
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

J. Differential Equations 251 (2011) 2598–2611

Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Global dynamics of a delay differential equation with spatial
non-locality in an unbounded domain ✩

Taishan Yi a, Xingfu Zou b,∗
a College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082, PR China
b Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada N6A 5B7

a r t i c l e i n f o a b s t r a c t

Article history:
Received 6 January 2011
Revised 19 April 2011
Available online 23 June 2011

MSC:
34D23
39A30

Keywords:
Compact open topology
Global dynamics
Population dynamics
a priori estimate
Spatial non-locality
Unbounded domain

In this paper, we study the global dynamics of a class of differential
equations with temporal delay and spatial non-locality in an
unbounded domain. Adopting the compact open topology, we
describe the delicate asymptotic properties of the nonlocal delayed
effect and establish some a priori estimate for nontrivial solutions
which enables us to show the permanence of the equation.
Combining these results with a dynamical systems approach, we
determine the global dynamics of the equation under appropriate
conditions. Applying the main results to the model with Ricker’s
birth function and Mackey–Glass’s hematopoiesis function, we
obtain threshold results for the global dynamics of these two
models. We explain why our results on the global attractivity of
the positive equilibrium in C+ \{0} under the compact open topology
becomes invalid in C+ \ {0} with respect to the usual supremum
norm, and we identify a subset of C+ \ {0} in which the positive
equilibrium remains attractive with respect to the supremum norm.
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1. Introduction

There has been much interest in population dynamics described by models with age and spatial
structures [19]. Gourley and Wu [6] provide a nice survey on models with temporal delay and spatial
non-locality, as well as some existing results on such models. Among these models is the following
delayed reaction–diffusion equation with a spatial non-locality, which was derived and studied by So
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et al. [24]:

∂u(t, x)

∂t
= D

∂2u(t, x)

∂x2
− δu(t, x) + ε

∫
R

Γα(x − y)b
(
u(t − τ , y)

)
dy, t � 0, x ∈ R. (1.1)

Here u(t, x) is the mature population of a species at time t and location x, D and δ are the diffu-
sion rate and the death rate of the mature population; the other two indirect parameters ε and α
are defined by ε = e−δiτ and α = Diτ where Di and δi are the diffusion rate and the death rate
of the immature population of the species; b(u) is a birth function and the kernel function fα(u)

parameterized by α is given by

Γα(u) = 1√
4πα

e−u2/4α.

Obviously, α measures the mobility of the immature individuals, ε measures the probability that
a new born can survive the immature period, and fα(x − y) accounts for the probability that an
individual born at location y at time t − τ will be at location x at time t .

We point out that when considering a species that habitats in a bounded domain Ω , similar
models have also been derived/proposed in Liang et al. [16] and Xu and Zhao [30], in which the
model equations are also in the form of (1.1) except that the integrals are in a bounded domain.
Moreover, depending on the forms of boundary condition associated to the differential equation, the
kernel function Γα(u) will take different forms.

In nature, there are species, such as birds, whose immature individuals do not move around but
the mature ones do. For such species, letting α → 0, the model (1.1) reduces to the following spatially
local model

∂u(t, x)

∂t
= D

∂2u(t, x)

∂x2
− δu(t, x) + εb

(
u(t − τ , x)

)
, t � 0, x ∈ R. (1.2)

For this equation, traveling wavefront is an important class of solutions, which may explain spatial
invasion of the species [3–5,26]. When the birth function is taken to be Ricker’s function b(u) =
pue−qu , the existence and stability of traveling wavefronts solutions have been investigated in [26,18].

There are also species whose immature individuals diffuse but their mature individuals do not.
Barnacles as well as mussels are among such species. Taking barnacles as an example, they are exclu-
sively marine and tend to live in shallow and tidal waters, typically in erosive settings [29]. Barnacles
have two distinct larval stages, the nauplius and the cyprid, before developing into a mature adult.
A fertilized egg hatches into a nauplius: a one eyed larva comprising a head and a telson, without a
thorax or abdomen. This undergoes six months of growth before transforming into the bivalved cyprid
stage. Nauplii are typically initially brooded by the parent, and released as free-swimming larvae after
the first moult. The cyprid stage lasts from days to weeks. During this part of the life cycle, the barna-
cle searches for a place to settle. It explores potential surfaces with modified antennules; once it has
found a potentially suitable spot, it attaches head-first using its antennules and a secreted glycopro-
teinous substance, and then cements down permanently with another proteinacous compound. Once
this accomplished, the barnacle undergoes metamorphosis into a juvenile barnacle. In the spot, the
barnacle further grow mature by developing six hard calcareous plates to surround and protect their
bodies. For the rest of their lives they are cemented to the ground, using their feathery legs (cirri) to
capture plankton, and producing offspring by laying eggs in the same spot. See [29] for more details.
From the life cycle of barnacles, it is clear that their population can be described by the equation
resulted from letting D = 0 in (1.1), that is,

∂u(t, x)

∂t
= −δu(t, x) + ε

∫
R

Γα(x − y)b
(
u(t − τ , y)

)
dy, t � 0, x ∈ R. (1.3)
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The above information also tells that the maturation delay τ for a barnacle species can be very large
(six months).

Note that further letting α → 0 in (1.3) leads to the following point-wise delayed ODE

∂u(t)

∂t
= −δu(t) + εb

(
u(t − τ )

)
, t � 0, (1.4)

whose dynamics have been extensively and intensively studied, see e.g., [1,2,7,8,10–12,14,15,22,28]
and the references therein. One naturally wonders how the global dynamics of the delayed ODE model
(1.4) is related to that of the model equation (1.1) or (1.2) or (1.3) where a spatial variable x is
involved. Note that the spatial domain in (1.1), (1.2), (1.3) is unbounded. The lack of compactness of
this domain R gives rise to a challenge in applying methods and/or tools from dynamical system
theory to explore the global dynamics of these equations. This may explain (at least partially) why
results on global dynamics of such equations are so scare in literature and most research works on
such equations are only on traveling wave solutions (a special class of solutions) and spread speeds.

