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Abstract

In this paper, we study the existence, uniqueness and asymptotic stability of travelling wave-
fronts of the following equation:

ur(x,t) =Dlu(x+1,t) +u(x — 1, 1) — 2u(x,t)] —du(x,t) + b(u(x,t —r)),

wherex e R, r>0,D,d>0,r>0,b e Cl(R) andb(0)=dK —b(K)=0 for someK > 0 under
monostable assumption. We show that there exists a minimal wave speef, such that for
eachc > c¢* the equation has exactly one travelling wavefréntx + ct) (up to a translation)
satisfying U (—oc0) =0, U(+00) = K and lim sup_, _, U(&)e "¢ < + 0o, where /.= A1(c)

is the smallest solution to the equation — D[e* + ¢~* — 2] +d — b'(0)e™*" = 0. Moreover,

the travelling wavefront is strictly monotone and asymptotically stable with phase shift in
the sense that if an initial data € C(R x [—r, 0], [0, K]) satisfies lim inf_ o0 ¢(x,0)>0
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and 1imy— —oo MaXe[—r.0]|@(x, $)e AT — paeA1(Ies| =0 for somepg € (0, +o00), then the
solutionu(x, r) of the corresponding initial value problem satisfieslim oo Supylu(-, 1)/ U (-+
ct + &g) — 1] =0 for someég = Eo(U, @) € R.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Travelling wavefront solutions play an important role in describing the long-term be-
haviour of solutions to initial value problems in reaction and diffusion (both continuous
and discrete) equations. Such solutions also have their own practical background, such
as, transition between different states of a physical system, propagation of patterns, and
domain invasion of species in population biology. When the nonlinear reaction term is
of monostable typethat is, considering the R-D equation

w(x,1) = Dwyy(x, 1) + f(w(x, 1), x€R, t=0, (1.2)

with f(w) satisfying
(A) f(0) = f(k) =0 for somek > 0; and f(w) > 0 for w € (0, k),

it has been known from long time ago thati, = 2,/Df’(0) > 0 is the minimal wave
speed in the sense that (i) for every- cmin there exists a travelling wavefront of the
form w(x, t) = u(x + ct) with u(s) increasing andi(—o0) = 0, u(oco) = k; (ii) the
wavefront is unique up to translation; (iii) far < cmin, there is no such monotone
wavefront with speecc. Moreover, the wavefront cannot be stable with respect to
general initial functions, it can, however, be stable in respect to some smaller class of
initial functions (e.g., initial functions with compact support).

For a spatially discrete analogue of (1.1), one may consider the following lattice
differential equations

(1) = Dlins1(t) + -1(t) — 2, (O] + fun (@), neZ t>0.  (12)

System (1.2) can either be considered as a discretization of (1.1), or be derived di-
rectly from population models over patchy environments (see, [84.2,18]). Indeed,

as mentioned in Bell and Cosner [3] and Keener [12], in many situations, one usu-
ally derives a discrete version like (1.2) first, and then, by taking limit, arrives at a
continuous version like (1.1). When the nonlinear term in (1.2) idisfable type the

study on travelling wavefronts of such lattice differential equations have been exten-
sive and intensive, and has resulted in many interesting and significant results, some
of which, have revealed some essential difference between a discrete model and its
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continuous version. For details, see, for example, Bates dtlglBates and Chmaj

[2], Bell and Cosner [3], Cahn et al. [4], Chow et al. [9], Keener [12], Mallet-Paret
[14], Shen [16,17], Zinner [25,26], and the references therein. However, for (1.2) with
a monostable nonlinearifythe results are still very limited. Zinner et al. [27] addressed
the existence and minimal speed of travelling wavefront for discrete Fisher equation.
Recently, Chen and Guo [7,8] discussed a more general class of system

Uy (1) = gun11(1) + gUn—1(1)) — 28(un (1)) + f(un(®)), neZ, t>0, (13)

where g(u) is increasing andf («) is monostable. Established in Chen and Gu@],

are such results as existence, uniqueness and stability (in some sense) as well as minimal
wave speed for (1.3). Also in a very recent paper, Carr and Chmaj [5] established the
uniqueness of travelling wavefronts for the nonlonoainostableODE system

u, = xu), —uy, + f(uy), nez, (1.4)

which reduces to the discrete reaction—diffusion system (1.2) when talirg:), =
%['Mz—&—l + uy—1].

On the other hand, in modelling population growth, temporal delay seems to be
inevitable, accounting for the maturation time of the species under consideration. Based
on such a consideration, in recent years, delayed reaction—diffusion equations of the
form

wi(x,1) = Dwyy(x, 1) —dw(x, t) +b(w(x, t — 1)), (1.5)

have been widely investigated in the literature (see, e.g., So and[2ahgnd Yang and
So [24] and the references therein). As a model, this equation describes the evolution
of a single species population with two age classes and a fixed maturation period
living in a spatially unbounded environmenmte R, where D > 0 andd > O denote
the diffusion rate and death rate, respectively, of the matured population, the constant
r>0 is the maturation time for the species. A more general model containing spatially
nonlocal interactions, inducejbintly by maturation delay and the diffusivity of the
immature population, is also derived and studied in So et al. [20]. When the immature
individuals do not diffuse, this general model reduces to (1.5).

Recent work of Faria et al. [10] shows that the multiplicity (in some sense) of the
travelling wavefronts of (1.5) witHarge wave speedoincide with the dimension of
the unstable manifold of the corresponding delay ordinary differential equation

w () = —dw(t) + b(w(t —r)) (1.6)

at the unstable connecting equilibrium 0. This indicates that the uniqueness of travelling
wavefronts for monostable equations (continuous or discrete) is not automatic, and thus,
needs to be established individually. Although no similar results for delayed discrete
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reaction diffusion equations that are parallel to thos§lb] have been established, we
expect that the multiplicity of travelling wavefonts for such equations are also related
to the dimension of the unstable manifold of (1.6) at 0. Encouraged by the recent work
of Chen and Guo [7,8], in this paper, we consider the discrete analog of (1.5), which
can be written in the form

u;l(t) = Dluy41(t) + up—1(t) — 2u, (t)] — du,(t) + b(u,(t —r)), neZ, t=>0.

a.7)
We point out that (1.7) is a special case of a more general system
U (1) = Dluny1(t) 4 tn-1(t) = 2u, (t)] — duy (1)
oo
+ Y T bt —r), neZ t>0, (1.8)

j=—00

modelling the growth of the matured population of a single species over a patchy
environment. System (1.8), parallel to the continuous nonlocal model in So [@0gl.
is derived recently in [22] and (1.7) precisely corresponds to the situation when the
immatured do not disperse between patches (imphyiiitg, j) = 1 for j = 0, and
I'(n, j) = 0 for all otherj). For details, see Weng et al. [22].

Throughout this paper, we always assume that the birth fundtienC1(R,) and
there exists a constark > 0 such thatb(0) = dK — b(K) = 0. Therefore, (1.7)
has at least two spatially homogeneous equilibria O Endrurthermore, we need the
following assumptions:

(H1) ' (0) > d, b'(u)>0 andd’(0)u>b(u) > du for all u € (0, K);

(H2) b’ (0)u — b(u) < Mu'*Y for all u € (0, K), someM > 0 and somev € (0, 1];
(H3) ¥ (K) < d;

(H4) |b'(u1) — b’ (u2)| < Llu1 — uz|* for all u1,us € (0, K) and someL > O.

It is easily seen that ib € C?([0, K]), then (H2) and (H4) hold spontaneously. A
prototype of such functions which has been widely used in the mathematical biology
literature isb(u) = pue~* for a wide range of parameters > 0 ando > 0. For
convenience of discussion, we extend and improve the birth funétion to b(u) ee
CY(R) in a natural way:b(u) = b(u) for u € [0, K], and b'(u) = b'(0) for u<O
and b'(u) = b'(K) for u>K. This can be achieved by modifying (if necessary) the
definition of b outside the closed intervgD, K], giving a increasing and smooﬂ(u)
on R, which will still be denoted by (u) in the rest of the paper.

