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Abstract

In this paper, we establish the global attractivity of the positive steady state of the diffusive Nicholson’s
equation with homogeneous Neumann boundary value under a condition that makes the equation a non-
monotone dynamical system. To achieve this, we develop a novel method: combining a dynamical systems
argument with maximum principle and some subtle inequalities.
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1. Introduction

In order to describe the dynamics of the Nicholson’s blowflies experiments [19], Gurney
et al. [6] proposed the following delay differential equation model

du(t)

dt
= −δu(t) + pu(t − τ)e−au(t−τ), (1.1)
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where u(t) is the population of the adult flies at time t , p is the maximum per capita egg produc-
tion rate; 1/a is the size at which the fly population reproduces at its maximum rate; δ is the per
capita daily death rate; and τ is the maturation time. The model and its modifications have also
been later used to describe population growth of other species (see, e.g., Cooke et al. [1] and the
references therein), and thus, have been extensively and intensively studied.

If 0 < p/δ � 1, u = 0 is the only biologically meaningful equilibrium of (1.1) which attracts
all non-negative solutions. When p/δ > 1, u = 0 becomes unstable and there is a positive equi-
librium u+ = 1

a
ln p

δ
. For u+, it was proved in [23] that when 1 < p/δ < e, then u+ is globally

attractive, regardless of the magnitude of the delay τ (see, e.g., [1,10,12,23]). The global attrac-
tivity of u+ was also established in Faria [2], Györi [7] and Kuang [11], when e < p/δ < e2 for
all τ � 0.

When the model is used to describe the population dynamics of a species in a non-laboratory
habitat, spatial heterogeneity exists and spatial variables are needed. In this context, a diffusion
term is needed to describe the random movement of individuals. In the case when the immature
individuals do not diffuse but the matured ones do, the model (1.1) is naturally extended to the
following delayed reaction diffusion equation

∂u(t, x)

∂t
= d�u(t, x) − δu(t, x) + pu(t − τ, x)e−au(t−τ,x), x ∈ Ω ⊂ Rm, (1.2)

where x = (x1, . . . , xm) denotes the spatial variable vector in Rm, and � is the Laplacian op-
erator in Rm. For a detailed derivation of (1.2), see So et al. [25] and Liang and Wu [14] for
unbounded Ω , and Liang et al. [13,15] for bounded Ω .

For the diffusive Nicholson equation (1.2), depending on the situations of the spatial do-
main Ω , different problems may arise. If Ω = Rm, traveling wave solutions are an important
topic since such solutions may quite often determine the long term behavior of other solutions,
and well describe the spatial invasion of the species. Existence and stability of traveling wave
fronts of the delayed diffusive Nicholson equation have been investigated in Gourley [4], Mei
et al. [18], So and Zou [24]. Gourley and Ruan [5] also explored the dynamics of a diffusive
Nicholson equation with distributed delay when the spatial domain is the whole space.

When Ω is a bounded domain in Rm, various boundary conditions can be posed, among which
are the typical homogeneous Dirichlet boundary value condition

u(t, x)|∂Ω = 0 (1.3)

and Neumann boundary value condition

∂u(t, x)

∂n

∣∣∣∣
∂Ω

= 0, (1.4)

where ∂u(t,x)
∂n

denotes the derivative along the outward normal direction on the boundary of Ω .
Condition (1.3) describe a situation where the boundary is hostile to the species and condi-
tion (1.4) implies that the habitat Ω is isolated.

For (1.2), (1.3), So and Yang [22] systematically studied the solution behaviors. Addressed
in [22] were the stability of the trivial steady state, existence and stability (local and global)
of a positive steady state. Let λ1 be the principal eigenvalue of −� associated with (1.3). So
and Yang [22] proved that when p/δ − 1 < λ1d , then the trivial steady state u = 0 attracts all
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non-negative solutions; when p/δ − 1 > λ1d , then u = 0 becomes unstable and there appears a
unique positive steady state u+(x) for (1.2), (1.3), which attracts all positive solutions provided
e < p/δ � e2.

When Neumann boundary value condition (1.4) is considered, an equilibrium of (1.1) gives
a steady state for (1.2) and (1.4). Yang and So [28] proved that when 0 < p/δ � 1, all positive
solutions of (1.2) and (1.4) converge to u = 0; and when 1 < p/δ � e, all non-trivial solutions
of (1.2) and (1.4) converge to u+ = 1

a
ln p

δ
, independent of τ � 0. For p/δ > e2, Yang and So [28]

also showed that u+ may be unstable and Hopf bifurcation from u+ may occur when the delay τ

is increased. However, the dynamics of (1.2) and (1.4) for e < p/δ � e2 still remains an open
problem. Motivated by the results in Faria [2], Györi [7], Kuang [11], and So and Yang [22], it is
natural to conjecture that the solution u+ remains globally attractive if e < p/δ � e2, regardless
of the magnitude of the delay τ . In this paper, we give an affirmative answer to this conjecture.

