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Abstract

We consider the delay differential equation (DDE) ẋ(t) = −g(x(t))+f (x(t − τ )) which shares the same
equilibria with the corresponding ordinary differential equation (ODE) ẋ(t) = −g(x(t)) + f (x(t)). For the
bistable case, both the DDE and ODE share three equilibria x0 = 0 < x1 < x2 with x0 and x2 being stable
and x1 being unstable for the ODE. We are concerned with stability of these equilibria for the DDE and
the basins of attraction of x0 and x2 when they are asymptotically stable for the DDE. Combining the idea
of relating the dynamics of a map to the dynamics of a DDE and invariance arguments for the solution
semiflow, we are able to characterize some subsets of basins of attraction of these equilibria for the DDE.
In addition, existence of heteroclinic orbits is also explored. The general results are applied to a particular
model equation describing the matured population of some species demonstrating the Allee effect.
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1. Introduction

Many mathematical models in population biology and physiology fall into the form of the
delay differential equation (DDE)

ẋ(t) = −g
(
x(t)

) + f
(
x(t − τ)

)
, (1.1)

where τ � 0 and the functions g,f : R+ → R+ are continuously differentiable where R+ :=
[0,∞), satisfying g(0) = f (0) = 0. The term −g(x(t)) in (1.1) assumes a decay in the absence
of new recruitment/activation/production, and the nonlinear term f (x(t − τ)) in (1.1) accounts
for a delayed response in the corresponding practical problems. Among such models are several
well-known equations resulted from appropriate choices for the functions g and f in (1.1). For
example, the Nicholson equation for blowfly population growth corresponds to g(x) = μx and
f (x) = pxe−qx , and the Mackey–Glass equation for regulation of hematopoiesis is a result of
taking g(x) = μx and f (x) = ax

b+xm . For detailed derivation/explanation of such models, see,
e.g., Murray [19] and Cooke et al. [3] and the references therein.

The usual assumption of g(0) = f (0) = 0 implies that (1.1) has the trivial equilibrium x = 0.
For the case when f (x) allows (1.1) to have a unique positive equilibrium x+ (the so called
monostable nonlinearity, i.e., f (x) = g(x) has exactly one positive solution x+), x = 0 is typ-
ically unstable and x+ is either globally asymptotically stable in R+ (meaning that it attracts
all positive solutions) under certain range of the model parameters, or it will lose its stability
to periodic solutions around x+ arising from Hopf bifurcation. Overall, Eq. (1.1) with various
monostable nonlinearities has been extensively and intensively explored and the dynamics is well
understood now. See, e.g., [1,3–5,9–13,15–17,20,23,24,27] and the references therein.

In this paper, we are interested in the dynamics of (1.1) for the case when g(x) = f (x) has
two positive roots x1 < x2, referred to as the bistable case, in addition to the trivial equilibrium
x0 = 0. To proceed conveniently, let us give some standard assumptions representing bistable
case for (1.1):

(H1) g′(x) > 0 for all x ∈ [0,∞).
(H2) f (ξ) � 0 for all ξ � 0, and there exists a unique ξ0 > 0 such that f ′(ξ) > 0 if 0 < ξ < ξ0,

f ′(ξ0) = 0 = f ′(0) and f ′(ξ) < 0 if ξ > ξ0; furthermore, there exists a unique 0 < ξ1 < ξ0,
such that f ′′(ξ) > 0 if 0 < ξ < ξ1, f ′′(ξ1) = 0 and f ′′(ξ) < 0 if ξ0 > ξ > ξ1, and
limξ→∞ f (ξ) = 0.

(H3) In addition to the trivial root x = 0, f (x) = g(x) has two positive roots x1 < x2 satisfying
f (x) < g(x) for x ∈ (0, x1) ∪ (x2,∞) and f (x) > g(x) for x ∈ (x1, x2).

When g(x) and f (x) become tangential, x1 and x2 merge into a single one x1 = x2. A pro-
totype of such f is f (x) = px2e−qx representing the Allee effect in population biology, and
a typical g(x) is g(x) = μx.

To explain our motivations, let us first look at the corresponding ordinary differential equation
(ODE) obtained by taking τ = 0 in (1.1), that is,

ẋ(t) = −g
(
x(t)

) + f
(
x(t)

)
. (1.2)

Note that under (H1)–(H3), (1.1) and (1.2) share the (same) three equilibria 0 < x1 < x2.
For (1.2), it is easy to show that 0 and x2 are stable, and x1 not only is unstable but also
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plays a role of defining the basins of attraction for 0 and x2 in the sense that when the initial
value x0 ∈ [0, x1), the solution tends to the trivial equilibrium 0, while when x0 > x1, the so-
lution converges to the largest equilibrium x2, yielding a complete description of the dynamics
of (1.2).

Some questions naturally arise: (i) for (1.1), do 0 and x2 remain stable and is x1 still unstable?
(ii) if the answer to (i) is affirmative, what are the basins of the attraction of 0 and x2, and what
role does x1 play in describing these basins? (iii) what is the impact of τ on questions (i) and (ii)?
Addressing these questions constitutes the goal of this paper.

