Dividing 

both sides of the first equation of (2.7) by I and integrating it over �, we obtain

dI

∫
�

|�I |2
I 2

dx +
∫
�

⎛
⎝ N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

I dx − dIβ

dS

I

⎞
⎠ = 0,

which implies that

∫
�

⎛
⎝ N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

I dx − dIβ

dS

I

⎞
⎠ ≤ 0.

When β is a constant, the above inequality implies

∫
�

I dx ≥ N −
∫
�

γ (x)

β
dx. (3.13)

On the other hand, by Theorem 2.3, there exists a sequence {dSn} with dSn → 0 as n → ∞ such 
that the corresponding EE of (2.4)–(2.6) satisfies that

(Sn, In) → (S∗, I ∗) in C(�),

where S∗ is a positive function and I∗ is a nonnegative positive constant. The estimate (3.13)
implies that

I ∗ ≥ N

|�| − 1

|�|
∫
�

γ (x)

β
dx > 0.

Hence the second alternative of Theorem 2.3 is impossible and the proof is complete. �
3.3. Proof of Theorem 2.7

Before proving Theorem 2.7, we need the following result.

Lemma 3.7. Assume that �+ is non-empty and d is a positive constant. Then the following 
equation

⎛
⎝ N

|�|β − γ − (1 − d)
β

|�|
∫
�

I dx

⎞
⎠

+
= dβI, x ∈ � (3.14)

has a unique nonnegative solution.
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Proof. The case d = 1 is trivial. Let

Gτ =
(

N

|�|β − γ − (1 − d)
β

|�|τ
)+

/dβ.

If d ∈ (0, 1), then 
∫
�

Gτdx is non-increasing in τ for τ ≥ 0 with 
∫
�

Gτdx = 0 for sufficiently 

large τ . Since �+ is non-empty, we have 
∫
�

G0dx > 0. So there exists a unique τ ∗ > 0 such that ∫
�

Gτ∗dx = τ ∗. Then Gτ∗ is the unique non-negative solution of (3.14).

If d > 1, then 
∫
�

Gτdx is non-decreasing in τ for τ ≥ 0 with 
∫
�

Gτdx → ∞ as τ → ∞. We 

notice that ∫
�

Gτdx ≤ 1

d

∫
�

(
N

|�| − γ

β

)+
dx + (1 − 1

d
)τ. (3.15)

Since the right hand side of (3.15) is linear in τ with slope less than 1, there exists τ∗ > 0
such that 

∫
�

Gτ∗dx = τ ∗, and so Gτ∗ is a solution of (3.14). Moreover, it is clear that 
∫
�

Gτdx

is concave up in τ . Hence τ ∗ is the unique solution of 
∫
�

Gτdx = τ and therefore, (3.14) have a 

unique non-negative solution. The proof is completed. �
Proof of Theorem 2.7. Since �+ has positive measure, the EE (S, I ) (i.e., positive solution of 
(2.4)–(2.6)) exists if dI is small by Lemma 2.1. We first prove (a) for the case d < 1. We claim 
that 

∫
�

Idx → ∫
�

I ∗dx as dI → 0 and dI /dS → d , where I ∗ is the unique solution of (3.14). 

Since 
∫
�

Idx ≤ N , there exist two sequences {dIn} and {dSn/dIn} with dIn → 0 and dSn/dIn → d

as n → ∞ such that the corresponding EE (Sn, In) satisfies 
∫
�

Indx → k ∈ [0, N ]. Let ε > 0 be 

given. Then there exists n∗ > 0 such that k − ε <
∫

Indx < k + ε and d − ε < dSn/dIn < d + ε

for all n > n∗. So In is an upper solution of the following problem

dIn�I + I

(
N

|�|β − γ − (1 − d + ε)
β

|�| (k + ε) − (d + ε)βI

)
= 0, x ∈ �,

∂I

∂n
= 0, x ∈ ∂�

(3.16)

and it is also a lower solution of

dIn�I + I

(
N

|�|β − γ − (1 − d − ε)
β

|�| (k − ε) − (d − ε)βI

)
= 0, x ∈ �,

∂I

∂n
= 0, x ∈ ∂�

(3.17)

for all n > n∗. Denote by In,ε (In,−ε) the unique positive solution of (3.16) ((3.17)) if it exists; 
otherwise, let In,ε = 0 (In,−ε = 0). Then by an upper–lower solution argument, we have In,ε ≤
In ≤ In,−ε for all n > n∗. By Remark 3.4, we know that limn→∞ In,±ε = I±ε in C(�), where
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I±ε =
(

N
|�|β − γ − (1 − d ± ε)

β
|�| (k ± ε)

(d ± ε)β

)+
.