We point out that if 1 < p/δ � e, the above mentioned results on convergence to the positive
equilibrium or steady state for all cases can be easily established by the monotone method, since
there is an interval which attracts all solutions and in which the delayed term is monotone (for
details of monotone delay equations, see, e.g., Smith [21]). However, when e < p/δ � e2, the
corresponding equations do not have such a monotonicity since the delayed term is not monotone
any more on the interval [0, u+], and thus, are much harder to deal with. Therefore, alternative
method is required. Here in this paper, we develop a new approach to obtain the global attrac-
tivity. More precisely, we combine a dynamical systems argument with maximum principle and
some subtle inequalities to show that under e < p/δ � e2, the ω-limit set of every initial function
that generates a positive solution of (1.2) and (1.4) is actually the singleton {u+}, regardless of
the magnitude of the delay τ � 0. By this conclusion and the results in Yang and So [28], the
global dynamics of the model (1.2) and (1.4) for p/δ ∈ (0, e2) are completely determined now
and are indeed independent of the time delay τ .

2. Preliminaries

For convenience, we rescale (1.2) and (1.4) to the following⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
(t, x) = �u(t, x) − τu(t, x) + βτu(t − 1, x)e−u(t−1,x) in D ≡ (0,∞) × Ω,

∂u

∂n
(t, x) = 0 on Γ ≡ (0,∞) × ∂Ω,

(2.1)

where τ > 0 and Ω is a bounded domain with smooth boundary ∂Ω . As usual, we also need the
following initial condition:

u(θ, x) = φ(θ, x) for (θ, x) ∈ [−1,0] × Ω̄. (2.2)

As we mentioned in the introduction, we are concerned with the situation of e < p/δ � e2,
which, after rescaling, is transferred to e < β � e2. This will be assumed in the rest of the paper.

Throughout this paper, denote by R (respectively R+, R+) the set of all (respectively non-
negative, positive) real numbers. Let C = C(Ω̄,R) and X = C([−1,0] × Ω̄,R), equipped with
the usual supremum norm ‖ · ‖. Also, let C+ = C(Ω̄,R+) and X+ = C([−1,0] × Ω̄,R+). For
a ∈ R, â ∈ C is defined as â(x) = a for all x ∈ Ω̄ . Similarly, ˆ̂a ∈ X is defined as ˆ̂a(θ, x) = a for
all (θ, x) ∈ [−1,0] × Ω̄ . For simplicity of notations, we shall write a � â and a � ˆ̂a. For a real
interval I , let I + [−1,0] = {t + θ : t ∈ I and θ ∈ [−1,0]}. For u : (I + [−1,0]) × Ω̄ → R and



T. Yi, X. Zou / J. Differential Equations 245 (2008) 3376–3388 3379
t ∈ I , we write ut (·,·) for the element of X defined by ut (θ, x) = u(t + θ, x), for −1 � θ � 0
and x ∈ Ω̄ .

Let T (t) (t � 0) be the strongly continuous semigroup of bounded linear operators on C

generated by the Laplacian � under the Neumann boundary value condition. It is well known that
T (t) (t � 0) is an analytic, compact and strongly positive semigroup on C. Moreover, there exist
M > 0 and w > 0 such that ‖T (t)‖ ≡ sup{ ‖T (t)ϕ‖

‖ϕ‖ : ϕ ∈ C and ϕ 	= 0} � Mewt for all t ∈ R+ (see

[20,21,27]). Define F :X → C by F(φ)(x) = −τφ(0, x) + βτφ(−1, x)e−φ(−1,x) for all x ∈ Ω̄ .
We consider the following integral equation with the given initial condition⎧⎪⎪⎨

⎪⎪⎩
u(t) = T (t)φ(0, ·) +

t∫
0

T (t − s)F (us)ds, t � 0,

u0 = φ ∈ X.

(2.3)

By the standard theory (see [3,16,27]), for each φ ∈ X, Eq. (2.3) admits a unique solution uφ(t, ·)
(with values in C) on its maximal interval [0, σφ). As is customary, uφ(t, x) is also called a mild
solution of (2.1), (2.2) (for details, see [16,17], or [27]).

Definition 2.1. For given real numbers t1 and t2 with t2 > t1 + 1, a continuous function
u : [t1 − 1, t2] × Ω̄ → R is called a classical solution of (2.1) and (2.2) for t ∈ [t1, t2) if
all involved derivatives exist and for all i, j ∈ {1, . . . ,m}, ∂u

∂t
and ∂2u

∂xi∂xj
are continuous for

(t, x) ∈ (t1, t2) × Ω , and ∂u
∂xi

is continuous for (t, x) ∈ (t1, t2) × Ω̄ , and u satisfies the rela-

tion (2.1) and (2.2) for (t, x) ∈ (t1, t2) × Ω̄ .

Lemma 2.1. If φ ∈ X+, then we have the following results:

(i) (uφ)t ∈ X+ for all t ∈ [0, σφ);
(ii) σφ = +∞;

(iii) uφ(t, x) is a classical solution of (2.1) for t ∈ (1,+∞).