These questions are mathematically interesting and significant to the theory of delay differ-
ential equations, yet they are very challenging in the sense that finding complete answers seems
to be very difficult, if not impossible. As an initial attempt, we realistically only seek partial an-
swers in this paper. Motivated by Röst and Wu [20] where a monostable case is considered, we
first use the domain decomposition method to obtain a series of invariant intervals. We point out
that f can be non-monotone in these intervals, and hence the method in [20] cannot be applied
in this case and this forces us to seek new approaches. More precisely, we will make use of some
techniques for one-dimensional maps to give sufficient conditions that guarantee that all solu-
tions converge to an equilibrium on these invariant intervals. These results allow us to describe
the global dynamics of Allee-type model within certain range of parameters. Furthermore, we
also obtain some results on Hopf bifurcation and the existence of heteroclinic orbits, including
two types of heteroclinic orbits: orbit from one equilibrium to another one, and orbit from one
equilibrium to a periodic orbit oscillating around the largest positive equilibrium.

We point out that the idea of relating the dynamics of a map to the dynamics of a delay
differential equation has been used by some other researchers, among which are Mallet-Paret
and Nussbaum [18], Ivanov and Sharkovsky [7], Hale and Verduyn Lunel [6, Section 12.7] and
Liz [14]. Recently this idea has also been successfully employed to study some delay differential
equations with spatial diffusion in Yi and Zou [29–32].

The rest of this paper is organized as follows. Some preliminaries are given in Section 2
where we present some basic definitions and notations. In Section 3, we identify some invari-
ant sets and obtain some properties of the equilibria of model (1.1). Section 4 focuses on (1.1)
with g(x) = μx and f (x) = px2e−qx . By applying the results established in previous sec-
tions, we are able to obtain some more concrete results in terms of the model parameters. The
paper is concluded by a discussion on some related topics, raising some interesting open prob-
lems.

2. Preliminaries

Let C = C([−τ,0],R) be the Banach space of continuous functions defined in [−τ,0]
equipped with the usual supremum norm. The Banach space C contains the positive cone

C+ = {
φ ∈ C: φ(s) � 0, −τ � s � 0

}
,

which has non-empty interior Int(C+). Hence, it naturally induces the following order relations:
For any given φ,ψ ∈ C, we write φ � ψ if φ − ψ ∈ C+; φ > ψ if φ − ψ ∈ C+ \ {0}; φ � ψ if
φ − ψ ∈ Int(C+). Similarly, we can also define order relations <, � and 	.

For a given φ ∈ C+, by the method of steps together with (H1) and (H2), one can solve
Eq. (1.1) inductively on [0, τ ], [τ,2τ ], . . . , giving a unique solution xt ∈ C+ of Eq. (1.1) defined
for all t � 0. When we wish to emphasize the dependence of a solution on the initial data φ, we
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write xt (φ) or x(t, φ). Under the assumptions (H1) and (H2), Eq. (1.1) generates a semiflow Φ

on C+ by Φ(t,φ) = Φt(φ) = xt (φ), t � 0, φ ∈ C+.
Let I ⊆ R be a (possibly infinite) interval and CI � C([−τ,0], I ). For the sake of simplicity,

we denote CI by I when no confusion arises.
The semiflow Φ defined on C is said to be monotone or order preserving if

Φt(φ) � Φt(ψ) whenever φ � ψ and t � 0.

Let κ : C → R be the functional on the right hand side of (1.1), i.e.,

κ(φ) := −g
(
φ(0)

) + f
(
φ(−τ)

)
, ∀φ ∈ C.

For any y ∈ R, we also denote by y the constant function in C. The set of equilibria for (1.1) is
then given by E = {y ∈ C: g(y) = f (y) and y ∈ R+}.

For φ ∈ C, let O+(φ) = {Φt(φ): t � 0} be the positive orbit of φ ∈ C. The ω-limit set of
φ ∈ C is defined by ω(φ) = ⋂

t�0
⋃

s�t Φs(φ), i.e.,

ω(φ) =
{
ψ ∈ C:

there is a sequence {tn}n�0 in [0,∞)

satisfying tn → ∞ and Φtn(φ) → ψ as n → ∞
}

.

By a negative orbit we mean a function v : (−∞,0] → C such that Φt(v(s)) = Φ(v(t + s)) for
all t � 0 � s with t + s � 0. If v(0) = φ, we say that v is a negative orbit of φ. For a negative
orbit v, the α-limit set α(v) of v is the set of all limit points of v as t → −∞, i.e.,

α(v) =
{
ψ ∈ C:

there is a sequence {tn}n�0 in (−∞,0]
with tn → −∞ and Φtn(v0) → ψ as n → ∞

}
.

See [26,10,6,28] for more details.

3. Invariance and stability analysis

When g(x) = μx for μ > 0, Yi and Zou [30] established a fundamental lemma which played a
crucial role in [30] (see [30, Lemma 3.7]). We can prove a similar version of that lemma for (1.1),
as is done below.

Lemma 3.1. Let I ⊆ R+ be a closed interval. Assume g−1 ◦ f (I) ⊆ I , then the following state-
ments are true:

(i) xt (ϕ) ∈ CI for all (t, ϕ) ∈ R+ × CI ;
(ii) ω(CI ) ⊆ ⋂

n�0(g
−1 ◦ f )n(I ), where ω(CI ) �

⋂
s�0 Cl(

⋃
t�s Φt (CI )). That is, ω(ϕ) ⊆⋂

n�0(g
−1 ◦ f )n(I ) for all ϕ ∈ CI .