As Chen and Gué¢7] did to (1.3), for convenience, we embed (1.7) into its continuum
version

ur(x,t) = Dlu(x+1,t) +ulx —21,¢) — 2u(x, )] — du(x, t)
+ bu(x,t —r)), xeR, t>0. (1.9
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We are interested in monotonic travelling waves:, 1) = U(x + ct) of (1.9), with

U saturating at 0 and, and our main concerns are the existence, uniqueness and
asymptotic stability of such travelling wavefronts. In order to address these questions,
we need to find an increasing functi@n(¢), where¢ = x + ¢t which is a solution of

the following associated wave equation:

—cU'(O+DUCE+D+UE-D 201 —-dU&) +bU (& —cr)) =0, (1.10)
subject to the boundary conditions
U(-00)=0, U(4o0) =K. (1.11)

The main results of this paper can be formulated as follows.

Theorem 1.1. Assume tha{H1)—(H4) hold. Then there exists a minimal wave speed
¢* > 0, such that for eachc > ¢* Eg. (1.9) has exactly one travelling wave-
front U(x + ct) (up to a translatiop satisfying U(—o0) = 0,U(+00) = K and
limsup:_, _,, U(&e MO < to00, where . = Aj(c) is the smallest solution to the
equationci — Dle* + e* — 2]+ d — b’ (0)e*" = 0. Moreover the travelling wave-
front is strictly increasing and asymptotically stable with phase shift in the sense that
if an initial data ¢ € C(R x [—r, 0], [0, K]) satisfiesliminf,_ i~ ¢(x,0) > 0 and
M, 0o MaXer_r.0p |@(x, $)eMOX — poeM(@es| — 0 for somepg € (0, +00), then

the solutionu(x, r) of the corresponding initial value problem satisfies

lim sup ut, 1) 1 =0

t>+o0 /| UG +ct+&)

for someéy = &(U, @) € R.

Remark 1.1. The minimal wave speed* = ¢*(r) is determined byA(c, 1) = 0O, the
characteristic equation of (1.10) at 0 akdA(c, 1) = 0, where A(c, 1) is defined

by (2.1). By implicit differentiation and some tedious calculation, one can see that
¢ * (r) is decreasing irr. In the caser = 0, the results in Theorem 1.1 reduce to the
corresponding ones ifv,8] for (1.3) in the case 0f(u) = u (linear diffusion). From
c*(r) < ¢*(0), one concludes that delay can inducdoge travelling wavefronts,

a phenomenon also observed in Zou [29] forc@ntinuousdelay reaction—diffusion
equation.

Remark 1.2. Under (H1)—(H4), similar conclusions for delayed reaction—diffusion (1.5)
can be obtained by the results in Sch§is].

Remark 1.3. In [22], in addition to isotropic property of solutions and the asymptotic
speed of travelling wavefronts, Weng et al. also addressed the existence of travelling
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wavefronts, and existence and uniqueness of the associated initial value problem to (1.8)
under assumptions similar to (H1)—(H4). However, they did not consider the uniqueness
and stability of the travelling wavefronts, which are the main concerns of this paper
(only to local model (1.7) though).

Remark 1.4. The assumption (H1) is a crucial one by which, the delayed tgum is
increasing on the intervgD, K] and thus, the whole interaction term is quasi-monotone.
Applying the upper-lower solutions and monotone iteration technique established in Wu
and Zou[23], the existence of monotone travelling waves are also obtained for various
quasi-monotone and monostable lattice differential equations with delays in Zou [28],
Hsu and Lin [11], Ma et al. [13]. WheK is such that () is not increasing ofi0, K1,

the problem becomes much harder due to lack of quasi-monotonicity. For such delayed
equations without quasi-monotonicity, some existence results for travelling waves have
been obtained in Wu and Zou [23] by using the idea of the so-called exponential
ordering for delayed differential equations, Application of these results to particular
model equations is not trivial as it requires construction of very demanding upper—
lower solutions. Uniqueness and stability of travelling waves of such systems seem to
be very interesting and challenging problems.

The rest of this paper is organized as follows. In Section 2, we establish the existence
of a travelling wavefront by using super-sub solutions and monotone iteration technique
developed in [23]. We point out that [22] also applied the same technique, and thus,
our existence result essentially can be obtained from the corresponding ones in [22].
However, we still provide this section because we need some more specific information
about the sup-sub solutions and the asymptotic behaviour of the travelling waves, which
will be used in later sessions for proving the uniqueness and stability of the travelling
wavefronts. In Section 3, we prove that the travelling wavefront obtained in Section 2
is unique up to a translation. In Section 4, we address the existence and uniqueness
of solution to the corresponding initial value problem associated to (1.9). We point out
that although a similar result was established by fixed point theorem for a contracting
map in [22], we decide to follow the direction of Section 2 to use the technique of
super-sub solutions and comparison technique to achieve the goal. As can be naturally
expected, some by-products (lemmas) in this section will then be reused in Section
5 to prove the asymptotic stability. The application of such a squeezing technique is
motivated by the work of [6,7,19].

2. Existence of travelling waves
In this section, we first establish the existence of travelling wavefronts of (1.9) by

using the sub-super solutions technique and an iteration scheme.
Firstly, we set

A(c,2) ==ci—D [e’t +e - 2] +d — b'(0)e 7. (2.1)
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Lemma 2.1. Assume thab’(0) > d. Then there exists a uniqu& > 0 such that
(i) if c>c*, then there exist two positive numbeXs(c) and Az(c) with A1(c) <A2(c)
such that

A(e, A1(e)) = Ale, A2(c)) = 0;

(i) if ¢ < c*, thenA(c, 2) <0 for all 2>0;
(i) if ¢ = c*, then A1(c*) = A2(c™) := A*, and if ¢ > ¢*, then A1(c) < A" < Aa(c)
and

A(C, ) > O In (Al(c)v AZ(C)), A(C9 ) < 0 In R \ [Al(c)’ AZ(C)L
(iv) if ¢ > ¢*, then Aj(c) < 0, A5(c) > 0. Moreover
lim Aj(c) = —oo, lim A5(c) = +o0.
c\(¢ o\

The proof of Lemma 2.1 is easy and is thus omitted.
For any absolutely continuous functiah: R — R, we set

im H(&) — H(E —h)
0

Nel$l(©) = C;Il = D[P+ D+ P =1 —2¢(O] +d (<)

h
—b(9p(C —cr)). (2.2)

Definition 2.1. An absolutely continuous functiop : R — [0, K] is called a super-
solution (a subsolution, resp.) of (1.10) if for almost evérg R, N.[¢](¢) >0 (<0,
resp.).

Lemma 2.2. Assume thaftH1) and (H2) hold. Letc > ¢* and A1(c), A2(c) be defined

as in Lemma2.1. Then for everyf € (1, min{l + v, ﬁi—g‘c‘;}), wherev € (0,1] is as

in (H2), there existsQ(c, f)>1, such that for anyg > Q(c, f) and anyé* € R, the
functions¢® defined by

T (&) := min {K, 61\1(0)(§+i+) + qeﬁAl(C)(é+i+)} , feR (2.3)

and

d(&) = max{O, eMEOE+E) qeﬁ/\l(C)(é+f_)] , CeR (2.4)

are a supersolution and a subsolution ¢b.10), respectively.
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Proof. It is easily seen that there exisf§< — ¢t — ﬁA—i(C) In %, such thatp™ (&) = K

for &> & and ¢pT (&) = eMOEH) 4 gefMEOCEHE) for ¢ e*,
For ¢ > &*, we have

Ne[¢pt1(&) = —D[¢pT(E — 1) — K]+ dK — b(¢pH(E — cr)) >dK — b(K) = 0.
For é<&*, we have

N$H1(©) > eMOEHED [c/\l(c) — D(EMO MO _p) 4 d] 4 gePMOEHED
x [cﬁAl(c) -D (eﬁAﬂC) e PM© _ 2) n d] — bt (E = cr))

> qePMEOEHEN (¢, BAL()) + B (O ¢t (€ — er) — b(pH(E — er)) > 0.

Therefore,¢™ is a supersolution of (1.10).