Proof. Without loss of generality, we may assume that φ 	= 0. Note that ψ(0) + hF(ψ) ∈ C+
for all ψ ∈ X+ and h ∈ [0, 1

τ
]. This implies

lim
h→0+ dist

(
ψ(0) + hF(ψ),C+

) = lim
h→0+ inf

{∥∥ψ(0) + hF(ψ) − ψ̃
∥∥: ψ̃ ∈ C+

} = 0

for all ψ ∈ X+. By Proposition 3 and Remark 2.4 in [16], we know that the statement (i) is true.
We now prove the statement (ii). Since sup{ae−a: a ∈ R} = 1

e
and ‖T (t)‖ � Mewt for all

t ∈ R+, it follows from (2.3) that for all t ∈ [0, σφ), we have

∥∥uφ(t, ·)∥∥ =
∥∥∥∥∥T (t)φ(0, ·) +

t∫
0

T (t − s)F
((

uφ
)
s

)
ds

∥∥∥∥∥
�

∥∥T (t)φ(0, ·)∥∥ +
∥∥∥∥∥

t∫
T (t − s)F

((
uφ

)
s

)
ds

∥∥∥∥∥

0
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� M
∥∥φ(0, ·)∥∥ewt +

t∫
0

∥∥T (t − s)F
((

uφ
)
s

)∥∥ds

� M
∥∥φ(0, ·)∥∥ewt + M

t∫
0

∥∥F
((

uφ
)
s

)∥∥ew(t−s) ds

� M
∥∥φ(0, ·)∥∥ewt + τMewt

t∫
0

∥∥uφ(s, ·)∥∥e−ws ds + τβM

e

t∫
0

ew(t−s) ds

= M
∥∥φ(0, ·)∥∥ewt + τβM

ew

(
ewt − 1

) + τMewt

t∫
0

∥∥uφ(s, ·)∥∥e−ws ds.

Now by the Gronwall–Bellman inequality, we conclude that for every t ∈ [0, σφ),

∥∥uφ(t, ·)∥∥ � a(t) + b(t)e
∫ t

0 b(s)c(s)ds

t∫
0

[
a(s)c(s)e− ∫ s

0 b(r)c(r)dr
]

ds, (2.4)

where a(t) = M‖φ(0, ·)‖ewt + τβM
ew

(ewt − 1), b(t) = τMewt and c(t) = e−wt for all t ∈
[0, σφ). The inequality (2.4) implies σφ = +∞, since otherwise, σφ < +∞ would imply
lim supt→σ−

φ
‖uφ(t, ·)‖ = +∞ (see, e.g., Theorem 2.2.2 in [27]), contradicting (2.4). This com-

pletes the proof of statement (ii).
Finally, the statement (iii) follows from (ii) and Theorem 2.2.6 in [27]. The proof of

Lemma 2.1 is completed. �
Lemma 2.2. If φ ∈ X+ \ {0}, then we have the following results:

(i) (uφ)t ∈ Int(X+) for all t > 3;
(ii) there exists K = K(φ) > 0 such that ‖(uφ)t‖ � K for all t ∈ R+.

Proof. Without causing confusion, we drop, in the proof, the φ in the notations by letting ut =
(uφ)t and u(t, x) = uφ(t, x). According to Lemma 2.1(iii), we know u(t, x) is a classical solution
of (2.1) for t > 1.

To prove the statement (i), we first claim that u1 ∈ X+ \ {0}. Suppose not, then Lemma 2.1(i)
implies u1 = 0, and thus u(t, x) = 0 for (t, x) ∈ [0,1] × Ω̄ . By (2.3) and the assumption u1 = 0,
we have

∫ t

0 T (t − s)F (us)ds = 0 for all t ∈ [0,1]. Thus,
∫ 1

0 T (t − s)[u(s −1, ·)e−u(s−1,·)]ds = 0
for all t ∈ [0,1]. Since T (·) is a strongly positive semigroup (see Corollary 7.2.3 in [21]),
we conclude that u(s − 1, ·)e−u(s−1,·) = 0 for all s ∈ [0,1] and thus φ = u0 = 0, a contradic-
tion. Similarly, we may prove u2 ∈ X+ \ {0}. Hence there exists (t∗, x∗) ∈ (1,2) × Ω̄ such that
u(t∗, x∗) > 0. It follows from (2.1) and Lemma 2.1(i) that

∂u � �u − τu in (t∗,+∞) × Ω,

∂t
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∂u

∂n
= 0 on (t∗,+∞) × ∂Ω and

u(t∗, x) � 0 for all x ∈ Ω.

We now consider the following equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂v

∂t
(t, x) = �v(t, x) − τv(t, x) in (t∗,∞) × Ω,

∂v

∂n
(t, x) = 0 on (t∗,∞) × ∂Ω,

v(t∗, x) = u(t∗, x) for x ∈ Ω̄.

By applying Theorem 7.3.4 in [21], we obtain that u(t, x) � v(t, x) for all (t, x) ∈ (t∗,+∞)×Ω̄ .
On the other hand, by v(t∗, x∗) > 0 and Theorem 7.4.1 in [21], we have v(t, x) > 0 for all
(t, x) ∈ (t∗,+∞) × Ω̄ . Thus, u(t, x) > 0 for all (t, x) ∈ (t∗,+∞) × Ω̄ , and the statement (i)
holds (noting that t∗ ∈ (1,2)).

Now we prove the statement (ii). Since sup{ae−a: a ∈ R} = 1
e
, it follows from (2.1) that

∂u

∂t
� �u − τu + βτ

e
in (1,+∞) × Ω,

∂u

∂n
= 0 on (1,+∞) × ∂Ω and

u(1, x) � 0 for all x ∈ Ω.