Proof. (i) Without loss of generality, we assume that I = [a, b] and g−1 ◦f (I) = [a, b]. For any
ϕ ∈ C+, if ϕ(0) = a, we have

−g
(
ϕ(0)

) + f
(
ϕ(−τ)

)
� 0;
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and if ϕ(0) = b, we obtain

−g
(
ϕ(0)

) + f
(
ϕ(−τ)

)
� 0.

By Remark 5.2.1 in [21], we conclude that xt (ϕ) ∈ CI for all (t, ϕ) ∈ R+ × CI .
(ii) From (i), we have ω(CI ) ⊆ CI . We shall show that ω(CI ) ⊆ g−1 ◦f (I). Suppose it is not

true, then ω(CI ) \ g−1 ◦ f (I) is non-empty. Thus, there exists ψ ∈ ω(CI ) such that

ψ(0) = inf
{
ϕ(0): ϕ ∈ ω(CI )

}
/∈ g−1 ◦ f (I), (3.1)

or

ψ(0) = sup
{
ϕ(0): ϕ ∈ ω(CI )

}
/∈ g−1 ◦ f (I). (3.2)

Without loss of generality, we assume (3.1) holds. By the invariance of ω(CI ), there is a solution
x : R → R, such that x0 = ψ and xt ∈ ω(CI ) for all t ∈ R. It is obvious that ẋ(0) = 0. By
ẋ(0) = −g(x(0)) + f (x(−τ)), we then have g(x(0)) = f (x(−τ)) implying that ψ(0) = g−1 ◦
f (ψ(−τ)) ∈ g−1 ◦ f (I), which is a contradiction to (3.1).

Let n∗ = sup{n � 0: ω(CI ) ⊆ ⋂n
k=0(g

−1 ◦ f )k(I )}. Then we have 1 � n∗ � ∞. To finish the

proof, we only prove that n∗ = ∞. Otherwise, 1 � n∗ < ∞. Noting that g−1 ◦ f (
⋂n∗

k=0(g
−1 ◦

f )k(I )) ⊆ ⋂n∗
k=0(g

−1 ◦ f )k(I ), replacing
⋂n∗

k=0(g
−1 ◦ f )k(I ) with I and applying the above

discussion, we have ω(
⋂n∗

k=0(g
−1 ◦ f )k(I )) ⊆ ⋂n∗+1

k=0 (g−1 ◦ f )k(I ), and hence

ω(CI ) ⊆ ω
(
ω(CI )

) ⊆ ω

(
n∗⋂

k=0

(
g−1 ◦ f

)k
(I )

)
⊆

n∗+1⋂
k=0

(
g−1 ◦ f

)k
(I ),

a contradiction to the definition of n∗. This completes the proof. �
Lemma 3.2. Let I ⊆ R+ be a bounded closed interval. Assume that

(H4) {x ∈ I : (g−1 ◦ f )2(x) = x} = {x∗} for some x∗ ∈ I .

Then, x∗ is a globally asymptotically stable equilibrium point in CI for Eq. (1.1).

Proof. By (H3) and Proposition 2.1 in [30], we have
⋂

n�0(g
−1 ◦ f )n(I ) = {x∗}. It follows

from Lemma 3.1-(ii) that ω(CI ) = {x∗}. Therefore, x∗ ∈ CI is a globally asymptotically stable
equilibrium point in CI for Eq. (1.1). �
Lemma 3.3. Assume that I ⊆ R+ is an interval and g−1 ◦ f (I) ⊆ I . Then, xt (ϕ) ∈ CI for all
(t, ϕ) ∈ [2τ,∞) × CI \ {{inf I, sup I } \ I }.

Proof. It is obvious that g−1 ◦f (I) ⊆ I . Without lose of generality, we assume I = [a, b); when
I takes other form, the proof of this lemma is similar and we omit it.

It follows from Lemma 3.1-(i) that

xt (ϕ) ∈ CI for all (t, ϕ) ∈ R+ × CI .
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Therefore,

xt (ϕ) ∈ C[a,b] for all (t, ϕ) ∈ R+ × C[a,b] \ {b}.

Assume that ϕ ∈ C[a,b] \ {b}, we first show there exists θ ∈ [0, τ ] such that x(θ,ϕ) < b. If
ϕ(0) < b, then ϕ(θ) < b with θ = 0. If ϕ(0) = b, then there exists θ1 ∈ [−τ,0] such that
ϕ(θ1) < b. We conclude that x(θ1 + τ,ϕ) < b. Otherwise, we have

x(θ1 + τ,ϕ) = b and 0 = ẋ(θ1 + τ,ϕ) = −g(b) + f
(
ϕ(θ1)

)
.

Therefore, g(b) = f (ϕ(θ1)) and b = g−1 ◦ f (ϕ(θ1)) ∈ g−1 ◦ f (I) ⊆ I , which is a contradiction
to b /∈ I . Thus x(θ,ϕ) < b with θ = θ1 + τ .

Let t∗ = inf{t � θ : x(t, ϕ) = b}. To complete the proof we must show t∗ = ∞. If t∗ < ∞,
then x(t∗, ϕ) = b. From (H1), there exist ε ∈ (0, t∗−θ

2 ) and μ∗ > 0 such that

g(b) − g
(
x(t, ϕ)

)
� μ∗(b − x(t, ϕ)

)
for any t ∈ (

t∗ − ε, t∗ + ε
)
.