In this paper, we make an attempt in this direction—the direction of studying the global dynamics,
but we only confine ourselves to (1.3). For convenience, we consider the following re-scaled version
of (1.3):

⎧⎪⎨
⎪⎩

∂u

∂t
(t, x) = −μu(t, x) + μ

∫
R

k(x − y) f
(
u(t − 1, y)

)
dy, for all (t, x) ∈ (0,∞) × R,

u(θ, x) = φ(θ, x) for all (θ, x) ∈ [−τ ,0] × R,

(1.5)

where μ > 0, f : R+ → R+ is a continuous function with f (0) = 0, and k : R → R+ is a continu-
ous function with

∫
R k(y)dy = 1. Here, an initial condition is incorporated with φ(θ, x) � 0 being

continuous in [−τ ,0] × R.
The non-compactness of the spatial domain prohibit us from employing many nice results in dy-

namical system theory. To overcome this difficulty of non-compactness, we first introduce the compact
open topology. We then prove that each solution of (1.5) will be attracted to a uniformly bounded and
positively invariant set. Then we show that the solution map of (1.5) induces a continuous semiflow
on each uniformly bounded and positively invariant set in which each orbit is pre-compact, but this
semiflow is not a compact semiflow (see Remark 2.1). Thirdly, by describing the delicate asymptotic
properties of the nonlocal delayed effect, we establish some a priori estimate for nontrivial solutions
which enables us to show the permanence of the equation. Combine these results with a dynamical
systems approach, we are able to determine the global dynamics of the equation under appropri-
ate conditions. Applying the main results to two particular models with Ricker’s birth function and
Mackey–Glass’s hematopoiesis function, we obtain threshold results on the global dynamics of these
models. We point out that the global attractivity of the trivial equilibrium is within the positive
cone C+ with respect to the usual supremum norm, while the global attractivity of the positive equi-
librium u∗ is within C+ \ {0} with respect to the compact open topology. Finally in Section 5, we will
show that with respect to the supremum norm, u∗ cannot be globally attractive in C+ \ {0} itself, and
will illustrate this by considering the local version (1.2) with Ricker’s birth function. Indeed, existence
of traveling wave fronts for this equation will prevent u∗ from attracting all solutions in the sense of
the usual supremum norm in C+ \ {0}. Motivated by the role of traveling wave fronts, we identify a
subset, denoted by C>+ \ {0}, of C+ \ {0} in which, the positive equilibrium u∗ is also globally attractive
with respect to the supremum norm.

2. Preliminaries and basic hypothesis

We first introduce some notations. Let N, R and R+ be the sets of all positive integers, reals,
and nonnegative reals, respectively. Let X = BC(R,R) be the normed vector space of all bounded and
continuous functions from R to R with the usual compact open topology induced by norm ‖φ‖X �∑

n�1 2−n sup{|φ(x)|: x ∈ [−n,n]} for all φ ∈ X . Let X+ = {φ ∈ X: φ(x) � 0 for all x ∈ R} and Xo+ =
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{φ ∈ X: φ(x) > 0 for all x ∈ R}. It follows that X+ is a closed cone in the normed vector space X ,
but Xo+ �= Int(X+) due to the non-compactness of the spatial domain R. Let C = C([−1,0], X) be
the normed vector space of continuous functions from [−1,0] into X with the usual compact open
topology induced by norm ‖ϕ‖C = sup{‖ϕ(θ)‖X : θ ∈ [−1,0]}, let C+ = C([−1,0], X+) and let Co+ =
C([−1,0], Xo+). Then C+ is a closed cone of C , but Co+ �= Int(C+).

For convenience, we shall identify an element ϕ ∈ C as a function from [−1,0] × R into R. For

a ∈ R , â ∈ X is defined as â(x) = a for all x ∈ R. Similarly, ˆ̂a ∈ C is defined as ˆ̂a(θ) = â for all θ ∈
[−1,0]. For any φ,ψ ∈ X , we write φ �X ψ if φ − ψ ∈ X+ , φ >X ψ if φ �X ψ and φ �= ψ . For any
ξ,η ∈ C , we write ξ �C η if ξ − η ∈ X+ , ξ >C η if ξ �C η and ξ �= η. For simplicity of notations, we

shall write a � â and a � ˆ̂a, and write �, > and ‖ · ‖ for �∗ , >∗ and ‖ · ‖∗ respectively, where ∗ stands
for X or C .

For a real interval I , let I + [−1,0] = {t + θ : t ∈ I and θ ∈ [−1,0]}. For u : (I + [−1,0]) × R → R
and t ∈ I , we write ut(·,·) for the element of C defined by ut(θ, x) = u(t + θ, x), for all θ ∈ [−1,0] and
x ∈ R.

Let μ > 0 and f : R+ → R+ be a continuous function with f (0) = 0. Consider the following scalar
equation with temporal delay and spatial non-locality

⎧⎪⎨
⎪⎩

∂u

∂t
(t, x) = −μu(t, x) + μ

∫
R

f
(
u(t − 1, y)

)
k(x − y)dy, for all (t, x) ∈ (0,∞) × R,

u(θ, x) = ϕ(θ, x), for all (θ, x) ∈ [−τ ,0] × R,

(2.1)

where ϕ ∈ C+ . The kernel function is always assumed to satisfy the following:

(A) k ∈ C(R,R+), k(0) > 0,
∫

R k(y)dy = 1 and k(x) = k(−x) for all x ∈ R.

By an argument of steps, we know that for any given ϕ ∈ C+ , (2.1) has a unique solution in C+ for all
t � 0. Denote this solution by uϕ(t, x).

Define F : C+ → X+ by F (ϕ)(x) = ∫
R f (ϕ(−1, y))k(x − y)dy for all x ∈ R and ϕ ∈ C+ . Then, as

usual, associated to (2.1) is the following integral equation with the given initial function:

⎧⎪⎪⎨
⎪⎪⎩

u(t, ·) = e−μtϕ(0, ·) +
t∫

0

μe−μ(t−s) F (us)ds, t � 0,

u0 = ϕ ∈ C+.