We now consider the following equation:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂w

∂t
(t, x) = �w(t, x) − τw(t, x) + βτ

e
in (1,∞) × Ω,

∂w

∂n
(t, x) = 0 on (1,∞) × ∂Ω,

w(1, x) = ∥∥u(1, ·)∥∥ for x ∈ Ω̄.

It is easily seen that w(t, x) = β
e
[1−e−τ(t−1)]+‖u(1, ·)‖e−τ(t−1) is a solution to the above prob-

lem for (t, x) ∈ (1,∞)× Ω̄ . By Theorem 7.3.4 in [21], we conclude that u(t, x) � w(t, x) for all
(t, x) ∈ (1,∞) × Ω̄ . Consequently, u(t, x) � β

e
+ ‖u(1, ·)‖e−τ(t−1) for all (t, x) ∈ (1,∞) × Ω̄ .

Let K = K(φ) = β
e

+ sup{‖u(t, ·)‖: t ∈ [−1,1]}. Then |u(t, x)| � K for all (t, x) ∈ (1,∞)× Ω̄ .
This completes the proof of statement (ii). �

According to Lemma 2.1, we may define the map U :R+ ×X+ → X+ by U(t,φ) = (uφ)t for
(t, φ) ∈ R+ × X+. Then by an argument similar to Proposition 3.1 in [26], we obtain that U is a
semiflow on X+. Additionally, applying an argument similar to Proposition 2.4 in [26], we know
that for a given t > 1, U(t, ·) :X+ → X+ is completely continuous. More precisely, if B ⊂ X+ is
a bounded set B , then U(t, ·)B is precompact for t > 1. For φ ∈ X+, let O(φ) = {U(t,φ): t � 0}
and define ω(φ) = ⋂

t�0 O(U(t,φ)). Given φ ∈ X+, by Lemma 2.2(ii), we know O(φ) is com-
pact, and hence ω(φ) is nonempty, compact, connected and invariant. According to the invariance
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property of ω(φ), for every ψ ∈ ω(φ) there is a global solution u :R × Ω̄ → R+ with u0 = ψ

and ut ∈ ω(φ) for all t ∈ R (see Hale [8]).
We now establish several important lemmas which are essential for proving our main result in

Section 3.

Lemma 2.3. Assume that a � 0 and b � 0. Then we have the following results.

(i) If a − lnβ � |b − lnβ|, then −a + βbe−b � 0. Moreover, −a + βbe−b = 0 if and only if
a = b = lnβ .

(ii) If lnβ − a � |b − lnβ|, then −a + βbe−b � 0. Moreover, −a + βbe−b = 0 if and only if
either a = b = lnβ or a = b = 0.

Proof. (i) We shall complete the proof by discussing three possible cases.
Case 1: b � lnβ > 1. In this case, we have a− lnβ � |b− lnβ| = b− lnβ and thus a � b � 0.

Since be−b is strictly decreasing on (1,∞), be−b � lnβe− lnβ = lnβ
β

and hence −a + βbe−b �
−a + lnβ � 0. In this case, we also notice that a = b = lnβ if −a + βbe−b = 0.

Case 2: 0 � b < lnβ and a � β
e

. In this case, we have a − lnβ � |b − lnβ| = lnβ − b and

thus a + b � 2 lnβ . Consider the function z(β) = 2 lnβ − 1 − β
e

. By the facts that z(e) = 0,
z(e2) = 4 − 1 − e > 0 and dz

dβ
= 2

β
− 1

e
, we conclude that z(β) > 0 for all β ∈ (e, e2]. Thus,

2 lnβ > 1 + β
e

for all β ∈ (e, e2]. Since a + b � 2 lnβ , we have either a 	= β
e

or b 	= 1. This and

the facts that 0 � b < lnβ and a � β
e

imply −a + βbe−b < −β
e

+ β
e

= 0.

Case 3: 0 � b < lnβ and a <
β
e

. In this case, we have a − lnβ � |b− lnβ| = lnβ −b and thus
a + b � 2 lnβ . Let h(b) = b + βbe−b . Then h′(b) = 1 + β(1 − b)e−b and h′′(b) = β(b − 2)e−b .
From β � e2 and b < lnβ � 2, we have h′′(b) < 0 for 0 � b < lnβ . Hence, h′(b) > h′(lnβ) =
2 − lnβ � 0 for all b ∈ [0, lnβ), and hence h(b) < h(lnβ) = 2 lnβ . Since a + b � 2 lnβ , we
have −a + βbe−b = −(a + b) + βbe−b + b � −2 lnβ + βbe−b + b = −2 lnβ + h(b) < 0.

From the above three cases, we see that a = b = lnβ if −a + βbe−b = 0 (possible only in
Case 1). On the other hand, −a +βbe−b = 0 when a = b = lnβ . This completes the proof of (i).

The proof of (ii) is similar, and hence is omitted. This completes the proof of the lemma. �
Set D ≡ {ψ ∈ X+: ψ(θ, x) < 1 for all (t, x) ∈ [−1,0] × Ω̄}. For φ ∈ D, let ηφ = sup{t ∈

R+: uφ(s, x) < 1 for all (s, x) ∈ [0, t] × Ω̄}. Also let Y = ⋃{[0, ηφ) × {φ}: φ ∈ D} and define
the map UY by UY (t,φ) = U(t,φ) for all (t, φ) ∈ Y . Then UY is a dynamical system (or local
semiflow) on Y .