Thus, for all t ∈ (t∗ − ε, t∗ + ε), we have

ẋ(t, ϕ) = −g
(
x(t, ϕ)

) + f
(
x(t − τ,ϕ)

)
= g(b) − g

(
x(t, ϕ)

) + f
(
x(t − τ,ϕ)

) − g(b)

� g(b) − g
(
x(t, ϕ)

)
� μ∗(b − x(t, ϕ)

)
.

Therefore,

x(t, ϕ) � b − e−μ∗(t∗−t− ε
2 )

[
b − x

(
t∗ − ε

2
, ϕ

)]
for any t ∈

[
t∗ − ε

2
, t∗ + ε

2

]
.

As ε ∈ (0, t∗−θ
2 ), we have x(t∗ − ε

2 , ϕ) < b, therefore, x(t, ϕ) < b for all t ∈ [t∗ − ε
2 , t∗ + ε

2 ]. In
particular, we have x(t∗, ϕ) < b, which yields a contradiction with x(t∗, ϕ) = b. This completes
the proof. �
Theorem 3.1. Assume that I ⊆ R+ is an interval with g−1 ◦ f (I) ⊆ I , and there is x∗ ∈ I

satisfying (H4). Additionally, assume that one of the following conditions holds:

(i) I = (a, b), and there exist sequences {ak} and {bk} in I such that ak → a, bk → b as k → ∞
and g−1 ◦ f ([ak, bk]) ⊆ [ak, bk];

(ii) I = [a, b), and there exists a sequence {bk} in I such that bk → b as k → ∞ and
g−1 ◦ f ([a, bk]) ⊆ [a, bk];

(iii) I = (a, b], and there exists sequence {ak} in I such that ak → a as k → ∞ and
g−1 ◦ f ([ak, b]) ⊆ [ak, b].

Then, x∗ is an asymptotically stable equilibrium point and it attracts all φ ∈ {x∗} ∪ CI \ {a, b}
for system (1.1).
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Proof. We only give the proof under (i), since the conclusions under (ii) and (iii) can be proved
by similar arguments.

From Lemma 3.3, we have xt (ϕ) ∈ CI for all ϕ ∈ CI \ {a, b} and t � 2τ . Clearly, we only
need to prove that x∗ attracts every φ ∈ CI . In fact, from (H4) and the assumptions in (i), we
have x∗ ∈ (ak0 , bk0) for some k0 � 1. From Lemma 3.2, x∗ attracts every φ ∈ C[ak0 ,bk0 ]. As
x∗ ∈ (ak0 , bk0), it is obvious that x∗ is stable in CI . For any ϕ ∈ CI , by Lemma 3.3, we have
x(2τ,ϕ) ∈ [ak1, bk1 ] for some k1 � 1. Again, Lemma 3.2 implies that ω(ϕ) = {x∗}, hence, x∗ is
globally asymptotically stable in CI . This completes the proof. �

Define F̂ (x) = f̂ −1 ◦ f (x), where f̂ (·) denotes the restriction of f to the interval [ξ0,∞).
Then, F̂ (x) = x for x ∈ [ξ0,∞) and F̂ (x) > ξ0 > x for x ∈ [0, ξ0). Under the assumptions (H1)
and (H2), we can obtain the positively invariant sets as stated in the following proposition.

Proposition 3.1. Assume that the assumptions (H1) and (H2) hold. Suppose (1.1) has a positive
equilibrium x+ ∈ [0, ξ0]. Then,

(i) the order interval C[0,g−1◦f (ξ0)] is positively invariant to the semiflow;

(ii) if g(F̂ (x+)) � f (ξ0), then the order interval C[x+,F̂ (x+)] is also positively invariant to the
semiflow.

Proof. (i) Let I = [0, g−1 ◦ f (ξ0)]. Then we have g(I) = [g(0), f (ξ0)] ⊇ f ([0, ξ0]) ⊇ f (I),
which together with Lemma 3.1-(i) implies that C[0,g−1◦f (ξ0)] is positively invariant.

(ii) Let I = [x+, F̂ (x+)]. Then we have g(I) = [g(x+), g(F̂ (x+))] ⊇ [f (x+), f (ξ0)] ⊇
f ([x+, F̂ (x+)]) = f (I), hence, g−1 ◦ f (I) ⊆ I . This, combined with Lemma 3.1-(i) implies
that CI is positively invariant. �

We are now in the position to state and prove our main theorems.

Theorem 3.2. Assume that the assumptions (H1) and (H2) hold. If 0 is the unique equilibrium
for (1.1), then it is globally asymptotically stable in C+.

Proof. The uniqueness of equilibrium for (1.1) shows that g(x) > f (x) for all x > 0. Therefore,
g−1 ◦ f ([0, k]) ⊆ [0, k] for any integer k � 1. It is easy to see that {x � 0: (g−1 ◦ f )2(x) =
x} = {0}. Thus, by Theorem 3.1-(ii), we know that 0 is globally asymptotically stable in C+. �
Theorem 3.3. Assume that the assumptions (H1)–(H3) hold. If x2 < ξ0, then,

(i) 0 attracts every ϕ ∈ C[0,x1] \ {x1} and thus is asymptotically stable in C+;
(ii) x2 is asymptotically stable attracting every ϕ ∈ C[x1,F̂ (x1)] \ {x1, F̂ (x1)};

(iii) x1 is unstable.