(2.2)

In the sequel, we will mainly use (2.2) to investigate the asymptotic behavior of solution (2.1).
To proceed, we always assume, in the rest of this paper, that f satisfies the following conditions:

(H1) There exists M > 0 such that f (x) ∈ (0, M] for all x ∈ (0,∞).
(H2) f is a continuously differentiable function on some right-neighborhood of 0.

Lemma 2.1. Let Br = {φ ∈ X: |φ(x)| � r for all x ∈ R} and dr(φ,ψ) = ‖φ − ψ‖, where r > 0. Then the
following statements are true:

(i) If φn, φ ∈ Br with n ∈ N, then limn→∞ dr(φn, φ) = 0 if and only if limt→∞ sup{|φn(x)−φ(x)|: x ∈ I} = 0
for any bounded and closed interval I ⊆ R.

(ii) Let A ⊆ Br . Then A is pre-compact if and only if AI = {φ|I : φ ∈ A} is a family of equicontinuous functions,
for any bounded and closed interval I ⊆ R.

Lemma 2.2. Define K : X → X by K (φ)(x) = ∫
R φ(y)k(x − y)dy for all x ∈ R and φ ∈ X. Then the linear

operator K satisfies the following:
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(i) K (X+) ⊆ X+ .
(ii) There is a∗ = a∗(K ) > 0 such that for any interval I ≡ [c,d] ⊆ R and n ∈ N, K n(Xo+(I)) ⊆ Xo+([c − na∗,

d + na∗]), where Xo+(I) = {φ ∈ X+: φ(x) > 0 for all x ∈ I}.
(iii) K (B1) ⊆ B1 .
(iv) K |B1 : B1 → B1 is a continuous and compact map, where B1 with topology induced by d1 .

Proof. (i) and (iii) immediately follow from the definition of K .
(ii): Obviously, by k(0) > 0, there exists a∗ > 0 such that k(x) > 0 for all x ∈ [−a∗,a∗]. Suppose that

I ≡ [c,d] ⊆ R and φ ∈ Xo+(I). We claim that for any n ∈ N, K n(φ)(x) > 0 for all x ∈ [c − na∗,d + na∗].
We shall finish the proof of this claim by induction. If n = 1, then K (φ)(x) = ∫

R φ(x + y)k(−y)dy.
For any x ∈ [c − a∗,d + a∗], there exists y∗ ∈ [−a∗,a∗] such that x + y∗ ∈ [c,d], and hence φ(x +
y∗)k(−y∗) > 0 and

∫
R φ(x + y)k(−y)dy > 0. Thus, K (φ)(x) > 0 for all x ∈ [c − a∗,d + a∗]. Now we

assume that the claim holds when n = i. If n = i + 1, then by the assumption, K i(φ)(x) > 0 for all
x ∈ [c − ia∗,d + ia∗]. By applying the claim with n = 1 to K i(φ), we have K i+1(φ)(x) = K (K i(φ))(x)
for all x ∈ [c − (i + 1)a∗,d + (i + 1)a∗]. Thus, the claim holds and implies the statement (ii).

(iv): Firstly, the continuity of K can be easily shown by employing some standard arguments
together with Lemma 2.1(i) and the fact that

∫
R k(y)dy = 1.

Next, we show that K |B1 is compact. It suffices to prove that K (B1) is a pre-compact subset in
(B1,d1). By Lemma 2.1(ii), for any bounded and closed interval I ≡ [a,b] ⊆ R, it suffices to prove that
AI ≡ {φ|I : φ ∈ K (Br)} is a family of equicontinuous functions in C(I,R). Indeed, for any ε > 0, there
exists T = T (ε) > 0 such that

∫
|y|�T k(y)dy < ε

6 . Let T ∗ = T + max{|a|, |b|,0} and I∗ = [−T ∗, T ∗].
Then there exists δ = δ(ε, I) ∈ (0,1) such that |k(z) − k(z̃)| < ε

1+3T ∗ when z, z̃ ∈ [−1 − T ∗,1 + T ∗] and
|z − z̃| < δ. It follows from the definition of K that for any φ ∈ K (B1), x, x̃ ∈ I and |x − x̃| < δ, we have

∣∣K (φ)(x) − K (φ)(x̃)
∣∣

=
∣∣∣∣
∫
R

φ(y)
(
k(x − y) − k(x̃ − y)

)
dy

∣∣∣∣
�

∫
y∈[−T ∗,T ∗]

∣∣φ(y)
∣∣ · ∣∣k(x − y) − k(x̃ − y)

∣∣dy +
∫

y /∈[−T ∗,T ∗]

∣∣φ(y)
∣∣ · ∣∣k(x − y) − k(x̃ − y)

∣∣dy

�
∫

y∈[−T ∗,T ∗]

∣∣φ(y)
∣∣ · ∣∣k(x − y) − k(x̃ − y)

∣∣dy + 2
∫

y /∈[−T ,T ]

∣∣φ(x + y)
∣∣k(−y)dy

� 2T ∗ ε

1 + 3T ∗ + 2ε

6
< ε.

Thus, AI ≡ {φ|I : φ ∈ K (B1)} is a family of equicontinuous functions, which shows that K |B1 : B1 → B1
is compact. This completes the proof. �
Proposition 2.1. The following statements are true:

(i) For any ϕ ∈ C+ , (uϕ)t ∈ C+ for all t ∈ R+ . Moreover, if ϕ ∈ C+ \ {0}, then for any T > 0, there exists
t∗ = t∗(T ,ϕ) > 0 such that uϕ(t, x) > 0 for all (t, x) ∈ [t∗,∞) × [−T , T ].

(ii) If ϕ ∈ C+ and ϕ(θ, x) � M + 1 for all (θ, x) ∈ [−1,0] × R, then uϕ(t, x) ∈ [0, M + 1] for all (t, x) ∈
[−1,∞) × R.