Let &, = —¢ — mln q. If ¢=1, thené, < — &, Clearly, ¢~ (&) = 0 for

&> &, and ¢ (&) = eMOEHT) _ g ofMOEHT) for g,
For £ > £,, we have

Ne[¢p™1(©) = =D¢p (= 1) — b(¢p™ (£ — ) <O0.

1

Forégi*, we haveé+é*< ~ DA

Ing, and hence

N1 < eMEOE+E) [CAl(C) _ D(eAl(C) + e M) _ 2) + d] _ qeﬁ/\l(C)(C?f*)

x[ehAs(e) = D (MO 4 MO _2) 4 d] — (g (€~ er)

< —qePMOCEEIA(C, BAL(0)) + B/ (0™ (& — er) — b(¢p™ (& — cr))
< —qefMOCTEIN(C, BAL(0) + ML~ (& — )™

< —qePMOEHDI A BA1(€)) + MeTHIAOEHE)

< {_q Ale, BA1(S)) + Me(l+vfﬁ)/\1(c)(é+é‘)} PAOE+E)

N

_l+v7[j’ o
{—qé(c, BA1(c)) + Me  F-1 Inq} PALOEHET)

v 1+v—p L
{—q PTA(ce, pA1(e)) + M} g~ T PMOEH <
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p-1

v

provided thatg > Q(c, p) := max{l, [A(c ﬁﬂ;[\l(t’)):l

of (1.10). The proof is completed.r

}. Therefore,¢~ is a subsolution

Remark 2.1. In particular, we may choosg = min{1+v/2, A*/A1(c)} € (1, min{1+

v, ﬁigg }) in Lemma 2.2. As lim .+ A1(c) = A*, we see thap = A*/A1(c) if ¢ —c*

is small enough. Therefore, we have

A*—Aq(c)

M ] TR
0. p) = max{l, [A(c—/\)] }

Let ¢ = c¢(4), 2 > 0 be defined byA(c(4), 2) = 0. Then it is easily seen that(A*) =0
and ¢”(A*) > 0. Hence, we have
limes e (e — AN MO = lim s oo (A* = Ag(e)) Infe — ¢*]
= IimA«/A* (A* —2) |n[C(/1) — C*]
(D= A*)?
c(d) —c*

= IimA«/A*

Since A(c, A*) = (c — ¢*)A* > 0, we find

liminf[Ae, AH)]Y 81O > lim [(c — A A MO = 1,
o\(c* o\(c*

Therefore, limsup .« Q(c, ) < +oo. Thus we can assume, without loss of generality,
that q is independent ot if ¢ — ¢* is small enough.

The following is our main result for the existence of travelling waves.
Theorem 2.1. Assume(H1) and (H2) hold. Letc* > 0 be as in Lemma2.1. Then

for eachc>c*, (1.9) admits a travelling wave solution(x, t) = U (x + ct) satisfying
U’ > 0 on R. Furthermore for ¢ > ¢*, U also satisfies

im U@©e =1 lim U'(&e * =4, (2.5)
E——o0 {——o0

where 4 = A1(c) is the smallest solution to the equation

Alc,?) =ci—D [ei fe o 2] +d—b(0e " =0,

For everyc < ¢*, (1.9) has no travelling wave solutions satisfyii(g.5) with 4 > 0.
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Proof. Forc > ¢*, by virtue of Lemma 2.2¢* and¢~ with && = 0 are a supersolution
and a subsolution to (1.10), respectively. Sigcaé) < ¢ T (¢) for all ¢ € R, the iteration
scheme

1 T
Ppi(©) = ;e‘”’%‘*/ DI, (s + 1) + buls — D1+ b(¢ (s — er)) ds,

with ¢o(&) = ¢ (&), shows that there exists a nondecreasing solutipft) to (1.10)
and (1.11), which will be denoted b§l., ¢) and satisfies

eMO¢ qe/f/\l(C)Cf <UL <e/\1(0)f + qeﬂAl(c)é, EeR. (2.6)

Clearly, (U, ¢) is also a weak solution of (1.10), i.e., for agye C3°(R), we have
Cf Uc({b/ + / {D[Uc(' + 1) + Uc(' - 1) - 2Uc] - dUc} ¢
R R

+f b(Uc()p(-+cr)=0. (2.7)
R

Take u* € (0, K), then for each: > ¢*, there existst,. € R such thatU.(¢.) = u™.
By Helly’s Theorem, there exists a sequengge > ¢* with ¢,, \  ¢* asm — +o0,
such thatl?cm(-) = U, (-+¢,,) converges pointwise to a nondecreasing functign
asm — +o00.

Applying the Lebesgue’s Dominated Convergence Theorem to (2.7) avigplaced
by ¢,, and U, replaced byﬁcm then gives

C*/I‘QUC*(Z)/—I-/R{D[UC*('—I—l)—I—UC*('—l)—ZUC*]—dUC*}qS
+Abwaowc+ﬁn=o 2.8)

for all ¢ € CF(R). Sincec* > 0, (2.8) implies thatU.- € W1*(R), and hence, a
bootstrap argument shows thét- is of classC! and thus a solution of (1.10). Since
Us(0) =u* € (0,K) andb(u) > du for u € (0, K), it follows that U.+(—o0) = 0 and
Uy (+00) = K.

Next, we show that for each>c¢*, U, > 0 on R. Suppose for the contrary that
Ul (xg) = 0 for somexg € R. SinceU/>0 on R, we haveU/(xo) = 0, and hence

0=cU/(x0) = D[Ul(x0+ 1) + Ul(xo — 1] + &' (Uc(xo — cr)Ul(xo — cr)
> D[Ul(xo+ 1) + Ul(xo — 1] >0,
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which together with the fact thdt (0) > d > 0 implies thatU/(xo+1) = Ul(xo—1) =

Ul(xo) = 0 and U/(xg — cr) = 0 if —xg > O is sufficiently large. So by using an
induction argument, we conclude that

Ul(xo+n—mcr)=0 for all n,m € Z with m>0.

Let wy (1) := Ul(xo +n — mcr + 1), thenw, ,, satisfies the initial value problem

/
Wym = o [wn-i-l,m + Wn—1,m — an,m] T Wn,m

1
+= b'(Uc(xg+n — (m + Der + 1) Wy mi 1.

Wn,m 0) =0,

wheren, m € Z with m>0. By the uniqueness of the initial value problem, we have
wy.m(t) =0, and hencd/ = const, which is a contradiction.
If ¢ > ¢*, it then follows from (2.6) that

lim U (&e ™M@ 1)< lim  gelP-DMOC g,

—>—00 {——o00
Since 0<b' (O)u — b(u) < Mut for u € (0, K), we have

im |b(Ue(& = cr)) — b (O)U(E - er)|e~MO¢
{——o0

< lim  M[U(E — cr)MHYe M08 = 0,

{——o0
Hence, forc > ¢*, we also have

lime_, o Ué(f)e_/\l(c)f
= % iMes oo {DIUE + 1) + Ue(& = 1) = 2Uc(O)] = dU(E)
+ b(Ue(& = ery)}e s
_1 {D [eAl(C) 4 oM@ _ 2] a4 b/(o)e—/\l(c)cr]

C
= A1(0).
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Finally, if ¢ < ¢*, and U (x + ct) is a solution to (1.9) satisfying (2.5) with > 0.

Then U satisfies (1.10). Multiplying (1.10) by and sending — —oo then gives
A(c, 2) = 0, a contradiction. This completes the proof.

3. Uniqueness of travelling waves

In this section, we prove that the travelling wavefront obtained in Section 2 is unique
up to a translation.