Lemma 2.4. We have the following results.

(i) UY is a monotone dynamical system on Y in the sense that if φ,ψ ∈ D with φ − ψ ∈ X+
and if t ∈ [0,min{ηφ, ηψ }), then UY (t,φ) − UY (t,ψ) ∈ X+.

(ii) Let v(t, x) and w(t, x) be positive classical solutions of (2.1), (2.2). Suppose that there exists
T > 0 such that v(t, x) < 1 and w(t, x) < 1 for all (t, x) ∈ [−1, T ]×Ω̄ . If v(θ, x) � w(θ, x)

for all (θ, x) ∈ [−1,0] × Ω̄ , then v(t, x) � w(t, x) for all (t, x) ∈ [−1, T ] × Ω̄ .

Proof. Since d(ae−a)
da

= (1 − a)e−a � 0 for all a ∈ [0,1), Theorem 3.3 in [17] implies that the
statement (i) is true. Thus, the statement (ii) follows. �
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Next, consider the following scalar ordinary delay differential equation

dy

dt
(t) = −τy(t) + βτy(t − 1)e−y(t−1), (2.5)

where τ > 0 and e < β � e2. For a given y0 ∈ C([−1,0],R+), by the theory in [9], (2.5) has
a unique solution for t ∈ R+, and by the theory in [21], this solution remains non-negative for
t ∈ R+. The following lemma gives more information on such a solution.

Lemma 2.5. Let y0 ∈ C([−1,0],R+) \ {0} be given and let y : [−1,+∞) → R be the solution
of (2.5) with this initial function. Then there exists T0 > 0 such that y(T0) � 1.

Proof. Otherwise, y(t) < 1 for all t > 0. Let u(t, x) = y(t) for all (t, x) ∈ [−1,+∞)× Ω̄ . Then
u0 ∈ X+ \ {0} and u(t, ·) also satisfies Eq. (2.3) with the initial value function φ = u0. Thus,
ut = (uu0)t = UY (t, u0) for all t ∈ R+, where UY defined as in Lemma 2.4. By Lemma 2.2(i),
we have ut ∈ Int(X+) for all t > 3. Hence there exist t∗ > 3 and δ ∈ (0,1) such that ut∗ > δ.
Applying Lemma 2.4(i) and the facts ut∗ > δ and u(t, x) < 1 for all (t, x) ∈ [−1,+∞) × Ω̄ , we
obtain UY (t + t∗, u0)−UY (t, δ) = UY (t,UY (t∗, u0))−UY (t, δ) ∈ X+ for all t ∈ [0, ηδ). If ηδ <

+∞, then there exists x∗ ∈ Ω̄ such that U(ηδ, δ)(0, x∗) = 1, and thus UY (ηδ + t∗, u0)(0, x∗) �
U(ηδ, δ)(0, x∗) = 1, a contradiction. So Lemma 2.5 follows.

Now we assume that ηδ = +∞. Let ỹ : [−1,+∞) → R be the solution of (2.5) with the initial
value ỹ0 such that ỹ0(θ) = δ for all θ ∈ [−1,0]. Then U(t, δ)(θ, x) = (uδ)t (θ, x) = ỹ(t + θ) for
all (θ, t, x) ∈ [−1,0] × R+ × Ω̄ . Thus, y(t + t∗) � ỹ(t) for all t > 0 and ỹ(t) < 1 for all t > 0.

Since δ ∈ (0,1) and ỹ(t) = δ for all t ∈ [−1,0], it follows from (2.5) that

dỹ(t)

dt

∣∣∣∣
t=0+

= lim
t→0+

dỹ(t)

dt

= −τδ + βτδe−δ

= τδ
(−1 + βe−δ

)
> τδ

(−1 + βe−1)
> 0.

Thus there exists h∗ ∈ (0,1) such that dỹ(t)
dt

> 0 for all t ∈ (0, h∗], which implies that ỹ is non-
decreasing on [−1, h∗].

We claim that ỹ is nondecreasing on [−1,+∞). Otherwise, there exists h∗ � t∗ < +∞ such
that t∗ = sup{t ∈ [0,+∞): ỹ is nondecreasing on [−1, t]}. Then ỹ is nondecreasing on [−1, t∗].
For any given h ∈ [0, h∗], let z(t) = ỹ(t +h)− ỹ(t) for all t ∈ [0,1 + t∗ −h]. Then z(0) � 0. We
next prove that z(t) � 0 for all t ∈ [0,1 + t∗ − h]. Obviously, we have ỹ(t + h − 1) � ỹ(t − 1)

for all t ∈ [0,1 + t∗ − h] since ỹ is nondecreasing on [−1, t∗]. According to the fact that be−b

is increasing on [0,1], we have βτ ỹ(t + h − 1)e−ỹ(t+h−1) − βτ ỹ(t − 1)e−ỹ(t−1) � 0 for all
t ∈ [0,1 + t∗ − h]. It follows from (2.5) that for all t ∈ [0,1 + t∗ − h],

z′(t) = −τz(t) + βτ ỹ(t + h − 1)e−ỹ(t+h−1) − βτ ỹ(t − 1)e−ỹ(t−1)

� −τz(t).
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Hence z(t) � e−τ t z(0) � 0 for all t ∈ [0,1 + t∗ − h]. This and the arbitrariness of h ∈ [0, h∗]
show that ỹ is nondecreasing on [0, t∗ + 1). So, ỹ is nondecreasing on [−1, t∗ + 1] which con-
tradicts to the choice of t∗. Thus the claim holds, that is, ỹ is nondecreasing on [−1,+∞).