(iii) For any ϕ ∈ C+ , there exists t∗ = t∗(ϕ) > 0 such that uϕ(t, x) � M + 1 for all (t, x) ∈ [t∗,∞) × R.

Proof. (i): Clearly, from (2.2), (H1) and Lemma 2.2(i), we have (uϕ)t ∈ X+ for all t ∈ R+ and
ϕ ∈ C+ . Now, suppose that ϕ ∈ C+ \ {0}. Then there exist θ∗ ∈ [−1,0] and an interval [c,d] such
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that ϕ(θ∗, x) > 0 and thus f (ϕ(θ∗, x)) > 0 for all x ∈ [c,d]. It follows from Lemma 2.2(ii) that
K ( f (ϕ(θ∗, ·)))(x) > 0 for all x ∈ [c −a∗,d+a∗], where a∗ is defined as in Lemma 2.2(ii). This combined
with (2.2), yields

uϕ(t, x) �
t∫

0

μe−μ(t−s)
∫
R

f
(
uϕ(s − 1, y)

)
k(x − y)dy ds > 0,

for all (t, x) ∈ [1+θ∗,∞)×[c−a∗,d+a∗]. By applying Lemma 2.2(ii), the induction and the semigroup
property of the solution map of (2.2), we obtain that uϕ(t, x) > 0 for all (t, x) ∈ [n + θ∗,∞) × [c −
na∗,d + na∗]. So, for any T > 0, by taking t∗ = t∗(T ,ϕ) = 1 + max{1,T +c,T −d}

a∗ > 0, we obtain that
uϕ(t, x) > 0 for all (t, x) ∈ [t∗,∞) × [−T , T ].

(ii): Suppose that ϕ ∈ C+ and ϕ(θ, x) � M + 1 for all (θ, x) ∈ [−1,0] × R. It follows from (2.2) and
assumption (H1) that for any t ∈ R+ , we have

uϕ(t, x) = e−μtϕ(0, x) +
t∫

0

μe−μ(t−s)
∫
R

f
(
uϕ(s − 1, y)

)
k(x − y)dy ds

� (1 + M)e−μt +
t∫

0

Mμe−μ(t−s) ds

= M + e−μt,

which combined with the induction, implies the statement (ii).
(iii): By an argument similar to the proof of the statement (ii), we easily see that the statement (iii)

holds.
The proof of the proposition is completed. �
In the following parts, let Y = {ϕ ∈ C+: ϕ(θ, x) � 1+ M for all (θ, x) ∈ [−1,0]×R}. Then by Propo-

sitions 2.1(ii)–(iii), we know that Y is a positively invariant set of the solution map and every point
in C+ is attracted by Y in the sense of Hale [9].

Define d : Y × Y → R+ , and Φ : R+ × Y → Y by d(ζ,η) = ‖ζ − η‖, and Φ(t,ϕ) = (uϕ)t for all
ζ,η,ϕ ∈ Y and t ∈ R+ , respectively.

Lemma 2.3. Assume that Y is defined as above. Then the following results are true.

(i) If ϕn,ϕ ∈ Y with n ∈ N, then limn→∞ d(ϕn,ϕ) = 0 if and only if limt→∞ sup{|ϕn(θ, x) − ϕ(θ, x)|:
(θ, x) ∈ [−1,0] × I} = 0 for any bounded and closed interval I ⊆ R.

(ii) Let A ⊆ Y . Then A is pre-compact in Y if and only if AI = {ϕ|[−1,0]×I : ϕ ∈ A} is a family of equicontinu-
ous functions in C([−1,0] × I,R), for any bounded and closed interval I ⊆ R.

Proposition 2.2. Assume that Y and Φ are defined as above. Then the following statements are true:

(i) Φ is a continuous semiflow on Y .
(ii) If ϕ ∈ Y , then {Φ(t,ϕ): t ∈ R+} is a pre-compact subset of Y .

Proof. (i): Obviously, the semigroup of Φ immediately follows from the definition of Φ . By employ-
ing (2.2), Lemma 2.2(iv), the semigroup property of Φ in connection with some standard arguments,
we may prove the continuity of Φ .
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(ii): Suppose that ϕ ∈ Y and I ⊆ R is a bounded and closed interval. By (2.1), we know that
D ≡ 1 + sup{| ∂u

∂t (t, x)|: (t, x) ∈ R+ × R} � μ(1 + M) + μM < ∞, and thus

∣∣uϕ(t, x) − uϕ(t̃, x)
∣∣ � D|t − t̃| for all (t, t̃, x) ∈ R+ × R+ × R.

On the other hand, for any ε > 0, by the continuity of ϕ , Lemmas 2.1(ii) and 2.2(iv), there exists
δ∗ = δ∗(ε, I,ϕ) > 0 such that |ϕ(0, x) − ϕ(0, x̃)| < ε

3 and |K ( f (uϕ(s, ·)))(x) − K ( f (uϕ(s, ·)))(x̃)| < ε
3

when s ∈ [−1,∞), x, x̃ ∈ I with |x − x̃| < δ∗ . It follows from (2.2) and the choice of δ∗ that for any
(t, x), (t, x̃) ∈ R+ × I with |x − x̃| < δ∗ , we have

∣∣uϕ(t, x) − uϕ(t, x̃)
∣∣

=
∣∣∣∣∣e−μt(ϕ(0, x) − ϕ(0, x̃)

) +
t∫

0

μe−μ(t−s)
∫
R

f
(
uϕ(s − 1, y)

)
k(x − y) − k(x̃ − y)dy ds

∣∣∣∣∣

� e−μt
∣∣ϕ(0, x) − ϕ(0, x̃)

∣∣ +
t∫

0

μe−μ(t−s)
∣∣K

(
f
(
uϕ(s, ·)))(x) − K

(
f
(
uϕ(s, ·)))(x̃)

∣∣ ds

� εe−μt

3
+ ε(1 − e−μt)

3

<
2ε

3
.