Theorem 3.1. Assume(H1)—(H3) hold. For eachc > ¢*, let (U, ¢) be the solution to
(1.10) and (1.11) as given in Theoren2.1. Let (U, ¢) be another solution tq1.10)
and (1.11) satisfying

lim sup U (&)e M1©¢ < 40, (3.1)

f——o0
Then there exist§ € R such thatU(-) = U(- + 7).
Proof. Firstly, we observe that ifU, ¢) is a solution to (1.10) and (1.11), then
U<K. (3.2)

Otherwise, suppose that there existsso thatU (xo) > K and U (x) < U (xo) for all
x € R. Then, we haved//(xg) = 0 and so

0 > —c0'(xo) + D[ U0+ 1) + Uwo — ) — 20 (o)
= dU(xo) —b (0(xo — cr))
> d0 (x0) = b0 (x0)) > 0,

which is a contradiction.
In what follows, we denote byU, c¢) the solution of (1.10) and (1.11) given in
Theorem 2.1. Sincé’(K) < d, we can choose: > 0 andx > 0 such that

d > ae™O L p'(p) for ne K —k K +«l. (3.3)
Take My > cr sufficiently large so that

U >K —«k/2 for E=My — cr. (3.4)
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Since iMoo U'(x)e MO = Aj(c) > 0, we can takeM, > 0 sufficiently large
such that

U'(x)e MO > 1 A1) for x< — M. (3.5)
Denote
0 :=minfU’(&); —Ma<E< M1} > 0.

Let 1 € (0, k/2) and define

_ woy A1(c)M 3:“ ’
B=m —b oM p . 3.6
ax{ %0 max€ aAp(c) max (3.6)

54

We claim that foru € (0, k/2) given above, there exists> Mj, such that
U(x +2) + umin {1, eAﬂC)X} > O() forall xeR. (3.7)

In fact, we can first choose; >M > 0 such thate®1(921 > p .= limsup, , . U(x)
e~ M©x Since

im U+ zl)e_Al(")x =M@ o 0,
x——00
there existsM3 > 0 such that
U +2z1)>Ux) for x< — M.

Take M4 > 0 sufficiently large so that

U(x) + ,uefAl(c)M3 > K for x> M;.
Let z = z1 + M3 + My, then forx < — M3, we have

Ux +2) + gmin {1, eAl(”)x} 0 > UG +z0) - U(x) >0

and forx > — M3, we havex + z> My, and hence, (3.2) implies that

U +z)+ pmin {1, eAl(C)"} —U®)

>U(x+2)+ ,ue_Al(C)M3 —U@x) > K —U(x)>0.
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Define
we, ) =U (x+z+B(1—e™))+ umin {1, eAl(C)x} e —Ux), (3.8)
then we have
w(x,0) = U(x +2) + umin {1, eAl(C)x] —0(x) > 0.

We claim thatw(x,) > 0 for all x € R andr>0. To see this, suppose that there
exist xgp € R andry > 0 such that

w(xg, o) = U (Pp) + pmin {1, eAl(C)xO} e~ — U(xg) = 0<w(x, 1) (3.9)

for all x € R andr € [0, r9], where
Po=x0+z+ B(1—e ™).
Clearly, if xo = 0, then
w (xo—, fo) = U'(Po) — U’ (x0) + A1 (e)e™M 00 <0
and
wy (xo+, 10) = U'(Po) — U’ (x0) >0,

which is impossible. So we havg) # 0, and hence

wy (x0, f0) = U'(Po) — U’ (x0) + pA1(c)eP1©%0e=%0 =0 if xg <0 (3.10)
and

wy (x0,10) = U'(Po) — U'(x0) =0 if x0 > 0. (3.11)
In the case wherag > 0, we have

0 > w;(xo, to) — D[w(xo + 1, t0) + w(xo — 1, 19) — 2w (xo, t0)]

= —ope ™0 4+ oBU'(Po)e ™ — uD [l + min [1, eAl(c)(xo_l)} - 2] e o

—DIU(Po+ 1)+ U(Po— 1) = 2U(Po)] + D[ U0+ 1) + U(xo — 1) — 20 (x0)|
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> [—op+ aBU'(Po)le™ — cU'(Po) — dU (Po) + b(U (Po — cr))
+cU' (x0) + dU (xg) — b(U (xg — cr))
= [du— o+ aBU'(Po)le™0 + b(U (Po — cr)) — b(U (xo — cr))
> [du— oap+aBU'(Po)le™™° + b(U(Po — cr)) — b (U(Po — cr) + pe ™)

[d — o+ %U’(Po) - b’(n)] pe~0, (3.12)

wheren € (U(Py — cr), U(Py — cr) + w). Since Py > z> M1, it follows from (3.4)
that > U(Pyp — cr)> K — x/2, and hence, by (3.3), the right-hand side of (3.12) is
positive, which is a contradiction.

In the case whereg < 0, we have

0 > w;(xo, t0) — D[w(xo + 1, t0) + w(xo — 1, t0) — 2w(x0, t0)]
= —oueM©x0,=%0 Ly BU (Po)e 0 — uD [mm {1’ eA1<c)<xo+1>,} 1 eM©Go-D
—zeAl(OXO] e~ _ DIU(Pg+ 1) + U(Py — 1) — 2U (Po)]

+D [0(x0 )+ 000-1) — 20(x0)]

WV

[_aMeAl(C)XO + ocBU/(Po)] %0 _ 'uDeAl(C)XO [eAl(C) + e M@ _ 2] o0

—cU'(Po) — dU (Po) 4+ b(U (P — cr)) + cU" (xo) + dU (xo) — b (U(xo — cr))

WV

[_a#e/\l(C)XO + O(BU/(Po)] e~ %0 _ 'uDeAl(C)XO [eAl(C) + e M) _ 2] e~%0
—i—ﬂC/\l(C)eAl(c)er_wo + dMeAl(C)XOe—WO

+b(U (P — ) = b (U(Po = er) + pmin |1, M@ o= | =0
— I:—OCILLEA]'(C)XO + O(BU/(PO)] e~ %o _ ,Ltb/(}’])EAl(C)(XO_Cr)e_wO

+ [CAl(C) +d—D (eAl(C) 4 M@ _ 2)] lueAl(C)xoe—WO

WV

[—a + ﬁU’(Po)e—A1<C>1’o + (b (0) — b/(n))e—/\mcr] L1300
u

WV

[de—Al(C)Cr a4 ﬁU/(PO)e_Al(C)PO _ b/(n)e—/\l(c)cr] ,lleAl(C)er_mO, (313)
U

wheren € (U(Po — cr), U(Py — cr) + ).
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In this case, if Pg< — M, then (3.5) and (3.6) imply thai‘#ﬁU/(Po)e*Al(")PO —

b/(n)e—Al<C>fr>%;<” — bl=>0, and hence, by (3.3), the right-hand side of (3.13)
is positive, which is a contradiction.
If Po € [—Mz, M], then by (3.6), we havéZ U’ (Pg)e= AP0 —p/ ()e~Aate)er > 20¢

e~MOML _ >0, and hence the right-hand side of (3.13) is positive, which is a
contradiction.

If Po>M;, then it follows from (3.4) thay > U (Po—cr) > K — k/2, and hence, by
(3.3), de= MO _ oy _ p/(ip)e~MOr 0. So the right-hand side of (3.13) is positive,
which is also a contradiction.

Taking the limitz — +o0 in (3.8), we get

Ux+z+B)>Ux) forall x e R.
Thus there exists a minimal such that
Ux)>U(x —z) forall x e Randz>z. (3.14)

We assert that it/ (x) # U(x —z) for somex, thenU (x) > U(x —z) for aIAI x e R.
Otherwise, suppose that for somg U (xg) = U(xg—2). Letw(x) = U(x)—U(x —2).
Then we havew’(xg) = 0 andw(x) > w(xp) = 0 for all x € R, and hence

0 < Dlwxo+ 1) + w(xo — 1) — 2w(xo)]

= —cw'(x0) + D[w(xo + 1) + w(xg — 1) — 2w(x0)] — dw(xq)

= —cU'(xg) + D[U(xg+ 1) + U(xg — 1) — 2U (xg)] — dU (x0)

+cU'(xo—7) — D [0<xo +1-+Uxo—1-2)—20(xo — z>] +dU(x0 — 2)

- b (U(xo —er)+b (O(xo - cr))

= —b'(iNw(xo — cr) <0,
whereyn € (0(xo — 7z —cr),U(xg — cr)). Hence, notice thab’(0) >d >0, we find
wkxo+1) = wkxo—1) =wlxp) =0 andw(xg—cr) = U(xg—cr)—U(xg—2z—cr) =0

if —xo > 0 is sufficiently large. From which, by an induction argument, we can show
that

w(xg —mcr +n) =0 for all n,m € Z with m>0. (3.15)
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Let v, ;m(t) = w(xg — mer +n+ct),n € Z,m >0, then by the Mean Value Theorem,
it is easily seen thab, ,,(r) satisfies the initial value problem

/
Vym = D [vn+l,m + vp—1m — 2Un,m] - dvn,m + Pn,erl(t)Un,erl»

vn,m(o) =0,
wheren € Z,m>0 and
l A
Pum() = / b'[U(xg—mer +n+ct) +a (U(xo —mecr+n—7+ ct)
0
—U(xo —mcr +n + ct))]do.