By the above claim and the fact that ỹ(t) < 1 for all t > 0, we conclude that there ex-
ists y∗ ∈ (0,1] such that ỹ(t) → y∗ as t → +∞ and 0 < y∗ � 1 < lnβ . From Eq. (2.5),
we have limt→+∞ dỹ(t)

dt
= −τy∗ + τβy∗e−y∗

> 0. So, there exists T ∗ > 1 such that dỹ(t)
dt

�
−τy∗+τβy∗e−y∗

2 > 0 for all t � T ∗. Thus for every t � T ∗, we have ỹ(t) = ỹ(T ∗)+ ∫ t

T ∗
dỹ(s)

ds
ds �

ỹ(T ∗) + −τy∗+τβy∗e−y∗
2 (t − T ∗). This implies limt→+∞ ỹ(t) = +∞, a contradiction. Therefore,

there exists T0 > 0 such that y(T0) � 1. This completes the proof. �
The following lemma is from [20].

Lemma 2.6. Let T > 0 and W ⊆ Ω̄ be an open domain with a smooth boundary ∂W . Let u(t, x)

be a continuous function on [0, T ] × Ω̄ with derivatives ∂u
∂xi

, ∂2u
∂xi∂xj

and ∂u
∂t

existing and be-

ing continuous on (0, T ] × Ω . Let Lu(t, x) = �u(t, x) − ∂u
∂t

(t, x). Then we have the following
results.

(i) If Lu(t, x) > 0 for all (t, x) ∈ (0, T ) × W , then u cannot attain a local maximum in
(0, T ) × W .

(ii) If Lu(t, x) < 0 for all (t, x) ∈ (0, T ) × W , then u cannot attain a local minimum in
(0, T ) × W .

(iii) Suppose that the first derivatives of u with respect to the xi exist and are continuous on
(0, T ]×Ω̄ . Let Lu(t, x) � 0 for all (t, x) ∈ (0, T )×W . If there exist (t∗, x∗) ∈ (0, T )×∂W ,
ε∗ ∈ (0, T ) and an open ball S∗ ⊆ W such that S∗ ∩ ∂W = {x∗} and u(t∗, x∗) > u(t, x) for
all (t, x) ∈ [t∗ − ε∗, t∗ + ε∗] × S∗ then ∂u

∂n
|(t∗,x∗) > 0.

(iv) Suppose that the first derivatives of u with respect to the xi exist and are continuous on
(0, T ]×Ω̄ . Let Lu(t, x) � 0 for all (t, x) ∈ (0, T )×W . If there exist (t∗, x∗) ∈ (0, T )×∂W ,
ε∗ ∈ (0, T ) and an open ball S∗ ⊆ W such that S∗ ∩ ∂W = {x∗} and u(t∗, x∗) < u(t, x) for
all (t, x) ∈ [t∗ − ε∗, t∗ + ε∗] × S∗ then ∂u

∂n
|(t∗,x∗) < 0.

3. Main result

For convenience of discussion, we let h(a, b,β) = −a + βbe−b throughout this section. Now
we are in the position to state and prove our main result.

Theorem 3.1. If e < β � e2, then the positive steady state u+ ≡ lnβ attracts all positive solutions
of (2.1), (2.2).

Proof. Let φ0 ∈ X+ be an initial value function corresponding to which, the classical solution
v(t, x) of (2.1) remains positive for all t � 0 and x ∈ Ω̄ . We need to prove that ω(φ0) = {lnβ}.
Let M0 := sup{‖φ − lnβ‖: φ ∈ ω(φ0)} = sup{|φ(θ, x)− lnβ|: θ ∈ [−1,0], x ∈ Ω̄, φ ∈ ω(φ0)}.
We only need to show M0 = 0. For the sake of contradiction, assume M0 > 0. Note that by
Lemma 2.2(i), ω(φ0) \ {0} ⊆ Int(X+) and vt ∈ Int(X+) for all t > 3. We have three possible
cases.