Thus, the above discussions imply that for any ε > 0, there exists δ = δ(ε,ϕ) > 0 such that |uϕ(t, x)−
uϕ(t̃, x̃)| � |uϕ(t, x) − uϕ(t̃, x)| + |uϕ(t̃, x) − uϕ(t̃, x̃)| < Dδ + 2ε

3 � ε for all (t, x), (t̃, x̃) ∈ R+ × I with
|t − t̃| < δ and |x − x̃| < δ. Therefore, Lemma 2.3(ii) yields the statement (ii). The proof of the theorem
is completed. �
Remark 2.1. We emphasize that Φ is not a compact semiflow for t > 1. Indeed, by Lemma 2.2(iv) and
the proof of Proposition 2.2, we easily see that for any t > 1, the operator Y � ϕ �→ G(t,ϕ) ∈ C+ is
compact, where G(t,ϕ)(θ, x) = ∫ t+θ

0 μe−μ(t+θ−s) F ((uϕ)s)ds. But for any t > 1, the operator Y � ϕ �→
e−μtϕ ∈ C+ is NOT compact. Thus, by (2.2), we know that Φ is not a compact semiflow for t > 1.

Given ϕ ∈ Y . We write O (ϕ) = {Φ(t,ϕ): t ∈ R+} for the positive semi-orbit through the point
ϕ ∈ Y . The ω-limit set of O (ϕ) is defined by ω(ϕ) = ⋂

t∈R+ O (Φ(t,ϕ)). Thus, for ϕ ∈ C+ , by Propo-

sition 2.2, we know O (ϕ) is compact, and hence ω(ϕ) ⊆ Y is a nonempty, compact and connected
subset of C+ and also an invariant set of Φ .

If f (u) has a positive fixed point u∗ , then u∗ is a positive constant equilibrium of (2.1). In such a
case, we say that u∗ > 0 is globally attractive in C+ \ {0} if ω(ϕ) = {u∗} for all ϕ ∈ C+ \ {0}.

It is obvious that 0 is a constant equilibrium of (2.1) (since f (0) = 0). When f ′(0) � 1, and f (x) < x
for all x ∈ (0,∞), by (2.2), we can easily see that 0 is a globally attractive equilibrium in C+ with
respect to the usual supremum norm. That is, for any ϕ ∈ C+ , (uϕ)t tends to 0 with respect to the
supremum norm. However, when f ′(0) > 1, 0 becomes unstable and there is a positive constant
equilibrium for (2.1) under (H1)–(H2). In the next section, we explore the global attractivity of the
positive equilibrium in C+ \ {0} with respect to the compact open topology, and in Section 5, we will
further discuss the global attractivity of the positive equilibrium with respect to the supremum norm.
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3. Global dynamics

In this section, we always assume that f ′(0) > 1. In this case, to overcome the difficulty in describ-
ing the global dynamics due to the lack of non-compactness of the spatial domain, we first establish
some a priori estimates for nontrivial solutions after describing a delicate asymptotic property of the
nonlocal delayed effect. This estimate enables us to show the permanence of the equation. Then we
obtain the global attractivity of the nontrivial equilibrium by employing standard dynamical system
theoretical arguments.

Let X(ε, T ) = {φ ∈ X+: φ(x) � ε for all x ∈ [−T , T ]} and let Xo(ε, T ) = {φ ∈ X+: φ(x) > ε for all
x ∈ [−T , T ]}, where ε > 0 and T � 0.

For any bounded function φ : R → R, and x ∈ R, we still denote
∫

R φ(y)k(x − y)dy by K (φ)(x).
Then K is order-preserving with the point-wise order.

Lemma 3.1. For any n ∈ N and δ ∈ (0, 1
2 ), there exists Tn,δ > 0 such that K n(X(1, T )) ⊆ X(δ, T ) for all

T � Tn,δ , where K n represents the n-composition of K .

Proof. Suppose that n ∈ N and δ ∈ (0, 1
2 ). Clearly, K n(1) ≡ 1. By Fubini’s Theorem, we obtain that for

any φ ∈ X and x ∈ R,

K n(φ) =
∫
Rn

φ(y1)k(x − yn)

n−1∏
i=1

(
k(yi+1 − yi)

) n∏
i=1

dyi .

It follows from the linear transformations of variables that

K n(φ) =
∫
Rn

φ

(
x +

n∑
i=1

yi

)
n∏

i=1

(
k(−yi)

) n∏
i=1

dyi .

Define g : Rn → R by g(y) = ∏n
i=1 k(yi) for all y = (y1, y2, . . . , yn) ∈ Rn . Then

K n(φ) =
∫
Rn

φ

(
x +

n∑
i=1

yi

)
g(y)dy for all y = (y1, y2, . . . , yn) ∈ Rn.

For any T ∈ [0,∞), let I+(T ) = [0, T ], I−(T ) = [−T ,0] and

D±(T ) =
{

y = (y1, y2, . . . , zn) ∈ Rn:
n∑

i=1

yi ∈ I±(T )

}
.

Define a± : R+ → R by

a±(T ) =
∫

D±(T )

g(y)dy for all T ∈ R+.

By the above definitions and the properties of k, we easily see that a−(T ) ≡ a+(T ), a±(±∞) = 1
2 , and

a+ , a− are both continuous and increasing functions on R+ . Hence there exists Tn,δ > 0 such that
a±(T ) � δ for all T � Tn,δ . If T � Tn,δ and φ ∈ X(1, T ), then K n(φ)(x) � a−(T ) � δ for all x ∈ [0, T ] and
K n(φ)(x) � a+(T ) � δ for all x ∈ [−T ,0], and thus, K n(φ)(x) � δ for all x ∈ [−T , T ], which, combined
with Lemma 2.2(i), implies that K n(φ) ∈ X(δ, T ). This completes the proof. �
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The following result gives an a priori estimate for solutions for (2.2), which plays a key role in the
proof of the permanence and global attractivity of (2.2).