By the uniqueness of solutions to the initial value problem, we concludevihatr) =
0, and hencev(x) = 0, which leads to a cqntradiction and establish the assertion.
In what follows, we suppose thdf(x) > U(x — z) for all x € R. It follows that

12,06_/\1(6)2, (3.16)

wherep = limsup,_, ., U(x)e M©x,

Let ¢ > 0 and define
we, ) =Ux—el—e)-U(x—-37), xeR, teR.

Thenw(x,0) = U(x) — U(x —Z2) > 0 for all x € R. Suppose that there exigf > 0
and xg € R such that

w(xo, f0) = U(xo—e(1—e~0))—U(x0—Z2) = 0 < w(x,7) forx € Rand 7 € [0, o).
Then
wy (x0, 10) = U'(xg — £(1 — e~*0)) — U’ (xg — 2) = 0.
Therefore, we have

0 < Dlw(xo+ 1, 10) + w(xg — 1, 19) — 2w(xo, t0)]

= DIUPL+D+UPL—1) —2U(P1)]

—D[Uro+1-+000-1-2 2000 -]
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= ¢|U'(Py=0"(x0-3)| + d[U(P)~U (x0-2)| = b(U (P—cr)) + b (U (vo-Z=c))

—b'(inw(xo—cr, to)
<0

where P; = xg — (1 — e~0) andy € (U(xo — cr), U(P1 — cr)). Sinceb'(0) > d > 0,

it follows that w(xg + 1,17) = w(xo — 1,79) = w(xg,f0) = 0 and w(xg — cr, fg) =
UPL—cr)—U(xg—cr) =0 if —xg > 0 is sufficiently large. By using a induction
argument, it can be shown that

w(xg —mecr +n,tg) =0 for all n,m € Z with m>0.
A similar argument as used above shows that
wx,tg) =Ux —e(l—e ™)) —Ux —7z) forall x € R.

Therefore, we have

e—Al(C)a(l—e’“’O) = lim,_ o U@ —e(l— e—octo)e—/\l(c)x
= limsup,_, o, U(x — 7)e" MO (3.17)
— pe—Al(C)z'

If pe=A©@Z = 1, then (3.17) leads to a contradiction. d¢~*1()% < 1, then we can
choosees > 0 in such a way that

e—/\l(c)&‘ -~ pe—/\l(c‘)z’

—atg

therefore, it follows from (3.17) that1(©)¢e
we have

< 1, which is also a contradiction. So

wx, ) =Ux—el—e ™) —U(x—3)>0 forallxeRands>0. (3.18
Passing to the limit as — +oo in (3.18) gives
Ux)>U(x —(z—¢) forall xeR,

contradicting to the minimality of and proving that (x) = U(x — z) for all x € R.
The proof is complete. O
As a direct consequence of Theorem 3.1, we have the following
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Corollary 3.1. For ¢ > ¢*, there are no solutionsU, ¢) of (1.10)and (1.11) satisfying

lim sup U (&)e 1< <.

E——00

4. The initial value problem

To study the asymptotic stability of the travelling waves, we first study the initial
value problem

u;(x,t) = Flul(x,t), xeR, t>0,
u(x,s) = ox,s), xeR, se[-r0] (4.2)
Here and in what followsF[u](x, ) = D[u(x+1, )+u(x—1, 1) —2u(x, t)]—du(x, t)+
b(u(x,t —r)).
For the existence of solutions to the initial value problem (4.1), we have the following

result.

Lemma 4.1. For every initial datap € C(R x [—r, 0], [0, K]), (4.1) admits a unique
solutionu € C(R x [0, +00), [0, K]) satisfying

u(x + j, )= DY p(x, 0)ille=@P+D i forall x eR, jeZandr>0. (4.2)

Proof. Clearly, (4.1) is equivalent to

t
u(x,t) = @(x,0)e” @GP+ —I—/ ePPHDE=DDlu(x + 1, 7) + u(x — 1, 7)]
0
+ b(u(x,t—r))}dr. 4.3)

The existence of solutions then follows by Picard’s iteration and the monotonicity of
the operatorT [u](x, ) := D[u(x + 1, 1) + u(x — 1, 1)1 + b(u(x,t —r)).

It follows from (4.3) thatu(x, 1) > ¢(x, 0)e~@P+)" and u(x,1)> D [y eP+HEN
u(x £ 1,1)dr for all + > 0. Therefore, (4.2) follows by an induction argument. This
completes the proof. O

Next, we establish some comparison results for solutions of the initial value problem
(4.1).

Lemma 4.2. Assume that:l and u? are continuous functions oR x [—r, +00) such
that u1>0 and u?2< K on R x [—r, +00), that u?<ul on R x [—r, 0] and that

ul(x, 1) — Flul(x, )= u?(x, 1) — Flu?](x, 1) (4.4)



S. Ma, X. Zou / J. Differential Equations 217 (2005) 54-87 73

on D:= {(x,1) € R x (0, +00)|u?(x, 1) > 0, ul(x,r) < K}. Thenmin{K, u!} > max
{0, 4%} on R x (0, +00).

Proof. Clearly, we only need to show that!>u? on D. Sincew := u? — ul is

continuous and bounded from above By w(t) := supy w(-,#) IS continuous on
[—r, +00). Suppose the assertion is not true. L@y > 0 be such thatMg + d —
blae Mo > 0, then there exists > 0 such thatw (o) > 0 and

w(rp)e Moo = sup [w(t)e*Mo’] > w(t)e ™Mo for all t € [—r, 1g). (4.5)
t>—r

Let {x;}72, be a sequence oR such thatw(x;,70) > 0 for all j>1 and lim;_ 1
w(x;, to) = w(tg). Let {tj}j?ozl be a sequence irD, #p] such that

e_MO’jw(xj, tj) = tggoatx] {e_Motw(xj, t)} . (4.6)
10

As w(x;, to) > 0, we havew(x;, ;) = u?(x;, t;) —u(x;,¢;) > 0, and hencéx;, ;) €
D.
It follows from (4.5) that liny_, ; » t; = f0. Since

e Moty (x;, tg) <e MOl (x;, 1)) <e M (1)) <eMe(1),
we have
e Moy (x, 10) Swx;, 1)) <e M0 an(rg),

which yields lim;_, ;o w(x;,t;) = w(to).
In view of (4.6), for eachj >1, we obtain

o
N

Qt {e_MOtw(xjv t)} |[:lj—

e Mol (x;,t;) — e MU=y (x; t; — h)

= liminf ;o h

e*Motj _ e*Mo(t.,' —h)
h

o= Mottj—ny) W 1)) = wixj. tj — h)
h

[0yt 1 Mo 1]

N

|imh\o w(xj, ;) + lim infh\o

X
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where Qu(x, 1) = liminf _, o “XH=ED which yields
Qt(u2 — ul)(xj, tj) =D,w(xj, t;) > Mow(xj,t;) > 0.
Therefore, it follows from (4.4) that
0 > D,w(xj,tj) = Dlw(x; +1,1;) + w(x; — 1,1;) — 2w(xj, t;)] +dw(x;, t;)
— b <u2(xj, f— r)) +b <u1(xj, f— r))
(Mo +2D +d)w(xj,tj) — D{w(x; + 1, ¢;) + w(x; —1,¢))]

WV

— bmaxMax0, o(t; — r)}

> (Mo+2D + dyw(xj, 1)) = 2D0o(t;) = bipaxmax(0, ox(t; = 1)}
Sendingj — +oo to get
0 > (Mo + 2D + d)(t0) — 2D(t0) — binaye ") max{o’ w(tg — r)e_MO(tO_r)]
> (Mo + d)w(tg) — ;naXeMOUO—f)w(to)e—Moto

= [Mo+d — bpae ™| 00).