Case 1: There is a φ ∈ ω(φ0) \ {0} such that ‖φ − lnβ‖ = M0. Then, by the invariance
property of ω(φ0) and Lemma 2.1(iii), we know that there is a global classical positive solu-
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tion u :R × Ω̄ → R such that ut ∈ ω(φ0) ∩ Int(X+) for all t ∈ R and u0 = φ. In this case, we
claim that |u(t, x) − lnβ| < M0 for all (t, x) ∈ R × Ω . Otherwise, there exists (t1, x1) ∈ R × Ω

such that |u(t1, x1) − lnβ| = M0 > 0. If u(t1, x1) − lnβ = M0, then u(t1, x1) > lnβ and
u(t1, x1) = sup{u(t, x): (t, x) ∈ R×Ω̄} (since u(t1, x1)−u(t, x) = M0 −[u(t, x)− lnβ] = M0 −
[ut (x)(0) − lnβ] � 0). By Lemma 2.3(i), we have h(u(t1, x1), u(t1 − 1, x1), β) < 0 and hence
�u|(t1,x1) − ∂u

∂t
|(t1,x1) > 0. It follows from Lemma 2.6(i) that u cannot attain a local maximum

at (t1, x1), which yields a contradiction. If u(t1, x1) − lnβ = −M0, then 0 < u(t1, x1) < lnβ and
u(t1, x1) = inf{u(t, x): (t, x) ∈ R × Ω̄} (since u(t1, x1) − u(t, x) = −[M0 − (lnβ − u(t, x))] =
−[M0 − (lnβ − ut (x)(0))] � 0). By Lemma 2.3(ii), we have h(u(t1, x1), u(t1 − 1, x1), β) > 0
and hence �u|(t1,x1) − ∂u

∂t
|(t1,x1) < 0. It follows from Lemma 2.6(ii) that u cannot attain a local

minimum at (t1, x1), which yields a contradiction. Consequently, the above claim follows.
Since ‖u0 − lnβ‖ = M0, there exists (t∗, x∗) ∈ [−1,0] × ∂Ω such that |u(t∗, x∗) − lnβ| =

M0 > 0. If u(t∗, x∗) − lnβ = M0 > 0, then u(t∗, x∗) − lnβ = |u(t∗ − 1, x∗) − lnβ| + (M0 −
|u(t∗ − 1, x∗) − lnβ|) � |u(t∗ − 1, x∗) − lnβ|. Hence by Lemma 2.3(i), we obtain that
h(u(t∗, x∗), u(t∗ − 1, x∗), β) < 0. By the continuity of u and h, and the smoothness of ∂Ω ,
there exist an ε > 0 and an open ball S∗ ⊆ Ω , such that ∂S∗ ∩ Ω = {x∗} and h(u(t, x), u(t −
1, x),β) � 0 for (t, x) ∈ [t∗ − ε, t∗ + ε] × S∗. From (2.1), we have �u(t, x) − ∂u

∂t
(t, x) � 0 for

(t, x) ∈ [t∗−ε, t∗+ε]×S∗. Note that u(t∗, x∗) = lnβ+M0 > u(t, x) for all (t, x) ∈ R×Ω since
|u(t, x) − lnβ| < M0 for all (t, x) ∈ R × Ω . Thus by Lemma 2.6(iii), we obtain ∂u

∂n
|(t∗,x∗) > 0,

a contradiction. If 0 < M0 = lnβ − u(t∗, x∗), then M0 < lnβ . By a similar argument to the
above, we have ∂u

∂n
|(t∗,x∗) < 0, a contradiction.

Case 2: ω(φ0) \ {0} 	= ∅ and M0 > ‖φ − lnβ‖ for all φ ∈ ω(φ0) \ {0}. In this case, by the def-
inition of M0, we have 0 ∈ ω(φ0) and M0 = lnβ . Let M̃0 = sup{φ(θ, x) − lnβ: φ ∈ ω(φ0), θ ∈
[−1,0] and x ∈ Ω̄}. Then −M0 � M̃0 < M0.

Claim 1: There is an s∗ > 3 such that M0 > M∗
0 ≡ sup{v(t, x)− lnβ: (t, x) ∈ [s∗,+∞)×Ω̄}.

Indeed, by the definition of ω(φ0), there exists s∗ > 3 such that inf{‖vt − ψ‖: ψ ∈ ω(φ0)} <
M0−M̃0

3 for all t ∈ [s∗,+∞). It follows from the compactness of ω(φ0) that for every t ∈
[s∗,+∞), there exists ψt ∈ ω(φ0) such that ‖vt − ψt‖ = inf{‖vt − ψ‖: ψ ∈ ω(φ0)}. Thus,
according to the choice of ψt , we obtain that

M∗
0 = sup

{
v(t, x) − lnβ: (t, x) ∈ [s∗,+∞) × Ω̄

}
� sup

{
v(t, x) − ψt(0, x): (t, x) ∈ [s∗,+∞) × Ω̄

}
+ sup

{
ψt(0, x) − lnβ: (t, x) ∈ [s∗,+∞) × Ω̄

}
� sup

{∥∥vt − ψt
∥∥: t ∈ [s∗,+∞)

} + sup
{
ψt(0, x) − lnβ: (t, x) ∈ [s∗,+∞) × Ω̄

}
� M0 − M̃0

3
+ M̃0

< M0.