Lemma 3.2. Suppose that f ′(0) > 1. Then there exist ε0 > 0, T0 > 0 and T ∗ > 0 such that for all ε ∈ [0, ε0],
T ∈ [T0,∞), u : [−1,∞) × R → [0,1 + M] is a solution of (2.2) such that u(t, ·) ∈ X(ε, T ) for all t ∈
[−1, T ∗], we have u(t, ·) ∈ X(ε, T ) for all t ∈ [−1,∞), and u(t, ·) ∈ Xo(ε, T ) for all t ∈ (T ∗,∞).

Proof. By f ′(0) > 1 and (H1), there exist α1 > 1 and ε1 ∈ (0,1 + M] such that f (u) � α1u for all
u ∈ [0, ε1] and f (u) � α1ε1 for all u ∈ [ε1,1 + M]. It follows from α1 > 1 that there exists n ∈ N such
that (α1)

n > 2 � (α1)
n−1.

By taking δ ∈ (1/(α1)
n,1/2) and applying Lemma 3.1, we know that there exists Tn,δ > 0 such that

K n(X(1, T )) ⊆ X(δ, T ) for all T � Tn,δ .

Now, we choose ε0 = ε1/(α1)
n+1, T0 = Tn,δ , T1 = 1 + 1

μ ln(α1δ
1
n /(α1δ

1
n − 1)) and T ∗ = nT1 +n − 1.

In the following, we assume that ε ∈ [0, ε0], T ∈ [T0,∞), u : [−1,∞)×R → [0,1+ M] is a solution
of (2.2) such that u(t, ·) ∈ X(ε, T ) for all t ∈ [−1, T ∗]. Then there exists φ ∈ X(ε, T ) such that φ(x) � ε
for all x ∈ R and u(t, ·) � φ for all t ∈ [−1, T ∗]. We easily obtain that

f
(
α

j
1 K j(φ)

)
� α

j+1
1 K j(φ)

for all j = 0,1, . . . ,n, due to the choices of φ, ε and α1.
Let ϕ = u0. Then u(t, x) = uϕ(t, x) = Φ(t + 1,ϕ)(−1, x) for all (t, x) ∈ [−1,∞) × R. We claim that

uϕ(t, ·) � α
j
1

(
1 − e−μT1

) j
K j(φ) for all t ∈ [

jT1 + j − 1,1 + T ∗] and j ∈ {1,2, . . . ,n}.

Indeed, when j = 1 and t ∈ [T1,1 + T ∗], it follows from (2.2) that we have

uϕ(t, ·) = e−μtϕ(0, ·) +
t∫

0

μe−μ(t−s) F
((

uϕ
)

s

)
ds

�
t∫

0

μe−μ(t−s)K
(

f
(
uϕ(s − 1, ·)))ds

� α1

t∫
0

μe−μ(t−s)K (φ)ds

� α1
(
1 − e−μT1

)
K (φ).

Now suppose that the claim holds for j = j0 < n. Thus, for any t ∈ [(1 + j0)T1 + j0,1 + T ∗] and
s ∈ [0, T1], we have uϕ(s + t − T1 − 1, ·) � α

j0
1 (1 − e−μT1) j0 K j0 (φ), which together with (2.2) and the

semigroup property of Φ implies

uϕ(t, ·) = uϕ
(
T1,

(
uϕ

)
t−T1

)

= e−μT1 uϕ(t − T1, ·) +
T1∫

0

μe−μ(T1−s)K
(

f
(
uϕ(s + t − T1 − 1, ·))) ds
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�
T1∫

0

μe−μ(T1−s)K
(

f
(
uϕ(s + t − T1 − 1, ·))) ds

� α
1+ j0
1

(
1 − e−μT1

)1+ j0 K 1+ j0(φ).

The claim follows by the induction.
Applying the above claim with j = n in connection with the choices of T1 and T ∗ , we conclude

that for any t ∈ (T ∗, T ∗ + 1], u(t, ·) ∈ X(εδ(α1)
n(1 − e−μT1)n, T ) ⊆ Xo(ε, T ). This, together with the

semigroup property of Φ , implies that u(t, ·) ∈ X(ε, T ) for all t ∈ [−1,∞), and u(t, ·) ∈ Xo(ε, T ) for
all t ∈ (T ∗,∞). This completes the proof. �

We are now in the position to state and prove our first main theorem, which, together with Propo-
sition 2.1(ii), implies that (2.2) is permanent with respect to the compact open topology in C+ . We
remark that (2.2) is NOT permanent with respect to the usual supremum norm, see the discussions
in Section 5.

Theorem 3.1. If ϕ ∈ C+ \ {0}, then there exists a > 0 such that ξ � â for all ξ ∈ ω(ϕ).

Proof. By Proposition 2.1(iii), we may assume that ϕ ∈ Y \ {0}. Choose T0, T ∗ and ε0 as in Lemma 3.2.
By Proposition 2.1(i), we may assume without loss of generality that uϕ(t, x) > 0 for all (t, x) ∈
[−1, T ∗] × [−T0, T0]. Let ε1 = inf{u(t, x): (t, x) ∈ [−1, T ∗] × [−T0, T0]} and ε = min{ε0, ε1}. Then
ε1 > 0 and ε > 0.

By Lemma 3.2 and the choice of T0, T ∗,α0 and ε0, we get uϕ(t, ·) ∈ X(ε, T0) for all t ∈ [−1,∞).
This combined with the definition of ω(ϕ), implies ξ(θ, ·) ∈ X(ε, T0) for all ξ ∈ ω(ϕ) and θ ∈ [−1,0].

For any ξ ∈ ω(ϕ), let aξ = sup{a ∈ R+: ξ(θ, x) � ε for all (t, x) ∈ [−1,0] × [−a,0]} and bξ =
sup{b ∈ R+: ξ(θ, x) � ε for all (t, x) ∈ [−1,0] × [0,b]}. Then aξ ,bξ � T0.