Recall thatMg +d — b(naXe*MO’ > 0, we conclude thaty(zp) <0, which contradicts to
w(tg) > 0. This contradiction shows that = u? — u1<0 on R x (0, +00) and the
proof is complete. [J

Lemma 4.3. Suppose thai!, u? € C(R x [—r, +00), [0, K]) satisfiesul(x, ) — F[u']
(x, t)}u,z(x, 1) — F[u?)(x, 1) on R x (0, +00), ul(x, s) >u?(x,s) on R x [—r, 0], and
that for any x € R there existsj € Z so thatul(x + j,0) > u?(x + j,0). Then
ul(x, ) > u?(x, 1) on R x (0, +00).

Proof. Putw(x, r) := ul(x, 1) —u?(x, t). By virtue of Lemma 4.2, we have(x, 1) >0
on R x [—r, +00). So it follows from (4.4) and the monotonicity @f(-) that

t
w(x,t)e(zm'd)’ > w(x,O)—i—D/ e(2D+d)T[w(x+l, )+ wkx —1 17)]dr
0
t
> D/ e(2D+d)T[w(x+l, ) +wkx —1, 1)]dr>0.
0

Therefore, by using an induction argument, we can show that(if, r) = u*(x, 1) —
u?(x, 1) = 0 for somex € R andr > 0, thenw(x+j, 1) = ul(x+j, 1) —ul(x+j, 1) =

0 for all j € Z and 7 € [0,t]. The assumption on the initial condition then gives
ul(x,t) > u?(x, 1) on R x (0, +00). This completes the proof.0]
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Lemma 4.4. Letul, u? € C(Rx[—r, +00), [0, K]) be any two solutions t¢4.1). Then

Sup{ul(x, t) — uz(x, t)}

xeR

< sup {maxiul(x,s) —u(x, ), 0}} Kt forall 10, (4.7)
(x,5)eRx[—r,0]

where K = bjy,,e P+ —q.
Proof. Let u® be the solution to (4.1) with the initial value3(-,s) = maxul(., s),

u?(-,s)}, s € [—r,0]. Setw(x, 1) = u(x, 1) —u?(x, ). Then by virtue of Lemma 4.2,
we haveK >w(x,t)>0 on R x [—r, +o0) and forr >0,

'
w(x, )e@PTD < yw(x,0) + / ePPHDUDIw(x + 1, 1)
0

+ wx — 1, D]+ by (x, T — r)}de

< W, 0) + (2D + blge?P77)
t
x / SURc(_r.q W (-, $)[[e@PTD dr.
0

Hence,

sup [[w(, )@+ < sup w(, ) + (2D + binge P

s€[—r,t] se[—r,0]

t
x/ sup [w(-, s)]|e@PHDT gz,
0

se[—r,1]
So it follows from the Gronwall’s inequality that

(2D+d)s (2D 4Dl e PPy ’

sup [[w(, s)lle < sup flw(, s)lle
se[—r,t] s€[—r,0]

which implies that

ul(x, 1) — u(x, )< sup {u3(x, s) — u?(x, s)} X for all >0,
(x,8)eRx[—r,0]

from which, the conclusion of the lemma follows. This completes the proaf.

It is convenient in our stability analysis to introduce the following definitions.
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Definition 4.1. An absolutely continuous function®(x, t)},x € R,t € [—r, b), b > O,
is called a supersolution (subsolution) of (1.9) Brx [0, b) if

v (x, 1) = (S)F[o](x, 1) (4.8)

for almost everyx € R andt € [0, b).

Finally, we construct a few sub and super solutions for the initial value problem
(4.2).

Lemma 4.5. Suppose an absolutely continuous functione: R — [0, K] satisfies
N:[p1(6) =0 (or <0) i.e. on R. Thenw(x,t) = ¢(x + ct) is a supersolution(or
subsolutiof to (4.1).

Proof. The assertion follows immediately from the identity — Flw] = N.[¢]. O
Lemma 4.6. Assume tha(H1)—(H4) hold and (U, ¢) is the travelling wave given in
Theorem2.1. Then for eaché € (0, 1), there existfy, > 0 and g9 > O such that for

eachs € (0,9] and for any ¢ € R, the following functions are a super and a sub
solution to (4.1), respectively

wE(x, 1) = (1 + ae_ﬁC”) U (x +ot +EEF aose_ﬂf”) . (4.9)

Proof. Fix 6 € (0,1). Sinceb'(K) <d andb(u) > du for u € (0, K), we see that

b(K) —b((1—-95)K
b ap P ZHA-9K)
0<s < (14+6)/2 sK

d.

Hence, we can choos, > 0 and: > 0 such that
sePor < 1%5, wePo < a (4.10)
and
(d — Bo)e P — max{w, b'(K) +1} > 0. (4.11)
Chooserx > 0 small enough so that
b'(n) <b'(K)+1 for ne[K —x, K +x], (4.12)

KI(d — fo)e P —b'(K) —1] > « [de—ﬁo’ —b(K) - 1] (4.13)
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and
K [(d — poyePor — w] - K [de—ﬁor - w] 2LKK. (4.14)
Take My > cr sufficiently large so that
UG >K —«k/2 for E=My —cr. (4.15)

As lim:, o U(©e O = 1 and lim:_, o, U'(&e MO = A1(c), we can take
M > 0 sufficiently large such that

Lcu©e ™M@ < 30 y/(@e MO 5 A1) for ¢< — Ma. (4.16)
Denote
0 = min{U’(&); —M2<E< My} > 0.

Finally, choosesy > 0 sufficiently large so that

Bor
oo = max!;j\ © [ﬁoe_ﬁor + (b;‘nax_de_ﬁor) e_Al(C)Cr],
oA1le
eﬁor ,
i [Boe ™ + bjpax — de™Po" | K (4.17)
and
oo = max 36—130" I:ﬁ e—ﬁor +2LKV6—/\1(c)cr]
g Bo(1— d)Ax(c) L° ’
eﬁor —Por 1+v
ot =g [Poe” " + 21K ] (@19)

For anye € (0,6], put & =x +ct + &7 — aoee Pl then for anyr >0, we have

StwHlx, ) == w e, ) =D[wtax+ L +wh -1 2w (x, 1]
+ dwt(x, 1) — b (whx, 1 —r))

= e P U @) + (c + aoﬁoee‘ﬁof) (1 + se—ﬁof) U@

_D (1 i se—ﬁof) U+ DHUE — 1) — 2U(E)]+d (1 n se—/‘o’) U©)
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—b [(1 + SE_ﬂO(t_r)) U (é — cr — agee Por (ePor — 1))]
> —Boce 10U (&) + cofigee P (14 ee o) U/ ()
+ (14 s ) bUE = el b [ (14 se ) U(E = e
from which we obtain
e Lo S (x, 1) > —Boe U (&) + aofoeForU (&)
+ (de*ﬁor _ b/(n)) UE —cr), (4.19)

wheren € (U (& — cr), (L4 dePoryu (& — cr)).
We distinguish among three cases.

Case(i): ¢=Mj. In this case, by (4.15), we hav€ — k/2<n< K + k. Hence, it
follows from (4.11)—(4.13), (4.15) and (4.19) that

2Pt S[w T (x, 1) > — foe P K + (de—ﬁo’ —V(K) - z) (K —x) > 0.