Proof. (i) Let I = [0, x1). If x ∈ I \ {0}, then g−1 ◦ f (x) < x, in particular, g−1 ◦ f (I) ⊆ I

and g−1 ◦ f ([0, x]) ⊆ [0, x]. Moreover, (g−1 ◦ f )2(x) < x for x ∈ I \ {0}, that is {x ∈ I :
(g−1 ◦ f )2(x) = x} = {0}. Therefore, Theorem 3.1-(ii) leads to (i).

(ii) Let I = (x1, F̂ (x1)). Then we have x < g−1 ◦ f (x) < x2 for any x ∈ (x1, x2), x2 <

g−1 ◦ f (x) < x for any x ∈ (x2, F̂ (x2)), x1 < g−1 ◦ f (x) < x2 for any x ∈ (F̂ (x2), F̂ (x1))

and g−1 ◦ f (F̂ (x2)) = x2. If (g−1 ◦ f )2(x) = x for some x ∈ I , then x = x2 follows from the



Author's personal copy

2108 C. Huang et al. / J. Differential Equations 256 (2014) 2101–2114

above discussions. Thus (H4) holds. Let a ∈ (x1, x2) and b = F̂ (a). Claim that g−1 ◦f ([a, b]) ⊆
[a, b]. In fact, if x ∈ [a, x2), then x < g−1 ◦ f (x) < x2, and thus g−1 ◦ f (x) ⊆ [a, b]; if
x ∈ [x2, F̂ (x2)], then x2 � g−1 ◦ f (x) < x, and thus g−1 ◦ f (x) ⊆ [a, b]; if x ∈ [F̂ (x2), b],
then a < g−1 ◦f (x) < x2, and thus g−1 ◦f (x) ⊆ [a, b]. Therefore, it easy to see that (ii) follows
from Theorem 3.1-(i).

(iii) follows from (i) and (ii) and the proof is completed. �
Theorem 3.4. Assume that the assumptions (H1)–(H3) hold with x2 � ξ0. Let B = g−1 ◦ f (ξ0),
A = g−1 ◦ f (B). Then the following statements are true.

(i) 0 is asymptotically stable in C+ and it attracts every ϕ ∈ C[0,x1] \ {x1};
(ii) A � B and x2 ∈ [A,B];

(iii) ω(ϕ) � B for all ϕ ∈ C+;
(iv) If A � x1, then C[A,B] is positively invariant;
(v) If A > x1, then ω(ϕ) � A for any ϕ ∈ C[x1,F̂ (x1)] \ {x1, F̂ (x1)};

(vi) If x2 = ξ0, then x2 is asymptotically stable in C+ and it attracts every ϕ ∈ C[x1,F̂ (x1)] \
{x1, F̂ (x1)}.

Proof. The proof of (i) is the same as the proof for Theorem 3.3-(i).
If x2 > ξ0, then A = g−1 ◦ f (B) < g−1 ◦ f (x2) = g−1 ◦ g(x2) = x2 = g−1 ◦ f (x2) < g−1 ◦

f (ξ0) = B . If x2 = ξ0, it is obvious that A = x2 = B holds. Hence, when x2 � ξ0, we have
A � x2 � B , proving (ii).

If x ∈ R+, then 0 � g−1 ◦f (x) � g−1 ◦f (ξ0) = B , thus g−1 ◦f (R+) ⊆ [0,B]. This together
with Lemma 3.1-(ii) implies that ω(ϕ) � B for all ϕ ∈ C+, proving (iii).

We claim that g−1 ◦ f ([A,B]) ⊆ [A,B]. Otherwise, there is x ∈ [A,B] such that g−1 ◦
f (x) < A or g−1 ◦ f (x) > B . If g−1 ◦ f (x) < A, then f (x) < g(A) = f (B). But f (B) =
minA�x�B{f (x)}, a contradiction. If g−1 ◦ f (x) > B , then f (x) > g(B) = f (ξ0). But f (ξ0) =
maxA�x�B{f (x)}, a contradiction. Therefore, by Lemma 3.1-(i), C[A,B] is positively invariant,
proving (iv).

In this case, we have g−1 ◦ f ([A,B]) ⊆ [A,B], x < g−1 ◦ f (x) � B for all x ∈ (x1,A) and
g−1 ◦ f ((B, F̂ (x1))) ⊆ (x1,A). Let a ∈ (x1, x3), b = F̂ (a), where x3 = f̌ −1 ◦ g(A), and f̌ (·)
denotes the restriction of f to the interval [0, ξ0]. Then b ∈ (B, F̂ (x1)), g−1 ◦ f ([a, b]) ⊆ [a, b]
and g−1 ◦ f ([a, b]) ⊆ [a,B]. Let I = ⋂

n�1(g
−1 ◦ f )n([a,B]). Then I ⊆ [A,B]. Otherwise,

I \ [A,B] �= ∅, that is, there is x ∈ I \ [A,B]. Let x4 = inf I . Then x4 < A. The invariance
of I under g−1 ◦ f implies that there is x5 ∈ I such that g−1 ◦ f (x5) = x4. This together with
g−1 ◦ f ([A,B]) ⊆ [A,B], implies that x5 ∈ [x4,A) and thus g−1 ◦ f (x5) > x5. Thus x4 > x5,
a contradiction. So, I ⊆ [A,B]. This, combined with Lemma 3.1-(ii) and Lemma 3.3, shows that
ω(ϕ) � A for any ϕ ∈ C[x1,F̂ (x1)] \ {x1, F̂ (x1)}, proving (v).