Let Iξ = [−aξ ,bξ ] if aξ ,bξ ∈ R+; Iξ = [−aξ ,∞) if aξ ∈ R+ and bξ = ∞; Iξ = (−∞,bξ ] if aξ = ∞
and bξ ∈ R+; Iξ = R if aξ = bξ = ∞. Let I = ⋂

ξ∈ω(ϕ) Iξ . Then I is a closed interval and I ⊇ [−T0, T0].
Indeed, I = [−c1, c2] where c1 = inf{aξ : ξ ∈ ω(ϕ)} ∈ [T0,∞) and c2 = inf{bξ : ξ ∈ ω(ϕ)} ∈ [T0,∞).
Thus, there are four possibilities: (i) I = [−c1, c2] with c1, c2 ∈ R+; (ii) I = [−c1,∞) with c1 ∈ R+;
(iii) I = (−∞, c2] with c2 ∈ R+; or (iv) I = R. It turns out that (i)–(iii) are all impossible. Below we
only show that (i) will lead to a contraction, since the exclusion of (ii) and (iii) are similar.

Without loss of generality, we may assume that c1 � c2. Taking ξ ∈ ω(ϕ), we obtain by the in-
variance of ω(ϕ), that uξ (t, ·) ∈ X(ε, c2) for all t ∈ [−1,∞). Again, by Lemma 3.2 and the choices of
T0, T ∗ and ε0, we obtain that uξ (t, ·) ∈ Xo(ε, c2) for all (t, x) ∈ (T ∗,∞) × R, in particular, there exists
T > c2 such that uξ (t, ·) ∈ Xo(ε, T ) for all t ∈ [1 + T ∗,2 + 2T ∗]. On the other hand, by the definition
of ω(ϕ), there exists a sequence {sn}n∈N such that

lim
sn→∞

∥∥(
uϕ

)
sn

− ξ
∥∥ = 0,

and hence

lim
sn→∞

(
sup

{∣∣uϕ(sn + t, x) − uξ (t, x)
∣∣: (t, x) ∈ [

1 + T ∗,1 + 2T ∗] × [−T , T ]}) = 0.

So, there exists n∗ > 1 such that uϕ(sn∗ + t, ·) ∈ X(ε, T ) for all t ∈ [1 + T ∗,1 + 2T ∗]. It follows from
Lemma 3.2 that uϕ(sn∗ + t, ·) ∈ X(ε, T ) for all t ∈ [1 + T ∗,∞), and thus by the definition of ω(ϕ),
we have ξ ∈ X(ε, T ) for all ξ ∈ ω(ϕ). So, we have bξ � T > c2 for all ξ ∈ ω(ϕ). But, c2 = inf{bξ : ξ ∈
ω(ϕ)} � T > c2, a contradiction.

The above shows that I = R, implying that a = ε serves the purpose of the theorem. This completes
the proof. �
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Under the assumptions (H1)–(H2), if f ′(0) > 1 then f has a positive fixed point u∗ which is also a
fixed point of f 2 and a positive equilibrium of (2.2). To proceed further to study the global attractivity
of this positive equilibrium for (2.2), we formulate the following non-monotone assumption on the
nonlinearity f .

(H3) f 2 has a unique positive fixed point u∗ .

Assumption (H3), together with the assumptions (H1)–(H2) and f ′(0) > 1 implies (see Proposi-
tion 2.1 in [33]) that

lim
n→∞ dist

(
f n([ε,∞)

)
, u∗) = 0 for any ε > 0.

In [33], the authors have shown that the assumption (H3) plays a decisive role on the delay indepen-
dent global stability of a positive equilibrium for a class of delay reaction–diffusion equations (DRDE)
in a bounded domain with the homogeneous Neumann boundary condition by establishing the rela-
tion of the globally stable dynamics of the map and the delay reaction–diffusion equations. The next
theorem shows that such a decisive role of (H3) remains valid for (2.2) with respect to the compact
open topology. We will employ a different (from [31,33]) method to prove this theorem.

Theorem 3.2. In addition to (H1)–(H2), further assume that (H3) holds and f ′(0) > 1. Then u∗ is globally
attractive equilibrium in C+ \ {0}.

Proof. By Proposition 2.1(iii), we may assume that ϕ ∈ Y \ {0}. By Theorem 3.1, there exists a > 0
such that ξ � a for all ξ ∈ ω(ϕ). It follows from the compactness and connectivity of ω(ϕ) that
there exist u+, u− ∈ [a,1 + M] such that [u−, u+] = {ξ(θ, x): ξ ∈ ω(ϕ), θ ∈ [−1,0] and x ∈ R}. We
prove that u− = u+ . For the sake of contradiction, assume u− < u+ . By (H1) and f ′(0) > 1, there is
ε ∈ (0, u−] such that f ([ε, M + 1]) ⊆ [ε, M + 1] and limn→∞ dist( f n([ε, M + 1]), u∗) = 0. So, there are
a−,a+ ∈ [ε, M + 1] such that [u−, u+] �= f ([a−,a+]) ⊆ [a−,a+] and [u−, u+] ⊆ [a−,a+]. Thus, u− <

f ([a−,a+]) or u+ > f ([a−,a+]). Without loss of generality, we may assume that u− < f ([a−,a+]). It
follows from (2.2) that for any ξ ∈ ω(ϕ), we have

uξ (t, x) = e−μtξ(x,0) +
t∫

0

μe−μ(t−s)
∫
R

f
(
uξ (s − 1, y)

)
k(x − y)dy ds

� u−e−μt +
t∫

0

μe−μ(t−s) min
(

f
([u−, u+]))

� e−μt u− + (
1 − e−μt)min

(
f
([a−,b+])),

which implies that uξ (t, x) � min( f ([a−,b+])) + e−μ(u− − min( f ([a−,b+]))) > u− for all ξ ∈ ω(ϕ),
t ∈ [1,∞) and x ∈ R. This combined with the invariance of ω(ϕ), shows that ξ � min( f ([a−,b+])) +
e−μ(u− − min( f ([a−,b+]))) > u− for all ξ ∈ ω(ξ), a contradiction to the choice of u− .