Case(ii): ¢< — Mo. In this case, by (4.16), (4.17) and (4.19), we have
g 2Pt [T (x, 1)e™MO > _pre Py (£)em MO 4 gopoePor U (e Mc

n (de*/j’or _ bﬁnax) U(E — erye—M©@E—en —M(©er

WV

Jo0Boe ™ A1) = § [ Boe T + (e — de ™)
Xef/\l(c)cr]
> 0.
Case(iii): & € [—Ma, M1]. In this case, it follows from (4.17) and (4.19) that
sfleﬁo(tfr)S[wﬂ(x, H>=— ﬁOefﬁorK + aoﬂoefﬁorg + (deiﬁor - b;nax) K>0.
Combining cases (i)—(iii), we obtain

wt+(x, ty—D [w+(x +1L04+wTx—=11)—2w"(x, t)] +dw™(x,1)

—b(wT(x,t —r))=0

for all x € R and¢>0. Thereforew™ (x, t) is a supersolution of (4.1).
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Next, we prove thatw™(x, ) is a subsolution of (4.1). For any € (0, J], put
&=x+ct + EFageePo' | then for anyr >0, we have

Sw™1(x, 1) == w; (x, 1) — D[w™ (x + 1 1) +w (x — 1, 1) — 2w (x,1)]
+dw(x, 1) — bw ™ (x.1 — 1))
< Bose o' U (&) — aopgre ™o (1~ ee o) U/ ()
+ (1 - ae—ﬁo') LU — cr)] — b[(l - ae—ﬁo“—’)) U —cr)]
< Pose P U ) — copgee P (1~ O)U'(&) — dee P U (& — er)
FBUE—cr)]—b [(1 _ ge—ﬁo“—’)) U — cr)] .

For any O< ¢<(1+ 9)/2, we find

blUE —cr)] = bl(1—=U (& —cr)]

= /5 V'[A—-sU(E—cr)UE —cr)ds
0

- /;{b/[(l — U = ern)] — VI — )K1) dsU (¢ — er)

b'(K)—b'((1-9)K)
+ K
<2L[K —U(E —cenN]'U(E —cr) + coU (& —cr).

U —cr)

Therefore, we have
e IS[w (1) < PoePTUE) — aofoe P (L= HU' (&) — (e —m)

x U —=cr)+2L[IK — U —=cr)]'U(E = cr). (4.20)

Again, we distinguish among three cases.
Case(iv): ¢>=M;. In this case, by (4.15), we hav€ — xk/2<n< K + k. Hence, it
follows from (4.14), (4.15) and (4.20) that

8_1eﬁ0(t_r)S[w_](x, t)éﬂoe_ﬁorl( - (de_ﬁor —w) (K — K) +2LK«x" <O.
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Case(v): £< — M». In this case, by (4.16), (4.18) and (4.20), we have

1PN S[w ™ (x, )eM(OS
< ﬂoefﬁorU(f)efAl(”)é — O'Oﬁoeiﬁor(l _ 5)U/(§)e*’\1(“)é
+ 2L[K — U (& — er)] U (& — cr)e M@ E—cn) g=Arc)er
< - %C’Oﬂoe_ﬂor(l —0)Aa(c) + %’ﬁoe_ﬁor + 3LK" e M©cr

<0.

Case(vi): ¢ € [-M>, M1]. In this case, it follows from (4.18) and (4.20) that
¢ 2P Sl (x, 1) < Boe P K — 6oPoe P (1 — )0 + 2LK Y >0.
Combining cases (iv)—(vi), we obtain

w, (x, 1) =Dw x+LH+w (x—11t) —2w (x,)]+dw (x,1)
—b(w (x,t—r))<0

for all x € R andr>0. Thereforew™(x, r) is a subsolution of (4.1) and this completes
the proof. O

5. Asymptotic stability of travelling waves

In this section, forc > ¢*, we establish the asymptotic stability of the unique
travelling wave by using the squeezing technique, which have been used in[&@hen
Chen-Guo [7] and Smith and Zhao [19].

Theorem 5.1. Assume tha{H1)—(H4) hold. Letc > ¢* and (U, ¢) be the travelling
wave as given in Theore@.1. Assume that there exisjg € (0, +00) such that the
initial data ¢ € C(R x [—r, 0], [0, K]) satisfies

liminf ¢(x,0) >0
xX—> 400

and

lim  max |g(x,s)e MO Mles| — 0,

— Pp€
X—>—00 se[—r,0] Po
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Then

lim sup|— 0 4l _g (5.1)
t—>+00 p| U+ ct + &p)

where & = ﬁ In po.

Lemma 5.1. For any ¢ > 0, there existst;(¢) < 0 such that

VELE(e), sup u(—2e—ct,t) <U(E+ & < |nf u(+2¢ —ct,r). (5.2)

t>—r

Proof. At first, we notice that there existsi(e) < 0 such thato(x — ¢,5) <
eMO@+otes) - (x4 ¢, ) for all x<x1(e) ands € [—r, O].

Let ¢ (&) = max0, eMOE+0) _gefriO(E+0)y wheref = 1 (1+min{1+v, ﬁig})

and ¢ > max{ Q(c, f), e~ F-DMGa(e)+lo—cr)y  Then by virtue of Lemmas 2.2 and
4.5, ¢~ (x + ct) is a subsolution of (4.1). Agh1(©+Cotes) _ gefAr@(+iotes) - 0
for all x > x1(¢) ands € [—r,0], we havep(x + &, s) > maxo, M@ G+Eotes) _
gePM©@tcotes)y for all x € R ands € [—r, 0]. The comparison principle then gives

u(x +e&,1) > MOGrtcoter) qeﬂAl(C)(eréOJ“C’) forall xeRandt> —r.
As lim:, o, U(&eM1¢ = 1, there existsi2(e) < 0 such that
M@ E+Sote) _ qe/f/\l(C)(i-i-éo-i-S) > U(E+ &) for all E<xa(e).
Consequently, for alt <x2(e), we have

,Lnjr"(é 26—t 1) >eA1(C)(§+50+8) _ qeﬁAl(C)(f+€o+8) > U+ &).

Let ¢+ (&) = min{K, M@+ 4 efAO(EH0)} Then by virtue of Lemmas 2.2
and 4.5, ¢+(x + ct) is a supersolution of (4.1). SinceM1©)< 4 gefr(O¢ = K for

&> /3/\ o In#, we see that we can takg large enough so that!t(©)(<otes)

qefml(c)(”fo“‘) > K forall x > x1(¢) ands € [—r, 0]. As p(x—¢, 5) < eP1(©OC+otes)
< eMOG+Cotes) 4 g oPAO@+Cotes) for all x <x1(e) ands € [—r, 0], we have

o(x — &, 5)< min {K MO Gtotes) | qeﬁAl(c>(x+io+cs)}

for all x e R ands € [—r,0].
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Consequently, the comparison gives
u(x — e, 1)< min { K. eM©G+Eo+en 4 qe/fA1<c><x+c“o+cs)}
for all x e R andt € [—r, +00).
Since

eMOE=e) § gePALO(E—e)

lim
{—>—o0 U
—A -DA —pA
— i € 10 4 geB-DALC—fA1(0)e e g
{00 U(Qe~Mx ’

there existsrz(¢) < 0 such thate1(©(E+oo—e) 4 gefAOCHoo—e) ~ (& + &) for all
E<x3(e). Hence, for allé <x3(¢), we have

SUp u(& — 28 — ct, 1) <eMOEH=8) | g PO+ - (¢ 4 &),
t>—r

This completes the proof.(]

Lemma 5.2. There existé € (0, 1), fy > 0 and zo > 0 such that for allé € R and
t>1+r,

1 — dePol=1-1) < inf M M <1+ e Por, (5.3)
R U(+ & — z0) rR U(C+ &+ z0)
Proof. In view of (5.2),u(x+2—c(1+r+s),1+r+s)>Ux+ &) for all x <E1(D),
and henceu(x +2,14+r+s)>Ux +c(A+r+s)+ &) for all x<E (D) —c(L+7r)
ands € [—r, 0].

Since liminf,_ 1o @(x,0) > 0, there existsy;1 > 0 andxsg > 0 such that

@(x,0) > 91 for all x > xa.

Fix a positive integelN > x4—[&1(1)—c(1+7)]. If x> &1(1)—c(1+7), thenx+N > xg,
and hence, it follows from Lemma 4.1 that

u(x+2,1+r+s) > DNo(x+2+N, 0)(1+r+S)Ne_(2D+d)(1+r+s)/N!

WV

DNél(l + r + S)Ne—(2D+d)(l+r+S)/N!
DNéle_(2D+d)(1+r)/N!