Finally, if x2 = ξ0, then x2 = ξ0 = B = A > x1. By (ii)–(v), we conclude that ξ0 attracts
every ϕ ∈ C[x1,F̂ (x1)] \ {x1, F̂ (x1)} and thus is asymptotically stable, proving (vi). The proof is
completed. �

For the tangential case where the two positive equilibria x1 and x2 merge into a single one,
we have the following theorem.

Theorem 3.5. Assume that the assumptions (H1) and (H2) hold. Suppose that in addition to the
trivial equilibrium, (1.1) has a unique positive equilibrium x1. Then,
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(i) ω(ϕ) ⊆ [0, ξ0] for every ϕ ∈ C+;
(ii) 0 is asymptotically stable and it attracts every ϕ ∈ C[0,x1] \ {x1};

(iii) x1 is unstable in C+ but it attracts every ϕ ∈ C[x1,F̂ (x1)].

Proof. By the uniqueness of the positive equilibrium, we know that x1 � ξ0 and g(x) > f (x)

for x ∈ (0, x1) ∪ (x1,∞). Since g−1 ◦ f (R+) ⊆ g−1 ◦ f ([0, ξ0]) ⊆ [0, ξ0], by Lemma 3.1-(ii),
we conclude that ω(ϕ) ⊆ [0, ξ0] for any ϕ ∈ C+, proving (i).

Let I = [0, x1] and choose bk = x1 − 1
k

where k is a positive integer. Then we have
g−1 ◦ f (I) ⊆ I and g−1 ◦ f ([0, bk]) ⊆ [0, bk] for sufficiently large k. If x ∈ I \ {0}, then
g−1 ◦ f (x) < x, and hence (g−1 ◦ f )2(x) < x, which implies {x ∈ I : (g−1 ◦ f )2(x) = x} = {0}.
It follows from Theorem 3.1-(ii) that limt→∞ x(t, ϕ) = 0 for ϕ ∈ C[0,x1] \ {x1}, hence 0 attracts
every ϕ ∈ C[0,x1] \ {x1} and thus is asymptotically stable in C+, proving (ii).

By (i), it suffices to prove that x1 attracts every ϕ ∈ C[x1,F̂ (x1)]. Indeed, let I = [x1, F̂ (x1)].
Then we have f (I) ⊆ [f (x1), f (ξ0)] ⊆ [g(x1), g(ξ0)] = g([x1, ξ0]) ⊆ g(I). If x ∈ I \ {x1}, then
g−1 ◦ f (x) < x, and hence (g−1 ◦ f )2(x) < x, implying {x ∈ I : (g−1 ◦ f )2(x) = x} = {x1}.
This, combined with Lemma 3.2 yields (iii). �
Remark 3.1. From Theorem 3.5-(ii), if x1 is the unique positive equilibrium for Eq. (1.1), it is
easy to see that every solution eventually enters the order interval C[0,ξ0], which is positively
invariant, and confined to which the semiflow is monotone. Since limt→∞ x(t, ξ0) = x1, it is
obvious that lim supt→∞ x(t,ψ) � limt→∞ x(t, ξ0) = x1 for all ψ ∈ C+. In other words, x(t,ψ)

cannot ‘oscillate’ between the intervals [0, x1] and (x1, ξ0] infinitely (i.e., oscillate about x1)
since it is attracted to [0, x1].
4. Application to a model with Allee effect

In this section, we apply the general results obtained in Section 3 to the following delay
differential equation

dN(t)

dt
= −μN(t) + a1N

2(t − τ)e−a2N(t−τ), for t � 0, (4.1)

where μ, a1, a2 are positive constants, the variable N(t) stands for the matured population at
time t and τ > 0 is the maturation time of the species under consideration. In this model, the
death function g(N) = μN and the birth function f (N) = a1N

2e−a2N reflects the so called
Allee effect (see, e.g., [2,25]). Obviously, the functions g(N) = μN and f (N) = a1N

2e−a2N

satisfy the assumptions (H1) and (H2) and f reaches the maximum value 4a1/a
2
2e−2 at the point

ξ0 = 2/a2.
The equilibria of (4.1) are determined by the following scalar equation

μN = a1N
2e−a2N. (4.2)

Analyzing (4.2), we can easily obtain the structure of the equilibria of (4.1), which is summarized
in the following proposition.

Proposition 4.1. Eq. (4.1) has a trivial equilibrium N0 = 0. In addition,

(i) if μ > a1
a2e

, Eq. (4.1) has no positive equilibrium;



Author's personal copy

2110 C. Huang et al. / J. Differential Equations 256 (2014) 2101–2114

Fig. 1. Illustration of equilibria of Eq. (4.1), where a1 = a2 = 2, p = a1
a2e = 1

e , q = 2
a2

= 1.

(ii) if μ = a1
a2e

, Eq. (4.1) has exactly one positive equilibrium N1 = 1
a2

;
(iii) if 0 < μ < a1

a2e
Eq. (4.1) has exactly two positive equilibria N1 < N2. Moreover,

(iii)-1 if 2a1
a2e

2 < μ < a1
a2e

, then 0 < N1 < 1
a2

< N2 < 2
a2

;

(iii)-2 if μ = 2a1
a2e

2 , then 0 < N1 < 1
a2

< N2 = 2
a2

;

(iii)-3 if 0 < μ < 2a1
a2e

2 , then 0 < N1 < 1
a2

< 2
a2

< N2.