Since ε > 0 is arbitrary, we obtain

k = lim
n→∞

∫
�

Indx =
∫
�

1

d

(
N

|�| − γ

β
− (1 − d)

k

|�|
)+

.

By Lemma 3.7, we then have k = ∫
�

I ∗dx.

We now prove I → I ∗ as dI → 0 and dI /dS → d . By the claim, we have 
∫
�

Idx → ∫
�

I ∗dx, 

so we can set k = ∫
�

I ∗dx in the previous arguments to get:

lim
dI →0,dI /dS→d

I =
(

N
|�|β − γ − (1 − d)

β
|�|

∫
�

I ∗dx

dβ

)+
= I ∗.

The proof of the case d ≥ 1 is similar, so we omit it here. (b) is obtained by taking d = 1 in (a). 
The conclusion in (c) is easily observed from equation (3.14). The proof is completed. �
3.4. Proof of Theorem 2.8

We first prove (a). Since � is a high-risk domain, the EE (S, I ) always exists. Similar to the 
proof of Theorem 2.3, we can show that S is uniformly bounded in C(�) for all dS, dI > 0. 
Applying Lemma 3.6 to

−dI�I = (βS − γ )I, x ∈ �,

∂I

∂n
= 0, x ∈ ∂�,

we know that there exists a positive number C such that

sup
x∈�

I (x) ≤ C inf
x∈�

I (x),

for all dS > 0 and dI ≥ 1. By (2.6), we then have

N ≥
∫
�

Idx ≥ |�| inf
�

I ≥ |�|(sup
�

I)/C.

This implies that ‖I‖∞ ≤ CN/|�|, and hence, I is uniformly bounded in C(�) for all dS > 0
and dI ≥ 1. Now, by (2.4), the elliptic estimate, and the Sobolev embedding theorem, S and 
I are uniformly bounded in C2+α(�) for all dS, dI ≥ 1. It then follows from the compactness 
of the embedding C2+α(�) ⊂ C2(�) that there exist sequences {dSn} and {dIn} with dSn → ∞
and dIn → ∞ as n → ∞ such that the corresponding EE (Sn, In) → (S∗, I ∗) in C2(�), where 
(S∗, I ∗) satisfies
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�S∗ = �I ∗ = 0, in �,

∂S∗

∂n
= ∂I ∗

∂n
= 0, on ∂�.

By the maximum principle, S∗ and I ∗ are constants. Let Ĩn = In/‖In‖∞. By (2.4), we have

−dIn�Ĩn = (βSn − γ )Ĩn, in �, (3.18)

∂Ĩn

∂n
= 0, on ∂�. (3.19)

Since ‖Ĩn‖∞ = 1 and Sn is uniformly bounded, Ĩn is uniformly bounded in C2+α(�) for n ≥ 1 by 
the elliptic estimate and the Sobolev embedding theorem. Passing to a subsequence if necessary, 
we have Ĩn → Ĩ ∗ in C2(�), where Ĩ ∗ satisfies

�Ĩ ∗ = 0, in �,

∂Ĩ ∗

∂n
= 0, on ∂�.

Again by the maximum principle, Ĩ ∗ is a constant. Noticing ‖Ĩn‖∞ = 1, we have Ĩ ∗ = 1. Inte-
grating both sides of (3.18), we find∫

�

(βSn − γ )Ĩndx = 0.

Letting n → ∞ in the above leads to

S∗ =
∫
�

γ (x)dx∫
�

β(x)dx
.

Lastly, by (2.6), we obtain

I ∗ = N

|�| −
∫
�

γ (x)dx∫
�

β(x)dx
,

proving (a).
To prove (b), we first show that (2.12) has a unique positive solution. Note that R0 > 1 is 

equivalent to λ1(dI , Nβ/|�| −γ ) < 0 by Lemma 2.1. By Lemma 3.1 and the variational formula, 
λ1(dI , Nβ/|�| − γ − kβ/|�|) is increasing in k with λ1(dI , Nβ/|�| − γ − kβ/|�|) → ∞ as 
k → ∞. Hence there exists k̂ > 0 such that λ1(dI , Nβ/|�| − γ − k̂β/|�|) = 0. Let ϕ be an 
eigenvector corresponding to the principal eigenvalue (which is zero by λ1(dI , Nβ/|�| − γ −
k̂β/|�|) = 0) of the problem

−dI�ϕ = ϕ

(
N

|�|β − γ − k̂

|�|β
)

+ λϕ, x ∈ �,

∂I = 0, x ∈ ∂�.