Now, the fact that u− = u+ , together with (H3) further implies that ω(ϕ)) = {u∗}, concluding the
global attractivity of u∗ in C+ \ {0}. This completes the proof. �
4. Examples

In this section, we first apply the results obtained in Section 3 to the model equation (1.3) with
the birth function being Ricker’s function b(u) = pue−qu which is a widely used birth function, e.g.,
for fish population as well as for blowfly population (see, e.g., [2,7,8,14,15,20,22,23,25,32]).
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Let β = εp/δ and μ = δτ and qu(t, x) → u(t, x). Then (1.3) is re-scaled to the following equation
corresponding to (2.1):

⎧⎪⎨
⎪⎩

∂u

∂t
(t, x) = −μu(t, x) + μ

∫
R

Γα(x − y)βu(t − 1, y)e−u(t−1,y) dy, (t, x) ∈ (0,∞) × R,

u(θ, x) = φ(θ, x) for (θ, x) ∈ [−1,0] × R.

(4.1)

Applying the results in Sections 2–3 to this model and making use of the proof of Theorem 4.1 and
Remark 4.3 in [33], we can obtain the following threshold dynamics.

Theorem 4.1. If β ∈ (0, e2], then the following statements are true:

(i) If β � 1, then the trivial equilibrium 0 is globally attractive in C+ with respect to the usual supremum
norm for (4.1).

(ii) If β > 1, then positive equilibrium ln β is a globally attractive in C+ \ {0} for (4.1).

It is obvious that if Γα(x) is replaced by a general k(x) satisfying (A), the conclusions of Theo-
rem 4.1 remain true.

Next, we consider (2.1) with the nonlinear function f being Mackey–Glass’s hematopoiesis func-
tion f : R → R by f (u) = pu

1+un for all u ∈ R+ . This function was initially used by Mackey and Glass
in [17] to model the model of the blood cell production in an ordinary differential equation model,
and then model has since been studied modified by many researchers. Among other topics for these
models is the stability of a positive equilibrium, accounting for a long term stable blood concentration
level. See, for example, Kuang [13] and Tang and Zou [27], and the references therein. However, to
the authors’ knowledge, no spatially nonlocal version has been discussed yet. Applying the results in
Sections 2–3 to this model and taking advantage of the proof of Theorem 4.2 and Remark 4.3 in [33],
we obtain the following theorem.

Theorem 4.2. If p > 0 and n > 0, then the following statements are true:

(i) if p � 1, then the trivial equilibrium 0 is globally attractive in C+ with respect to the usual supremum
norm;

(ii) if either (p > 1 and 0 < n � 2) or (1 < p � n
n−2 and n > 2), then the positive equilibrium (p − 1)

1
n is

globally attractive in C+\{0}.

5. Discussion

This section is devoted to some discussions. We always assume that, in addition to (H1)–(H2), (H3)
holds and f ′(0) > 1.

Theorem 3.2 confirms that under the above assumptions, (2.1) has a positive equilibrium u∗ which
is globally attractive in C+ \ {0} with respect to the compact open topology. One naturally wonders
if it is also globally attractive in C+ \ {0} with respect to the usual supremum norm. The answer to
this question is no, and we explain why below by making a connection to existence of traveling wave
front solutions to (2.1). Without loss of generality, let us consider the local version of (4.1), that is,
the following equation resulted from letting α → 0 in (4.1):

∂u

∂t
(t, x) = −μu(t, x) + μβu(t − 1, x)e−u(t−1,x). (5.1)

Now, considering the following delay differential equation,

u′(t) = −μu(t) + μβu(t − 1)e−u(t−1), (5.2)
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we know that if β ∈ (1, e2], then by Theorem 1 in [21] and the global stability of ln β in C([−1,0],R)\
{0}, there is a full solution η : R → R+ of (5.2) such that η(−∞) = 0, η(∞) = ln β and u(t, x) =
η(x + t) satisfies (5.1) for (t, x) ∈ R × R. This implies that the positive equilibrium u∗ = ln β cannot
attract all positive solutions in respect to the supremum norm, because the positive solution u(t, x) =
η(x + t) cannot approach u∗ = ln β in the supremum norm as t → ∞ due to the fact that η(−∞) = 0.

However, the positive equilibrium u∗ can be attractive with respect to the supremum norm in a
subset of C+ \ {0}. To see this, define

C>+ = {
ϕ ∈ C+: there exists εϕ > 0 such that ϕ(0, x) > εϕ for all x ∈ R

}
,

and let ‖ϕ‖sup = sup{|ϕ(θ, x)|: (θ, x) ∈ [−1,0] × R}, for any ϕ ∈ C . If ϕ ∈ C>+ , then we can easily
show that limt→∞ ‖(uϕ)t − u∗‖sup = 0, and thus u∗ is attractive in C>+ with respect to the usual
supremum norm ‖ · ‖sup for (2.2). Indeed, by Proposition 2.1(iii), we may assume that ϕ ∈ C>+ ∩ Y . It
follows from (2.2), that there exists ε1 > 0 such that uϕ(t, x) > ε1 for all (t, x) ∈ [0,1] × R. By the
assumption (H1) and f ′(0) > 1, there is ε2 ∈ (0, ε1] such that f (u) � ε2 for all u ∈ [ε2, M + 1]. This
together with (2.2) and the semigroup property of Φ implies that uϕ(t, x) � e−μtε2 + ε2(1 − e−μt) =
ε2 for all (t, x) ∈ [1,2] × R, and thus by applying the induction, we know that uϕ(t, x) � ε2 for all
(t, x) ∈ [1,∞) × R. By appealing to the same arguments as in the proof of Theorem 3.2 with u−
and u+ replace by lim inft→∞ ‖(uϕ)t‖sup and lim supt→∞ ‖(uϕ)t‖sup , respectively, we conclude that
limt→∞ ‖(uϕ)t − u∗‖sup = 0.
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