The above results are visually demonstrated in Fig. 1.
Applying Theorem 3.2 and Proposition 4.1, we immediately have the following theorem.

Theorem 4.1. If μ > a1
a2e

, then N0 = 0 is a globally asymptotically stable equilibrium of
Eq. (4.1).

For the case (iii)-1 in Proposition 4.1, we have the following result.

Theorem 4.2. Assume that 2a1
a2e

2 � μ < a1
a2e

. Then,

(i) N0 = 0 is asymptotically stable in C+ and it attracts every ϕ ∈ C[0,N1] \ {N1};
(ii) N1 is unstable, and N2 is asymptotically stable in C+ attracting every ϕ ∈ C[N1,N̂1] \

{N1, N̂1} where N̂1 ∈ [ 2
a2

,∞) satisfies f (N̂1) = f (N1);

(iii) there exist two heteroclinic orbits N(1)(t) and N(2)(t), connecting N0 and N1, and N1
and N2 respectively.

Proof. (i) and (ii) directly follow from Proposition 4.1-(iii)-1 and Theorem 3.3.
(iii) Let K = {N1}. Clearly, K is an isolated and unstable compact invariant set in C[0,N1]

and C[N1,N̂1], respectively. By applying Corollary 2.9 in [28] to Φ|R+×C[0,N1] and Φ|R+×C[N1,N̂1] ,

respectively, there exist two pre-compact full orbits N(1) : R → C[0,N1] \ {0} and N(2) : R →
C[N1,N̂1] \ {0} such that α(N(1)) = α(N(2)) = K . These together with statements (i) and (ii),

imply ω(N(1)) = {0} and ω(N(2)) = {N2}. In other words, there exist two heteroclinic orbits
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N(1)(t) and N(2)(t) with the first connecting N0 and N1 and the second connecting N1 and N2.
This completes the proof. �

To consider the cases 2 and 3 in Proposition 4.1-(iii), we first calculate

B = g−1 ◦ f (ξ0) = 4a1

μa2
2e2

, A = g−1 ◦ f (B) = 16a3
1

μ3a4
2e4

e
− 4a1

μa2e2
. (4.3)

Theorem 4.3. Assume that 0 < μ � 2a1
a2e

2 and let A and B be given by (4.3). Then,

(i) N0 = 0 is asymptotically stable in C+ and it attracts every ϕ ∈ C[0,N1] \ {N1}, and thus N1
is unstable in C+;

(ii) A � N2 � B;
(iii) ω(ϕ) � B for every ϕ ∈ C+;
(iv) if A � N1, then C[A,B] is positively invariant for (4.1);
(v) if A > N1, then ω(ϕ) � A for every ϕ ∈ C[N1,N̂1] \ {N1, N̂1} where N̂1 ∈ [ 2

a2
,∞) satisfies

f (N̂1) = f (N1);
(vi) if μ = 2a1

a2e
2 , then N2 is asymptotically stable in C+ and it attracts every ϕ ∈ C[N1,N̂1] \

{N1, N̂1} where N̂1 ∈ [ 2
a2

,∞) satisfies f (N̂1) = f (N1);
(vii) there exists a heteroclinic orbit N , which connects N0 and N1.

Proof. Clearly, by cases 2, 3 in Proposition 4.1-(iii), we easily see that statements (i)–(vi) follow
from corresponding conclusions of Theorem 3.4.

(vii) Let K = {N1}. Clearly, by the second result in statement (i), we know that K is an isolated
and unstable compact invariant set in C[0,N1]. By applying Corollary 2.9 in [28] to Φ|R+×C[0,N1] ,
there exists a pre-compact full orbits N : R → C[0,N1] \ {0} such that α(N) = K . This together
with the first result in statement (i) gives ω(N) = {N0}. In other words, there exists a heteroclinic
orbit N which connects N0 and N1. This completes the proof. �

Under the conditions of Theorem 4.3, if A > 2
a2

is further satisfied, then we can conclude a
bit more than that in Theorem 4.3.

Theorem 4.4. If 0 < μ < 2a1
a2e

2 and A > 2
a2

, then for every φ ∈ C[N1,F̂ (N1)] \ {N1, F̂ (N1)}, ω(φ) is

either {N2} or a periodic orbit oscillating about N2.

Proof. Clearly, Proposition 3.1-(i) and Theorem 4.3-(iv) imply that C[N1,N̂1] and C[A,B] are
positively invariant. Again by Theorem 4.3-(iii) and (v), we know that ω(ϕ) ⊆ C[A,B] for all
ϕ ∈ C[N1,N̂1] \ {N1, N̂1} with B = 4a1/(μa2

2e2) < N̂1.
Choose a constant η such that 2/a2 < η < A and consider the following auxiliary functional

differential equation

dN(t)

dt
= −μN(t) + h

(
N(t − τ)