(3.20)
∂n
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Then k̂ϕ/ 
∫
�

ϕdx is a positive solution of (2.12). To prove the uniqueness, we suppose that I1 and 

I2 are two positive solutions of (2.12). Then the positivity of I1 and I2 implies that

λ1

⎛
⎝dI ,

N

|�|β − γ − β

|�|
∫
�

I1dx

⎞
⎠ = λ1

⎛
⎝dI ,

N

|�|β − γ − β

|�|
∫
�

I2dx

⎞
⎠ = 0.

Then by Lemma 3.1, we have 
∫
�

I1dx = ∫
�

I2dx. Let ϕ be an eigenvector corresponding to the 

principal eigenvalue of (3.20) with k̂ replaced by 
∫
�

I1dx, then we have

I1 =
∫
�

I1dx∫
�

ϕdx
ϕ = I2,

confirming the uniqueness of the positive solution of (2.12).
Now, since R0 > 1, the EE (S, I ) exists for all dS > 0. As before, we have the uniform 

boundedness of S in C(�) for all dS > 0 by Lemma 3.5. And then, by the Harnack inequality, 
I is also uniformly bounded in C(�). It then follows from (2.4), the elliptic estimate and the 
Sobolev embedding theorem that there exists a sequence {dSn} with dSn → ∞ as n → ∞ such 
that the corresponding EE (Sn, In) → (S∗, I ∗) in C2(�). By (2.7), I ∗ satisfies (2.12). But we 
have just proved that (2.12) has a unique positive solution, thus, either I ∗ is the positive solution 
of (2.12) or I ∗ = 0. By (2.7) and the positivity of In, we have

λ1

⎛
⎝dI ,

N

|�|β − γ −
(

1 − dI

dSn

)
β

|�|
∫
�

Indx − dI

dSn

βIn

⎞
⎠ = 0.

If I ∗ = 0, taking n → ∞ in the above, we have λ1(dI , Nβ/|�| − γ ) = 0, which contradicts 
R0 > 1 by Lemma 2.1. Hence I ∗ is the positive solution of (2.12). By (2.4), S∗ satisfies

�S∗ = 0, in �,

∂S∗

∂n
= 0, on ∂�.

It follows from the maximum principle that S∗ is a constant. Noting (2.6), we conclude that

S∗ = N − ∫
�

I ∗dx

|�| .

The proof of (c) is similar to (a), so we only sketch it here. Since � is a high-risk domain, the 
EE (S, I ) always exists. We can show that S is uniformly bounded in C(�) by Lemma 3.5, and 
I is also uniformly bounded in C(�) for all dI > 1 by the Harnack inequality and 

∫
�

I ≤ N . Then 

by the elliptic estimate, the Sobolev embedding theorem and the maximum principle, there exists 
a sequence {dIn} with dIn → ∞ as n → ∞ such that the corresponding EE (Sn, In) → (S∗, I ∗)
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in C2(�), where I ∗ is a constant. To see I ∗ 	= 0, we also introduce Ĩn = In/‖In‖∞. Then we can 
prove Ĩn → 1 in C2(�) as n → ∞. As in the proof of (a), this leads to

∫
�

(βS∗ − γ )dx = 0.

If I ∗ = 0, one can see from (2.6) that S∗ = N/|�|. Hence we have 
∫
�

(Nβ/|�| − γ )dx = 0, 

which contradicts the assumption that � is a high-risk domain. Therefore I ∗ is positive. Note 
that we do not have the uniqueness of I∗, so different from (a) and (b), our result here in (c) is 
for a sequence {dIn} only. Finally, there exists a sequence {dSn} with dSn → 0 as n → ∞ such 
that the corresponding solution (S∗

n, I ∗
n ) of (2.13) satisfies either dSn/I

∗
n → 0, or dSn/I

∗
n → ∞, 

or dSn/I
∗
n → C for some positive constant C. If dSn/I

∗
n → 0, we have (S∗

n, I ∗
n ) → (S̃∗, Ĩ ∗) in 

C(�) with (S̃∗, Ĩ ∗) satisfying alternative (a) of Theorem 2.3. If dSn/I
∗
n → C, we arrive at al-

ternative (b) with α = 1/C. If dSn/I
∗
n → ∞, up to a sequence, we have (S∗

n, I ∗
n ) → (S̃∗, 0)

with S̃∗ constant. By the last equation of (2.13), we actually have S̃∗ = N/|�|. Integrating 
both sides of the first equation in (2.13), we get 

∫
�

(−βSn + γ )dx = 0. Taking n → ∞, we find ∫
�

(−Nβ/|�| + γ )dx = 0, which contradicts the assumption that � is a high-risk domain. Hence 

dSn/I
∗
n → ∞ is not possible. The proof of Theorem 2.8 is completed.