WV

WV

(1- 6K



S. Ma, X. Zou / J. Differential Equations 217 (2005) 54-87 83

for all x>¢&;(1) —c(A+7r),s € [-r,0] and somed < 1. Thus, for allx € R and
s € [—r, 0], we have

ux+2,14+r+s) > A1-HUx+c(d+r+s)+ &)

> (1—se Posyu (x +c(d+r+s)+&— aodelor + aoéefﬂos) .
The comparison function in (4.9) then gives
u(x +2,14+r+16> (1 — 5e_ﬂ0’> U (x +c(L+r—+1)+ E— opdelor + aoée_ﬂf)’)

and hence,
ux—cQ+r+t,1+r+1 > (1— 5e_ﬁ°t> U (x -2+ &
—opoebor 4 aoae—ﬁof) . (5.4)
Again, in view of (5.2),p(x —2 —cs,s) < U(x + &) for all x<&1(1), and hence,

Qx —2,5) < U(x +cs + &) for all x<&1(1) ands € [—r, 0]. Also, for § given in
the lower bound estimate, we haygx — 2, s) <K <(1+ 0)U (x + ¢s + x5 + &p) for
all x>¢&41(1) ands € [—r, 0], if we take largexs > O such thatU (&1(1) — cr + x5 +
)= K/(L+ ). Thus,p(x —2,5)<(L+HU(x +cs + x5+ &) < (1 + 5e_ﬁOS)U(x +

cs +x5+£o+aoéeﬁor — 6odePos) for all x € R ands € [—r, O]. Using the comparison
function in (4.9) then gives

ox —2,0)< (1 + 5€_ﬁ0t) U <x + ¢t + x5+ &g + aodelor — Joée_ﬁ(”)
and hence,
Qo(x —ct, 1)< (1 + 567/}0[) U (x + 2+ x5+ &+ aodePor — 0'0567[}0[) . (5.5)

Finally, (5.3) follows from (5.4) and (5.5) by settingy = 2 + x5 + aodefo”. This
completes the proof.

Lemma 5.3. There existsMp > 0 such that for alle € (0, 6] and &> Mg — &g,
(1—e)U (5 i 3sooe/’or) U <A+ e)U (é _ 2woe/f0r) , (5.6)
Proof. Notice that

% {G.—i— U (ﬁ — 2saoeﬂ0’)} =U (f - 3saoeﬁ°’) — 3agelPor (1 + 5)U’ ((f - 3saoeﬂ0’) .
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SinceU’'(¢) = %{D[U(ﬁ +D+UE—-1 —-20()]—dU) +bUE —cr))} — 0 as
& — 400, we see that there existdy > 0 such thatl (&) — 6apelo" U’ (&) > 0 for all
E>Moy— &g — 300ePor. Thus, %{(1 + 5)U (¢ — 3sapePor)} > 0 for all s € [—4, 5] and
E> Mo — &g. The assertion of the lemma thus follows.

Lemma 5.4. Let z and M; be arbitrarily fixed positive constants. Let®™ be the
solution to

we(x,t) =Dwkx+1,t)+wkx —1,1) —2w(x, )] —dw(x,t) + b(w(x,t —r))
on R x (0, +00), with the initial value

wh,s) = Ulx+es+E+ 20 (x+es + M) +U(x +cs + &g+ 22)
x (1 —{(x 4+ cs + M1)), (5.7)

w (x,s) =Ux+es+&—2){(x+es+ M) +U(x +cs+ Eg— 22)
x (1—{(x 4+ cs + M1)) (5.8)

for x e R ands € [—r, O], where{(y) = min{max0, —y}, 1} for all y € R. Then there
exists ane € (0, min{d, ze~Po" /(30)}) such that

w+(x—c(l+r+s),1+r+s)<(l+8)U(x+£0+22—38006ﬁ0r>

Yx € [—M1, +00), (5.9)

w_(x—c(l+r~|—s),1+r+s)>(1—8)U(x+fo+21+3£aoeﬁ°r>

Vx € [—Mi, +00). (5.10)

Proof. We only considemw™. A similar argument can be used fer . Sincew™ (-, s) <
U(-+es+&+22) onR, andw™ (-, 5) < U(-+c¢s 4+ &o+22) on (—oo, =M1 — 1], by
Lemma 4.3, we have

wh—c@+r+s),14+r+5) <U(-+E&+27) foralxeRands e[—r 0.

As wt and U are continuous, there exists € (0, min{é,ze‘ﬁor/(Sao)}] such that
WG —c@Q+r+5),14+r+)KUC+E+ 27— 3ea0elor) on the compact interval
[—M1, Mo—2z], whereMp > 0 is as in Lemma 5.3 which asserts tliat- + o) < (1+
&)U (-+E&g—3ea0elo) on [Mo, +00). Hence, we also havet (-—c(1+r+s), 14+r+s) <
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U(-+ &+ 22) <A+ e)U(- + &g+ 22 — BeapePo) on [Mg — 2z, +00). Therefore, (5.9)
holds and the proof is complete.

Proof of Theorem 5.1. We define

i=inf{zlz e AT}, AT := {z>o

. M(—Ct,t)
| — <1, 511
msupsup =0 <l sy

(5.12)

liminf inf "0 =D >1}.

~=inf AT}, A= 20 -
z {Z|Z € } {Z t—+400 R U(+§0_2Z)

In view of (5.3), we see tha%z() € A*. Hence,zt andz~ are well defined and® <

[0, 3z0]. Furthermore, as lim, o, U(&e MO = 1 and lime_, o, U'(&eMOC =

A1(c), it can be easily checked that limg Ul(]':f)s) =1 uniformly on R. So it follows

that z+ € A* and A* = [z%, +0).
Thus, to complete the proof, we need only show #iat= z~ = 0. First, we prove
that z+ = 0, by a contradiction argument. Suppose for the contrary shat 0.

We fix z = z and M1 = —¢&1(z7/2), and denote by the resulting constant in
. + + o u(-—ct,t)
Lemma 5.4. Since™ € A", limsup_, , ., Supg ng. It then follows that

there existsT >0 such that sup %gpr &/K for all s € [—r, 0], where

& = sU(—My+ &g —3eapeloye KA K = b o@D+ _ g From (5.7),w* (-, s) =
U(-+cs+E+2z) on [—M71 — cs, +00), so that on[—M; — cs, +00), u(- —cT, T +
HKUC+es+E+22h) +6=wh(,s) +&.

Oon (—oo,—M1 — ¢s] = (—o0,&1(z7/2) — cs], we have, from (5.2), that
u(- — T, T +5)<SU(- +cs + &g+ zD)<w™ (-, 5) by the definition of w™(-,s) in
(5.7). Thus, for alls € [—r,0], u(- — cT,T + s)<w™(,,s) + & on R. Therefore, by
virtue of Lemma 4.4, we have(- —cT, T+ 1+r+s)<wT (-, 147 +5) + K1+ =
wrC, 147 +s)+eU(—My+ & — 3s00elor) on R. Therefore, it follows from (5.9)
that

u(-—c(T +14r+s),T+1+r+s)
SwhC—c@4r+s),1+r+s)+eU (—Ml + & — 3saoeﬁ°r> on R
<(A+9U ( +277 — 3800650’) +eU (—Ml + &y — 3eaoeﬁ0r) on [—M1, +00)

<14 20)U ( + &+ 22" - Seaoe""’) on [—M3, +00).

On the other hand, by (5.2), we havé —c(T +1+r+s), T+1+r+s)<U(-+ o+
zT) on (—oo, —M1], and 3agelo” <zt there holdsu(- — c(T+1+r+s), T+1+r+s)
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SU(-+ & + 22T — 3eagelor) on (—oo, —M1]. Thus, we have

u(-—c(T +14r+s),T+1+r+s)

<A +2)U ( +&+27F - 38006‘80")
< (1 + ZSe_ﬁO‘Y) U ( + &+ 277 — oo — 2800e_[30‘v) on R.
A comparison then shows that
ux —e(T+14+r+1),T+1+r+0< (1+25e—ﬁ0‘)
xU (x +é+ 27 —eop — 28aoe_ﬁ0’>

for all x € R andz>0. This implies that

. u(-—ct,r)
lim sup sup - <1.
t—>+00 R U('+€O+22+—8(70)

That is, zt — eog € AT. But this contradicts the definition oft. This contradiction
shows that;™ = 0.

In a similar manner, we can show that = 0, and thereby completing the proof of
Theorem 5.1. OJ
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