)
, for t � 0, (4.4)

where

h(N) :=
{

f (N) if N � η,

f (η) − f ′(η) + f ′(η)eN−η if N < η.
(4.5)
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Eq. (4.4) generates a semiflow Φ̂ on the whole space C. It is easy to check that h(N) →
f (η) − f ′(η) as N → −∞, h(N) → 0 as N → ∞, and h is differentiable and monotonically
decreasing on R. Hence the corresponding semiflow Φ̂ is generated by a scalar delay differential
equation with delayed negative feedback. By the Poincaré–Bendixson type theorem in [26, Theo-
rem 10.1], we know that for every ψ ∈ C, ω(ψ; Φ̂) (ω-limit set with respect to Φ̂) is either {N2}
or a periodic orbit oscillating about N2. On the other hand, for any ϕ ∈ C[N1,N̂1] \ {N1, N̂1},
there exists a T0 > 0 such that Φ(t,ϕ) > η for all t � T0. Since f and h coincide on [η,∞), we
have Φ̂(t,Φ(T0, ϕ)) = Φ(t,Φ(T0, ϕ)) = Φ(t + T0, ϕ) for all t � 0, and thus ω(ϕ) = ω(ϕ; Φ̂).
Therefore, the ω-limit set of ϕ with respect to Φ is also either {N2} or a periodic orbit oscillating
about N2. This completes the proof. �

For the tangential case for (4.1), we have the following theorem.

Theorem 4.5. If μ = a1
a2e

, then

(i) ω(ϕ) ⊆ [0, 2
a2

] for every ϕ ∈ C+;

(ii) N0 = 0 is asymptotically stable in C+ and it attracts every ϕ ∈ C[0, 1
a2

] \ { 1
a2

};
(iii) the unique positive equilibrium N1 = 1

a2
is unstable in C+ but it attracts every ϕ ∈

C[ 1
a2

,F̂ ( 1
a2

)];
(iv) there exists a heteroclinic orbit N : R → R+ such that N(∞) = N1 and N(−∞) = N0.

Proof. (i)–(iii) directly follow from Proposition 4.1 and Theorem 3.5.
(iv) Let K = {N1}. Clearly, by statement (iii), we know that K is an isolated and unstable

compact invariant set in C[0,N1]. By applying Corollary 2.9 in [28] to Φ|R+×C[0,N1] , there exists
a pre-compact full orbit N : R → CR+×[0,N1] \ {0} such that α(N) = K . This together with
statement (ii) gives ω(N) = {N0}. In other words, there exists a heteroclinic orbit N(t) which
connects N0 and N1. This completes the proof. �

From the above theorems, we see that when 2a1
a2e

2 � μ � a1
a2e

, the stability/instability of the
three equilibrium N0 = 0, N1 and N2 remain the same as in the corresponding equation obtained
by dropping the delay τ . This is because all three equilibria are in the invariant set C[0,ξ0] and on
this set, the solution semiflow is monotone. Thus, by the theory on monotone delay differential
equations (see [21]), delay has no effect on the stability/instability of the three equilibrium. How-
ever, when μ < 2a1

a2e
2 , we have N2 > ξ0 and hence N2 is no longer in C[0,ξ0]. In such a case, it is

possible that the delay may destroy the stability of N2 through Hopf bifurcation causing periodic
solutions. A standard Hopf bifurcation analysis on N2 can confirm such periodic solutions (see,
e.g., [20]) around N2 caused by large delay.

5. Discussion

We have obtained some preliminary results on comparing the stability of the common equi-
libria of the DDE (1.1) and the corresponding ODE (1.2) with bistable nonlinearities, which give
some partial answers to the questions raised in the introduction. Roughly speaking, by using
dynamical system approach (mainly invariance arguments), we have shown that within certain
range of parameters, the stability/instability of the equilibria for the DDE (1.1) remain the same
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as the corresponding ODE (1.2), and the middle equilibrium x1 plays a sort of separating role in
the sense that for an initial function ϕ having an order relation with x1, the corresponding solu-
tion converges either to the trivial equilibrium x0 = 0 (if ϕ < N1), or to the largest equilibrium x2
(if ϕ > N1). There are also ranges of parameters for which x2 is asymptotically stable for (1.2)
but is unstable for the DDE (1.1) due to Hopf bifurcation.

We point out that as far as the basin of attraction is concerned, our results can only characterize
some subsets of the basins for both stable equilibria x0 and x2. When an initial function ϕ does
not have an order relation with the middle equilibrium x1 (i.e., ϕ(θ) crosses x1 on [−τ,0]), it
seems to be very difficult to determine the tendency of the corresponding solution. Even in the
tangential case when x1 and x2 merge into a single positive equilibrium, there is also a similar
problem: determining the tendency of solutions with initial function crossing x1 on [−τ,0]. It
seems that some averaging technique needs to be developed which should combine the pattern
of the initial function and the functions g(x) and f (x). We have to leave this challenging yet
interesting problem as future research project(s).

In this paper, we only consider scalar equations for which the equilibria are relative easier to
determine than for systems. Similar situation may also occur in systems, particularly in compet-
itive systems, even without delay. Indeed, Smith and Thieme [22] showed that for a competitive
system, assuming that there is a unique co-existence equilibrium (which is a saddle, destroying
competition exclusion), the two single-population steady states for the system would both be
locally asymptotically stable; moreover, there exists a separatrix that separate the basins of the
attraction of these two stable single-population steady states. Noticing that competitive systems
are monotone, Jiang et al. [8] generalized Smith and Thieme’s results to the general monotone
semiflows and some reaction–diffusion systems. Completely determining such a separatrix also
remains a challenge for most, if not all, model systems.
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