This completes the proof of Claim 1.
Since ω(φ0) \ {0} 	= ∅ and ω(φ0) \ {0} ⊆ Int(X+), there exist ε0 ∈ (0, 1

8 min{1,M0 − M̃0,

M0 − M∗
0 }) and ψ∗ ∈ ω(φ0) such that ψ∗ − ε0 ∈ X+. In view of {0,ψ∗} ⊆ ω(φ0) and the

definition of ω(φ0), there exist s1 > s∗ + 1, s2 > s∗ + 1 and s3 > s∗ + 1 such that s1 < s2 − 1 <

s2 < s3 −1 < s3, ‖vs2‖ < 1
8ε0, ‖vs1 −ψ∗‖ < 1

8ε0 and ‖vs3 −ψ∗‖ < 1
8ε0. Let M1 = sup{|v(t, x)−

lnβ|: (t, x) ∈ [s1 − 1, s3] × Ω̄}. Then it follows from M0 > M∗ and the definition of M1 that
0
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M0 = lnβ > M1. By the choice of si and the definition of M1, we have M1 � ‖vs2 − lnβ‖ �
‖lnβ‖ − ‖vs2‖ > M0 − 1

8ε0. In view of the choice of ε0, we have M1 > M̃0 and M1 > M∗
0 and

hence M0 = lnβ > M1 > max{M∗
0 , M̃0}.

Claim 2: M1 > |lnβ − v(t, x)| for all (t, x) ∈ ([s1 − 1, s1] ∪ [s3 − 1, s3]) × Ω̄ . Indeed, from
the choice of s1, we have

‖vs1 − lnβ‖ � ‖ψ∗ − lnβ‖ + ‖vs1 − ψ∗‖
= max

{
sup

{
ψ∗(θ, x) − lnβ: (θ, x) ∈ [−1,0] × Ω̄

}
,

sup
{
lnβ − ψ∗(θ, x): (θ, x) ∈ [−1,0] × Ω̄

}} + ‖vs1 − ψ∗‖
� max{M̃0, lnβ − ε0} + ‖vs1 − ψ∗‖

< max{M̃0, lnβ − ε0} + 1

8
ε0

= max

{
M̃0 + 1

8
ε0, lnβ − 7

8
ε0

}
.

According to the choice of ε0, we have M̃0 + 1
8ε0 < M0 − 1

8ε0 and hence ‖vs1 − lnβ‖ < M0 −
1
8ε0 < M1. A similar argument shows that ‖vs3 − lnβ‖ < M1. So, M1 > max{‖vs1 − lnβ‖,‖vs3 −
lnβ‖}, that is, Claim 2 holds.

Claim 3: |v(t, x) − lnβ| < M1 for all (t, x) ∈ [s1 − 1, s3] × Ω . Otherwise, it follows from
Claim 2 and M1 > M∗

0 that there exists (t2, x2) ∈ [s1, s3 − 1] × Ω such that M1 = lnβ −
v(t2, x2) > 0 and hence 0 < v(t2, x2) < lnβ . By Lemma 2.3(ii), we have h(v(t2, x2), v(t2 − 1,

x2), β) > 0 and hence �v|(t2,x2) − ∂v
∂t

|(t2,x2) < 0. It follows from Lemma 2.6(ii) that v cannot
attain a local minimum at (t2, x2), which yields a contradiction. Consequently, Claim 3 holds.

It follows from Claims 2, 3 and M1 > M∗
0 , that there exists (t∗∗, x∗∗) ∈ (s1, s3)×∂Ω such that

M1 = lnβ − v(t∗∗, x∗∗) > 0. Hence by Lemma 2.3(ii), we obtain that h(v(t∗∗, x∗∗), v(t∗∗ − 1,

x∗∗), β) > 0. By the continuity of v and h, and the smoothness of ∂Ω , there exist an ε > 0 and
an open ball S∗∗ ⊆ Ω , such that ∂S∗∗ ∩ Ω = {x∗∗} and h(v(t, x), v(t − 1, x),β) � 0 for (t, x) ∈
[t∗∗ − ε, t∗∗ + ε] × S∗∗. From (2.1), we have �v(t, x) − ∂v

∂t
(t, x) � 0 for (t, x) ∈ [t∗∗ − ε, t∗∗ +

ε]×S∗∗. Note that by Claim 3, v(t∗∗, x∗∗) = lnβ −M1 < v(t, x) for all (t, x) ∈ [s1 −1, s3]×Ω .
Thus by Lemma 2.6(iv), we obtain ∂v

∂n
|(t∗∗,x∗∗) < 0, a contradiction.

Case 3: ω(φ0) = {0}. In this case, by the definition of ω(φ0), there exists T0 > 0 such that
|v(t, x)| < 1 for all (t, x) ∈ [T0,+∞) × Ω̄ . By Lemma 2.2(i), there exists T1 > T0 + 3 and
ε1 > 0 such that vT1 − ε1 ∈ X+. Let w(t, x) be a solution of (2.1) with w0 = ε1. Then w(t, x)

is independent of x ∈ Ω̄ and satisfies (2.5). Let T2 = inf{t > 0: w(t, x) = 1 for some x ∈ Ω̄}.
Thus Lemma 2.5 implies T2 ∈ R+. By Lemma 2.4, we have 1 > v(t, x) � w(t − T1, x) for all
(t, x) ∈ [T1, T1 + T2]. This is a contradiction to the choice of T2 > 0.

Summarizing the above Cases 1–3, we see that M0 > 0 is impossible and hence M0 = 0,
leading to the conclusion ω(φ0) = {lnβ}. This completes the proof of the theorem. �
Remark 3.1. According to Lemmas 2.1, 2.2 and Theorem 3.1, particularly for φ ∈ X+ \ {0},
ω(φ) = {u+} provided that e < β � e2.
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