3.5. Proof of Theorem 2.9

In the proof of the existence and uniqueness of a positive solution to (2.12) in Theorem 2.8-(b),
we used the condition λ1(dI , Nβ/|�| − γ ) < 0. Now, the assumption that �+ is non-empty 
implies λ1(dI , Nβ/|�| − γ ) < 0 when dI < d̂I for some d̂I > 0, and therefore, ensures the 
existence of a unique positive solution I ∗ to (2.12) when dI < d̂I .

To prove 
∫
�

I ∗dx ≤ N , we suppose to the opposite: 
∫
�

I ∗dx > N . Then we have Nβ/|�| −γ −
(β/|�|) ∫

�

I ∗dx < 0 and thus, by Lemma 3.1, we have λ1(dI , N/|�|β − γ − (β/|�|) ∫
�

I ∗dx) >

λ1(dI , 0) = 0, which is a contradiction to

λ1(dI ,N/|�|β − γ − (β/|�|)
∫
�

I ∗dx) = 0. (3.21)

Also from (3.21) and Lemma 3.1, we know that 
∫
�

I ∗dx is non-decreasing in dI . This together 

with the fact that 0 ≤ ∫
�

I ∗dx ≤ N implies that limdI →0
∫
�

I ∗dx exists. Denote this limit by k1. 

We now show that k1 = k0. Let ε > 0 be given. Then there exists d1 > 0 such that k1 − ε <∫
�

I ∗dx < k1 + ε for all d < d1. By Lemma 3.1 and (3.21), we have

λ1(dI ,N/|�|β − γ − (β/|�|)(k1 − ε)) < 0 < λ1(dI ,N/|�|β − γ − (β/|�|)(k1 + ε)).
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Taking dI → 0 and by (3.2), we get

−max{N/|�|β − γ − (β/|�|)(k1 − ε)} ≤ 0 ≤ −max{N/|�|β − γ − (β/|�|(k1 + ε))}.

Since ε > 0 is arbitrary, we have

max{N/|�|β − γ − (β/|�|)k1} = 0,

and it then follows from the definition of k0 that k1 = k0, i.e., 
∫
�

I ∗dx → k0 as dI → 0, which 

implies that there exists a sequence {dIn} with dIn → 0 as n → ∞ such that I∗
n → k0μ weakly, 

where μ is a probability measure, in the sense that

lim
n→∞

∫
�

I ∗
n (x)ψ(x)dx =

∫
�

ψ(x)dμ(x), for all ψ ∈ C(�).

It then remains to show that the support of μ is contained in M. If M = �, then the statement 
holds trivially. So suppose that M � �. Pick a point x0 ∈ �/M. For simplicity, assume that x0
is an interior point of �. By the definition of M, there exist small positive numbers ε, δ such 
that

N − k0

|�| β(x) − γ (x) < −δ for all x ∈ B(x0, ε),

where B(x0, ε) is the open ball centred at x0 with radius ε such that B(x0, ε) ⊆ �/M. Choose a 
smooth cutoff function ψ with 0 ≤ ψ ≤ 1 such that

ψ(x) =
{

1, on B(x0, ε/3)

0, on �/B(x0,2ε/3).
(3.22)

Multiplying both sides of (2.12) by ψ and integrating it over B(x0, 2ε/3), we find that

0 = dIn

∫
B(x0,2ε/3)

I ∗
n �ψdx +

∫
B(x0,2ε/3)

ψI ∗
n

⎛
⎝ N

|�|β − γ − β

|�|
∫
�

I ∗
n dx

⎞
⎠dx.

Taking n → ∞, we have that

0 =
∫

B(x0,2ε/3)

ψ

(
N − k0

|�| β − γ

)
dμ ≤ −δμ(B(x0, ε/3)),

which implies μ(B(x0, ε/3)) = 0. This completes the proof.
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4. Discussion

In this section, we discuss some biological implications of our results, and most importantly, 
we will compare our results with the parallel results for the model (1.1) obtained in [2,12]. Our 
discussion can partially answer the questions in the introduction and provide some insights into 
the strategy of disease control.

As we pointed out in the introduction, McCallum et al. [11] found that without considering the 
spatial effect, the basic reproduction number of the SIS model is dependent of the total population 
which explains, to some extent, why population culling can be a disease control strategy. Now, 
with spatial effect considered, Allen et al. [2] found that for the model (1.1) with the standard 
incidence transmission, the basic reproduction number is defined as

R̃0 = sup

{ ∫
�

βϕ2 dx∫
�
(dI |∇ϕ|2 + γ ϕ2) dx

: ϕ ∈ H 1(�) and ϕ 	= 0

}

and the high-risk region and low-risk region are defined by

�̃+ = {x ∈ � : β(x) − γ (x) > 0} and �̃− = {x ∈ � : β(x) − γ (x) < 0},

respectively. These definitions are all independent of the total population N . However, the cor-
responding definitions R0, �+ and �− for the model (1.2) are dependent not only on the total 
population N but also the size of the domain |�|, in terms of N/|�|, the population density with 
respect to the space (population per unit space). This explains why it is easier for a disease to be-
come endemic in a more crowded population (larger N/|�|) than in a sparse population (smaller 
N/|�|). An implication is even considering the spatial effect, as long as the mass action infec-
tion term is adopted, that population culling may till be an effective control strategy, it should be 
combined with the size of the region though.

In [2,12], the authors explored the impact of the movements of the individuals and the spatial 
heterogeneity on the profiles of the EE for (1.1), and their results offer many interesting implica-
tions on disease control. We now compare our results for (1.2) in this paper with those parallel 
ones in [2,12], hoping to reveal more differences between the two infection mechanisms in the 
“spatial” setting.

One of the main conclusions in [2] is that if there are lower risk sites in the domain � (i.e. 
�̃− is non-empty), then the I-component of the EE of the model (1.1) approaches zero if the 
diffusion rate of the susceptible individuals tends to zero. This implies that the disease may 
be controlled by limiting the movement of the susceptible individuals reflected by dS . This is 
still the case for the model (1.2) but with an extra requirement on the total population, i.e., 
N <

∫
�

(γ /β)dx, as indicated by Corollary 2.4. However, the disease may not be controllable by 

limiting dS when the total population is large. For example, when the disease recovery rate γ is 
heterogeneous while the disease transmission rate β is homogeneous (constant), Corollaries 2.4
and 2.5 imply that the disease is not controllable by limiting dS when the domain is a high-risk 
one (i.e. 

∫
�

(Nβ/|�| − γ )dx > 0, equivalent to N >
∫
�

(γ /β)dx > 0), regardless of whether �−

is non-empty or not. It remains an open problem to examine the case when both β and γ are 
heterogeneous. We conjecture that the sign of N − ∫

(γ /β)dx will play a threshold role here.

�



4446 Y. Wu, X. Zou / J. Differential Equations 261 (2016) 4424–4447
In [12], Peng considered the asymptotic profiles of the EE of (1.1) when the movement rates 
dS and dI are small or large in various cases. In particular, it was shown that if dI → 0 and 
dI /dS → d ∈ [0, ∞), then the infected individuals will reside exactly in the high-risk region (see 
Corollary 1.1 of [12]). Combining this result with the one in [2], Peng claims that limiting the 
movement of susceptible individuals is a better control strategy than limiting the movement of 
infected individuals. However, for the model (1.2), the ratio d plays a very interesting role. As is 
shown in Theorem 2.7, if d = 1 then the infected individuals will live exactly in the high-risk 
region; if d < 1 then the residence area of infected individuals is strictly contained in the high-risk 
region; if d > 1 then there are infected individuals who will even persist in the lower-risk site. 
Here the ratio d actually determines the size of the residence area of infected individuals. If the 
total population is below a certain level (i.e. N <

∫
�

(γ /β)dx), we can conclude that limiting dS is 

a better control strategy than limiting dI . However if the total population is large, then limiting dI

may be a better one because it will at least eliminate the disease in certain area. From the above 
discussion, we see that for the model (1.2) with mass action transmission mechanism, we can 
no longer conclude that limiting dS is always a better control strategy than limiting dI , in strong 
contrast to the conclusion for (1.1).

Another interesting thing for (1.2) is the occurrence of the concentration phenomenon when 
dI → 0, which has not been observed from (1.1). Here we consider dI → 0 by looking at (2.12)
instead of (2.7) and this phenomenon can also be observed from equation (2.11) by letting d → 0. 
Theorem 2.9 suggests that the infected individuals may concentrate on certain sites, characterized 
by M, when the movement of infected individuals is limited, and those sites can be considered as 
the highest risk sites in the domain. In particular if M is a singleton, then the infected individuals 
will concentrate at a single point when dI → 0.

Finally, Theorem 2.8 implies that large diffusion rate of either susceptible or infected individ-
uals tends to homogenize the spatial distribution of the corresponding component of the endemic 
equilibrium of (1.2), and this coincides with the situation for (1.1).
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